JP2004087075A - 記録方法および記録装置、ならびに、編集方法 - Google Patents

記録方法および記録装置、ならびに、編集方法 Download PDF

Info

Publication number
JP2004087075A
JP2004087075A JP2003083728A JP2003083728A JP2004087075A JP 2004087075 A JP2004087075 A JP 2004087075A JP 2003083728 A JP2003083728 A JP 2003083728A JP 2003083728 A JP2003083728 A JP 2003083728A JP 2004087075 A JP2004087075 A JP 2004087075A
Authority
JP
Japan
Prior art keywords
track
recording
data
audio data
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083728A
Other languages
English (en)
Inventor
Manabu Shiroi
城井 学
Seiji Oubi
王尾 誠司
Takashi Kawakami
川上 高
Masato Hattori
服部 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003083728A priority Critical patent/JP2004087075A/ja
Publication of JP2004087075A publication Critical patent/JP2004087075A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Management Or Editing Of Information On Record Carriers (AREA)

Abstract

【課題】パーソナルコンピュータから転送されたオーディオデータをディスク上の連続的な位置に確実に書き込むことができるようにする。
【解決手段】パーソナルコンピュータ(PC)100からディスク90に一般のデータを書き込む処理は、PC100側のFATシステムの管理化で行われる。PC100からディスク90にオーディオデータを書き込む操作を行うときは、PC100のFATシステムが切り離され、データの書き込み単位が64kバイト×4とされたディスクドライブ装置1側のFATシステムによりオーディオデータの書き込みが管理される。そのため、ディスク上でのオーディオデータの連続性が損なわれることがない。オーディオデータが複数格納される巨大ファイルにおけるオーディオデータの削除なども、ディスクドライブ装置1側の制御により容易に行うことができる。
【選択図】 図52

