JP2004086979A - Method for manufacturing optical information recording medium - Google Patents

Method for manufacturing optical information recording medium Download PDF

Info

Publication number
JP2004086979A
JP2004086979A JP2002245443A JP2002245443A JP2004086979A JP 2004086979 A JP2004086979 A JP 2004086979A JP 2002245443 A JP2002245443 A JP 2002245443A JP 2002245443 A JP2002245443 A JP 2002245443A JP 2004086979 A JP2004086979 A JP 2004086979A
Authority
JP
Japan
Prior art keywords
substrate
disk
optical information
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002245443A
Other languages
Japanese (ja)
Inventor
Tomozo Iwami
石見 知三
Tatsuya Tomura
戸村 辰也
So Noguchi
野口 宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002245443A priority Critical patent/JP2004086979A/en
Publication of JP2004086979A publication Critical patent/JP2004086979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an optical information recording medium which is laminated of two disks different from each other in thermal history, and capable of good recording by reducing production costs without deteriorating mechanical characteristics by environmental change and variation with time. <P>SOLUTION: In the method for manufacturing an optical information recording medium in which a first disk having a recording layer and a second disk for covering are laminated, in the substrate formation process of the second disk, a substrate is formed at a mold temperature higher than that in the substrate formation process of the first disk. A temperature difference is advisably set to 2° to 15°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、DVD−ROM、DVD+R/RW、DVD−R/RW、DVD−RAM等の、貼り合わせ工程を有する光情報記録媒体の製造方法に関するものである。
【0002】
【従来の技術】
近年、貼り合せ工程を有する光情報記録媒体が市場に出回っており、特に、DVD−ROM、DVD+R/RW、DVD−R/RW、DVD−RAM等のDVDメディアが急激に普及している。DVDメディアは2つのディスクを貼り合せることで光情報記録媒体となり、1つのディスクのみからなるCDメディアに比べて大容量、高速書き込み、高い互換性を有することが特徴である。また、現在開発が進められている次世代の大容量型メディアも、貼り合せ工程を有する光情報記録媒体となると予想される。
DVDメディアの中で、例えばDVD+R、DVD−R等の追記型DVDの場合、記録層に有機色素を用いており、この層は、有機色素を塗布溶媒と溶かして、スピンコート方法で基板上に塗布して記録層を形成する。しかし、回転させただけでは、完全に乾燥させることは出来ないので、塗布溶媒が記録層に残ってしまう。そこで通常、スピンコートで成膜後にアニール処理を施して残溶媒を除去してディスクを形成した後、カバー用のディスクを貼り合わせる。
【0003】
したがって、記録層を有するディスクとカバー用のディスクとは熱履歴が異なり、それぞれ収縮量が違う。そのため、記録層を有するディスクとカバー用のディスクとを貼り合せたメディアに、熱を加えたり長時間放置したりすると、メディアの機械特性は悪化してしまう。従来では、アニール処理を必要としないカバー用のディスクにも同条件でのアニール処理を施すことで熱履歴を同じにして、機械特性の悪化を防ぐことが行われていた。しかし、この製造方法は、生産工程を複雑にして、設備の投資を必要になり、生産性、コスト的にもデメリットとなる。
【0004】
【発明が解決しようとする課題】
上記問題点に鑑み、本発明は、熱履歴の異なるディスクを貼り合せた光情報記録媒体でも、環境変化及び経時変化によって機械特性が悪化せず、生産コストを低減して良好な記録を行うことが可能な、光情報記録媒体の製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の本発明は、第1ディスク形成工程と、第2ディスク形成工程と、第1ディスクと第2ディスクを貼り合わせる貼り合わせ工程とを有する光情報記録媒体の製造方法において、第1ディスク形成工程は、少なくとも、金型による基板成形工程と、基板上に記録層を塗布する記録層形成工程と、アニール工程とを有し、第2ディスク形成工程は、少なくとも、金型による基板成形工程を有し、アニール工程を有さない工程であって、第2ディスクの基板成形工程は、第1ディスクの基板成形工程よりも高い金型温度で基板を成形する工程であることを特徴とする光情報記録媒体の製造方法である。
請求項2に記載の本発明は、前記光情報記録媒体の製造方法において、第2ディスクの基板成形工程は、第1ディスクの基板成形工程と2〜15℃異なる金型温度で基板を成形する工程であることを特徴とする光情報記録媒体の製造方法である。
請求項3に記載の本発明は、熱履歴の異なる2つのディスクを貼り合わせてなる光情報記録媒体において、請求項1または2に記載の光情報記録媒体の製造方法によって製造されることを特徴とする光情報記録媒体である。
【0006】
【発明の実施の形態】
以下より、本発明の実施の形態について説明する。
本発明は、熱履歴の異なる2つのディスクを貼り合せる光情報記録媒体の製造方法である。第1ディスクを記録層を有するディスクとし、第2ディスクをカバー用のディスクとして説明する。
第1ディスクは、少なくとも、金型による基板成形工程と、基板上に記録層を塗布する記録層形成工程と、アニール工程とによって形成される。
第2ディスク形成工程は、少なくとも、金型による基板成形工程を有し、アニール工程を有さない工程である。ここで、第2ディスクの基板成形工程は、第1ディスクの基板成形工程よりも高い金型温度で基板を成形する工程であることを特徴とする。
【0007】
基板成形工程では、金型に基板材料を流し込み、基板を成形する。本発明で言及する金型温度とは、基板成形時のスタンパ側、鏡面側の金型温度の平均温度を意味する。また、第2ディスクの基板成形工程は、第1ディスクの基板成形工程と比べて温度差が2〜15℃であることがよい。
基板の材料としては、通常、ガラス、セラミック、或いは樹脂が用いられ、樹脂基板が成形性の点で好ましい。代表例としては、ポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等が挙げられるが、加工性、光学特性等の点からポリカーボネート樹脂が好ましい。
記録層形成工程では、有機色素を溶媒と溶かして基板上に塗布する。塗布方法としては、スピンコート法、真空蒸着法、スパッタリング法、プラズマCVD法等があるが、スピンコート法が好ましい。
アニール工程では、熱等を用いたアニール処理を記録層に施し、溶媒を除去する。
記録層上には反射層を設け、必要に応じて紫外線硬化樹脂による保護層を設けてもよい。
【0008】
基板は、熱を加えたり、長期間放置することで収縮し、その収縮量は、基板成形時の金型温度に依存する。
下記表1に、90℃20%RH条件下で基板を放置したときの基板の収縮量と、金型温度との関係を示す。基板は、ポリカーボネート樹脂(帝人社製)で、直径120mm、厚さ0.6mmのDVD+R基板を射出成形で作成したものを用いた。
収縮量は、ディスク基板の外径を工場顕微鏡で測定して、そのディスク外径の変化量を収縮量としている。例えば、初期で外径120.000mm、テスト後で119.995mmの場合、収縮量は5μmとなる。
基板は、90℃50時間で殆ど収縮してしまい、その後は殆ど収縮しない。今回のテストでは、90℃96時間で最終的な基板の収縮量を求めている。また、90℃30分はDVD+Rを作製するときのアニール処理条件である。
【表1】

Figure 2004086979
上記表1の結果から明らかであるように、基板を成形するときの金型温度により、基板の収縮量が異なる。
【0009】
光情報記録媒体は、通常、様々な温度環境及び長期保存信頼性が要求されており、熱や長期保存によって、機械特性を変化させることは避けなければならない。光情報記録媒体の機械特性は重要な特性項目であり、それが悪化すれば、光情報記録媒体として使用出来なくなる可能性がある。
アニール処理を施した基板とアニール処理をしていない基板を貼り合せて作製した光情報記録媒体の場合、耐熱テストを行うと、軸方向(メディアに対して垂直方向)の機械特性(反り、Radial deviation)が変化して悪化する。
既にアニール処理で収縮した基板とアニール処理していない基板を貼り合せた場合、その貼り合せたメディアに長時間熱を加えると、貼り合せ後からの両基板の収縮量は異なるので、メディアが軸方向に反ってしまう。この場合、表1における「90℃96時間後の収縮量(3列目)」と「収縮量の差(4列目)」 が、それぞれ、アニール処理していない基板とアニール処理を施した基板の収縮量となるので、両基板の収縮量の差が小さいほど、耐熱テスト後の機械特性の悪化を小さくすることが出来る。
【0010】
本発明では、基板の収縮が成形時の金型温度に依存していることに鑑み、アニール処理しない基板には金型温度が高く収縮量の小さい基板、アニール処理を施す基板には金型温度が低く収縮量の大きい基板を、それぞれ用いることで、長期に渡り環境特性に優れた光情報記録媒体を作製することができる。但し、温度差が小さいとアニール処理していない基板方向に反り、温度差が大きすぎると逆方向に反りすぎてしまうので、表1の3列目、4列目が同じになる基板を貼り合せると耐熱後の機械特性が最適となる。金型温度の差としては、2〜15℃とする必要があり、4〜10℃が望ましい。
【0011】
また、通常、金型温度は、装置の仕様上で高い温度には設定出来ないので、温度差をつけ過ぎると、アニール処理を施す情報基板の金型温度を低く設定することとなる。
基板には、全面にらせん状の案内溝・情報ピットが刻まれているが、金型温度が低くなると、外周部で案内溝・情報ピットがうまく形成出来なく、転写性(溝深さ内外差)が悪化する。溝深さ・情報ピットの深さは、光情報記録媒体としては、大事な特性項目であり、必ず品質確保する必要がある。
下記表2に、DVD+Rの案内溝の溝深さ内外差と成形時の金型温度の関係を示す。
【表2】
Figure 2004086979
表2の結果から、情報基板とカバー基板の金型温度の差をつけ過ぎると、情報基板の外周部での溝・情報ピットを正確に形成出来ないことが分かる。
【0012】
【実施例】
以下に、本発明の効果を説明するための実施例を示す。
一例として、DVD+Rメディアを作製し、その効果確認を行った。
直径120mm、厚さ0.6mmのポリカーボネート基板を射出成形方法により作製した。このとき、金型温度を125℃、127℃、130℃に振り、3種の基板を作製した。
この基板の上に、記録層としてアゾ系色素をスピンコート法で成膜し、その色素板を90℃30分でアニール処理して冷却後、その上に反射層として銀をスパッタ法により成膜した。その上に、保護層としてUV硬化樹脂(大日本インク社製 SD318)をスピンコート法で成膜してUV照射させて硬化させ、情報基板としての第1ディスクを得た。
【0013】
第1ディスクの保護層を成膜後から一日放置して、カバー基板としての第2ディスクと貼り合せて、DVD−Rメディアを作製した。第2ディスクは上記作製した基板をそのまま用いた。
(実施例1)
第1ディスクの基板成形時の金型温度を125℃、第2ディスクの金型温度を127℃とし、その差を2℃とした。
(実施例2)
第1ディスクの基板成型時の金型温度を125℃、第2ディスクの金型温度を130℃とし、その差を5℃とした。
(比較例1)
第1ディスクの基板成型時の金型温度を125℃、第2ディスクの金型温度を125℃とし、差を設けなかった。
(比較例2)
第1ディスクの基板成型時の金型温度を130℃、第2ディスクの金型温度を130℃とし、差を設けなかった。
【0014】
上記光記録媒体に、90℃96時間の耐熱テストを行った。表3にその機械特性結果を示す。
機械特性結果は、耐熱テスト前後の反り(Radial deviation)を測定して、その差を示した。当然、その差が小さいほど、耐熱テスト後のメディアの機械特性は良好と言える。機械特性は、小野測器社製のDVD用機械特性評価装置を用いた。
【表3】
Figure 2004086979
表3の結果から、実施例が比較例に比べて良好な結果を得ていることが分かる。
【0015】
【発明の効果】
以上説明したように、本発明によれば、アニール処理を施したディスクとアニール処理をしていないディスクとを貼り合せた光情報記録媒体でも、それぞれの金型温度を調節することで、環境変化及び経時変化によって収縮量が変化せず、機械特性悪化を防止し、生産コストを低減して良好な記録を行うことが可能な光情報記録媒体となる製造方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical information recording medium having a bonding step, such as a DVD-ROM, a DVD + R / RW, a DVD-R / RW, and a DVD-RAM.
[0002]
[Prior art]
In recent years, optical information recording media having a bonding process have been on the market, and DVD media such as DVD-ROM, DVD + R / RW, DVD-R / RW, and DVD-RAM have rapidly become widespread. A DVD medium becomes an optical information recording medium by bonding two disks together, and is characterized by having a larger capacity, higher speed writing, and higher compatibility than a CD medium consisting of only one disk. It is also expected that next-generation large-capacity media currently under development will be optical information recording media having a bonding step.
Among DVD media, in the case of write-once DVDs such as DVD + R and DVD-R, an organic dye is used for a recording layer. This layer is formed by dissolving an organic dye with a coating solvent and spin coating on a substrate. Coating to form a recording layer. However, since the film cannot be completely dried only by rotating, the coating solvent remains on the recording layer. Therefore, usually, after a film is formed by spin coating, an annealing process is performed to remove a residual solvent to form a disk, and then a cover disk is bonded.
[0003]
Therefore, the disk having the recording layer and the disk for the cover have different thermal histories, and have different shrinkage amounts. Therefore, if heat is applied to the medium in which the disk having the recording layer and the disk for the cover are bonded together or left for a long time, the mechanical properties of the medium deteriorate. Conventionally, a cover disk that does not require annealing treatment is annealed under the same conditions to make the thermal history the same, thereby preventing deterioration of mechanical characteristics. However, this manufacturing method complicates the production process, requires investment in equipment, and has disadvantages in productivity and cost.