Description

【0001】
【発明の属する技術分野】
この発明は、従来のMDシステムで使用可能な光磁気ディスクを拡張し、従来のMDシステムとの互換性を図れるようにした記録方法および記録装置、ならびに、編集方法に関する。
【0002】
【従来の技術】
ディジタルオーディオデータを記録再生するための記録媒体として、カートリッジに収納された直径64mmの光磁気ディスクであるミニディスク(MD)が広く普及している。
【0003】
MDシステムでは、オーディオデータの圧縮方式として、ATRAC(Adaptive TRansform Acoustic Coding)が用いられている。ATRACは、所定の時間窓で取り込まれたオーディオデータを、MDCT(Modified Discrete Cosine Transform )を用いて圧縮符号化するものである。ATRACにより、音楽データは1/5〜1/10に圧縮される。
【0004】
また、エラー訂正方式として、ACIRC(Advanced Cross Interleave Reed−Solomon Code)と呼ばれる畳み込み符号が用いられ、変調方式には、EFMが用いられている。ACIRCは、C1系列(垂直方向)とななめ方向(C2系列)とに二重にエラー訂正符号化を行う畳み込み符号であり、オーディオデータのようなシーケンシャルなデータに対しては、強力なエラー訂正処理が行える。しかしながら、畳み込み符号の場合には、データの書き換え時に、リンキング用のセクタが必要になってくる。ACIRC方式やEFMは、基本的には、従来のコンパクトディスク(CD)と同様なものが採用されている。
【0005】
また、音楽データの管理には、U−TOC(ユーザTOC(Table Of Contents))が用いられている。すなわち、ディスクのレコーダブル領域の内周には、U−TOCと呼ばれる領域が設けられる。U−TOCは、現行のMDシステムにおいて、トラック(オーディオトラック/データトラック)の曲順、記録、消去などに応じて書き換えられる管理情報であり、各トラック(トラックを構成するパーツ)について、開始位置、終了位置や、モードを管理するものである。
【0006】
【発明が解決しようとする課題】
MDシステムのディスクは、小型で安価であり、オーディオデータの記録再生用としては優れた特性を有している。このため、MDシステムは、これまで、広く普及してきている。
【0007】
本願発明者の認識によれば、MDシステムは、市場における要求を完全に満たしてはいない。なぜなら、MDシステムは、パーソナルコンピュータのような汎用コンピュータとの互換性を有していないからである。更に、従来のMDシステムは、パーソナルコンピュータにおいて使用されているFAT(File AllocationTable)ベースのファイルシステムとは異なるファイル管理方法を用いている。
【0008】
すなわち、パーソナルコンピュータやネットワークが一般的に利用されるにつれて、オーディオデータがネットワークに接続されたパーソナルコンピュータによって益々盛んに配信されるようになってきている。また、パーソナルコンピュータをオーディオサーバとして使い、ユーザが気に入った音楽ファイルを携帯型の再生機にダウンロードして、音楽再生を行うようなことが行われている。本願発明者の認識によれば、従来のMDシステムでは、パーソナルコンピュータとの互換性が十分でない。そこで、例えばFATシステムなどの汎用の管理システムを導入して、パーソナルコンピュータとの互換性を高めることが望まれる。
【0009】
文献「How Computers Work, Millennium Edition」(White, R.著、1999年、Que Corporation発行)の146頁及び158頁に説明されているように、FATは、セクタ0といった特定のディスクセクタ上に、ディスクドライブによって作成される。本明細書中、「FAT」又は「FATシステム」という用語は、種々のパーソナルコンピュータ(以下、「PC」と略称する)ベースのファイルシステムを指すのに総称的に用いられ、DOS(Disk Operating System)で用いられる特定のFATベースのファイルシステム、Windows(登録商標)95/98で使用されるVFAT(Virtual FAT)、Windows98/ME/2000で用いられるFAT32、及びNTFS(NT File System(New Technology File System とも呼ばれる))を含むことを意図するものである。NTFSは、WindowsNT(登録商標)オペレーティングシステム、又は(オプションにより)Windows2000で使用されるファイルシステムであり、ディスクに対する読み出し/書き込みの際に、ファイルの記録及び取り出しを行う。NTFSは、WindowsNTにおいて、Windows95のファイルアロケーションテーブル(FAT)、及びOS/2のハイパフォーマンス・ファイルシステム(HPFS)に相当するものである。
【0010】
また、パーソナルコンピュータとの互換性が高くなると、著作物が不法にコピーされる危険性が増大し、そのために、オーディオの著作物を不法コピーから守る、より高度な技術が要求される。こうした著作権侵害に対する保護を強化するための一つの技術は、オーディオの著作物を暗号化して記録することである。また、ディスクに記録される音楽タイトルとアーティストネームは、現在よりも有効な方法で管理されることが望ましい。
【0011】
更に、現行のMDシステムのディスクは、記録容量が160MB程度であるが、本願発明者は、この容量が、データの記録に関してユーザの要求を満たすとは限らないと考えている。そこで、現行のMDとの互換性を確保しつつ、記録容量を増大させることが望まれている。
【0012】
ところで、オーディオデータは、時間的に連続して再生することが容易なように記録媒体に記録されることが望ましい。特に、携帯型の再生機などでは、記録媒体上のアドレスに対するアクセス時間が遅いため、記録位置によっては楽曲の再生が途中で途切れてしまう場合がある。
【0013】
ここで、上述のようにパーソナルコンピュータとの互換性を高め、FATシステムなどの汎用の管理システムを現行のMDシステムに導入し、パーソナルコンピュータからオーディオデータを記録可能とした場合について考える。
【0014】
MDシステムの管理システムをFATシステムとすると、オーディオデータは、FATによるファイルシステム上のファイルとして記録されることになる。通常は、このファイルシステムは、パーソナルコンピュータ側のOS(Operating System)の支配下にあり、一般的なデータの読み書きに使用される。管理システムにFATシステムが導入されたMDシステムによるディスクに、パーソナルコンピュータからオーディオデータを書き込むときも、一般的なデータの書き込みと同じようにして、データの書き込みが行われることになる。
【0015】
このとき、パーソナルコンピュータは、当該ディスクの事情を認識せずに、単純にディスク上の空き領域を割り当ててオーディオデータを書き込んでしまう。何度もファイルの作成や消去を繰り返したディスクでは、空き領域がディスク上に分散してしまうことが考えられるため、このようにして記録されたオーディオデータは、例えば携帯型の再生機では正常に再生できない可能性が高いという問題点があった。
【0016】
したがって、この発明の目的は、上記問題点及び関連分野の他の欠陥を解決するために、FATシステムをMD媒体について統合することにより、オーディオデータを効果的に管理する記録方法および記録装置、ならびに、編集方法を提供することにある。
【0017】
更に、この発明の目的は、パーソナルコンピュータから転送されたオーディオデータをディスク上の連続的な位置に確実に書き込むことができるような記録方法および記録装置、ならびに、編集方法を提供することにある。
【0018】
【課題を解決するための手段】
この発明は、上述した課題を解決するために、第1の装置と第2の装置が接続されるとき、第2の装置に装着される記録媒体を第1の装置内に記録される第1の管理システムが管理し、第1の装置から第2の装置に転送されるデータを記録媒体に記録するとき、データ記録単位の連続性を制限する第2の装置内に記録される第2の管理システムに基づき、データを記録媒体に記録することを特徴とする記録方法である。
【0019】
また、この発明は、他の装置と接続されるとき、装着される記録媒体を他の装置内に記録される第1の管理システムが管理し、他の装置から転送されるデータを記録媒体に記録するとき、データ記録単位の連続性を制限する自身に記録される第2の管理システムに基づき、データを記録媒体に記録することを特徴とする記録装置である。
【0020】
また、この発明は、第1の装置と第2の装置が接続されるとき、第2の装置に装着される記録媒体を第1の装置内に記録される第1の管理システムが管理し、第1の装置から第2の装置に装着される記録媒体に記録された単一ファイルの一部に対する削除が指示されたとき、第2の装置内に記録される第2の管理システムに基づき、単一ファイルの一部に対する削除の指示を実行することを特徴とする編集方法である。
【0021】
また、この発明は、他の装置と接続されるとき、自身に装着される記録媒体を他の装置内に記録される第1の管理システムが管理し、他の装置から自身の装置に装着される記録媒体に記録された単一ファイルの一部に対する削除が指示されたとき、自身の装置内に記録される第2の管理システムに基づき、単一ファイルの一部に対する削除の指示を実行することを特徴とする編集方法である。
【0022】
上述したように、第1の発明は、第1の装置と第2の装置が接続されるとき、第2の装置に装着される記録媒体を第1の装置内に記録される第1の管理システムが管理し、第1の装置から第2の装置に転送されるデータを記録媒体に記録するとき、データ記録単位の連続性を制限する第2の装置内に記録される第2の管理システムに基づき、データを記録媒体に記録するようにしているため、第2の装置に装着される記録媒体が第1の装置内に記録される第1の管理システムに管理されていても、第1の装置から第2の装置に転送されるデータの第2の装置に装着される記録媒体への記録は、第2の装置内に記録される第2の管理システムにより管理される。
【0023】
また、第2の発明は、他の装置と接続されるとき、装着される記録媒体を他の装置内に記録される第1の管理システムが管理し、他の装置から転送されるデータを記録媒体に記録するとき、データ記録単位の連続性を制限する自身に記録される第2の管理システムに基づき、データを記録媒体に記録するようにしているため、自身に装着される記録媒体が他の装置内に記録される第1の管理システムに管理されていても、他の装置から自身に転送されるデータの自身に装着される記録媒体への記録は、自身に記録される第2の管理システムにより管理される。
【0024】
また、第3の発明は、第1の装置と第2の装置が接続されるとき、第2の装置に装着される記録媒体を第1の装置内に記録される第1の管理システムが管理し、第1の装置から第2の装置に装着される記録媒体に記録された単一ファイルの一部に対する削除が指示されたとき、第2の装置内に記録される第2の管理システムに基づき、単一ファイルの一部に対する削除の指示を実行するようにしているため、第2の装置に装着される記録媒体が第1の装置内に記録される第1の管理システムに管理されていても、第1の装置から第2の装置への、第2の装置に装着される記録媒体に記録された単一ファイルの一部に対する削除の指示は、第2の装置内に記録される第2の管理システムにより管理される。
【0025】
また、第4の発明は、他の装置と接続されるとき、自身に装着される記録媒体を他の装置内に記録される第1の管理システムが管理し、他の装置から自身の装置に装着される記録媒体に記録された単一ファイルの一部に対する削除が指示されたとき、自身の装置内に記録される第2の管理システムに基づき、単一ファイルの一部に対する削除の指示を実行するようにしているため、自身に装着される記録媒体が他の装置内に記録される第1の管理システムに管理されていても、他の装置から自身への、自身に装着される記録媒体に記録された単一ファイルの一部に対する削除の指示は、自身に記録される第2の管理システムにより管理される。
【0026】
【発明の実施の形態】
以下、この発明の実施の一形態について、下記の10のセクションに従い説明する。
1.記録方式の概要
2.ディスクについて
3.信号フォーマット
4.記録再生装置の構成
5.次世代MD1および次世代MD2によるディスクの初期化処理について
6.音楽データの第1の管理方式について
7.音楽データの管理方式の第2の例
8.パーソナルコンピュータとの接続時の動作について
9.ディスク上に記録されたオーディオデータのコピー制限について
10.次世代MD1システムと現行MDシステムとの共存について
【0027】
1.記録方式の概要
この発明による記録再生装置では、記録媒体として光磁気ディスクが使用される。フォームファクタのような、ディスクの物理的属性は、いわゆるMD(Mini−Disc)システムによって使用されるディスクと実質的に同じである。しかし、ディスク上に記録されたデータと、そのデータがどのようにディスク上に配置されているかについては、従来のMDと異なる。
【0028】
より具体的には、この発明による装置は、オーディオデータのようなコンテンツデータを記録再生するために、ファイル管理システムとしてFAT(File Allocation Table)システムを使用している。これによって、当該装置は、現行のパーソナルコンピュータに対して互換性を保証することができる。
【0029】
ここでは、「FAT」又は「FATシステム」という用語は、前述したように、種々のPCベースのファイルシステムを指すのに総称的に用いられ、DOS(Disk Operating System)で用いられる特定のFATベースのファイルシステム、Windows95/98で使用されるVFAT(Virtual FAT)、Windows98/ME/2000で用いられるFAT32、及びNTFS(NT File System(New Technology File System とも呼ばれる))のどれかを示すことを意図したものではない。NTFSは、WindowsNTオペレーティングシステム、又は(オプションにより)Windows2000で使用されるファイルシステムであり、ディスクに対する読み出し/書き込みの際に、ファイルの記録及び取り出しを行う。
【0030】
また、この発明では、現行のMDシステムに対して、エラー訂正方式や変調方式を改善することにより、データの記録容量の増大を図るとともに、データの信頼性を高めるようにしている。更に、この発明では、コンテンツデータを暗号化するとともに、不正コピーを防止して、コンテンツデータの著作権の保護が図れるようにしている。
【0031】
記録再生のフォーマットとしては、現行のMDシステムで用いられているディスクと全く同様のディスク(すなわち、物理媒体)を用いるようにした次世代MD1の仕様と、現行のMDシステムで用いられているディスクとフォームファクター及び外形は同様であるが、磁気超解像度(MSR)技術を使うことにより、線記録方向の記録密度を上げて、記録容量をより増大した次世代MD2の仕様とがあり、これらが本願発明者により開発されている。
【0032】
現行のMDシステムでは、カートリッジに収納された直径64mmの光磁気ディスクが記録媒体として用いられている。ディスクの厚みは1.2mmであり、その中央に11mmの径のセンターホールが設けられている。カートリッジの形状は、長さ68mm、幅72mm、厚さ5mmである。
【0033】
次世代MD1の仕様でも次世代MD2の仕様でも、これらディスクの形状やカートリッジの形状は、全て同じである。リードイン領域の開始位置についても、次世代MD1の仕様および次世代MD2の仕様のディスクも、29mmから始まり、現行のMDシステムで使用されているディスクと同様である。
【0034】
トラックピッチについては、次世代MD2では、1.2μmから1.3μm(例えば1.25μm)とすることが検討されている。これに対して、現行のMDシステムのディスクを流用する次世代MD1では、トラックピッチは1.6μmとされている。ビット長は、次世代MD1が0.44μm/ビットとされ、次世代MD2が0.16μm/ビットとされる。冗長度は、次世代MD1および次世代MD2ともに、20.50%である。
【0035】
次世代MD2の仕様のディスクでは、磁気超解像技術を使うことにより、線密度方向の記録容量を向上するようにしている。磁気超解像技術は、所定の温度になると、切断層が磁気的にニュートラルな状態になり、再生層に転写されていた磁壁が移動することで、微少なマークがビームスポットの中で大きく見えるようになることを利用したものである。
【0036】
すなわち、次世代MD2の仕様のディスクでは、透明基板上に、少なくとも情報を記録する記録層となる磁性層と、切断層と、情報再生用の磁性層とが積層される。切断層は、交換結合力調整用層となる。所定の温度になると、切断層が磁気的にニュートラルな状態になり、記録層に転写されていた磁壁が再生用の磁性層に転写される。これにより、微少なマークがビームスポットの中に見えるようになる。なお、記録時には、レーザパルス磁界変調技術を使うことで、微少なマークを生成することができる。
【0037】
また、次世代MD2の仕様のディスクでは、デトラックマージン、ランドからのクロストーク、ウォブル信号のクロストーク、フォーカスの漏れを改善するために、グルーブを従来のMDディスクより深くし、グルーブの傾斜を鋭くしている。次世代MD2の仕様のディスクでは、グルーブの深さは例えば160nmから180nmであり、グルーブの傾斜は例えば60度から70度であり、グルーブの幅は例えば600nmから700nmである。
【0038】
また、光学的の仕様については、次世代MD1の仕様では、レーザ波長λが780nmとされ、光学ヘッドの対物レンズの開口率NAが0.45とされている。次世代MD2の仕様も同様に、レーザ波長λが780nmとされ、光学ヘッドの開口率NAが0.45とされている。
【0039】
記録方式としては、次世代MD1の仕様も次世代MD2の仕様も、グルーブ記録方式が採用されている。つまり、グルーブ(ディスクの盤面上の溝)をトラックとして記録再生に用いるようにしている。
【0040】
エラー訂正符号化方式としては、現行のMDシステムでは、ACIRC(Advanced Cross Interleave Reed−Solomon Code) による畳み込み符号が用いられていたが、次世代MD1および次世代MD2の仕様では、RS−LDC(Reed Solomon−Long Distance Code)とBIS(Burst Indicator Subcode)とを組み合わせたブロック完結型の符号が用いられている。ブロック完結型のエラー訂正符号を採用することにより、リンキングセクタが不要になる。LDCとBISとを組み合わせたエラー訂正方式では、バーストエラーが発生したときに、BISによりエラーロケーションが検出できる。このエラーロケーションを使って、LDCコードにより、イレージャ訂正を行うことができる。
【0041】
アドレス方式としては、シングルスパイラルによるグルーブを形成したうえで、このグルーブの両側に対してアドレス情報としてのウォブルを形成したウォブルドグルーブ方式が採用されている。このようなアドレス方式は、ADIP(Address in Pregroove)と呼ばれている。現行のMDシステムと、次世代MD1および次世代MD2の仕様では、線密度が異なると共に、現行のMDシステムでは、エラー訂正符号として、ACIRCと呼ばれる畳み込み符号が用いられているのに対して、次世代MD1および次世代MD2の仕様では、LDCとBISとを組み合わせたブロック完結型の符号が用いられているため、冗長度が異なり、ADIPとデータとの相対的な位置関係が変わっている。そこで、現行のMDシステムと同じ物理構造のディスクを流用する次世代MD1の仕様では、ADIP信号の扱いを、現行のMDシステムのときとは異なるようにしている。また、次世代MD2の仕様では、次世代MD2の仕様により合致するように、ADIP信号の仕様に変更を加えている。
【0042】
変調方式については、現行のMDシステムでは、EFM(8 to 14 Modulation)が用いられているのに対して、次世代MD1および次世代MD2の仕様では、RLL(1,7)PP(RLL;Run Length Limited ,PP;Parity Preserve/Prohibit rmtr(repeated minimum transition runlength))(以下、1−7pp変調と称する)が採用されている。また、データの検出方式は、次世代MD1ではパーシャルレスポンスPR(1,2,1)MLを用い、次世代MD2ではパーシャルレスポンスPR(1,−1)MLを用いたビタビ復号方式とされている。
【0043】
また、ディスク駆動方式はCLV(Constant Linear Verocity)またはZCAV(Zone Constant Angular Verocity)で、その標準線速度は、次世代MD1の仕様では、2.4m/秒とされ、次世代MD2の仕様では、1.98m/秒とされる。なお、現行のMDシステムの仕様では、60分ディスクで1.2m/秒、74分ディスクで1.4m/秒とされている。
【0044】
現行のMDシステムで用いられるディスクをそのまま流用する次世代MD1の仕様では、ディスク1枚当たりのデータ総記録容量は約300Mバイト(80分ディスクを用いた場合)になる。変調方式がEFMから1−7pp変調とされることで、ウィンドウマージンが0.5から0.666となり、この点で、1.33倍の高密度化が実現できる。また、エラー訂正方式として、ACIRC方式からBISとLDCを組み合わせたものとしたことで、データ効率が上がり、この点で、1.48倍の高密度化が実現できる。総合的には、全く同様のディスクを使って、現行のMDシステムに比べて、約2倍のデータ容量が実現されたことになる。
【0045】
磁気超解像度を利用した次世代MD2の仕様のディスクでは、更に線密度方向の高密度化が図られ、データ総記録容量は、約1Gバイトになる。
【0046】
データレートは標準線速度にて、次世代MD1では4.4Mビット/秒であり、次世代MD2では、9.8Mビット/秒である。
【0047】
2.ディスクについて
図1は、次世代MD1のディスクの構成を示すものである。次世代MD1のディスクは、現行のMDシステムのディスクをそのまま流用したものである。すなわち、ディスクは、透明のポリカーボネート基板上に、誘電体膜と、磁性膜と、誘電体膜と、反射膜とを積層して構成される。更に、その上に、保護膜が積層される。
【0048】
次世代MD1のディスクでは、図1に示すように、ディスクの内周(ディスクのレコーダブル領域の最も内側の周(「最も内側」は、ディスクの中心から放射状に延びる方向において最も内側を示す)のリードイン領域に、P−TOC(プリマスタードTOC(Table Of Contents))領域が設けられる。ここは、物理的な構造としては、プリマスタード領域となる。すなわち、エンボスピットにより、コントロール情報等が、例えば、P−TOC情報として記録されている。
【0049】
P−TOC領域が設けられるリードイン領域の外周(ディスクの中心から放射状に延びる方向において外側の周)は、レコーダブル領域(光磁気記録可能な領域)とされ、記録トラックの案内溝としてグルーブが形成された記録再生可能領域となっている。このレコーダブル領域の内周には、U−TOC(ユーザTOC)が設けられる。
【0050】
U−TOCは、現行のMDシステムでディスクの管理情報を記録するために用いられているU−TOCと同様の構成のものである。U−TOCは、現行のMDシステムにおいて、トラック(オーディオトラック/データトラック)の曲順、記録、消去などに応じて書き換えられる管理情報であり、各トラック(トラックを構成するパーツ)について、開始位置、終了位置や、モードを管理するものである。
【0051】
U−TOCの外周には、アラートトラックが設けられる。このトラックには、ディスクが現行のMDシステムにロードされた場合に、MDプレーヤによって起動(出力)される警告音が記録される。この警告音は、そのディスクが次世代MD1方式で使用され、現行のシステムでは再生できないことを示すものである。レコーダブル領域の残りの部分(詳しくは、図2に示されている)は、リードアウト領域まで、放射状に延びる方向に広がっている。
【0052】
図2は、図1に示す次世代MD1の仕様のディスクのレコーダブル領域の構成を示すものである。図2に示すように、レコーダブル領域の先頭(内周側)には、U−TOCおよびアラートトラックが設けられる。U−TOCおよびアラートトラックが含まれる領域は、現行のMDシステムのプレーヤでも再生できるように、EFMでデータが変調されて記録される。EFM変調でデータが変調されて記録される領域の外周に、次世代MD1方式の1−7pp変調でデータが変調されて記録される領域が設けられる。EFMでデータが変調されて記録される領域と、1−7pp変調でデータが変調されて記録される領域との間は所定の距離の間だけ離間されており、「ガードバンド」が設けられている。このようなガードバンドが設けられるため、現行のMDプレーヤに次世代MD1の仕様のディスクが装着されて、不具合が発生されることが防止される。
【0053】
1−7pp変調でデータが変調されて記録される領域の先頭(内周側)には、DDT(Disc Description Table)領域と、リザーブトラックが設けられる。DDT領域には、物理的に欠陥のある領域に対する交替処理をするために設けられる。DDT領域には、さらに、ユニークID(UID)が記録される。UIDは、記録媒体毎に固有の識別コードであって、例えば所定に発生された乱数に基づく。リザーブトラックは、コンテンツの保護を図るための情報が格納される。
【0054】
更に、1−7pp変調でデータが変調されて記録される領域には、FAT(File Allocation Table)領域が設けられる。FAT領域は、FATシステムでデータを管理するための領域である。FATシステムは、汎用のパーソナルコンピュータで使用されているFATシステムに準拠したデータ管理を行うものである。FATシステムは、ルートにあるファイルやディレクトリのエントリポイントを示すディレクトリと、FATクラスタの連結情報が記述されたFATテーブルとを用いて、FATチェーンによりファイル管理を行うものである。なお、FATの用語は、前述したように、PCオペレーティングシステムで利用される、様々な異なるファイル管理方法を示すように総括的に用いられている。
【0055】
次世代MD1の仕様のディスクにおいては、U−TOC領域には、アラートトラックの開始位置の情報と、1−7pp変調でデータが変調されて記録される領域の開始位置の情報が記録される。
【0056】
現行のMDシステムのプレーヤに、次世代MD1のディスクが装着されると、U−TOC領域が読み取られ、U−TOCの情報から、アラートトラックの位置が分かり、アラートトラックがアクセスされ、アラートトラックの再生が開始される。アラートトラックには、このディスクが次世代MD1方式で使用され、現行のMDシステムのプレーヤでは再生できないことを示す警告音が記録されている。この警告音から、このディスクが現行のMDシステムのプレーヤでは使用できないことが知らされる。
【0057】
なお、警告音としては、「このプレーヤでは使用できません」というような言語による警告とすることができる。勿論、単純なビープ音、トーン、又はその他の警告信号とするようにしても良い。
【0058】
次世代MD1に準拠したプレーヤに、次世代MD1のディスクが装着されると、U−TOC領域が読み取られ、U−TOCの情報から、1−7pp変調でデータが記録された領域の開始位置が分かり、DDT、リザーブトラック、FAT領域が読み取られる。1−7pp変調のデータの領域では、U−TOCを使わずに、FATシステムを使ってデータの管理が行われる。
【0059】
図3は、次世代MD2のディスクを示すものである。ディスクは、透明のポリカーボネート基板上に、誘電体膜と、磁性膜と、誘電体膜と、反射膜とを積層して構成される。更に、その上に、保護膜が積層される。
【0060】
次世代MD2のディスクでは、図3Aに示すように、ディスクの内周(ディスクの中心から放射状に延びる方向において内側の周)のリードイン領域には、ADIP信号により、コントロール情報が記録されている。次世代MD2のディスクには、リードイン領域にはエンボスピットによるP−TOCは設けられておらず、その代わりに、ADIP信号によるコントロール情報が用いられる。リードイン領域の外周からレコーダブル領域が開始され、記録トラックの案内溝としてグルーブが形成された記録再生可能領域となっている。このレコーダブル領域には、1−7pp変調で、データが変調されて記録される。
【0061】
次世代MD2の仕様のディスクでは、図3Bに示すように、磁性膜として、情報を記録する記録層となる磁性層101と、切断層102と、情報再生用の磁性層103とが積層されたものが用いられる。切断層102は、交換結合力調整用層となる。所定の温度になると、切断層102が磁気的にニュートラルな状態になり、記録層101に転写されていた磁壁が再生用の磁性層103に転写される。これにより、記録層101では微少なマークが再生用の磁性層103のビームスポットの中に拡大されて見えるようになる。
【0062】
次世代MD1であるか次世代MD2であるかは、例えば、リードインの情報から判断できる。すなわち、リードインにエンボスピットによるP−TOCが検出されれば、現行のMDまたは次世代MD1のディスクであると判断できる。リードインにADIP信号によるコントロール情報が検出され、エンボスピットによるP−TOCが検出されなければ、次世代MD2であると判断できる。なお、次世代MD1と次世代MD2との判別は、このような方法に限定されるものではない。オントラックのときとオフトラックのときとのトラッキングエラー信号の位相から判別することも可能である。勿論、ディスク識別用の検出孔等を設けるようにしても良い。
【0063】
図4は、次世代MD2の仕様のディスクのレコーダブル領域の構成を示すものである。図4に示すように、レコーダブル領域では全て1−7pp変調でデータが変調されて記録され、1−7pp変調でデータが変調されて記録される領域の先頭(内周側)には、DDT領域と、リザーブトラックが設けられる。DDT領域は、物理的に欠陥のある領域に対する交替領域を管理するための交替領域管理データを記録するために設けられる。
【0064】
具体的には、DDT領域は、物理的に欠陥のある上記領域に替わるレコーダブル領域を含む置き換え領域を管理する管理テーブルを記録する。この管理テーブルは、欠陥があると判定された論理クラスタを記録し、その欠陥のある論理クラスタに替わるものとして割り当てられた置き換え領域内の論理クラスタ(1つ又は複数)も記録する。さらに、DDT領域には、上述したUIDが記録される。リザーブトラックは、コンテンツの保護を図るための情報が格納される。
【0065】
更に、1−7pp変調でデータが変調されて記録される領域には、FAT領域が設けられる。FAT領域は、FATシステムでデータを管理するための領域である。FATシステムは、汎用のパーソナルコンピュータで使用されているFATシステムに準拠したデータ管理を行うものである。
【0066】
次世代MD2のディスクにおいては、U−TOC領域は設けられていない。次世代MD2に準拠したプレーヤに、次世代MD2のディスクが装着されると、所定の位置にあるDDT、リザーブトラック、FAT領域が読み取られ、FATシステムを使ってデータの管理が行われる。
【0067】
なお、次世代MD1および次世代MD2のディスクでは、時間のかかる初期化作業は不要とされる。すなわち、次世代MD1および次世代MD2の仕様のディスクでは、DDTやリザーブトラック、FATテーブル等の最低限のテーブルの作成以外に、初期化作業は不要で、未使用のディスクからレコーダブル領域の記録再生を直接行うことが可能である。
【0068】
3.信号フォーマット
次に、次世代MD1および次世代MD2のシステムの信号フォーマットについて説明する。現行のMDシステムでは、エラー訂正方式として、畳み込み符号であるACIRCが用いられており、サブコードブロックのデータ量に対応する2352バイトからなるセクタを記録再生のアクセス単位としている。畳み込み符号の場合には、エラー訂正符号化系列が複数のセクタに跨るため、データを書き換える際には、隣接するセクタ間に、リンキングセクタを用意する必要がある。アドレス方式としては、シングルスパイラルによるグルーブを形成したうえで、このグルーブの両側に対してアドレス情報としてのウォブルを形成したウォブルドグルーブ方式であるADIPが使われている。現行のMDシステムでは、2352バイトからなるセクタをアクセスするのに最適なように、ADIP信号が配列されている。
【0069】
これに対して、次世代MD1および次世代MD2のシステムの仕様では、LDCとBISとを組み合わせたブロック完結型の符号が用いられ、64Kバイトを記録再生のアクセス単位としている。ブロック完結型の符号では、リンキングセクタは不要である。そこで、現行のMDシステムのディスクを流用する次世代MD1のシステムの仕様では、ADIP信号の扱いを、新たな記録方式に対応するように、変更するようにしている。また、次世代MD2のシステムの仕様では、次世代MD2の仕様により合致するように、ADIP信号の仕様に変更を加えている。
【0070】
図5、図6、および図7は、次世代MD1および次世代MD2のシステムで使用されるエラー訂正方式を説明するためのものである。次世代MD1および次世代MD2のシステムでは、図5に示すようなLDCによるエラー訂正符号化方式と、図6および図7に示すようなBIS方式とが組み合わされている。
【0071】
図5は、LDCによるエラー訂正符号化の符号化ブロックの構成を示すものである。図5に示すように、各エラー訂正符号化セクタのデータに対して、4バイトのエラー検出コードEDCが付加され、水平方向に304バイト、垂直方向に216バイトのエラー訂正符号化ブロックに、データが二次元配列される。各エラー訂正符号化セクタは、2Kバイトのデータからなる。図5に示すように、水平方向に304バイト、垂直方向に216バイトからなるエラー訂正符号化ブロックには、2Kバイトからなるエラー訂正符号化セクタが32セクタ分配置される。このように、水平方向に304バイト、垂直方向に216バイトに二次元配列された32個のエラー訂正符号化セクタのエラー訂正符号化ブロックのデータに対して、垂直方向に、32ビットのエラー訂正用のリード・ソロモンコードのパリティが付加される。
【0072】
図6および図7は、BISの構成を示すものである。図6に示すように、38バイトのデータ毎に、1バイトのBISが挿入され、(38×4=152バイト)のデータと、3バイトのBISデータと、2.5バイトのフレームシンクとの合計157.5バイトが1フレームとされる。
【0073】
図7に示すように、このように構成されるフレームを496フレーム集めて、BISのブロックが構成される。BISデータ(3×496=1488バイト)には、576バイトのユーザコントロールデータと、144バイトのアドレスユニットナンバと、768バイトのエラー訂正コードが含められる。
【0074】
このように、BISデータには、1488バイトのデータに対して768バイトのエラー訂正コードが付加されているので、強力にエラー訂正を行うことができる。このBISコードを38バイト毎に埋め込んでおくことにより、バーストエラーが発生したときに、エラーロケーションが検出できる。このエラーロケーションを使って、LDCコードにより、イレージャ訂正を行うことができる。
【0075】
ADIP信号は、図8に示すように、シングルスパイラルのグルーブの両側に対してウォブルを形成することで記録される。すなわち、ADIP信号は、FM変調されたアドレスデータを有し、ディスク素材にグルーブのウォブルとして形成されることにより記録される。
【0076】
図9は、次世代MD1の場合のADIP信号のセクタフォーマットを示すものである。
【0077】
図9に示すように、ADIP信号の1セクタ(ADIPセクタ)は、4ビットのシンクと、8ビットのADIPクラスタナンバの上位ビットと、8ビットのADIPクラスタナンバの下位ビットと、8ビットのADIPセクタナンバと、14ビットのエラー検出コードCRCとからなる。
【0078】
シンクは、ADIPセクタの先頭を検出するための所定パターンの信号である。従来のMDシステムでは、畳み込み符号を使っているため、リンキングセクタが必要になる。リンキング用のセクタナンバは、負の値を持ったセクタナンバで、「FCh」、「FDh」、「FEh」、「FFh」(hは16進数を示す)のセクタナンバのものである。次世代MD1では、現行のMDシステムのディスクを流用するため、このADIPセクタのフォーマットは、現行のMDシステムのものと同様である。
【0079】
次世代MD1のシステムでは、図10に示すように、ADIPセクタナンバ「FCh」から「FFh」および「0Fh」から「1Fh」までの36セクタで、ADIPクラスタが構成される。そして、図10に示すように、1つのADIPクラスタに、2つのレコーディングブロック(64Kバイト)のデータを配置するようにしている。
【0080】
図11は、次世代MD2の場合のADIPセクタの構成を示すものである。次世代MD2の仕様では、ADIPセクタが16セクタで、ADIPセクタが構成される。したがって、ADIPのセクタナンバは、4ビットで表現できる。また、次世代MDでは、ブロック完結のエラー訂正符号が用いられているため、リンキングセクタは不要である。
【0081】
次世代MD2のADIPセクタは、図11に示すように、4ビットのシンクと、4ビットのADIPクラスタナンバの上位ビットと、8ビットのADIPクラスタナンバの中位ビットと、4ビットのADIPクラスタナンバの下位ビットと、4ビットのADIPセクタナンバと、18ビットのエラー訂正用のパリティとからなる。
【0082】
シンクは、ADIPセクタの先頭を検出するための所定パターンの信号である。ADIPクラスタナンバとしては、上位4ビット、中位8ビット、下位4ビットの16ビット分が記述される。16個のADIPセクタでADIPクラスタが構成されるため、ADIPセクタのセクタナンバは4ビットとされている。現行のMDシステムでは14ビットのエラー検出コードであるが、18ビットのエラー訂正用のパリティとなっている。そして、次世代MD2の仕様では、図12に示すように、1つのADIPクラスタに、1レコーディングブロック(64Kバイト)のデータが配置される。
【0083】
図13は、次世代MD1の場合のADIPクラスタとBISのフレームとの関係を示すものである。
【0084】
図10に示したように、次世代MD1の仕様では、ADIPセクタ「FC」〜「FF」およびADIPセクタ「00」〜「1F」の36セクタで、1つのADIPクラスタが構成される。記録再生の単位となる1レコーディングブロック(64Kバイト)のデータは、1つのADIPクラスタに、2つ分配置される。
【0085】
図13に示すように、1つのADIPセクタは、前半の18セクタと、後半の18セクタとに分けられる。
【0086】
記録再生の単位となる1レコーディングブロックのデータは、496フレームからなるBISのブロックに配置される。このBISのブロックに相当する496フレーム分のデータのフレーム(フレーム「10」からフレーム「505」)の前に、10フレーム分のプリアンブル(フレーム「0」からフレーム「9」)が付加され、また、このデータのフレームの後に、6フレーム分のポストアンブルのフレーム(フレーム506からフレーム511)が付加され、合計、512フレーム分のデータが、ADIPセクタ「FCh」からADIPセクタ「0Dh」のADIPクラスタの前半に配置されるとともに、ADIPセクタ「0Eh」からADIPセクタ「1Fh」のADIPクラスタの後半に配置される。データフレームの前のプリアンブルのフレームと、データの後ろのポストアンブルのフレームは、隣接するレコーディングブロックとのリンキング時にデータを保護するのに用いられる。プリアンブルは、データ用PLLの引き込み、信号振幅制御、信号オフセット制御などにも用いられる。
【0087】
レコーディングブロックのデータを記録再生する際の物理アドレスは、ADIPクラスタと、そのクラスタの前半か後半かにより指定される。記録再生時に物理アドレスが指定されると、ADIP信号からADIPセクタが読み取られ、ADIPセクタの再生信号から、ADIPクラスタナンバとADIPセクタナンバが読み取られ、ADIPクラスタの前半と後半とが判別される。
【0088】
図14は、次世代MD2の仕様の場合のADIPクラスタとBISのフレームとの関係を示すものである。図12に示したように、次世代MD2の仕様では、ADIPセクタが16セクタで、1つのADIPクラスタが構成される。1つのADIPクラスタに、1レコーディングブロック(64Kバイト)のデータが配置される。
【0089】
図14に示すように、記録再生の単位となる1レコーディングブロック(64Kバイト)のデータは、496フレームからなるBISのブロックに配置される。このBISのブロックに相当する496フレーム分のデータのフレーム(フレーム「10」からフレーム「505」)の前に、10フレーム分のプリアンブル(フレーム「0」からフレーム「9」)が付加され、また、このデータのフレームの後に、6フレーム分のポストアンブルのフレーム(フレーム506からフレーム511)が付加され、合計、512フレーム分のデータが、ADIPセクタ「0h」からADIPセクタ「Fh」からなるADIPクラスタに配置される。
【0090】
データフレームの前のプリアンブルのフレームと、データの後ろのポストアンブルのフレームは、隣接するレコーディングブロックとのリンキング時にデータを保護するのに用いられる。プリアンブルは、データ用PLLの引き込み、信号振幅制御、信号オフセット制御などにも用いられる。
【0091】
レコーディングブロックのデータを記録再生する際の物理アドレスは、ADIPクラスタで指定される。記録再生時に物理アドレスが指定されると、ADIP信号からADIPセクタが読み取られ、ADIPセクタの再生信号から、ADIPクラスタナンバが読み取られる。
【0092】
ところで、このようなディスクでは、記録再生を開始するときに、レーザパワーの制御等を行うために、各種のコントロール情報が必要である。次世代MD1の仕様のディスクでは、図1に示したように、リードイン領域にP−TOCが設けられており、このP−TOCから、各種のコントロール情報が取得される。
【0093】
次世代MD2の仕様のディスクには、エンボスピットによるP−TOCは設けられず、コントロール情報がリードイン領域のADIP信号により記録される。また、次世代MD2の仕様のディスクでは、磁気超解像度の技術が使われるため、レーザのパワーコントロールが重要である。次世代MD2の仕様のディスクでは、リードイン領域とリードアウト領域には、パワーコントロール調整用のキャリブレーション領域が設けられる。
【0094】
すなわち、図15は、次世代MD2の仕様のディスクのリードインおよびリードアウトの構成を示すものである。図15に示すように、ディスクのリードインおよびリードアウト領域には、レーザビームのパワーコントロール領域として、パワーキャリブレーション領域が設けられる。
【0095】
また、リードイン領域には、ADIPによるコントロール情報を記録したコントロール領域が設けられる。ADIPによるコントロール情報の記録とは、ADIPクラスタナンバの下位ビットとして割り当てられている領域を使って、ディスクのコントロール情報を記述するものである。
【0096】
すなわち、ADIPクラスタナンバは、レコーダブル領域の開始位置から始まっており、リードイン領域では負の値になっている。図15に示すように、次世代MD2のADIPセクタは、4ビットのシンクと、8ビットのADIPクラスタナンバの上位ビットと、8ビットのコントロールデータ(ADIPクラスタナンバの下位ビット)と、4ビットのADIPセクタナンバと、18ビットのエラー訂正用のパリティとからなる。ADIPクラスタナンバの下位ビットとして割り当てられている8ビットに、図15に示すように、ディスクタイプや、磁気位相、強度、読み出しパワー等のコントロール情報が記述される。
【0097】
なお、ADIPクラスタの上位ビットは、そのまま残されているので、現在位置は、ある程度の精度で知ることができる。また、ADIPセクタ「0」と、ADIPセクタ「8」は、ADIPクラスタナンバの下位8ビットを残しておくことにより、所定間隔で、ADIPクラスタを正確に知ることができる。
【0098】
ADIP信号によるコントロール情報の記録については、本願出願人が先に提案した特願2001−123535号の明細書中に詳細に記載してある。
【0099】
4.記録再生装置の構成
次に、図16、図17により、次世代MD1および次世代MD2システムで記録/再生に用いられるディスクに対応するディスクドライブ装置(記録再生装置)の構成を説明する。
【0100】
図16には、ディスクドライブ装置1が、例えばパーソナルコンピュータ100と接続可能なものとして示している。
【0101】
ディスクドライブ装置1は、メディアドライブ部2、メモリ転送コントローラ3、クラスタバッファメモリ4、補助メモリ5、USB(Universal Serial Bus)インターフェース6,8、USBハブ7、システムコントローラ9、オーディオ処理部10を備えている。
【0102】
メディアドライブ部2は、装填されたディスク90に対する記録/再生を行う。ディスク90は、次世代MD1のディスク、次世代MD2のディスク、または現行のMDのディスクである。メディアドライブ部2の内部構成は図17で後述する。
【0103】
メモリ転送コントローラ3は、メディアドライブ部2からの再生データやメディアドライブ部2に供給する記録データについての受け渡しの制御を行う。
【0104】
クラスタバッファメモリ4は、メモリ転送コントローラ3の制御に基づいて、メディアドライブ部2によってディスク90のデータトラックからレコーディングブロック単位で読み出されたデータのバッファリングを行う。
【0105】
補助メモリ5は、メモリ転送コントローラ3の制御に基づいて、メディアドライブ部2によってディスク90から読み出された各種管理情報や特殊情報を記憶する。
【0106】
システムコントローラ9は、ディスクドライブ装置1内の全体の制御を行うと共に、接続されたパーソナルコンピュータ100との間の通信制御を行う。
【0107】
すなわち、システムコントローラ9は、USBインターフェース8、USBハブ7を介して接続されたパーソナルコンピュータ100との間で通信可能とされ、書込要求、読出要求等のコマンドの受信やステイタス情報その他の必要情報の送信などを行う。
【0108】
システムコントローラ9は、例えばディスク90がメディアドライブ部2に装填されることに応じて、ディスク90からの管理情報等の読出をメディアドライブ部2に指示し、メモリ転送コントローラ3によって読み出した管理情報等を補助メモリ5に格納させる。
【0109】
パーソナルコンピュータ100からのあるFATセクタの読出要求があった場合は、システムコントローラ9はメディアドライブ部2に、そのFATセクタを含むレコーディングブロックの読み出しを実行させる。読み出されたレコーディングブロックのデータはメモリ転送コントローラ3によってクラスタバッファメモリ4に書き込まれる。
【0110】
システムコントローラ9はクラスタバッファメモリ4に書き込まれているレコーディングブロックのデータから、要求されたFATセクタのデータを読み出させ、USBインターフェース6、USBハブ7を介してパーソナルコンピュータ100に送信させる制御を行う。
【0111】
パーソナルコンピュータ100からのあるFATセクタの書き込み要求があった場合は、システムコントローラ9はメディアドライブ部2に、まずそのFATセクタを含むレコーディングブロックの読み出しを実行させる。読み出されたレコーディングブロックはメモリ転送コントローラ3によってクラスタバッファメモリ4に書き込まれる。
【0112】
システムコントローラ9は、パーソナルコンピュータ100からのFATセクタのデータ(記録データ)をUSBインターフェース6を介してメモリ転送コントローラ3に供給させ、クラスタバッファメモリ4上で、該当するFATセクタのデータの書き換えを実行させる。
【0113】
システムコントローラ9は、メモリ転送コントローラ3に指示して、必要なFATセクタが書き換えられた状態でクラスタバッファメモリ4に記憶されているレコーディングブロックのデータを、記録データとしてメディアドライブ部2に転送させる。メディアドライブ部2では、そのレコーディングブロックの記録データを変調してディスク90に書き込む。
【0114】
システムコントローラ9に対して、スイッチ50が接続される。このスイッチ50は、ディスクドライブ装置1の動作モードを次世代MD1システムおよび現行MDシステムの何れかに設定する。すなわち、ディスクドライブ装置1では、現行のMDシステムによるディスク90に対して、現行のMDシステムのフォーマットと、次世代MD1システムのフォーマットの両方で、オーディオデータの記録を行うことができる。このスイッチ50により、ユーザに対してディスクドライブ装置1本体の動作モードを明示的に示すことができる。機械的構造のスイッチが示されているが、電気または磁気を利用したスイッチ、あるいはハイブリッド型のスイッチを使用することもできる。
【0115】
ディスクドライブ装置1に対して、例えばLCD(Liquid Crystal Display)からなるディスプレイ51が設けられる。ディスプレイ51は、テキストデータや簡単なアイコンなどの表示が可能とされ、システムコントローラ9から供給される表示制御信号に基づき、このディスクドライブ装置1の状態に関する情報や、ユーザに対するメッセージなどを表示する。
【0116】
オーディオ処理部10は、入力系として、例えばライン入力回路/マイクロホン入力回路等のアナログ音声信号入力部、A/D変換器や、ディジタルオーディオデータ入力部を備える。また、オーディオ処理部10はATRAC圧縮エンコーダ/デコーダや、圧縮データのバッファメモリを備える。更に、オーディオ処理部10は、出力系として、ディジタルオーディオデータ出力部や、D/A変換器およびライン出力回路/ヘッドホン出力回路等のアナログ音声信号出力部を備える。
【0117】
ディスク90が現行のMDのディスクの場合には、ディスク90に対してオーディオトラックが記録されるときに、オーディオ処理部10にディジタルオーディオデータ(またはアナログ音声信号)が入力される。入力されたリニアPCMディジタルオーディオデータ、あるいはアナログ音声信号で入力されA/D変換器で変換されて得られたリニアPCMオーディオデータは、ATRAC圧縮エンコードされ、バッファメモリに蓄積される。そして所定タイミング(ADIPクラスタ相当のデータ単位)でバッファメモリから読み出されてメディアドライブ部2に転送される。メディアドライブ部2では、転送されてくる圧縮データを、EFMで変調してディスク90にオーディオトラックとして書き込みを行う。
【0118】
ディスク90が現行のMDシステムのディスクの場合には、ディスク90のオーディオトラックが再生されるときには、メディアドライブ部2は再生データをATRAC圧縮データ状態に復調して、メモリ転送コントローラ3を介してオーディオ処理部10に転送する。オーディオ処理部10は、ATRAC圧縮デコードを行ってリニアPCMオーディオデータとし、ディジタルオーディオデータ出力部から出力する。あるいはD/A変換器によりアナログ音声信号としてライン出力/ヘッドホン出力を行う。
【0119】
なお、パーソナルコンピュータ100との接続はUSBでなく、IEEE(Institute of Electrical and Electronics Engineers)1394等の他の外部インターフェースが用いられても良い。
【0120】
記録再生データ管理は、FATシステムを使って行われ、レコーディングブロックとFATセクタとの変換については、本願出願人が先に提案した特願2001−289380号の明細書中に詳細に記載してある。
【0121】
上述のように、FATセクタの書き換えを行う場合には、FATセクタを含むレコーディングブロック(RB)をアクセスし、クラスタバッファメモリ4上でそのレコーディングブロックのデータを読み出して、クラスタバッファメモリ4に一旦書き込み、そのレコーディングブロックのFATセクタの書き換えを行い、FATセクタを書き換えたレコーディングブロックをクラスタバッファメモリ4から再びディスクに書き込む処理を行う。
【0122】
ところが、次世代MD1および次世代MD2のディスクでは、レコーダブル領域は初期化されていないため、FATセクタの書き換えを行う際に、そのレコーディングブロックが今まで未使用の場合には、レコーディングブロックのデータを読み出したときに、RF信号が得られず、再生データがエラーになってしまい、読み出しが行えず、FATセクタの書き込みが行えないことがある。
【0123】
また、FATセクタの読み出しを行う場合にも、FATセクタを含むレコーディングブロックをアクセスし、クラスタバッファメモリ4上でそのレコーディングブロックのデータを読み出して、クラスタバッファメモリ4に一旦書き込み、そのレコーディングブロックの中から目的とするFATセクタのデータを取り出す処理を行う。この場合にも、レコーダブル領域は初期化されていないため、そのレコーディングブロックが今まで未使用の場合には、RF信号が得られず、読み出しが行えなかったり、エラーデータが再生されてしまうことがある。
【0124】
これを回避するため、アクセスされたレコーディングブロックが今まで未使用であったかどうかを判断し、今まで未使用のレコーディングブロックなら、レコーディングブロックの読み出しを行わないようにする。
【0125】
つまり、図20に示すように、各レコーディングブロック番号毎に、そのレコーディングブロックが使用済みであるか否かを示すシグナルレコーディングビットマップ(SRB)が作成される。シグナルレコーディングビットマップのビットの値は、そのレコーディングブロックに一度も書き込みが行われていなければ例えば「0」であり、そのレコーディングブロックに一度でも書き込みが行われれば例えば「1」となる。
【0126】
図21は、次世代MD1および次世代MD2の仕様のディスクに対応するディスクドライブ装置をパーソナルコンピュータに接続して、このFATセクタ単位でのデータの読み出しを行う場合の処理を示すフローチャートである。
【0127】
図21において、パーソナルコンピュータ側からFATセクタの読み出し命令が与えられたら、そのセクタが格納されているレコーディングブロック番号が求められる(ステップS1)。なお、命令されるセクタ番号は、ディスクのユーザエリアの先頭を0とする絶対セクタ番号である。そして、そのFATセクタが交替処理されているか否かが判断され(ステップS2)。
【0128】
ステップS2で、そのFATセクタが交替処理されていないと判断されたら、目的とするFATセクタはステップS1で求められたレコーディングブロックに含まれているので、そのレコーディングブロック番号に対応するシグナルレコーディングビットマップのビットが「0」か「1」か求められる(ステップS3)。
【0129】
ステップS2で、そのFATセクタが交替処理されていると判断されたら、実際に読み出し/書き込みされるFATセクタは交替セクタなので、DDTの交替テーブルから、実際に読み出し/書き込みされる交替セクタのレコーディングブロックの番号が求められる(ステップS4)。そして、その交替セクタが含まれるレコーディングブロック番号に対応するシグナルレコーディングビットマップのビットが「0」か「1」か求められる(ステップS3)。
【0130】
シグナルレコーディングビットマップは、図20に示したように構成されており、そのレコーディングブロックに一度も書き込みが行われていなければ例えば「0」であり、そのレコーディングブロックに一度でも書き込みが行われれば例えば「1」となっている。このシグナルレコーディングビットマップから、そのレコーディングブロックが書き込み履歴のあるレコーディングブロックか否かが判断される(ステップS5)。
【0131】
ステップS5で、そのレコーディングブロック番号のシグナルレコーディングビットマップのビットの値が「1」で、書き込み履歴があるレコーディングブロックであると判断された場合には、そのレコーディングブロックのデータがディスクからクラスタバッファメモリ4に読み出される(ステップS6)。そして、クラスタバッファメモリ4から、目的とするFATセクタに該当する部分が取り出され、これが読み出しデータとして出力される(ステップS7)。
【0132】
ステップS5で、そのレコーディングブロック番号のシグナルレコーディングビットマップのビットの値が「0」で、書き込み履歴がないレコーディングブロックであると判断された場合には、クラスタバッファメモリ4が全て「0」で埋められる(ステップS8)。そして、クラスタバッファメモリ4から、目的とするFATセクタに該当する部分が取り出され、これが読み出しデータとして出力される(ステップS7)。
【0133】
図22は、次世代MD1および次世代MD2の仕様のディスクに対応するディスクドライブ装置をパーソナルコンピュータに接続して、このFATセクタ単位でのデータの書き込みを行う場合の処理を示すフローチャートである。
【0134】
図22において、パーソナルコンピュータ側からFATセクタの書き込み命令が与えられたら、そのセクタが格納されているレコーディングブロック番号を求められる(ステップS11)。なお、命令されるセクタ番号は、ディスクのユーザエリア先頭を0とする絶対セクタ番号である。そして、そのFATセクタが交替処理されているか否かが判断される(ステップS12)。
【0135】
ステップS12で、そのFATセクタが交替処理されていないと判断されたら、目的とするFATセクタはステップS11で求められたレコーディングブロックに含まれているので、そのレコーディングブロック番号に対応するシグナルレコーディングビットマップのビットが「0」か「1」か求められる(ステップS13)。
【0136】
ステップS12で、そのFATセクタが交替処理されていると判断されたら、実際に読み出し/書き込みされるFATセクタは交替セクタなので、DDTの交替テーブルから、実際に読み出し/書き込みされる交替セクタのレコーディングブロックの番号が求められる(ステップS14)。そして、その交替セクタが含まれるレコーディングブロック番号に対応するシグナルレコーディングビットマップのビットが「0」か「1」か求められる(ステップS13)。
【0137】
シグナルレコーディングビットマップは、図20に示したように構成されており、そのレコーディングブロックに一度も書き込みが行われていなければ例えば「0」であり、そのレコーディングブロックに一度でも書き込みが行われれば例えば「1」となっている。このシグナルレコーディングビットマップから、そのレコーディングブロックが書き込み履歴のあるレコーディングブロックか否かが判断される(ステップS15)。
【0138】
ステップS15で、そのレコーディングブロック番号のシグナルレコーディングビットマップのビットの値が「1」で、書き込み履歴があるレコーディングブロックであると判断された場合には、そのレコーディングブロックのデータがディスクからクラスタバッファメモリ4に読み出される(ステップS16)。そして、クラスタバッファメモリ4上で、そのレコーディングブロックの目的とするFATセクタに該当する部分のデータが書き込みデータに置き換えられる(ステップS17)。
【0139】
ステップS15で、そのレコーディングブロック番号のシグナルレコーディングビットマップのビットの値が「0」で、書き込み履歴がないレコーディングブロックであると判断された場合には、クラスタバッファメモリ4が全て「0」で埋められる(ステップS18)。そして、クラスタバッファメモリ4上で、そのレコーディングブロックの目的とするFATセクタに該当する部分のデータが書き込みデータに置き換えられる(ステップS17)。
【0140】
ステップS17で、クラスタバッファメモリ4上で、そのレコーディングブロックの目的とするFATセクタに該当する部分のデータが書き込みデータに置き換えられたら、そのレコーディングブロックのデータがディスクに書き込まれる(ステップS19)。
【0141】
このように、FATセクタの読み出しや書き込みを行う場合に、そのFATセクタを含むレコーディングブロックが今まで未使用であったかどうかを判断し、今まで未使用のレコーディングブロックなら、レコーディングブロックの読み出しを行わず、クラスタバッファメモリ4をオール「0」としている。これにより、今まで未使用のレコーディングブロックは、初期値である「0」として処理されるようになる。このため、FATセクタ単位で記録や再生を行うときに、そのFATセクタを含むレコーディングブロックが今まで未使用でRF信号が得られない場合でも、エラーデータとなることがない。
【0142】
なお、上述の例では、次世代MD1および次世代MD2の仕様のディスクに対応するディスクドライブ装置をパーソナルコンピュータに接続して、読み出しおよび書き込みを行うようにしている。この場合には、読み出しや書き込みのFATセクタは、パーソナルコンピュータから、ユーザエリアの先頭を0とする絶対セクタ番号として与えられる。これに対して、単独で使用した場合には、図23および図24に示すように、目的とするFATセクタは、ファイルのディレクトリエントリと、FATチェーンにより求められる。
【0143】
図23は、次世代MD1および次世代MD2の仕様のディスクに対応するディスクドライブ装置単独で、FATセクタの読み出しを行う場合の処理を示すフローチャートである。
【0144】
図23において、目的のFATセクタが含まれるFATクラスタの相対クラスタ番号が求められる(ステップS21)。ファイルのディレクトリエントリから、先頭の絶対クラスタ番号が求められる(ステップS22)。この先頭の絶対クラスタ番号から、FATテーブルのチェーンを辿り、目的のFATクラスタの絶対クラスタ番号が求められる(ステップS23)。目的のFATクラスタの絶対クラスタ番号から、目的のFATセクタの絶対セクタ番号が求められる(ステップS24)。目的のFATセクタの絶対セクタ番号が求められたら、FATセクタの読み出し処理が行われる(ステップS25)。このセクタの読み出し処理は、図21に示した処理と同様である。
【0145】
図24は、次世代MD1および次世代MD2の仕様のディスクに対応するディスクドライブ装置単独で、FATセクタの書き込みを行う場合の処理を示すフローチャートである。
【0146】
図24において、目的のFATセクタが含まれるFATクラスタの相対クラスタ番号が求められる(ステップS31)。ファイルのディレクトリエントリから、先頭の絶対クラスタ番号が求められる(ステップS32)。この先頭の絶対クラスタ番号から、FATテーブルのチェーンを辿り、目的のFATクラスタの絶対クラスタ番号が求められる(ステップS33)。目的のFATクラスタの絶対クラスタ番号から、目的のFATセクタの絶対セクタ番号が求められる(ステップS34)。目的のFATセクタの絶対セクタ番号が求められたら、FATセクタの書き込み処理が行われる(ステップS35)。このセクタの書き込み処理は、図22に示した処理と同様である。
【0147】
上述の例では、図20に示したシグナルレコーディングビットマップを使って、目的とするFATセクタが含まれるレコーディングブロックが使用済みであるか否かを判断できるようにしている。FATは、例えば32KバイトのFATクラスタ単位で管理されており、FATの情報を使うと、FATクラスタ単位で、使用されたことがあるか否かを判断できる。このFATの情報から、例えば64Kバイトのレコーディングブロック毎に使用されたことがあるか否かを示すシグナルレコーディングビットマップを作成することができる。
【0148】
図25は、シグナルレコーディングビットマップをFAT情報を使って作成する場合の処理を示すフローチャートである。図25において、ディスクが挿入されたら、シグナルレコーディングビットマップの各レコーディングブロックの値が全て「0」に設定される(ステップS41)。そして、FAT情報が読み込まれ(ステップS42)、FATのエントリの先頭がアクセスされる(ステップS43)。
【0149】
それから、FATの先頭から最終のエントリまで、使用されたことのあるFATクラスタか否かを判断し、使用されたことのないFATクラスタに対応するシグナルレコーディングビットマップのビットの値は「0」のままとし、使用されたことのあるFATクラスタに対応するシグナルレコーディングビットマップのビットの値を「1」にする処理が行われる。
【0150】
つまり、ステップS43でFATのエントリの先頭がアクセスされたら、最終FATエントリであるか否かが判断され(ステップS44)、最終FATエントリでなければ、使用されたことのあるFATクラスタか否かが判断される(ステップS45)。
【0151】
ステップS45で、使用されたことのないFATクラスタであると判断されたら、次のFATエントリに進められ(ステップS46)、ステップS44にリターンされる。
【0152】
ステップS45で、使用されたことのあるFATクラスタであると判断されたら、そのFATクラスタが格納されているシグナルレコーディングビットマップの番号が求められ(ステップS47)、そのシグナルレコーディングビットマップに対応するビットの値が「1」とされる(ステップS48)。そして、次のFATエントリに進められ(ステップS49)、ステップS44にリターンされる。