[0004]
[Problems to be solved by the invention]
In view of the above-described problems, the present invention provides a method of performing good recording by reducing production costs without deteriorating mechanical characteristics due to environmental changes and changes over time even in an optical information recording medium to which disks having different thermal histories are bonded. It is an object of the present invention to provide a method for manufacturing an optical information recording medium, which is capable of:
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention according to claim 1 provides an optical information having a first disk forming step, a second disk forming step, and a bonding step of bonding the first disk and the second disk. In the method for manufacturing a recording medium, the first disk forming step includes at least a substrate forming step using a mold, a recording layer forming step of applying a recording layer on the substrate, and an annealing step. Is a step having at least a substrate forming step using a mold and not having an annealing step. In the substrate forming step for the second disk, the substrate is formed at a higher mold temperature than the substrate forming step for the first disk. A method for producing an optical information recording medium, which is a molding step.
According to a second aspect of the present invention, in the method for manufacturing an optical information recording medium, the substrate forming step of the second disk forms the substrate at a mold temperature different from the substrate forming step of the first disk by 2 to 15 ° C. A method for manufacturing an optical information recording medium, the method comprising:
According to a third aspect of the present invention, there is provided an optical information recording medium in which two disks having different thermal histories are bonded to each other, wherein the optical information recording medium is manufactured by the method for manufacturing an optical information recording medium according to the first or second aspect. Optical information recording medium.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The present invention is a method for manufacturing an optical information recording medium in which two disks having different thermal histories are bonded. The first disk will be described as a disk having a recording layer, and the second disk will be described as a cover disk.
The first disk is formed by at least a substrate molding step using a mold, a recording layer forming step of applying a recording layer on the substrate, and an annealing step.
The second disk forming step is a step that includes at least a substrate forming step using a mold and does not include an annealing step. Here, the substrate forming step of the second disk is a step of forming a substrate at a higher mold temperature than the substrate forming step of the first disk.
[0007]
In the substrate forming step, a substrate material is poured into a mold to form a substrate. The mold temperature referred to in the present invention means the average temperature of the mold temperature on the stamper side and the mirror side during substrate molding. Further, the temperature difference in the substrate forming step of the second disk is preferably 2 to 15 ° C. as compared with the substrate forming step of the first disk.
As a material of the substrate, glass, ceramic, or resin is usually used, and a resin substrate is preferable in terms of moldability. Representative examples include a polycarbonate resin, an acrylic resin, an epoxy resin, a polystyrene resin, a polyethylene resin, a polypropylene resin, and the like, and a polycarbonate resin is preferable in terms of workability, optical characteristics, and the like.
In the recording layer forming step, an organic dye is dissolved in a solvent and applied on a substrate. Examples of the coating method include a spin coating method, a vacuum evaporation method, a sputtering method, and a plasma CVD method, and the spin coating method is preferable.
In the annealing step, an annealing process using heat or the like is performed on the recording layer to remove the solvent.
A reflective layer may be provided on the recording layer, and a protective layer made of an ultraviolet curable resin may be provided as necessary.
[0008]
The substrate shrinks when heated or left for a long period of time, and the amount of shrinkage depends on the mold temperature at the time of forming the substrate.
Table 1 below shows the relationship between the amount of shrinkage of the substrate and the mold temperature when the substrate was left at 90 ° C. and 20% RH. The substrate used was a polycarbonate resin (manufactured by Teijin Limited), which was prepared by injection molding a DVD + R substrate having a diameter of 120 mm and a thickness of 0.6 mm.
The amount of shrinkage is obtained by measuring the outer diameter of the disk substrate with a factory microscope, and using the amount of change in the outer diameter of the disk as the amount of shrinkage. For example, when the outer diameter is 120.000 mm at the initial stage and 119.995 mm after the test, the shrinkage is 5 μm.
The substrate almost shrinks at 90 ° C. for 50 hours, and hardly shrinks thereafter. In this test, the final amount of shrinkage of the substrate was determined at 90 ° C. for 96 hours. Further, 90 ° C. for 30 minutes is an annealing condition for producing a DVD + R.
[Table 1]
Figure 2004086979
As is clear from the results in Table 1, the amount of shrinkage of the substrate differs depending on the mold temperature when molding the substrate.
[0009]
Optical information recording media generally require various temperature environments and long-term storage reliability, and it is necessary to avoid changing mechanical properties due to heat or long-term storage. The mechanical properties of an optical information recording medium are an important characteristic item, and if it deteriorates, there is a possibility that the optical information recording medium cannot be used as an optical information recording medium.
In the case of an optical information recording medium manufactured by bonding an annealed substrate and an unannealed substrate to each other, a heat resistance test indicates that mechanical properties (warp, Radial) in the axial direction (perpendicular to the medium) are measured. Deviation) changes and becomes worse.
If a substrate that has already shrunk in the annealing process and a substrate that has not been annealed are bonded together, applying heat to the bonded media for a long time will cause the amount of shrinkage of both substrates after bonding to differ. It warps in the direction. In this case, “the amount of shrinkage after 90 hours at 96 ° C. (third column)” and the “difference in the amount of shrinkage (fourth column)” in Table 1 indicate the unannealed substrate and the annealed substrate, respectively. Therefore, the smaller the difference between the contraction amounts of the two substrates is, the smaller the deterioration of the mechanical properties after the heat resistance test can be.
[0010]
In the present invention, in consideration of the fact that the shrinkage of the substrate depends on the mold temperature at the time of molding, a substrate having a high mold temperature and a small shrinkage amount is used for a substrate that is not annealed, and a mold temperature is used for a substrate that is annealed. By using a substrate having a small amount and a large amount of shrinkage, an optical information recording medium having excellent environmental characteristics can be manufactured for a long period of time. However, if the temperature difference is small, the substrate warps in the direction of the unannealed substrate, and if the temperature difference is too large, the substrate warps in the opposite direction. Optimum mechanical properties after heat resistance. The difference between the mold temperatures must be 2 to 15 ° C, preferably 4 to 10 ° C.
[0011]
Usually, the mold temperature cannot be set to a high temperature due to the specifications of the apparatus. Therefore, if the temperature difference is too large, the mold temperature of the information substrate to be annealed will be set low.