【0153】
ステップS44からS49の処理を繰り返していくことにより、使用されたことのないFATクラスタに対応するシグナルレコーディングビットマップのビットの値は「0」のままで、使用されたことのあるFATクラスタに対応するシグナルレコーディングビットマップのビットの値を「1」になる。
【0154】
ステップS44で、最終FATエントリであると判断されたら、それでシグナルレコーディングビットマップの作成が完了される(ステップS50)。
【0155】
このように、FATの情報を使うと、シグナルレコーディングビットマップを作成することができる。しかしながら、オペレーティングシステムによっては、FAT情報から得られる使用されたことのあるFATクラスタは、実際にデータが書き込まれたFATクラスタを意味していないことがある。このようなオペレーティングシステムを使った場合には、FAT情報からは使用されたクラスタとされているにもかかわらず、実際には、未使用のままのFATクラスタが存在することがある。
【0156】
こうした問題を避けるために、シグナルレコーディングビットマップをディスク上に残される。すなわち、図2および図4に示したように、次世代MD1および次世代MD2の仕様のディスクには、DDTトラックとFATトラックとの間に、リザーブトラックが設けられている。このリザーブトラックがシグナルレコーディングビットマップの記録トラックとされる。このシグナルレコーディングビットマップの記録トラックに、図20に示したシグナルレコーディングビットマップの情報が記録される。
【0157】
なお、このシグナルレコーディングビットマップの記録トラックの位置は、システムにより予め決めておくと、決められた位置から直接アクセスすることができる。また、DDTトラックやFATトラックの位置についても、システムにより予め決めておくと、決められた位置から直接アクセスすることができる。勿論、これらの特別なトラックの位置を、管理領域(次世代MD1ならU−TOC、次世代MD2ならADIPによるコントロール情報を記録したコントロール領域)に書いておくようにしても良い。DDTトラックやFATトラックの情報は、ディスク装着時に読み出され、バッファとなるメモリ上に記憶され、これに基づいて交替セクタ情報やFAT情報が形成される。そして、ディスクの使用中に、これらの情報が更新され、ディスクを排出するときに、更新された交替セクタ情報やFAT情報がDDTトラックやFATトラックに書き戻される。シグナルレコーディングビットマップの記録トラックの処理も、DDTトラックやFATトラックの処理と基本的には同様となる。
【0158】
ディスクが挿入されるときに、このシグナルレコーディングビットマップの記録トラックの情報が読み出され、メモリ上に記憶される。そして、新たにレコーディングブロックにデータが記録される毎に、メモリ上のシグナルレコーディングビットマップが更新される。そして、ディスクが排出されるときに、更新されたメモリ上のシグナルレコーディングビットマップがシグナルレコーディングビットマップの記録トラックに記録される。
【0159】
図26は、シグナルレコーディングビットマップの記録トラックの読み出し処理を示すフローチャートである。図26に示すように、ディスクが挿入されたら、シグナルレコーディングビットマップの記録トラックが読み込まれる(ステップS61)。読み込まれたシグナルレコーディングビットマップの記録トラックの情報がメモリ上に記憶され、メモリ上にシグナルレコーディングビットマップが作成される(ステップS62)。
【0160】
図27は、シグナルレコーディングビットマップの記録トラックに、シグナルレコーディングビットマップを書き戻すときの処理を示すフローチャートである。なお、メモリ上のシグナルレコーディングビットマップは、新たにレコーディングブロックにデータが記録される毎に更新されていく。
【0161】
図27に示すように、ディスクが排出されるときには、更新されたシグナルレコーディングビットマップがメモリ上から読み出される(ステップS71)。そして、この更新されたシグナルレコーディングビットマップがシグナルレコーディングビットマップの記録トラックが書き込まれる(ステップS72)。
【0162】
シグナルレコーディングビットマップトラックの情報は、初期状態では、全て「0」に設定される。使用を繰り返すことにより、データの書き込みに使用されたレコーディングブロックに対応するシグナルレコーディングビットマップのビットの値が「1」に更新される。このシグナルレコーディングビットマップの情報がディスクのシグナルレコーディングビットマップの記録トラックに書き込まれる。次の使用時には、このシグナルレコーディングビットマップの記録トラックの情報を読み出すことで、シグナルレコーディングビットマップを作成できる。このようにすると、FAT情報によらずにシグナルレコーディングビットマップを作成することができる。
【0163】
続いて、データトラックおよびオーディオトラックの両方について記録再生を行う機能を有するものとしてのメディアドライブ部2の構成を図17を参照して説明する。
【0164】
図17は、メディアドライブ部2の構成を示すものである。メディアドライブ部2は、現行のMDシステムのディスクと、次世代MD1のディスクと、次世代MD2のディスクとが装填されるターンテーブルを有しており。メディアドライブ部2では、ターンテーブルに装填されたディスク90をスピンドルモータ29によってCLV方式で回転駆動させる。このディスク90に対しては記録/再生時に光学ヘッド19によってレーザ光が照射される。
【0165】
光学ヘッド19は、記録時には記録トラックをキュリー温度まで加熱するための高レベルのレーザ出力を行い、また再生時には磁気カー効果により反射光からデータを検出するための比較的低レベルのレーザ出力を行う。このため、光学ヘッド19には、ここでは詳しい図示は省略するがレーザ出力手段としてのレーザダイオード、偏光ビームスプリッタや対物レンズ等からなる光学系、および反射光を検出するためのディテクタが搭載されている。光学ヘッド19に備えられる対物レンズとしては、例えば2軸機構によってディスク半径方向およびディスクに接離する方向に変位可能に保持されている。
【0166】
また、ディスク90を挟んで光学ヘッド19と対向する位置には磁気ヘッド18が配置されている。磁気ヘッド18は記録データによって変調された磁界をディスク90に印加する動作を行う。また、図示しないが光学ヘッド19全体および磁気ヘッド18をディスク半径方向に移動させためスレッドモータおよびスレッド機構が備えられている。
【0167】
光学ヘッド19および磁気ヘッド18は、次世代MD2のディスクの場合には、パルス駆動磁界変調を行うことで、微少なマークを形成することができる。現行MDのディスクや、次世代MD1のディスクの場合には、DC発光の磁界変調方式とされる。
【0168】
このメディアドライブ部2では、光学ヘッド19、磁気ヘッド18による記録再生ヘッド系、スピンドルモータ29によるディスク回転駆動系のほかに、記録処理系、再生処理系、サーボ系等が設けられる。
【0169】
なお、ディスク90としては、現行のMD仕様のディスクと、次世代MD1の仕様のディスクと、次世代MD2の仕様のディスクとが装着される可能性がある。これらのディスクにより、線速度が異なっている。スピンドルモータ29は、これら線速度の異なる複数種類のディスクに対応する回転速度で回転させることが可能である。ターンテーブルに装填されたディスク90は、現行のMD仕様のディスクの線速度と、次世代MD1の仕様のディスクの線速度と、次世代MD2の仕様のディスクの線速度とに対応して回転される。
【0170】
記録処理系では、現行のMDシステムのディスクの場合に、オーディオトラックの記録時に、ACIRCでエラー訂正符号化を行い、EFMで変調してデータを記録する部位と、次世代MD1または次世代MD2の場合に、BISとLDCを組み合わせた方式でエラー訂正符号化を行い、1−7pp変調で変調して記録する部位が設けられる。
【0171】
再生処理系では、現行のMDシステムのディスクの再生時に、EFMの復調とACIRCによるエラー訂正処理と、次世代MD1または次世代MD2システムのディスクの再生時に、パーシャルレスポンスおよびビタビ復号を用いたデータ検出に基づく1−7復調と、BISとLDCによるエラー訂正処理とを行う部位が設けられる。
【0172】
また、現行のMDシステムや次世代MD1のADIP信号よるアドレスをデコードする部位と、次世代MD2のADIP信号をデコードする部位とが設けられる。
【0173】
光学ヘッド19のディスク90に対するレーザ照射によりその反射光として検出された情報(フォトディテクタによりレーザ反射光を検出して得られる光電流)は、RFアンプ21に供給される。
【0174】
RFアンプ21では入力された検出情報に対して電流−電圧変換、増幅、マトリクス演算等を行い、再生情報としての再生RF信号、トラッキングエラー信号TE、フォーカスエラー信号FE、グルーブ情報(ディスク90にトラックのウォブリングにより記録されているADIP情報)等を抽出する。
【0175】
現行のMDシステムのディスクを再生するときには、RFアンプで得られた再生RF信号は、EFM復調部24およびACIRCデコーダ25で処理される。すなわち再生RF信号は、EFM復調部24で2値化されてEFM信号列とされた後、EFM復調され、更にACIRCデコーダ25で誤り訂正およびデインターリーブ処理される。すなわちこの時点でATRAC圧縮データの状態となる。
【0176】
そして現行のMDシステムのディスクの再生時には、セレクタ26はB接点側が選択されており、その復調されたATRAC圧縮データがディスク90からの再生データとして出力される。
【0177】
一方、次世代MD1または次世代MD2のディスクを再生するときには、RFアンプで得られた再生RF信号は、RLL(1−7)PP復調部22およびRS−LDCデコーダ23で処理される。すなわち再生RF信号は、RLL(1−7)PP復調部22において、PR(1,2,1)MLまたはPR(1,−1)MLおよびビタビ復号を用いたデータ検出によりRLL(1−7)符号列としての再生データを得、このRLL(1−7)符号列に対してRLL(1−7)復調処理が行われる。そして更にRS−LDCデコーダ23で誤り訂正およびデインターリーブ処理される。
【0178】
そして次世代MD1または次世代MD2のディスクの再生時には、セレクタ26はA接点側が選択されており、その復調されたデータがディスク90からの再生データとして出力される。
【0179】
RFアンプ21から出力されるトラッキングエラー信号TE、フォーカスエラー信号FEはサーボ回路27に供給され、グルーブ情報はADIP復調部30に供給される。
【0180】
ADIP復調部30は、グルーブ情報に対してバンドパスフィルタにより帯域制限してウォブル成分を抽出した後、FM復調、バイフェーズ復調を行ってADIP信号を復調する。復調されたADIP信号は、アドレスデコーダ32およびアドレスデコーダ33に供給される。
【0181】
現行のMDシステムのディスクまたは次世代MD1のシステムのディスクでは、図9に示したように、ADIPセクタナンバが8ビットになっている。これに対して、次世代MD2のシステムのディスクでは、図11に示したように、ADIPセクタナンバが4ビットになっている。アドレスデコーダ32は、現行のMDまたは次世代MD1のADIPアドレスをデコードする。アドレスデコーダ33は、次世代MD2のアドレスをデコードする。
【0182】
アドレスデコーダ32および33でデコードされたADIPアドレスは、ドライブコントローラ31に供給される。ドライブコントローラ31ではADIPアドレスに基づいて、所要の制御処理を実行する。またグルーブ情報はスピンドルサーボ制御のためにサーボ回路27に供給される。
【0183】
サーボ回路27は、例えばグルーブ情報に対して再生クロック(デコード時のPLL系クロック)との位相誤差を積分して得られる誤差信号に基づき、CLVまたはCAVサーボ制御のためのスピンドルエラー信号を生成する。
【0184】
またサーボ回路27は、スピンドルエラー信号や、RFアンプ21から供給されたトラッキングエラー信号、フォーカスエラー信号、あるいはドライブコントローラ31からのトラックジャンプ指令、アクセス指令等に基づいて各種サーボ制御信号(トラッキング制御信号、フォーカス制御信号、スレッド制御信号、スピンドル制御信号等)を生成し、モータドライバ28に対して出力する。すなわち上記サーボエラー信号や指令に対して位相補償処理、ゲイン処理、目標値設定処理等の必要処理を行って各種サーボ制御信号を生成する。
【0185】
モータドライバ28では、サーボ回路27から供給されたサーボ制御信号に基づいて所要のサーボドライブ信号を生成する。ここでのサーボドライブ信号としては、二軸機構を駆動する二軸ドライブ信号(フォーカス方向、トラッキング方向の2種)、スレッド機構を駆動するスレッドモータ駆動信号、スピンドルモータ29を駆動するスピンドルモータ駆動信号となる。このようなサーボドライブ信号により、ディスク90に対するフォーカス制御、トラッキング制御、およびスピンドルモータ29に対するCLVまたはCAV制御が行われることになる。
【0186】
現行のMDシステムのディスクでオーディオデータを記録するときには、セレクタ16がB接点に接続され、したがってACIRCエンコーダ14およびEFM変調部15が機能することになる。この場合、オーディオ処理部10からの圧縮データはACIRCエンコーダ14でインターリーブおよびエラー訂正コード付加が行われた後、EFM変調部15でEFM変調が行われる。
【0187】
そしてEFM変調データがセレクタ16を介して磁気ヘッドドライバ17に供給され、磁気ヘッド18がディスク90に対してEFM変調データに基づいた磁界印加を行うことでオーディオトラックの記録が行われる。
【0188】
次世代MD1または次世代MD2のディスクにデータを記録するときには、セレクタ16がA接点に接続され、したがってRS−LDCエンコーダ12およびRLL(1−7)PP変調部13が機能することになる。この場合、メモリ転送コントローラ3からの高密度データはRS−LDCエンコーダ12でインターリーブおよびRS−LDC方式のエラー訂正コード付加が行われた後、RLL(1−7)PP変調部13でRLL(1−7)変調が行われる。
【0189】
そしてRLL(1−7)符号列としての記録データがセレクタ16を介して磁気ヘッドドライバ17に供給され、磁気ヘッド18がディスク90に対して変調データに基づいた磁界印加を行うことでデータトラックの記録が行われる。
【0190】
レーザドライバ/APC20は、上記のような再生時および記録時においてレーザダイオードにレーザ発光動作を実行させるが、いわゆるAPC(Automatic Lazer Power Control)動作も行う。
【0191】
すなわち、図示していないが、光学ヘッド19内にはレーザパワーモニタ用のディテクタが設けられ、そのモニタ信号がレーザドライバ/APC20にフィードバックされる。レーザドライバ/APC20は、モニタ信号として得られる現在のレーザパワーを、設定されているレーザパワーと比較して、その誤差分をレーザ駆動信号に反映させることで、レーザダイオードから出力されるレーザパワーが、設定値で安定するように制御している。
【0192】
なお、レーザパワーとしては、再生レーザパワー、記録レーザパワーとしての値がドライブコントローラ31によって、レーザドライバ/APC20内部のレジスタにセットされる。
【0193】
ドライブコントローラ31は、システムコントローラ9からの指示に基づいて、以上の各動作(アクセス、各種サーボ、データ書込、データ読出の各動作)が実行されるように制御を行う。
【0194】
なお、図17において一点鎖線で囲ったA部、B部は、例えば1チップの回路部として構成できる。
【0195】
5.次世代MD1および次世代MD2によるディスクの初期化処理について
次世代MD1および次世代MD2によるディスクには、上述したように、FAT外にUID(ユニークID)が記録され、この記録されたUIDを用いてセキュリティ管理がなされる。次世代MD1および次世代MD2に対応したディスクは、原則的には、ディスク上の所定位置、例えばリードイン領域にUIDが予め記録されて出荷される。UIDが予め記録される位置は、リードイン領域に限られない。例えば、ディスクの初期化後にUIDが書き込まれる位置が固定的であれば、その位置に予め記録しておくこともできる。
【0196】
一方、次世代MD1によるディスクは、現行のMDシステムによるディスクを用いることが可能とされている。そのため、UIDが記録されずに既に出回っている、多数の現行のMDシステムによるディスクが次世代MD1のディスクとして使用されることになる。
【0197】
そこで、このような、UIDが記録されずに出回ってしまった現行のMDシステムによるディスクに対しては、規格にて守られたエリアを設け、当該ディスクの初期化時にそのエリアにディスクドライブ装置1において乱数信号を記録し、これを当該ディスクのUIDとして用いる。また、ユーザがこのUIDが記録されたエリアにアクセスすることは、規格により禁止する。なお、UIDは、乱数信号に限定されない。例えば、メーカーコード、機器コード、機器シリアル番号および乱数を組み合わせて、UIDとして用いることができる。さらに、メーカーコード、機器コードおよび機器シリアル番号の何れかまたは複数と、乱数とを組み合わせて、UIDとして用いることもできる。
【0198】
図18は、次世代MD1によるディスクの一例の初期化処理を示すフローチャートである。最初のステップS100で、ディスク上の所定位置がアクセスされ、UIDが記録されているかどうかが確認される。UIDが記録されていると判断されれば、そのUIDが読み出され、例えば補助メモリ5に一時的に記憶される。
【0199】
ステップS100でアクセスされる位置は、例えばリードイン領域のような、次世代MD1システムによるフォーマットのFAT領域外である。当該ディスク90が、例えば過去に初期化されたことがあるディスクのように、既にDDTが設けられていれば、その領域をアクセスするようにしてもよい。なお、このステップS100の処理は、省略することが可能である。
【0200】
次に、ステップS101で、U−TOCがEFM変調により記録される。このとき、U−TOCに対して、アラートトラックと、上述の図2におけるDDT以降のトラック、すなわち1−7pp変調でデータが変調されて記録される領域とを確保する情報が書き込まれる。次のステップS102で、ステップS101でU−TOCにより確保された領域に対して、アラートトラックがEFM変調により記録される。そして、ステップS103で、DDTが1−7pp変調により記録される。
【0201】
ステップS104では、UIDがFAT外の領域、例えばDDT内に記録される。上述のステップS100で、UIDがディスク上の所定位置から読み出され補助メモリ5に記憶されている場合、そのUIDが記録される。また、上述のステップS100で、ディスク上の所定位置にUIDが記録されていないと判断されていた場合、または、上述のステップS100が省略された場合には、乱数信号に基づきUIDが生成され、この生成されたUIDが記録される。UIDの生成は、例えばシステムコントローラ9によりなされ、生成されたUIDがメモリ転送コントローラ3を介してメディアドライブ2に供給され、ディスク90に記録される。
【0202】
次に、ステップS105で、FATなどのデータが、1−7pp変調でデータが変調されて記録される領域に対して記録される。すなわち、UIDの記録される領域は、FAT外の領域になる。また、上述したように、次世代MD1においては、FATで管理されるべきレコーダブル領域の初期化は、必ずしも必要ではない。
【0203】
図19は、次世代MD2によるディスクの一例の初期化処理を示すフローチャートである。最初のステップS110で、予めUIDが書き込まれている所定位置、例えばリードイン領域や、当該ディスク90が過去に初期化されたことがあるディスクであれば、過去の初期化の際に設けられたDDTなどがアクセスされ、UIDが記録されているかどうかが確認される。UIDが記録されていると判断されれば、そのUIDが読み出され、例えば補助メモリ5に一時的に記憶される。なお、UIDの記録位置は、フォーマット上で固定的に決められているので、ディスク上の他の管理情報を参照することなく、直接的にアクセス可能とされる。これは、上述の図18を用いて説明した処理にも適用することができる。
【0204】
次のステップS111で、DDTが1−7pp変調で記録される。次に、ステップS112で、UIDがFAT外の領域、例えばDDTに記録される。このとき記録されるUIDは、上述のステップS110でディスク上の所定位置から読み出され補助メモリ5に記憶されたUIDが用いられる。ここで、上述のステップS110で、ディスク上の所定位置にUIDが記録されていないと判断されていた場合には、乱数信号に基づきUIDが生成され、この生成されたUIDが記録される。UIDの生成は、例えばシステムコントローラ9によりなされ、生成されたUIDがメモリ転送コントローラ3を介してメディアドライブ2に供給され、ディスク90に記録される。
【0205】
そして、ステップS113で、FATなどが記録される。すなわち、UIDの記録される領域は、FAT外の領域になる。また、上述したように、次世代MD2においては、FATで管理されるべきレコーダブル領域の初期化は、行われない。
【0206】
6.音楽データの第1の管理方式について
前述したように、この発明が適用された次世代MD1および次世代MD2のシステムでは、FATシステムでデータが管理される。また、記録されるオーディオデータは、所望の圧縮方式で圧縮され、著作者の権利の保護のために、暗号化される。オーディオデータの圧縮方式としては、例えば、ATRAC3、ATRAC5等を用いることが考えられている。勿論、MP3(MPEG1 Audio Layer−3 )やAAC(MPEG2 Advanced Audio Coding )等、それ以外の圧縮方式を用いることも可能である。また、オーディオデータばかりでなく、静止画データや動画データを扱うことも可能である。勿論、FATシステムを使っているので、汎用のデータの記録再生を行うこともできる。更に、コンピュータが読み取り可能でかつ実行可能な命令をディスク上に符号化することもでき、従って、MD1又はMD2は、実行可能ファイルを含むこともできることになる。
【0207】
このような次世代MD1および次世代MD2の仕様のディスクにオーディオデータを記録再生するときの管理方式について説明する。
【0208】
次世代MD1のシステムや次世代MD2のシステムでは、長時間で高音質の音楽データが再生できるようにしたことから、1枚のディスクで管理される楽曲の数も、膨大になっている。また、FATシステムを使って管理することで、コンピュータとの親和性が図られている。このことは、本願発明者の認識によれば、使い勝手の向上が図れるというメリットがある反面、音楽データが違法にコピーされてしまい、著作権者の保護が図られなくなる可能性がある。この発明が適用された管理システムでは、このような点に配慮が配られている。
【0209】
図28は、オーディオデータの管理方式の第1の例である。図28に示すように、第1の例における管理方式では、ディスク上には、トラックインデックスファイルと、オーディオデータファイルとが生成される。トラックインデックスファイルおよびオーディオデータファイルは、FATシステムで管理されるファイルである。
【0210】
オーディオデータファイルは、図29に示すように、複数の音楽データが1つのファイルとして納められたものであり、FATシステムでオーディオデータファイルを見ると、巨大なファイルに見える。オーディオデータファイルは、その内部がパーツとして区切られ、オーディオデータは、パーツの集合として扱われる。
【0211】
トラックインデックスファイルは、オーディオデータファイルに納められた音楽データを管理するための各種の情報が記述されたファイルである。トラックインデックスファイルは、図30に示すように、プレイオーダテーブルと、プログラムドプレイオーダテーブルと、グループインフォメーションテーブルと、トラックインフォメーションテーブルと、パーツインフォメーションテーブルと、ネームテーブルとからなる。
【0212】
プレイオーダテーブルは、デフォルトで定義された再生順序を示すテーブルである。プレイオーダテーブルは、図31に示すように、各トラックナンバ(曲番)についてのトラックインフォメーションテーブルのトラックデスクリプタ(図34)へのリンク先を示す情報TINF1、TINF2、…が格納されている。トラックナンバは、例えば「1」から始まる連続したナンバである。
【0213】
プログラムドプレイオーダテーブルは、再生手順を各ユーザが定義したテーブルである。プログラムドプレイオーダテーブルには、図32に示すように、各トラックナンバについてのトラックデスクリプタへのリンク先の情報トラック情報PINF1、PINF2、…が記述されている。
【0214】
グループインフォメーションテーブルには、図33に示すように、グループに関する情報が記述されている。グループは、連続したトラックナンバを持つ1 つ以上のトラックの集合、または連続したプログラムドトラックナンバを持つ1 つ以上のトラックの集合である。グループインフォメーションテーブルは、図33Aに示すように、各グループのグループデスクリプタで記述されている。グループデスクリプタには、図33Bに示すように、そのグループが開始されるトラックナンバと、終了トラックのナンバと、グループネームと、フラグが記述される。
【0215】
トラックインフォメーションテーブルは、図34に示すように、各曲に関する情報が記述される。トラックインフォメーションテーブルは、図34Aに示すように、各トラック毎(各曲毎)のトラックデスクリプタからなる。各トラックデスクリプタには、図34Bに示すように、符号化方式、著作権管理情報、コンテンツの復号鍵情報、その楽曲が開始するエントリとなるパーツナンバへのポインタ情報、アーチストネーム、タイトルネーム、元曲順情報、録音時間情報等が記述されている。アーチストネーム、タイトルネームは、ネームそのものではなく、ネームテーブルへのポインタ情報が記述されている。符号化方式は、コーデックの方式を示すもので、復号情報となる。
【0216】
パーツインフォメーションテーブルは、図35に示すように、パーツナンバから実際の楽曲の位置をアクセスするポインタが記述されている。パーツインフォメーションテーブルは、図35Aに示すように、各パーツ毎のパーツデスクリプタからなる。パーツとは、1トラック(楽曲)の全部、または1トラックを分割した各パーツである。図35Bは、パーツインフォメーションテーブル内のパーツデスクリプタのエントリを示している。各パーツデスクリプタは、図35Bに示すように、オーディオデータファイル上のそのパーツの先頭のアドレスと、そのパーツの終了のアドレスと、そのパーツに続くパーツへのリンク先とが記述される。
【0217】
なお、パーツナンバのポインタ情報、ネームテーブルのポインタ情報、オーディオファイルの位置を示すポインタ情報として用いるアドレスとしては、ファイルのバイトオフセット、パーツデスクリプタナンバ、FATのクラスタナンバ、記録媒体として用いられるディスクの物理アドレス等を用いることができる。ファイルのバイトオフセットは、この発明において実施されうるオフセット方法のうちの特定の実施態様である。ここで、パーツポインタ情報は、オーディオファイルの開始からのオフセット値であり、その値は所定の単位(例えば、バイト、ビット、nビットのブロック)で表される。
【0218】
ネームテーブルは、ネームの実体となる文字を表すためのテーブルである。ネームテーブルは、図36Aに示すように、複数のネームスロットからなる。各ネームスロットは、ネームを示す各ポインタからリンクされて呼び出される。ネームを呼び出すポインタは、トラックインフォメーションテーブルのアーチストネームやタイトルネーム、グループインフォメーションテーブルのグループネーム等がある。また、各ネームスロットは、複数から呼び出されることが可能である。各ネームスロットは、図36Bに示すように、文字情報であるネームデータと、この文字情報の属性であるネームタイプと、リンク先とからなる。1つのネームスロットで収まらないような長いネームは、複数のネームスロットに分割して記述することが可能である。そして、1つのネームスロットで収まらない場合には、それに続くネームが記述されたネームスロットへのリンク先が記述される。
【0219】
この発明が適用されたシステムにおけるオーディオデータの管理方式の第1の例では、図37に示すように、プレイオーダテーブル(図31)により、再生するトラックナンバが指定されると、トラックインフォメーションテーブルのリンク先のトラックデスクリプタ(図34)が読み出され、このトラックデスクリプタから、符号化方式、著作権管理情報、コンテンツの復号鍵情報、その楽曲が開始するパーツナンバへのポインタ情報、アーチストネームおよびタイトルネームのポインタ、元曲順情報、録音時間情報等が読み出される。
【0220】
トラックインフォメーションテーブルから読み出されたパーツナンバの情報から、パーツインフォメーションテーブル(図35)にリンクされ、このパーツインフォメーションテーブルから、そのトラック(楽曲)の開始位置に対応するパーツの位置のオーディオデータファイルがアクセスされる。オーディオデータファイルのパーツインフォメーションテーブルで指定される位置のパーツのデータがアクセスされたら、その位置から、オーディオデータの再生が開始される。このとき、トラックインフォメーションテーブルのトラックデスクリプタから読み出された符号化方式に基づいて復号化が行われる。オーディオデータが暗号化されている場合には、トラックデスクリプタから読み出された鍵情報が使われる。
【0221】
そのパーツに続くパーツがある場合には、そのパーツのリンク先がパーツデスクリプタが記述されており、このリンク先にしたがって、パーツデスクリプタが順に読み出される。このパーツデスクリプタのリンク先を辿っていき、オーディオディデータファイル上で、そのパーツデスクリプタで指定される位置にあるパーツのオーディオデータを再生していくことで、所望のトラック(楽曲)のオーディオディオデータが再生できる。
【0222】
また、トラックインフォメーションテーブルから読み出されたアーチストネームやタイトルネームのポインタにより指し示される位置(ネームポインタ情報)にあるネームテーブルのネームスロット(図36)が呼び出され、その位置にあるネームスロットから、ネームデータが読み出される。ネームポインタ情報は、例えば、ネームスロットナンバ、FATシステムにおけるクラスタナンバ、または記録媒体の物理アドレスであってもよい。
【0223】
なお、前述したように、ネームテーブルのネームスロットは、複数参照が可能である。例えば、同一のアーチストの楽曲を複数記録するような場合がある。この場合、図38に示すように、複数のトラックインフォメーションテーブルからアーチストネームとして同一のネームテーブルが参照される。図38の例では、トラックデスクリプタ「1」とトラックデスクリプタ「2」とトラックデスクリプタ「4」は、全て同一のアーチスト「DEF BAND」の楽曲であり、アーチストネームとして同一のネームスロットを参照している。また、トラックデスクリプタ「3」とトラックデスクリプタ「5」とトラックデスクリプタ「6」は、全て同位置のアーチスト「GHQ GIRLS」の楽曲であり、アーチストネームとして同一のネームスロットを参照している。このように、ネームテーブルのネームスロットを、複数のポインタから参照可能にしておくと、ネームテーブルの容量を節約できる。
【0224】
これとともに、例えば、同一のアーチストネームの情報を表示するのに、こののネームテーブルへのリンクが利用できる。例えば、アーチスト名が「DEF BAND」の楽曲の一覧を表示したいような場合には、「DEF BAND」のネームスロットのアドレスを参照しているトラックデスクリプタが辿られる。この例では、「DEF BAND」のネームスロットのアドレスを参照しているトラックデスクリプタを辿ることにより、トラックデスクリプタ「1」とトラックデスクリプタ「2」とトラックデスクリプタ「4」の情報が得られる。これにより、このディスクに納められている楽曲の中で、アーチスト名が「DEF BAND」の楽曲の一覧が表示できる。なお、ネームテーブルは複数参照が可能とされるため、ネームテーブルからトラックインフォメーションテーブルを逆に辿るリンクは設けられていない。
【0225】