Spiral guide grooves and information pits are engraved on the entire surface of the substrate, but when the mold temperature is low, guide grooves and information pits cannot be formed well on the outer periphery, and transferability (groove depth difference ) Gets worse. The groove depth and the information pit depth are important characteristic items for an optical information recording medium, and it is necessary to ensure quality.
Table 2 below shows the relationship between the difference between the inside and outside depths of the guide grooves of the DVD + R and the mold temperature during molding.
[Table 2]
Figure 2004086979
From the results in Table 2, it can be seen that if the difference between the mold temperatures of the information substrate and the cover substrate is too large, the grooves and information pits on the outer peripheral portion of the information substrate cannot be formed accurately.
[0012]
【Example】
Hereinafter, an example for explaining the effect of the present invention will be described.
As an example, a DVD + R medium was manufactured and its effect was confirmed.
A polycarbonate substrate having a diameter of 120 mm and a thickness of 0.6 mm was produced by an injection molding method. At this time, the mold temperature was raised to 125 ° C., 127 ° C., and 130 ° C., and three types of substrates were produced.
On this substrate, an azo dye was formed as a recording layer by spin coating, and the dye plate was annealed at 90 ° C. for 30 minutes and cooled, and then silver was formed thereon as a reflective layer by sputtering. did. A UV curable resin (SD318, manufactured by Dainippon Ink and Chemicals, Inc.) was formed thereon as a protective layer by a spin coating method and cured by UV irradiation to obtain a first disk as an information substrate.
[0013]
After the protective layer of the first disk was left for one day after the film formation, it was bonded to the second disk as a cover substrate to produce a DVD-R medium. For the second disk, the substrate prepared above was used as it was.
(Example 1)
The mold temperature for forming the substrate of the first disk was 125 ° C., the mold temperature for the second disk was 127 ° C., and the difference was 2 ° C.
(Example 2)
The mold temperature for molding the substrate of the first disk was 125 ° C., the mold temperature for the second disk was 130 ° C., and the difference was 5 ° C.
(Comparative Example 1)
The mold temperature for molding the substrate of the first disk was 125 ° C., and the mold temperature for the second disk was 125 ° C., with no difference.
(Comparative Example 2)
The mold temperature for molding the substrate of the first disk was 130 ° C., and the mold temperature for the second disk was 130 ° C., and no difference was provided.
[0014]
The optical recording medium was subjected to a heat resistance test at 90 ° C. for 96 hours. Table 3 shows the results of the mechanical properties.
The mechanical property results were measured by measuring the warpage (Radial deviation) before and after the heat resistance test, and showed the difference. Naturally, the smaller the difference, the better the mechanical properties of the media after the heat resistance test. For the mechanical properties, a mechanical property evaluation device for DVD manufactured by Ono Sokki Co., Ltd. was used.
[Table 3]
Figure 2004086979
From the results in Table 3, it can be seen that the examples obtained better results than the comparative examples.
[0015]
【The invention's effect】
As described above, according to the present invention, even in an optical information recording medium in which an annealed disk and an unannealed disk are bonded to each other, the environmental change can be achieved by adjusting the respective mold temperatures. In addition, it is possible to provide a method of manufacturing an optical information recording medium capable of preventing deterioration of mechanical properties, preventing a deterioration in mechanical characteristics, reducing production costs, and performing good recording, with the amount of shrinkage not changing with time.