新たにオーディオデータを記録する場合には、FATテーブルにより、所望の数のレコーディングブロック以上、例えば、4つのレコーディングブロック以上連続した未使用領域が用意される。所望のレコーディングブロック以上連続した領域を確保するのは、なるべく連続した領域にオーディオデータを記録した方がアクセスに無駄がないためである。
【0226】
オーディオデータを記録するための領域が用意されたら、新しいトラックデスクリプターがトラックインフォメーションテーブル上に1つ割り当てられ、このオーディオディデータを暗号化するためのコンテンツの鍵が生成される。そして、入力されたオーディオデータが暗号化され、用意された未使用領域に、暗号化されたオーディオデータが記録される。このオーディオデータが記録された領域がFATのファイルシステム上でオーディオデータファイルの最後尾に連結される。
【0227】
新たなオーディオデータがオーディオデータファイルに連結されたのに伴い、この連結された位置の情報が作成され、新たに確保されたパーツデスクリプションに、新たに作成されたオーディオデータの位置情報が記録される。そして、新たに確保されたトラックデスクリプターに、鍵情報やパーツナンバが記述される。更に、必要に応じて、ネームスロットにアーチストネームやタイトルネーム等が記述され、トラックデスクリプターに、そのネームスロットにアーチストネームやタイトルネームにリンクするポインタが記述される。そして、プレイオーダーテーブルに、そのトラックデスクリプターのナンバが登録される。また著作権管理情報の更新がなされる。
【0228】
オーディオデータを再生する場合には、プレイオーダーテーブルから、指定されたトラックナンバに対応する情報が求められ、再生すべきトラックのトラックデスクリプタが取得される。
【0229】
トラックインフォメーションテーブルのそのトラックデスクリプタから、鍵情報が取得され、また、エントリのデータが格納されている領域を示すパーツデスクリプションが取得される。そのパーツデスクリプションから、所望のオーディオデータが格納されているパーツの先頭のオーディオデータファイル上の位置が取得され、その位置に格納されているデータが取り出される。そして、その位置から再生されるデータに対して、取得された鍵情報を用いて暗号が解読され、オーディオデータの再生がなされる。パーツデスクリプションにリンクがある場合には、指定されてパーツにリンクされて、同様の手順が繰り返される。
【0230】
プレイオーダテーブル上で、トラックナンバ「n」であった楽曲を、トラックナンバ「n+m」に変更する場合には、プレイオーダテーブル内のトラック情報TINFnから、そのトラックの情報が記述されているトラックデスクリプターDnが得られる。トラック情報TINFn+1からTINFn+mの値(トラックデスクリプターナンバ)が全て1つ前に移動される。そして、トラック情報TINFn+mに、トラックデスクリプターDnのナンバが格納される。
【0231】
プレイオーダテーブルで、トラックナンバ「n」であった楽曲を削除する場合には、プレイオーダテーブル内のトラック情報TINFnから、そのトラック の情報が記述されているトラックデスクリプタDnが取得される。プレイオーダテーブル内のトラック情報のエントリ、TINFn+1から後の有効なトラックデスクリプタナンバが全て1つ前に移動される。更に、トラック「n」は、消されるべきものなので、トラック「n」の後の全てのトラック情報のエントリが、プレイオーダテーブル内で1つ前に移動される。前記トラックの消去に伴って取得されたトラックデスクリプタDnから、トラックインフォメーションテーブルで、そのトラックに対応する符号化方式、復号鍵が取得れるとともに、先頭の音楽データが格納されている領域を示すパーツデスクリプタPnのナンバが取得される。パーツデスクリプタPnによって指定された範囲のオーディオブロックが、FATのファイルシステム上で、オーディオデータファイルから切り離される。更に、このトラックインフォメーションテーブルのそのトラックのトラックデスクリプタDnが消去される。そして、パーツデスクリプタがパーツインフォメーションテーブルから消去され、ファイルシステムでそのパーツデスクリプションが解放される。
【0232】
例えば、図39Aにおいて、パーツA、パーツB、パーツCはそれまで連結しており、その中から、パーツBを削除するものとする。パーツAパーツBは同じオーディオブロックを(かつ同じFATクラスタを)共有しており、FATチェーンが連続しているとする。パーツCは、オーディオデータファイルの中ではパーツBの直後に位置しているが、FATテーブルを調べると、実際には離れた位置にあるとする。
【0233】
この例の場合には、図39Bに示すように、パーツBを削除したときに、実際にFATチェーンから外す(空き領域に戻す)ことができるのは、現行のパーツとクラスタを共有していない、2つのFATクラスタである。すなわち、オーディオデータファイルとしては4オーディオブロックに短縮される。パーツCおよびそれ以降にあるパーツに記録されているオーディオブロックのナンバは、これに伴い全て4だけ小さくなる。
【0234】
なお、削除は、1トラック全てではなく、そのトラックの一部に対して行うことができる。トラックの一部が削除された場合には、残りのトラックの情報は、トラックインフォメーションテーブルでそのパーツデスクリプタPnから取得されたそのトラックに対応する符号化方式、復号鍵を使って復号することが可能である。
【0235】
プレイオーダテーブル上のトラックnとトラックn+1とを連結する場合には、プレイオーダテーブル内のトラック情報TINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。また、プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDmが取得される。プレイオーダテーブル内のTINFn+1から後の有効なTINFの値(トラックデスクリプタナンバ)が全て1つ前のTINFに移動される。プログラムドプレイオーダテーブルを検索して、トラックデスクリプタDmを参照しているトラックが全て削除される。新たな暗号化鍵を発生させ、トラックデスクリプタDnから、パーツデスクリプタのリストが取り出され、そのパーツデスクリプタのリストの最後尾に、トラックデスクリプタDmから取り出したパーツデスクリプタのリストが連結される。
【0236】
トラックを連結する場合には、双方のトラックデスクリプタを比較して、著作権管理上問題のないことを確認し、トラックデスクリプタからパーツデスクリプタを得て、双方のトラックを連結した場合にフラグメントに関する規定が満たされるかどうか、FATテーブルで確認する必要がある。また、必要に応じて、ネームテーブルへのポインタの更新を行う必要がある。
【0237】
トラックnを、トラックnとトラックn+1に分割する場合には、プレイオーダテーブル内のTINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDm取得される。そして、プレイオーダテーブル内のTINFn+1から後の有効なトラック情報TINFの値(トラックデスクリプタナンバ)が、全て1つ後に移動される。トラックデスクリプタDnについて、新しい鍵が生成される。トラックデスクリプタDnから、パーツデスクリプタのリストが取り出される。新たなパーツデスクリプタが割り当てられ、分割前のパーツデスクリプタの内容がそこにコピーされる。分割点の含まれるパーツデスクリプタが、分割点の直前までに短縮される。また分割点以降のパーツデスクリプタのリンクが打ち切られる。新たなパーツデスクリプタが分割点の直後に設定される。
【0238】
7.音楽データの管理方式の第2の例
次に、オーディオデータの管理方式の第2の例について説明する。図40は、オーディオデータの管理方式の第2の例である。図40に示すように、第2の例における管理方式では、ディスク上には、トラックインデックスファイルと、複数のオーディオデータファイルとが生成される。トラックインデックスファイルおよび複数のオーディオデータファイルは、FATシステムで管理されるファイルである。
【0239】
オーディオデータファイルは、図41に示すように、原則的には1曲が1ファイルの音楽データが納められたものである。このオーディオデータファイルには、ヘッダが設けられている。ヘッダには、タイトルと、復号鍵情報と、著作権管理情報とが記録されるとともに、インデック情報が設けられる。インデックスは、1つのトラックの楽曲を複数に分割するものである。ヘッダには、インデックスにより分割された各トラックの位置がインデックスナンバに対応して記録される。インデックスは、例えば、255箇設定できる。
【0240】
トラックインデックスファイルは、オーディオデータファイルに納められた音楽データを管理するための各種の情報が記述されたファイルである。トラックインデックスファイルは、図42に示すように、プレイオーダテーブルと、プログラムドプレイオーダテーブルと、グループインフォメーションテーブルと、トラックインフォメーションテーブルと、ネームテーブルとからなる。
【0241】
プレイオーダテーブルは、デフォルトで定義された再生順序を示すテーブルである。プレイオーダテーブルは、図43に示すように、各トラックナンバ(曲番)についてのトラックインフォメーションテーブルのトラックデスクリプタ(図46)へのリンク先を示す情報INF1、INF2、が格納されている。トラックナンバは、例えば「1」から始まる連続したナンバである。
【0242】
プログラムドプレイオーダテーブルは、再生手順を各ユーザが定義したテーブルである。プログラムドプレイオーダテーブルには、図44に示すように、各トラックナンバについてのトラックデスクリプタへのリンク先の情報トラック情報PINF1、PINF2、…が記述されている。
【0243】
グループインフォメーションテーブルには、図45に示すように、グループに関する情報が記述されている。グループは、連続したトラックナンバを持つ1つ以上のトラックの集合、または連続したプログラムドトラックナンバを持つ1つ以上のトラックの集合である。グループインフォメーションテーブルは、図45Aに示すように、各グループのグループデスクリプタで記述されている。グループデスクリプタには、図45Bに示すように、そのグループが開始されるトラックナンバと、終了トラックのナンバと、グループネームと、フラグが記述される。
【0244】
トラックインフォメーションテーブルは、図46に示すように、各曲に関する情報が記述される。トラックインフォメーションテーブルは、図46Aに示すように、各トラック毎(各曲毎)のトラックデスクリプタからなる。各トラックデスクリプタには、図46Bに示すように、その楽曲が納められているオーディオデータファイルのファイルのポインタ、インデックスナンバ、アーチストネーム、タイトルネーム、元曲順情報、録音時間情報等が記述されている。アーチストネーム、タイトルネームは、ネームそのものではなく、ネームテーブルへのポインタが記述されている。
【0245】
ネームテーブルは、ネームの実体となる文字を表すためのテーブルである。ネームテーブルは、図47Aに示すように、複数のネームスロットからなる。各ネームスロットは、ネームを示す各ポインタからリンクされて呼び出される。ネームを呼び出すポインタは、トラックインフォメーションテーブルのアーチストネームやタイトルネーム、グループインフォメーションテーブルのグループネーム等がある。また、各ネームスロットは、複数から呼び出されることが可能である。各ネームスロットは、図47Bに示すように、ネームデータと、ネームタイプと、リンク先とからなる。1つのネームスロットで収まらないような長いネームは、複数のネームスロットに分割して記述することが可能である。そして、1つのネームスロットで収まらない場合には、それに続くネームが記述されたネームスロットへのリンク先が記述される。
【0246】
オーディオデータの管理方式の第2の例では、図48に示すように、プレイオーダテーブル(図43)により、再生するトラックナンバが指定されると、トラックインフォメーションテーブルのリンク先のトラックデスクリプタ(図46)が読み出され、このトラックデスクリプタから、その楽曲のファイルポインタおよびインデックスナンバ、アーチストネームおよびタイトルネームのポインタ、元曲順情報、録音時間情報等が読み出される。
【0247】
その楽曲のファイルのポインタから、そのオーディオデータファイルがアクセスされ、そのオーディオデータファイルのヘッダの情報が読み取られる。オーディオデータが暗号化されている場合には、ヘッダから読み出された鍵情報が使われる。そして、そのオーディオデータファイルが再生される。このとき、もし、インデックスナンバが指定されている場合には、ヘッダの情報から、指定されたインデックスナンバの位置が検出され、そのインデックスナンバの位置から、再生が開始される。
【0248】
また、トラックインフォメーションテーブルから読み出されたアーチストネームやタイトルネームのポインタにより指し示される位置にあるネームテーブルのネームスロットが呼び出され、その位置にあるネームスロットから、ネームデータが読み出される。
【0249】
新たにオーディオデータを記録する場合には、FATテーブルにより、所望の数のレコーディングブロック以上、例えば、4つのレコーディングブロック以上連続した未使用領域が用意される。
【0250】
オーディオデータを記録するための領域が用意されたら、トラックインフォメーションテーブルに新しいトラックデスクリプタが1つ割り当てられ、このオーディオディデータを暗号化するためのコンテンツ鍵が生成される。そして、入力されたオーディオデータが暗号化され、オーディオデータファイルが生成される。
【0251】
新たに確保されたトラックデスクリプタに、新たに生成されたオーディオデータファイルのファイルポインタや、鍵情報が記述される。更に、必要に応じて、ネームスロットにアーチストネームやタイトルネーム等が記述され、トラックデスクリプターに、そのネームスロットにアーチストネームやタイトルネームにリンクするポインタが記述される。そして、プレイオーダーテーブルに、そのトラックデスクリプターのナンバが登録される。また著作権管理情報の更新がなされる。
【0252】
オーディオデータを再生する場合には、プレイオーダーテーブルから、指定されたトラックナンバに対応する情報が求められ、トラックインフォメーションテーブルの再生すべきトラックのトラックデスクリプタが取得される。
【0253】
そのトラックデスクリプタから、またその音楽データが格納されているオーディオデータのファイルポインタおよびインデックスナンバが取得される。そして、そのオーディオデータファイルがアクセスされ、ファイルのヘッダから、鍵情報が取得される。そして、そのオーディオデータファイルのデータに対して、取得された鍵情報を用いて暗号が解読され、オーディオデータの再生がなされる。インデックスナンバが指定されている場合には、指定されたインデックスナンバの位置から、再生が開始される。
【0254】
トラックnを、トラックnとトラックn+1に分割する場合には、プレイオーダテーブル内のTINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDmが取得される。そして、プレイオーダテーブル内のTINFn+1から後の有効なトラック情報TINFの値(トラックデスクリプタナンバ)が、全て1つ後に移動される。
【0255】
図49に示すように、インデックスを使うことにより、1つのファイルのデータは、複数のインデックス領域に分けられる。このインデックスナンバとインデックス領域の位置がそのオーディオトラックファイルのヘッダに記録される。トラックデスクリプタDnに、オーディオデータのファイルポインタと、インデックスナンバが記述される。トラックデスクリプタDmに、オーディオデータのファイルポインタと、インデックスナンバが記述される。これにより、オーディオファイルの1つのトラックの楽曲M1は、見かけ上、2つのトラックの楽曲M11とM12とに分割される。
【0256】
プレイオーダテーブル上のトラックnとトラックn+1とを連結する場合には、プレイオーダテーブル内のトラック情報TINFnから、そのトラックの情報が記述されているトラックデスクリプタナンバDnが取得される。また、プレイオーダテーブル内のトラック情報TINFn+1から、そのトラックの情報が記述されているトラックデスクリプタナンバDmが取得される。プレイオーダテーブル内のTINFn+1から後の有効なTINFの値(トラックデスクリプタナンバ)が全て1つ前に移動される。
【0257】
ここで、トラックnとトラックn+1とが同一のオーディオデータファイル内にあり、インデックスで分割されている場合には、図50に示すように、ヘッダのインデックス情報を削除することで、連結が可能である。これにより、2つのトラックの楽曲M21とM22は、1つのトラックの楽曲M23に連結される。
【0258】
トラックnが1つのオーディオデータファイルをインデックスで分割した後半であり、トラックn+1が別のオーディオデータファイルの先頭にある場合には、図51に示すように、インデックスで分割されていたトラックnのデータにヘッダが付加され、楽曲M32のオーディオデータファイルが生成される。これに、トラックn+1のオーディオデータファイルのヘッダが取り除かれ、この楽曲M41のトラックn+1のオーディオデータが連結される。これにより、2つのトラックの楽曲M32とM41は、1つのトラックの楽曲M51として連結される。
【0259】
以上の処理を実現するために、インデックスで分割されていたトラックに対して、ヘッダを付加し、別の暗号鍵で暗号化して、インデックスによるオーディオディデータを1つのオーディオデータファイルに変換する機能と、オーディオデータファイルのヘッダを除いて、他のオーディオデータファイルに連結する機能が持たされている。
【0260】
8.パーソナルコンピュータとの接続時の動作について
次世代MD1および次世代MD2では、パーソナルコンピュータとの親和性を持たせるために、データの管理システムとしてFATシステムが採用されている。したがって、次世代MD1および次世代MD2によるディスクは、オーディオデータのみならず、パーソナルコンピュータで一般的に扱われるデータの読み書きにも対応している。
【0261】
ここで、ディスクドライブ装置1において、オーディオデータは、ディスク90上から読み出されつつ、再生される。そのため、特に携帯型のディスクドライブ装置1のアクセス性を考慮に入れると、一連のオーディオデータは、ディスク上に連続的に記録されることが好ましい。一方、パーソナルコンピュータによる一般的なデータ書き込みは、このような連続性を考慮せず、ディスク上の空き領域を適宜、割り当てて行われる。
【0262】
そこで、この発明が適用された記録再生装置では、パーソナルコンピュータ100とディスクドライブ装置1とをUSBハブ7によって接続し、パーソナルコンピュータ100からディスクドライブ装置1に装着されたディスク90に対する書き込みを行う場合において、一般的なデータの書き込みは、パーソナルコンピュータ側のファイルシステムの管理下で行われ、オーディオデータの書き込みは、ディスクドライブ装置1側のファイルシステムの管理下で行われるようにしている。
【0263】
図52は、このように、パーソナルコンピュータ100とディスクドライブ装置1とが図示されないUSBハブ7で接続された状態で、書き込むデータの種類により管理権限を移動させることを説明するための図である。図52Aは、パーソナルコンピュータ100からディスクドライブ装置1に一般的なデータを転送し、ディスクドライブ装置1に装着されたディスク90に記録する例を示す。この場合には、パーソナルコンピュータ100側のファイルシステムにより、ディスク90上のFAT管理がなされる。
【0264】
なお、ディスク90は、次世代MD1および次世代MD2の何れかのシステムでフォーマットされたディスクであるとする。
【0265】
すなわち、パーソナルコンピュータ100側では、接続されたディスクドライブ装置1がパーソナルコンピュータ100により管理される一つのリムーバブルディスクのように見える。したがって、例えばパーソナルコンピュータ100においてフレキシブルディスクに対するデータの読み書きを行うように、ディスクドライブ装置1に装着されたディスク90に対するデータの読み書きを行うことができる。
【0266】
なお、このようなパーソナルコンピュータ100側のファイルシステムは、パーソナルコンピュータ100に搭載される基本ソフトウェアであるOS(Operating System)の機能として提供することができる。OSは、周知のように、所定のプログラムファイルとして、例えばパーソナルコンピュータ100が有するハードディスクドライブに記録される。このプログラムファイルがパーソナルコンピュータ100の起動時に読み出され所定に実行されることで、OSとしての各機能を提供可能な状態とされる。
【0267】
図52Bは、パーソナルコンピュータ100からディスクドライブ装置1に対してオーディオデータを転送し、ディスクドライブ装置1に装着されたディスク90に記録する例を示す。例えば、パーソナルコンピュータ100において、パーソナルコンピュータ100が有する例えばハードディスクドライブ(以下、HDD)といった記録媒体にオーディオデータが記録されている。
【0268】
なお、パーソナルコンピュータ100には、オーディオデータをATRAC圧縮エンコードすると共に、ディスクドライブ装置1に対して、装着されたディスク90へのオーディオデータの書き込みおよびディスク90に記録されているオーディオデータの削除を要求するユーティリティソフトウェアが搭載されているものとする。このユーティリティソフトウェアは、さらに、ディスクドライブ装置1に装着されたディスク90のトラックインデックスファイルを参照し、ディスク90に記録されているトラック情報を閲覧する機能を有する。このユーティリティソフトウェアは、例えばパーソナルコンピュータ100のHDDにプログラムファイルとして記録される。
【0269】
一例として、パーソナルコンピュータ100の記録媒体に記録されたオーディオデータを、ディスクドライブ装置1に装着されたディスク90に記録する場合について説明する。上述のユーティリティソフトウェアは、予め起動されているものとする。
【0270】
先ず、ユーザにより、パーソナルコンピュータ100に対して、HDDに記録された所定のオーディオデータ(オーディオデータAとする)をディスクドライブ装置1に装着されたディスク90に記録するよう操作がなされる。この操作に基づき、オーディオデータAのディスク90に対する記録を要求する書込要求コマンドが当該ユーティリティソフトウェアにより出力される。書込要求コマンドは、パーソナルコンピュータ100からディスクドライブ装置1に送信される。
【0271】
続けて、パーソナルコンピュータ100のHDDからオーディオデータAが読み出される。読み出されたオーディオデータAは、パーソナルコンピュータ100に搭載された上述のユーティリティソフトウェアによりATRAC圧縮エンコード処理が行われ、ATRAC圧縮データに変換される。このATRAC圧縮データに変換されたオーディオデータAは、パーソナルコンピュータ100からディスクドライブ装置1に対して転送される。
【0272】
ディスクドライブ装置1側では、パーソナルコンピュータから送信された書込要求コマンドが受信されることで、ATRAC圧縮データに変換されたオーディオデータAがパーソナルコンピュータ100から転送され、且つ、転送されたデータをオーディオデータとしてディスク90に記録することが認識される。
【0273】
ディスクドライブ装置1では、パーソナルコンピュータ100から送信されたオーディオデータAを、USBハブ7から受信し、USBインターフェイス6およびメモリ転送コントローラ3を介してメディアドライブ部2に送る。システムコントローラ9では、オーディオデータAをメディアドライブ部2に送る際に、オーディオデータAがこのディスクドライブ装置1のFAT管理方法に基づきディスク90に書き込まれるように制御する。すなわち、オーディオデータAは、ディスクドライブ装置1のFATシステムに基づき、4レコーディングブロック、すなわち64kバイト×4を最小の記録長として、レコーディングブロック単位で連続的に書き込まれる。
【0274】
なお、ディスク90へのデータの書き込みが終了するまでの間、パーソナルコンピュータ100とディスクドライブ装置1との間では、所定のプロトコルでデータやステータス、コマンドのやりとりが行われる。これにより、例えばディスクドライブ装置1側でクラスタバッファ4のオーバーフローやアンダーフローが起こらないように、データ転送速度が制御される。
【0275】
パーソナルコンピュータ100側で使用可能なコマンドの例としては、上述の書込要求コマンドの他に、削除要求コマンドがある。この削除要求コマンドは、ディスクドライブ装置1に装着されたディスク90に記録されたオーディオデータを削除するように、ディスクドライブ装置1に対して要求するコマンドである。
【0276】
例えば、パーソナルコンピュータ100とディスクドライブ装置1とが接続され、ディスク90がディスクドライブ装置1に装着されると、上述のユーティリティソフトウェアによりディスク90上のトラックインデックスファイルが読み出され、読み出されたデータがディスクドライブ装置1からパーソナルコンピュータ100に送信される。パーソナルコンピュータでは、このデータに基づき、例えばディスク90に記録されているオーディオデータのタイトル一覧を表示することができる。
【0277】
パーソナルコンピュータ100において、表示されたタイトル一覧に基づきあるオーディオデータ(オーディオデータBとする)を削除しようとした場合、削除しようとするオーディオデータBを示す情報が削除要求コマンドと共にディスクドライブ装置1に送信される。ディスクドライブ装置1では、この削除要求コマンドを受信すると、ディスクドライブ装置1自身の制御に基づき、要求されたオーディオデータBがディスク90上から削除される。
【0278】
オーディオデータの削除がディスクドライブ装置1自身のFATシステムに基づく制御により行われるため、例えば図39Aおよび図39Bを用いて説明したような、複数のオーディオデータが1つのファイルとしてまとめられた巨大ファイル中のあるオーディオデータを削除するような処理も、可能である。
【0279】
9.ディスク上に記録されたオーディオデータのコピー制限について
ディスク90上に記録されたオーディオデータの著作権を保護するためには、ディスク90上に記録されたオーディオデータの、他の記録媒体などへのコピーに制限を設ける必要がある。例えば、ディスク90上に記録されたオーディオデータを、ディスクドライブ装置1からパーソナルコンピュータ100に転送し、パーソナルコンピュータ100のHDDなどに記録することを考える。
【0280】
なお、ここでは、ディスク90は、次世代MD1または次世代MD2のシステムでフォーマットされたディスクであるものとする。また、以下に説明するチェックアウト、チェックインなどの動作は、パーソナルコンピュータ100上に搭載される上述したユーティリティソフトウェアの管理下で行われるものとする。
【0281】
先ず、図53Aに示されるように、ディスク90上に記録されているオーディオデータ200がパーソナルコンピュータ(PC)100にムーブされる。ここでいうムーブは、対象オーディオデータ200がパーソナルコンピュータ100にコピーされると共に、対象オーディオデータが元の記録媒体(ディスク90)から削除される一連の動作をいう。すなわち、ムーブにより、ムーブ元のデータは削除され、ムーブ先に当該データが移ることになる。
【0282】
なお、ある記録媒体から他の記録媒体にデータがコピーされ、コピー元データのコピー許可回数を示すコピー回数権利が1減らされることを、チェックアウトと称する。また、チェックアウトされたデータをチェックアウト先から削除し、チェックアウト元のデータのコピー回数権利を戻すことを、チェックインと称する。
【0283】
オーディオデータ200がパーソナルコンピュータ100にムーブされると、パーソナルコンピュータ100の記録媒体、例えばHDD上に当該オーディオデータ200が移動され(オーディオデータ200’)、元のディスク90から当該オーディオデータ200が削除される。そして、図53Bに示されるように、パーソナルコンピュータ100において、ムーブされたオーディオデータ200’に対して、チェックアウト(CO)可能(な又は所定の)回数201が設定される。ここでは、チェックアウト可能回数201は、「●黒丸」で示されるように、3回に設定される。すなわち、当該オーディオデータ200’は、このパーソナルコンピュータ100から外部の記録媒体に対して、チェックアウト可能回数201に設定された回数だけ、さらにチェックアウトを行うことが許可される。
【0284】
ここで、チェックアウトされたオーディオデータ200が元のディスク90上から削除されたままだと、ユーザにとって不便であることが考えられる。そこで、パーソナルコンピュータ100に対してチェックアウトされたオーディオデータ200’が、ディスク90に対して書き戻される。
【0285】
当該オーディオデータ200’をパーソナルコンピュータ100から元のディスク90に書き戻すときには、図53Cに示されるように、チェックアウト可能回数が1回消費され、チェックアウト可能回数が(3−1=2)回とされる。このときには、パーソナルコンピュータ100のオーディオデータ200’は、チェックアウトできる権利が後2回分、残っているため、パーソナルコンピュータ100上からは削除されない。すなわち、パーソナルコンピュータ100上のオーディオデータ200’は、パーソナルコンピュータからディスク90にコピーされ、ディスク90上には、オーディオデータ200’がコピーされたオーディオデータ200”が記録されることになる。
【0286】
なお、チェックアウト可能回数201は、トラックインフォメーションテーブルにおけるトラックデスクリプタの著作権管理情報により管理される(図34B参照)。トラックデスクリプタは、各トラック毎に設けられるため、チェックアウト可能回数201を各トラック(音楽データ)毎に設定することができる。ディスク90からパーソナルコンピュータ100にコピーされたトラックデスクリプタは、パーソナルコンピュータ100にムーブされた対応するオーディオデータの制御情報として用いられる。
【0287】
例えば、ディスク90からパーソナルコンピュータ100に対してオーディオデータがムーブされると、ムーブされたオーディオデータに対応したトラックデスクリプタがパーソナルコンピュータ100にコピーされる。パーソナルコンピュータ100上では、ディスク90からムーブされたオーディオデータの管理がこのトラックデスクリプタにより行われる。オーディオデータがムーブされパーソナルコンピュータ100のHDDなどに記録されるのに伴い、トラックデスクリプタ中の著作権管理情報において、チェックアウト可能回数201が規定の回数(この例では3回)に設定される。
【0288】
なお、著作権管理情報として、上述のチェックアウト可能回数201の他に、チェックアウト元の機器を識別するための機器ID、チェックアウトされたコンテンツ(オーディオデータ)を識別するためのコンテンツIDも管理される。例えば、上述した図53Cの手順では、コピーしようとしているオーディオデータに対応する著作権管理情報中の機器IDに基づき、コピー先の機器の機器IDの認証が行われる。著作権管理情報中の機器IDと、コピー先機器の機器IDとが異なる場合、コピー不可とすることができる。
【0289】
上述した図53A〜図53Cによる一連のチェックアウト処理では、ディスク90上のオーディオデータを一度パーソナルコンピュータ100に対してムーブし、再びパーソナルコンピュータ100からディスク90に書き戻しているため、ユーザにとっては、手順が煩雑で煩わしく、また、ディスク90からオーディオデータを読み出す時間と、ディスク90にオーディオデータを書き戻す時間とがかかるため、時間が無駄に感じられるおそれがある。さらに、ディスク90上からオーディオデータが一旦削除されてしまうことは、ユーザの感覚に馴染まないことが考えられる。
【0290】
そこで、ディスク90に記録されたオーディオデータのチェックアウト時に、上述の途中の処理を行ったものと見なして省き、図53Cに示される結果だけが実現されることが可能なようにする。その手順の一例を以下に示す。以下に示される手順は、例えば「ディスク90に記録された××というオーディオデータをチェックアウトせよ」といったような、ユーザからの単一の指示により実行されるものである。
【0291】