Claims (3)

第1ディスク形成工程と、第2ディスク形成工程と、第1ディスクと第2ディスクを貼り合わせる貼り合わせ工程とを有する光情報記録媒体の製造方法において、
第1ディスク形成工程は、少なくとも、金型による基板成形工程と、基板上に記録層を塗布する記録層形成工程と、アニール工程とを有し、
第2ディスク形成工程は、少なくとも、金型による基板成形工程を有し、アニール工程を有さない工程であって、
第2ディスクの基板成形工程は、第1ディスクの基板成形工程よりも高い金型温度で基板を成形する工程である
ことを特徴とする光情報記録媒体の製造方法。
A method for manufacturing an optical information recording medium, comprising: a first disk forming step, a second disk forming step, and a bonding step of bonding the first disk and the second disk.
The first disk forming step includes at least a substrate forming step using a mold, a recording layer forming step of applying a recording layer on the substrate, and an annealing step,
The second disk forming step includes at least a substrate forming step using a mold, and does not include an annealing step.
The method for manufacturing an optical information recording medium, wherein the substrate forming step of the second disk is a step of forming a substrate at a higher mold temperature than the substrate forming step of the first disk.
前記光情報記録媒体の製造方法において、
第2ディスクの基板成形工程は、第1ディスクの基板成形工程と2〜15℃異なる金型温度で基板を成形する工程である
ことを特徴とする光情報記録媒体の製造方法。
In the method for manufacturing an optical information recording medium,
The method of manufacturing an optical information recording medium, wherein the substrate forming step of the second disk is a step of forming a substrate at a mold temperature different from the substrate forming step of the first disk by 2 to 15 ° C.
熱履歴の異なる2つのディスクを貼り合わせてなる光情報記録媒体において、
請求項1または2に記載の光情報記録媒体の製造方法によって製造される
ことを特徴とする光情報記録媒体。
In an optical information recording medium obtained by bonding two disks having different thermal histories,
An optical information recording medium manufactured by the method for manufacturing an optical information recording medium according to claim 1.
JP2002245443A 2002-08-26 2002-08-26 Method for manufacturing optical information recording medium Pending JP2004086979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245443A JP2004086979A (en) 2002-08-26 2002-08-26 Method for manufacturing optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245443A JP2004086979A (en) 2002-08-26 2002-08-26 Method for manufacturing optical information recording medium