(1)ディスク90に記録されているオーディオデータをパーソナルコンピュータ100のHDDにコピーすると共に、ディスク90上の当該オーディオデータを、当該オーディオデータの管理データの一部を無効にすることで消去する。例えば、プレイオーダーテーブルから当該オーディオデータに対応するトラックデスクリプタへのリンク情報TINFnと、プログラムドファイルオーダーテーブルから当該オーディオデータに対応するトラックデスクリプタへのリンク情報PINFnとを削除する。当該オーディオデータに対応するトラックデスクリプタそのものを削除するようにしてもよい。これにより、当該オーディオデータがディスク90上で使用不可の状態とされ、当該オーディオデータがディスク90からパーソナルコンピュータ100にムーブされたことになる。
【0292】
(2)なお、手順(1)において、オーディオデータのパーソナルコンピュータ100へのコピーの際に、当該オーディオデータに対応するトラックデスクリプタも、共にパーソナルコンピュータ100のHDDにコピーされる。
【0293】
(3)次に、パーソナルコンピュータ100において、ディスク90からコピーされた、ムーブされたオーディオデータに対応するトラックデスクリプタにおける著作権管理情報内のチェックアウト可能回数に、規定回数、例えば3回が記録される。
【0294】
(4)次に、パーソナルコンピュータ100において、ディスク90からコピーされたトラックデスクリプタに基づき、ムーブされたオーディオデータに対応するコンテンツIDが取得され、当該コンテンツIDがチェックイン可能なオーディオデータを示すコンテンツIDとして記録される。
【0295】
(5)次に、パーソナルコンピュータ100において、ムーブされたオーディオデータに対応するトラックデスクリプタにおける著作権管理情報内のチェックアウト可能回数が、上述の手順(3)で設定された規定回数から1だけ減じられる。この例では、チェックアウト可能回数が(3−1=2)回とされる。
【0296】
(6)次に、ディスク90が装着される図示されないディスクドライブ装置1において、ムーブされたオーディオデータに対応するトラックデスクリプタが有効化される。例えば、上述の手順(1)において削除されたリンク情報TINFnおよびPINFnをそれぞれ復元または再構築することで、当該オーディオデータに対応するトラックデスクリプタが有効化される。上述の手順(1)において当該オーディオデータに対応するトラックデスクリプタを削除した場合には、当該トラックデスクリプタが再構築される。パーソナルコンピュータ100上記記録されている、対応するトラックデスクリプタをディスクドライブ装置1に転送し、ディスク90に記録するようにしてもよい。
【0297】
以上の(1)〜(6)の手順により、一連のチェックアウト処理が完了したと見なす。こうすることで、ディスク90からパーソナルコンピュータ100へのオーディオデータのコピーがオーディオデータの著作権保護を図りつつ実現されると共に、ユーザの手間を省くことができる。
【0298】
なお、この(1)〜(6)の手順によるオーディオデータのコピーは、ユーザがディスクドライブ装置1を用いて、ディスク90に自分で録音(記録)したオーディオデータに対して適用されるようにすると、好ましい。
【0299】
また、チェックアウトされた後でチェックインする際には、パーソナルコンピュータ100は、自分自身が記録しているオーディオデータおよびトラックデスクリプタ中の制御情報、例えば著作権管理情報を検索し、検索されたオーディオデータおよび制御情報に基づき判断を行い、チェックインを実行する。
【0300】
10.次世代MD1システムと現行MDシステムとの共存について
次世代MD1のシステムでは、現行のMDシステムで用いられるディスクを使用することができる。一方、次世代MD1によるディスクのディスクフォーマットは、現行のMDシステムによるディスクのフォーマットと大きく異なっている。そのため、同一のディスクドライブ装置1で、これら次世代MD1によるディスクと現行のMDシステムによるディスクとを、ユーザが混乱無く使い分けることができるようにする必要がある。
【0301】
図54は、ディスクドライブ装置1における、次世代MD1システムと現行のMDシステムとの共存の様子を概念的に示す。ディスクドライブ装置1は、入出力されるオーディオ信号として、ディジタル方式およびアナログ方式の両方に対応している。
【0302】
次世代MD1システム70において、ディジタル方式のオーディオ信号は、所定の方法によりウォーターマークを検出され、暗号化部72により鍵情報74を用いて暗号化され、記録/再生部73に供給される。アナログ方式のオーディオ信号も、図示されないA/D変換部によりディジタル方式のオーディオデータに変換され、ウォーターマークを検出され、同様にして記録/再生部73に供給される。記録/再生部73では、暗号化されたオーディオデータがATRAC方式により圧縮符号化される。圧縮符号化されたオーディオデータは、鍵情報74と共に1−7pp変調されて図示されないディスク90に記録される。
【0303】
入力されたオーディオ信号から例えばコピー禁止情報が含まれたウォーターマークが検出された場合、検出されたウォーターマークを用いて、記録/再生部73による記録処理を例えば禁止するように制御できる。
【0304】
再生時には、オーディオデータと対応する鍵情報74とが記録/再生部73によりディスク90から再生され、復号化部75で鍵情報74を用いて暗号化が解かれ、ディジタル方式のオーディオ信号とされる。このディジタル方式のオーディオ信号は、図示されないD/A変換部でアナログ方式のオーディオ信号に変換されて出力される。D/A変換部を介さずに、ディジタル方式のオーディオ信号として出力することもできる。再生時にも、ディスク90から再生されたオーディオ信号からウォーターマークを検出してもよい。
【0305】
検出されたウォーターマークにコピー禁止情報が含まれている場合、このウォーターマークを用いて、記録/再生部73による再生処理を例えば禁止するように制御できる。
【0306】
一方、現行のMDシステム71において、ディジタル方式のオーディオ信号は、SCMS(Serial Copy Management System)により世代管理情報を付加され、記録/再生部76に供給される。アナログ方式のオーディオ信号も、図示されないA/D変換変換部によりディジタル方式のオーディオデータに変換され、記録/再生部76に供給される。この場合には、SCMSによる世代管理情報は、付加されない。記録/再生部76では、供給されたオーディオデータがATRAC方式により圧縮符号化され、EFM変調されて図示されないディスク90に記録される。
【0307】
再生時には、オーディオデータが記録/再生部76によりディスク90から再生され、ディジタル方式のオーディオ信号とされる。このディジタル方式のオーディオ信号が図示されないD/A変換部でアナログ方式のオーディオ信号に変換されて出力される。D/A変換部を介さずに、ディジタル方式のオーディオ信号として出力することもできる。
【0308】
このような、次世代MD1システムと現行MDシステムとが共存されたディスクドライブ装置1において、次世代MD1システムによる動作モードと、現行MDシステムによる動作モードとを明示的に切り換えるスイッチ50が設けられる。このスイッチ50は、特に、ディスク90に対してオーディオデータを記録する際に、効果的に作用される。
【0309】
図55は、携帯型に構成されたディスクドライブ装置1の一例の外観図である。図55において後ろ側に隠れる部分にヒンジ部が設けられ、スライダ52をスライドさせることで、蓋部54と本体部55とが開口される。開口部には、ディスク90を装着するためのガイドが設けられ、このガイドに沿ってディスク90を挿入し、蓋部54を閉じることで、ディスク90がディスクドライブ装置1に装着される。ディスク90がディスクドライブ装置1に装着されると、ディスクドライブ装置1により、装着されたディスク90のリードイン領域およびU−TOCが自動的に読み込まれ、ディスク90の情報が取得される。
【0310】
フォンジャック53は、アナログ方式のオーディオ信号の出力端子である。このフォンジャック53に、ヘッドフォンなどの音声再生手段に接続されたフォンプラグを挿入することで、ユーザは、ディスク90から再生されたオーディオデータを音声として楽しむことができる。
【0311】
なお、図55では示されていないが、ディスクドライブ装置1には、装着されたディスク90の再生、録音、停止、一時停止(ポーズ)、早送りおよび戻しといった、ディスク90の動作を指示する各種キーや、ディスク90に記録されているオーディオデータや各種情報をエディットするためのキー、また、ディスクドライブ装置1に対して所定のコマンドやデータを入力するキーなどが、さらに設けられる。これらのキーは、例えば本体部55側に設けられる。
【0312】
ディスクドライブ装置1の蓋部54に、上述したスイッチ50が設けられる。スイッチ50は、ユーザの注意を惹き易いように、例えばこの図55に示されるように、大型且つ目立つ位置に設けられる。なお、この図55では、スイッチ50に対し、現行MDシステムによる動作モードを「MD」、次世代MD1システムによる動作モードを「次世代MD」として表示している。
【0313】
蓋部54には、さらに、ディスプレイ51が設けられる。このディスプレイ51には、このディスクドライブ装置1における様々な状態や、ディスクドライブ装置1に装着されたディスク90に記録されたトラック情報などが表示される。さらに、ディスプレイ51には、スイッチ50により設定された動作モードに連動した表示もなされる。
【0314】
先ず、ディスク90のフォーマット時のディスクドライブ装置1の一例の動作について、図56のフローチャートを用いて説明する。この図56のフローチャートでは、未使用の所謂ヴァージンディスクが用いられた場合の処理を示す。最初のステップS200で、現行MDシステムによるディスク90がディスクドライブ装置1に装着される。ディスク90が装着されると、ステップS201で、ディスク90のリードイン領域に続けてU−TOCが読み込まれる。
【0315】
次のステップS202では、ディスクドライブ装置1において、スイッチ50の設定に基づき、本体の動作モードが現行MDシステムおよび次世代MD1システムの何れに設定されているかが判断される。若し、本体動作モードが現行MDシステムに設定されていれば、処理はステップS203に移行する。現行MDシステムでは、ディスクに対するフォーマット処理が不要であるため、ステップS203では、装着されたディスク90が現行MDシステムのディスクとして使用可能であると判断され、ディスプレイ51に、当該ディスク90がブランクディスクである旨を示す表示がなされる。
【0316】
一方、ステップS202で、本体の動作モードが次世代MD1システムに設定されていると判断されれば、処理はステップS204に移行され、ディスプレイ51に対して、当該ディスク90がブランクディスクである旨を示す表示がなされる。この表示が例えば数秒間なされた後、処理は自動的にステップS205に移行される。
【0317】
ステップS205では、ディスプレイ51に対して、ディスク90を本当にフォーマットするか否かを確認する内容の表示がなされる。若し、ディスク90をフォーマットすることがユーザから指示されたら、処理はステップS206に移行される。なお、ユーザからの指示は、ユーザにより、例えばディスクドライブ装置1の本体部55に設けられたキーが操作されることで、ディスクドライブ装置1に対して入力される。
【0318】
ステップS206では、ディスクドライブ装置1により、ディスク90に対して次世代MD1システムによるフォーマット処理が、上述の図18に示したフローに従い行われる。フォーマット処理中は、ディスプレイ51にフォーマット中である旨を示すことを表示すると、好ましい。ステップS206によるフォーマット処理が終了したら、処理はステップS207に移行され、ディスプレイ51に対して、装着されているディスク90が次世代MD1システムによるブランクディスクである旨が表示される。
【0319】
上述のステップS205において、若し、ディスク90をフォーマットしないことがユーザから指示されたら、処理はステップS208に移行し、ディスクドライブ装置1の動作モードを現行MDシステムによる動作モードに切り換えるようにスイッチ50を設定することを促す表示が、ディスプレイ51に表示される。そして、ステップS209で、ステップS208の表示のまま所定時間が経過しても、スイッチ50の設定が切り換えられていないと判断されれば、タイムアウトしたとされ、処理はステップS205に戻される。
【0320】
図57は、ヴァージンディスクであるディスク90がディスクドライブ装置1に挿入された場合のフォーマット処理の他の例を示すフローチャートである。ステップS300で、未使用のブランクディスクであるディスク90がディスクドライブ装置1に挿入されると、次のステップS301で、ディスク90のリードイン領域に続けてU−TOCが読み込まれる。読み込まれたU−TOC情報に基づき、ディスプレイ51に対して、当該ディスク90がブランクディスクである旨が表示される(ステップS302)。
【0321】
ステップS303で、ディスクドライブ装置1に設けられた録音キー(図示しない)に対して所定の操作が行われ、ディスクドライブ装置1に挿入されたディスク90への録音が指示される。なお、録音の指示は、ディスクドライブ装置1に設けられた録音キーから指示されるのに限らず、例えばディスクドライブ装置1と接続されたパーソナルコンピュータ100からディスクドライブ装置1に対して行ってもよい。
【0322】
ディスクドライブ装置1に対して録音が指示されると、処理は次のステップS304に移行され、スイッチ50により設定された本体の動作モードが次世代MD1システムおよび現行MDシステムの何れに設定されているかが判断される。若し、スイッチ50により、ディスクドライブ装置1の動作モードが現行MDシステムに設定されていると判断されれば、処理はステップS306に移行され、ディスク90に対して、現行MDシステムによる録音処理が開始される。
【0323】
一方、ステップS304で、スイッチ50により、ディスクドライブ装置1の動作モードが次世代MD1システムに設定されていると判断されれば、処理はステップS305に移行される。ステップS305では、図18を用いて既に説明した処理に基づき、ディスク90に対して次世代MD1システムによるフォーマットが行われる。そして、処理はステップS306に移行され、次世代MD1システムによるフォーマットがなされたディスク90に対して、録音処理が行われる。
【0324】
次に、ディスク90にオーディオデータを記録する際のディスクドライブ装置1の一例の動作について、図58のフローチャートを用いて説明する。この場合には、ディスクドライブ装置1本体の動作モードとディスク90の種別とが一致しているか否かで処理が異なる。なお、ディスク90の種別とは、当該ディスク90に対して次世代MD1システムによるフォーマットがなされているか否かに基づく。
【0325】
最初のステップS210で、ディスク90がディスクドライブ装置1に装着される。ディスク90が装着されると、ステップS211で、ディスク90のリードイン領域に続けてU−TOCが読み込まれる。
【0326】
読み込まれたU−TOCの情報に基づき、次のステップS212で、装着されたディスク90の種別、すなわち、次世代MD1システムおよび現行MDシステムの何れのフォーマットのディスクであるかが判別される。例えば、U−TOCにFATの情報が書き込まれているかどうかによって、この判別を行うことができる。また、U−TOCにアラートトラックの開始位置の情報が書き込まれているか否かで、この判別を行ってもよい。
【0327】
ステップS213では、ステップS212により判別されたディスク種別を示す情報がディスプレイ51に表示される。さらに、ステップS214では、U−TOCから読み取られた情報に基づき、装着されたディスク90の状態がディスプレイ51に表示される。例えば、当該ディスク90がブランクディスクであるか否か、当該ディスク90がブランクディスクでない場合には、ディスクネームやトラックネームの情報が表示される。そして、ステップS215で、ディスク90の回転が停止される。
【0328】
次のステップS216では、ステップS212で判別されたディスク種別と、スイッチ50により設定された本体の動作モードとが一致しているか否かが判断される。若し、一致していれば、処理はステップS217に移行する。
【0329】
すなわち、スイッチ50による設定が現行MDシステムとされ、且つ、ディスク90が現行MDシステムによるディスクであるか、または、スイッチ50による設定が次世代MD1システムとされ、且つ、ディスク90が次世代MD1システムによるフォーマットがなされたディスクであれば、処理はステップS217に移行される。
【0330】
ステップS217では、当該ディスク90に対するオーディオデータの記録や当該ディスク90からのオーディオデータの再生が可能な状態とされる。勿論、U−TOCをエディットするような操作も、可能である。
【0331】
このとき、上述したステップS212によるディスク種別の判別結果に基づき、システムコントローラ9によりメディアドライブ部2が所定に制御され、例えばセレクタ26で、判別されたディスク種別の変調方式に対応した信号経路が選択される。これにより、次世代MD1システムと現行MDシステムとで異なる復調方式の再生フォーマットを自動的に切り換えて、オーディオデータを再生することが可能とされる。次世代MD1システムと現行MDシステムとで異なるファイルシステムの切り換えも、ディスク種別の判別結果に基づくシステムコントローラ9の制御により、同様にして行われる。
【0332】
一方、上述のステップS216で、ステップS212で判別されたディスク種別と、スイッチ50により設定された本体の動作モードとが一致していないと判断されれば、処理はステップS219に移行される。
【0333】
すなわち、スイッチ50による設定が現行MDシステムで、ディスク90が次世代MD1システムによるフォーマットがなされたディスクであるか、または、スイッチ50による設定が次世代MD1システムで、ディスク90が現行MDシステムによるディスクであれば、処理はステップS219に移行される。
【0334】
ステップS219では、ユーザのディスク90に対する操作が判断される。若し、ユーザがディスク90に記録されたオーディオデータを再生(PB)する操作を行った場合、処理はステップS220に移行される。ステップS220では、ユーザの操作に従い、ディスク90に記録されたオーディオデータが再生される。
【0335】
このように、ディスク種別と、スイッチ50により設定された本体の動作モードとが一致していなくとも、ディスク90に記録されたオーディオデータの再生は、スイッチ50の設定に関わらず、可能とされる。
【0336】
すなわち、上述のステップS212で判定されたディスク種別に基づき、システムコントローラ9によりによりメディアドライブ部2が所定に制御され、例えばセレクタ26で、判別されたディスク種別の変調方式に対応した信号経路が選択される。これにより、次世代MD1システムと現行MDシステムとで異なる復調方式の再生フォーマットを自動的に切り換えて、オーディオデータを再生することが可能とされる。次世代MD1システムと現行MDシステムとで異なるファイルシステムの切り換えも、ディスク種別の判別結果に基づくシステムコントローラ9の制御により、同様にして行われる。
【0337】
一方、ステップS219で、ユーザの操作が、ディスク90に対するオーディオデータの記録(REC)や、記録されたオーディオデータの消去、編集などを行うもの(EDIT)であれば、処理はステップS218に移行される。ステップS218では、ディスク90の種別と本体の動作モードとが一致していない旨がディスプレイ51に表示される。また、ユーザの操作が記録である場合には、記録できない旨が表示され、編集であれば、編集できない旨がそれぞれ表示される。
【0338】
なお、上述のステップS219においても、再生中の編集操作としてU−TOCを書き換えるような操作を行った場合には、ディスク90の種別と本体の動作モードとが一致していない旨と、編集できない旨がディスプレイ51にそれぞれ表示される。
【0339】
このように、ディスク種別と、スイッチ50により設定された本体の動作モードとが一致していない場合、ディスク90に記録された情報を変更するような操作は、行えないようにされる。
【0340】
次に、ディスク90のフォーマット変換について説明する。次世代MD1システムによるフォーマットを現行MDシステムによるフォーマットに変更することや、現行MDシステムによるフォーマットを次世代MD1システムによるフォーマットに変更することが可能である。
【0341】
図59は、ディスク90のフォーマットを、次世代MD1システムによるフォーマットから現行MDシステムによるフォーマットに変更する一例の処理を示すフローチャートである。なお、ここでは、スイッチ50は、次世代MD1システムによる動作モードに予め設定されているものとする。
【0342】
最初のステップS230で、ディスク90がディスクドライブ装置1に装着される。ディスク90が装着されると、ステップS231で、ディスク90のリードイン領域に続けてU−TOCが読み込まれ、装着されたディスク90が次世代MD1システムによるフォーマットがなされたディスクであるとされる(ステップS232)。そして、ステップS233で、ディスク90の回転が停止される。
【0343】
次のステップS234では、ディスク90にFAT管理されて記録されているデータが全て削除される。例えば、ユーザにより、ディスク90にFAT管理の下に記録されているデータを編集(EDIT)する操作がなされ、さらに、編集操作の中から、全データ削除(ALL ERASE)が選択される。ステップS234では、ディスク90に記録されているデータを全て削除することを、ユーザに確認させるような表示をディスプレイ51に対して行うと、より好ましい。
【0344】
ユーザの操作に従い、ディスク90にFAT管理の下に記録されたデータが全て削除されると、ステップS235で、装着されたディスク90がブランクディスクになった旨がディスプレイ51に表示される。
【0345】
処理は次のステップS236に移行され、ユーザにより、本体の動作モードを現行MDシステムの動作モードとするように、スイッチ50が操作される。すると、次のステップS237で、装着されているディスク90のU−TOCが読み込まれ、当該ディスクが次世代MD1システムによるフォーマットがなされたディスクであることが識別される(ステップS238)。
【0346】
次のステップS239では、ディスプレイ51に対して、装着されているディスク90が次世代MD1システムのブランクディスクである旨が表示され、次に、ユーザに対して次世代MD1システムによるフォーマットの解除を行うかどうかを確認する表示がなされる。次世代MD1システムによるフォーマット解除とは、すなわち、当該ディスク90のフォーマットを次世代MD1システムによるフォーマットから、現行MDシステムによるフォーマットに変更することである。
【0347】
若し、ユーザの操作に基づきフォーマット解除を行うことが指示されたら、処理はステップS240に移行され、装着されているディスク90の、次世代MD1システムによるフォーマットが解除される。例えばU−TOCに記録されているFATの情報と、アラートトラックとを削除することで、フォーマットが解除される。ここで、FAT情報を削除せずに、アラートトラックだけを削除することで、次世代MD1システムのフォーマットが解除されたとしてもよい。
【0348】
一方、上述のステップS239において、ユーザの操作に基づきフォーマットを解除しないと指示されたら、処理はステップS241に移行される。ステップS241では、本体の動作モードを、次世代MD1システムによる動作モードに変更するようにスイッチ50を設定することを促す表示がディスプレイ51に対して表示される。
【0349】
この表示から所定時間内に、本体の動作モードを次世代MD1システムによる動作モードにするように、ユーザによりスイッチ50が操作されれば(ステップS242)、一連の処理が終了され、装着されているディスク90は、次世代MD1システムによるフォーマットがなされたブランクディスクとして使用可能とされる(ステップS243)。表示から所定時間内にこのスイッチ50の設定が行われない場合は、タイムアウトしたとされ、処理はステップS239に戻される。
【0350】
なお、現行MDシステムのフォーマットから次世代MD1システムのフォーマットに変更する処理は、次のように行われる。スイッチ50により本体モードを現行MDシステムの動作モードに設定し、現行MDシステムによるフォーマットのディスク90に記録されたオーディオデータを全て削除してから、図18を用いて上述した方法により、当該ディスク90を次世代MD1システムによりフォーマットする。
【0351】
【発明の効果】
以上説明したように、この発明は、パーソナルコンピュータからディスクドライブ装置に装着されているディスクに対してデータを書き込む際に、一般のデータの書き込みは、パーソナルコンピュータのFATシステムの管理下でなされ、オーディオデータの書き込みは、データの書き込み単位が64kバイト×4に制限されたディスクドライブ装置のFATシステムの管理化でなされる。そのため、パーソナルコンピュータからディスクドライブ装置に装着されたディスクにオーディオデータへのデータの書き込みを、ディスク上での連続性を損なうことなく行うことができる効果がある。
【0352】
また、パーソナルコンピュータからの、ディスクドライブ装置に装着されたディスク上のオーディオデータの操作が、ディスクドライブ装置のFATシステムの管理下で行われる。そのため、ディスク上の、複数のオーディオデータが格納される巨大ファイルに対する、オーディオデータの削除などの操作を、パーソナルコンピュータ側から容易に行うことができる効果がある。
【図面の簡単な説明】
【図1】次世代MD1システムの仕様のディスクの説明に用いる図である。
【図2】次世代MD1システムの仕様のディスクの記録領域の説明に用いる図である。
【図3】次世代MD2システムの仕様のディスクの説明に用いる図である。
【図4】次世代MD2システムの仕様のディスクの記録領域の説明に用いる図である。
【図5】次世代MD1および次世代MD2のエラー訂正符号化処理の説明に用いる図である。
【図6】次世代MD1および次世代MD2のエラー訂正符号化処理の説明に用いる図である。
【図7】次世代MD1および次世代MD2のエラー訂正符号化処理の説明に用いる図である。
【図8】ウォブルを用いたアドレス信号の生成の説明に用いる斜視図である。
【図9】現行のMDシステムおよび次世代MD1システムのADIP信号の説明に用いる図である。
【図10】現行のMDシステムおよび次世代MD1システムのADIP信号の説明に用いる図である。
【図11】次世代MD2システムのADIP信号の説明に用いる図である。
【図12】次世代MD2システムのADIP信号の説明に用いる図である。
【図13】現行のMDシステムおよび次世代MD1システムでのADIP信号とフレームとの関係を示す図である。
【図14】次世代MD1システムでのADIP信号とフレームとの関係を示す図である。
【図15】次世代MD2システムでのコントロール信号の説明に用いる図である。
【図16】ディスクドライブ装置のブロック図である。
【図17】メディアドライブ部の構成を示すブロック図である。
【図18】次世代MD1によるディスクの一例の初期化処理を示すフローチャートである。
【図19】次世代MD2によるディスクの一例の初期化処理を示すフローチャートである。
【図20】シグナルレコーディングビットマップの説明に用いる図である。
【図21】FATセクタの読み出し処理を示すフローチャートである。
【図22】FATセクタの書き込み処理を示すフローチャートである。
【図23】単体でのFATセクタの読み出し処理を示すフローチャートである。
【図24】単体でのFATセクタの書き込み処理を示すフローチャートである。
【図25】シグナルレコーディングビットマップの作成の説明に用いるフローチャートである。
【図26】シグナルレコーディングビットマップの作成の説明に用いるフローチャートである。
【図27】シグナルレコーディングビットマップの作成の説明に用いるフローチャートである。
【図28】オーディオデータの管理方式の第1の例の説明に用いる図である。
【図29】オーディオデータの管理方式の第1の例によるオーディオデータファイルの説明に用いる図である。
【図30】オーディオデータの管理方式の第1の例によるトラックインデックスファイルの説明に用いる図である。
【図31】オーディオデータの管理方式の第1の例によるプレイオーダテーブルの説明に用いる図である。
【図32】オーディオデータの管理方式の第1の例によるプログラムドプレイオーダテーブルの説明に用いる図である。
【図33】オーディオデータの管理方式の第1の例によるグループインフォメーションテーブルの説明に用いる図である。
【図34】オーディオデータの管理方式の第1の例によるトラックインフォメーションテーブルの説明に用いる図である。
【図35】オーディオデータの管理方式の第1の例によるパーツインフォメーションテーブルの説明に用いる図である。
【図36】オーディオデータの管理方式の第1の例によるネームテーブルの説明に用いる図である。
【図37】オーディオデータの管理方式の第1の例による一例の処理を説明するための図である。
【図38】ネームテーブルのネームスロットが複数参照可能であることを説明するための図である。
【図39】オーディオデータの管理方式の第1の例でオーディオデータファイルからパーツを削除する処理の説明に用いる図である。
【図40】オーディオデータの管理方式の第2の例の説明に用いる図である。
【図41】オーディオデータの管理方式の第2の例によるオーディオデータファイルの構造を示す図である。
【図42】オーディオデータの管理方式の第2の例によるトラックインデックスファイルの説明に用いる図である。
【図43】オーディオデータの管理方式の第2の例によるプレイオーダテーブルの説明に用いる図である。
【図44】オーディオデータの管理方式の第2の例によるプログラムドプレイオーダテーブルの説明に用いる図である。
【図45】オーディオデータの管理方式の第2の例によるグループインフォメーションテーブルの説明に用いる図である。
【図46】オーディオデータの管理方式の第2の例によるトラックインフォメーションテーブルの説明に用いる図である。
【図47】オーディオデータの管理方式の第2の例によるネームテーブルの説明に用いる図である。
【図48】オーディオデータの管理方式の第2の例による一例の処理を説明するための図である。
【図49】オーディオデータの管理方式の第2の例で、インデックスにより1つのファイルのデータが複数のインデックス領域に分けられることを説明するための図である。
【図50】オーディオデータの管理方式の第2の例で、トラックの連結の説明に用いる図である。
【図51】オーディオデータの管理方式の第2の例で、別の方法によるトラックの連結の説明に用いる図である。
【図52】パーソナルコンピュータとディスクドライブ装置とが接続された状態で、書き込むデータの種類により管理権限を移動させることを説明するための図である。
【図53】オーディオデータの一連のチェックアウトの手順を説明するための図である。
【図54】ディスクドライブ装置における次世代MD1システムと現行のMDシステムとの共存の様子を概念的に示す略線図である。
【図55】携帯型に構成されたディスクドライブ装置の一例の外観図である。
【図56】ディスクのフォーマット時のディスクドライブ装置の一例の動作を示すフローチャートである。
【図57】ヴァージンディスクであるディスクがディスクドライブ装置に挿入された場合のフォーマット処理の他の例を示すフローチャートである。
【図58】ディスクにオーディオデータを記録する際のディスクドライブ装置の一例の動作を示すフローチャートである。
【図59】ディスクのフォーマットを、次世代MD1システムによるフォーマットから現行MDシステムによるフォーマットに変更する一例の処理を示すフローチャートである。
【符号の説明】
1・・・ディスクドライブ装置、2・・・メディアドライブ部、3・・・メモリ転送コントローラ、4・・・クラスタバッファメモリ、5・・・補助メモリ、6,8・・・USBインターフェイス、7・・・USBハブ、10・・・オーディオ処理部、12・・・RS−LDCエンコーダ、13・・・1−7pp変調部、14・・・ACIRCエンコーダ、15・・・EFM変調部、16・・・セレクタ、17・・・磁気ヘッドドライバ、18・・・磁気ヘッド、19・・・光学ヘッド、22・・・1−7復調部、23・・・RS−LDCデコーダ、23・・・EFM変調部、24・・・ACIRCデコーダ、26・・・セレクタ、30・・・ADIP復調部、32,33・・・アドレスデコーダ、50・・・スイッチ、51・・・ディスプレイ、54・・・蓋部、55・・・本体部、70・・・次世代MD1システム、71・・・現行MDシステム、90・・・ディスク、100・・・パーソナルコンピュータ

Claims (10)

  1. 第1の装置と第2の装置が接続されるとき、第2の装置に装着される記録媒体を上記第1の装置内に記録される第1の管理システムが管理し、
    上記第1の装置から上記第2の装置に転送されるデータを上記記録媒体に記録するとき、データ記録単位の連続性を制限する上記第2の装置内に記録される第2の管理システムに基づき、上記データを上記記録媒体に記録することを特徴とする記録方法。
  2. 請求項1に記載の記録方法において、
    上記第1の装置から上記第2の装置に転送される書き込み要求コマンドに基づき、上記第2の管理システムに基づいて上記データを上記記録媒体に記録することを特徴とする記録方法。
  3. 請求項2に記載の記録方法において、
    ユーザの指示に応じて、上記第1の装置内の記憶手段に記憶されるオーディオデータを上記第2の装置に装着される記録媒体に書き込むための書き込み要求コマンドを、上記記憶手段に記憶されるソフトウェアが出力し、
    上記書き込み要求コマンドを上記第1の装置から上記第2の装置に転送し、
    上記記憶手段から上記オーディオデータを読み出し、
    上記ソフトウェアが上記オーディオデータを圧縮して圧縮オーディオデータを出力し、
    上記圧縮オーディオデータを上記第1の装置から上記第2の装置に転送し、
    上記第2の装置は、上記転送された書き込み要求コマンドに応じて、上記圧縮オーディオデータを上記記録媒体に上記第2の管理システムに基づいて記録することを特徴とする記録方法。
  4. 請求項3に記載の記録方法において、
    記録媒体に記録される単一のファイルを管理する第2の管理システムに基づき、物理的に少なくとも所定長さを有する連続的なフリーエリアを検出し、
    トラックの属性を示すトラックディスクリプタと、上記記録媒体に記録する上記圧縮オーディオデータを暗号化する暗号鍵とを生成し、
    上記単一のファイルの一部を指し示すパーツポインタ情報を有するパーツディスクリプタを生成し、
    上記暗号鍵に基づき上記圧縮オーディオデータを暗号化して上記フリーエリアに記録し、
    上記ファイルシステムに基づいて、上記第2の管理システムが管理するファイルのエンドに、上記暗号化された圧縮オーディオデータが記録されたエリアを連結し、
    上記パーツディスクリプタに上記暗号化された圧縮オーディオデータが記録されたエリアを示すパーツポインタ情報を記録し、
    上記トラックディスクリプタに、上記暗号化された圧縮オーディオデータを復号する復号鍵、及び上記パーツディスクリプタを指し示すポインタ情報を記録し、
    トラックの再生順序を示す再生順序テーブルに上記トラックディスクリプタを指し示すトラックナンバを記録することを特徴とする記録方法。
  5. 請求項4に記載の記録方法において、
    上記第2の管理システムは、物理的に少なくとも64kバイト×4の長さを有する連続的なフリーエリアを検出することを特徴とする記録方法。
  6. 他の装置と接続されるとき、装着される記録媒体を上記他の装置内に記録される第1の管理システムが管理し、
    上記他の装置から転送されるデータを上記記録媒体に記録するとき、データ記録単位の連続性を制限する自身に記録される第2の管理システムに基づき、上記データを上記記録媒体に記録することを特徴とする記録装置。
  7. 第1の装置と第2の装置が接続されるとき、第2の装置に装着される記録媒体を上記第1の装置内に記録される第1の管理システムが管理し、
    上記第1の装置から上記第2の装置に装着される上記記録媒体に記録された単一ファイルの一部に対する削除が指示されたとき、上記第2の装置内に記録される第2の管理システムに基づき、上記単一ファイルの一部に対する削除の指示を実行することを特徴とする編集方法。
  8. 請求項7に記載の編集方法において、
    上記第2の管理システムに基づくデータ管理方法は、
    トラック毎にトラックディスクリプタへのリンク先を示すトラック情報を有するプレイオーダーテーブルから特定されたトラックに対応するトラック情報を取得し、トラック情報が示すトラックディスクリプタをトラック情報テーブルから取得し、
    上記トラックディスクリプタは、トラックに対応する復号鍵、およびパーツ情報テーブル内の複数のパーツディスクリプタから1つのパーツディスクリプタを指し示すポインタ情報を有し、上記取得されたトラックディスクリプタ内の上記ポインタ情報に対応する上記パーツディスクリプタを読み出し、
    各パーツディスクリプタは、上記単一のファイルの一部を指し示すパーツポインタ情報を有し、上記読み出されたパーツディスクリプタ内の上記パーツポインタ情報に対応する上記ファイルの一部を読み出し、
    上記読み出されたファイルの一部を上記復号鍵に基づいて復号する
    ことを特徴とする編集方法。
  9. 請求項8に記載の編集方法において、
    上記第2の装置から上記第1の装置に少なくとも上記トラックディスクリプタを転送し、
    上記第1の装置から上記第2の装置に削除要求コマンドと共に削除すべきトラックのIDを転送し、
    上記プレイオーダーテーブルから、削除するべきトラックに対応する上記トラック情報を取得し、
    上記トラック情報が示す上記トラックディスクリプタを上記トラック情報テーブルから取得するようにされ、
    上記プレイオーダーテーブルのうち、上記削除するべきトラックよりも後の再生順序に設定されているトラックの再生順序を調整し、
    上記トラックディスクリプタ内の上記ポインタ情報に対応する上記パーツディスクリプタを読み出し、
    上記パーツディスクリプタ内の上記パーツポインタ情報が指し示すデータブロックを、ファイルシステム上で上記単一のファイルから切り離し、未使用に戻し、
    上記パーツディスクリプタを未使用状態に戻し、
    上記トラックディスクリプタを未使用状態に戻すようにしたことを特徴とする編集方法。
  10. 他の装置と接続されるとき、自身に装着される記録媒体を上記他の装置内に記録される第1の管理システムが管理し、
    上記他の装置から上記自身の装置に装着される上記記録媒体に記録された単一ファイルの一部に対する削除が指示されたとき、上記自身の装置内に記録される第2の管理システムに基づき、上記単一ファイルの一部に対する削除の指示を実行することを特徴とする編集方法。
JP2003083728A 2002-04-01 2003-03-25 記録方法および記録装置、ならびに、編集方法 Pending JP2004087075A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083728A JP2004087075A (ja) 2002-04-01 2003-03-25 記録方法および記録装置、ならびに、編集方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002099277 2002-04-01
JP2002190812 2002-06-28
JP2003083728A JP2004087075A (ja) 2002-04-01 2003-03-25 記録方法および記録装置、ならびに、編集方法