Publications (1)

Publication Number Publication Date
JP2004086979A true JP2004086979A (en) 2004-03-18

Family

ID=32053630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245443A Pending JP2004086979A (en) 2002-08-26 2002-08-26 Method for manufacturing optical information recording medium

Country Status (1)

Country Link
JP (1) JP2004086979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835270B2 (en) * 1998-08-05 2004-12-28 Matsushita Electric Industrial Co., Ltd Process and apparatus of producing optical disk and process of producing substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835270B2 (en) * 1998-08-05 2004-12-28 Matsushita Electric Industrial Co., Ltd Process and apparatus of producing optical disk and process of producing substrate

Similar Documents

Publication Publication Date Title
US6599385B1 (en) Manufacturing method of a multi-layer optical information recording carrier
WO2009069795A1 (en) Recordable optical recording medium and method for manufacturing the same
US20070297315A1 (en) Optical Recording Medium
JP2008504636A (en) Optical data storage medium and combo foil cover for its manufacture
US8767520B2 (en) Method of producing recording medium, and recording medium
JP2004086979A (en) Method for manufacturing optical information recording medium
KR100425949B1 (en) Optical recording medium
US6623828B1 (en) Optical disk employing integral substrate, and method for manufacturing the same
US7867595B2 (en) Optical information recording medium
JP4185140B2 (en) Equipment for optical disk spin coating
JP4064871B2 (en) Optical disc and optical disc manufacturing method
JP4284888B2 (en) Optical information recording medium
JP2004288264A (en) Optical recording medium and method of manufacturing optical recording medium
CN100449623C (en) Optical disk base board, opticaldisk and its manufacturing method
KR20010090164A (en) High density optical storage medium
KR100922428B1 (en) Apparatus for attaching and detaching cap for optical disc spin-coating, apparatus for optical disc spin-coating using the same and method for preparing an optical disc using the same
JPH10334518A (en) Optical disk and stamper
JPH10199052A (en) Production of optical disk
JP2003263803A (en) Optical information recording medium and manufacturing method therefor
JPH07296418A (en) Information recording medium and its substrate and production
JP2004152364A (en) Optical disk and its manufacturing method
JP2004062990A (en) Manufacturing method of optical disk
JP2001056971A (en) Production of optical disk medium and optical disk medium
EP2071569A1 (en) Optical information recording media and method for producing the same
Cheong et al. Process development of small form factor optical recording disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218