Publications (1)

Publication Number Publication Date
JP2004087075A true JP2004087075A (ja) 2004-03-18

Family

ID=32074086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083728A Pending JP2004087075A (ja) 2002-04-01 2003-03-25 記録方法および記録装置、ならびに、編集方法

Country Status (1)

Country Link
JP (1) JP2004087075A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270811B2 (en) 2004-06-18 2012-09-18 Sony Corporation Information management method, information playback apparatus, and information management apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270811B2 (en) 2004-06-18 2012-09-18 Sony Corporation Information management method, information playback apparatus, and information management apparatus

Similar Documents

Publication Publication Date Title
EP1351222A2 (en) Storage medium and storage medium recording method
EP1351236A2 (en) Recording method, and recording apparatus
JP3855862B2 (ja) 編集方法および装置
EP1351223A2 (en) Recording method for recording data on a storage medium
EP1351221A2 (en) Storage medium initialization method, and recording and reproducing method and apparatus
EP1351241A2 (en) Reproducing method, reproducing apparatus, recording method, and recording apparatus
EP1355310A2 (en) Reproducing method, reproducing apparatus, and data accessing method
JP3855863B2 (ja) 再生方法および装置、記録方法および装置
EP1351240A2 (en) Track management method and apparatus for managing tracks on a storage medium
EP1351242A1 (en) Reproducing method, reproducing apparatus, recording method, recording apparatus, and method for generating a management table
EP1351224A2 (en) Recording method and apparatus, and editing method apparatus
EP1351247A2 (en) Storage medium initialization and cancelation method
JP4182790B2 (ja) 記録方法
JP4107120B2 (ja) 記録方法、記録媒体のドライブ装置、および記録システム
JP4066862B2 (ja) データアクセス方法、再生装置、記録方法、および記録装置
JP2004087085A (ja) 情報記録再生装置
JP2004087075A (ja) 記録方法および記録装置、ならびに、編集方法
JP2004087078A (ja) データアクセス方法、再生装置、記録方法、および記録装置
JP2004087084A (ja) 記録媒体の初期化方法、ならびに記録媒体の初期化および初期化解除方法
JP2004087079A (ja) 記録媒体および記録方法
JP2004094815A (ja) 記録および/または再生装置、記録および/または再生方法、記録および/または再生プログラム、記録媒体、電子機器、記録および/または再生装置制御方法、ならびに、記録および/または再生装置制御プログラム
JP2004087080A (ja) トラックの管理方法および管理装置
JP2004087076A (ja) 記録媒体のフォーマット方法、ならびに、記録再生方法および記録再生装置
JP2004087081A (ja) 記録方法、記録装置、再生方法、再生装置、および管理テーブル作成方法
JP2004094993A (ja) 記録および/または再生装置、記録および/または再生方法、記録および/または再生プログラム、ならびに、記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422