JP2004084938A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2004084938A
JP2004084938A JP2003176711A JP2003176711A JP2004084938A JP 2004084938 A JP2004084938 A JP 2004084938A JP 2003176711 A JP2003176711 A JP 2003176711A JP 2003176711 A JP2003176711 A JP 2003176711A JP 2004084938 A JP2004084938 A JP 2004084938A
Authority
JP
Japan
Prior art keywords
shaft
inner ring
rolling bearing
insertion guide
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176711A
Other languages
Japanese (ja)
Inventor
Kinji Yugawa
湯川 謹次
Masahito Matsui
松井 雅人
Takehiko Kikawa
木川 武彦
Shigeaki Abe
阿部 重昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003176711A priority Critical patent/JP2004084938A/en
Publication of JP2004084938A publication Critical patent/JP2004084938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/60Positive connections with threaded parts, e.g. bolt and nut connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a satisfactory rolling bearing which prevents a flaw caused on the circumferential surface of a shaft by the rubbing with a ridge part on each inside surface of a pair of inner rings which are fitted to the shaft in the state where their axial end surfaces are mutually butted. <P>SOLUTION: A double row bearing for rolling stock has a pair of inner rings 33 and 34 fitted to the shaft 1 in the state where butt end surfaces 33a and 34a are mutually butted. The inside surface of each inner ring 33 or 34 has a cylindrical straight part 33c or 34c to which the shaft is tightly fitted, and an insert guide surface 33b or 34b formed on the inside surface edge continued to the end surface 33a or 34a. When the distance between ridge parts 38 and 39 each of which is the intersection of the straight part 33c or 34c and the insert guide surface 33b or 34b in each inner ring 33 or 34 is L and the diameter of the shaft 1 is d, the relation between the distance L and the diameter D is set to L/d<0.03. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は転がり軸受に関し、特に、互いに軸方向の端面同士を突き合わせた状態で軸に嵌合する一対の内輪の各内周面との擦れによって軸の外周面に生じる傷を防止するための改良に関するものである。
【0002】
【従来の技術】
従来の技術において、鉄道車両車軸用複列軸受を備えた鉄道車両車軸の支持構造を示したものが知られている(例えば、特許文献1参照。)。
図12に示す鉄道車両車軸の支持構造は、鉄道車両車軸(以下、単に軸とも云う)1を鉄道車両車軸用複列軸受(以下、単に複列軸受とも云う)3によって回転自在に支承したものである。
【0003】
この鉄道車両車軸用複列軸受3は、軸方向に分割された一対の内輪11,12と、単一の外輪14と、各内輪11,12と外輪14との間に装備される複数個の転動体15と、内外輪間の転動体15相互を等間隔に保持する保持器16,17とを備えた構成である。尚、図示例の場合、転動体15は円錐ころである。
【0004】
一対の内輪11,12は、対向する互いの端部を突き合わせた密着状態で使用され、これら内輪11,12の内周に軸1が嵌合している。
また、各内輪11,12は、図13に示したように、突き合わせ端面11a,12aに連なる内周面端縁に、該突き合わせ端面11a,12aに向かって徐々に拡径するテーパ状の挿入案内面11b,12bが形成されており、前記軸1への軸受挿入時の案内面とされている。
【0005】
即ち、前記内輪11,12の内周面は、内径が一定で軸1が緊密嵌合する円筒状のストレート部11c,12cと、突き合わせ端面11a,12aに連なる挿入案内面11b,12bとを具備した構造になっている。
又、これら内輪11,12は、軸1に嵌合した前部スリンガ21と、軸1の肩部1aに嵌合した後部スリンガ23とに挟まれて配置されている。2個の内輪11,12は、内輪内径と軸との寸法差により圧入固定される。
【0006】
軸1の軸端には、内周面に回り止め突起25aを突設した小蓋25が、前記回り止め突起25aを軸1の外周の係止溝1bに係合させた状態で装着されている。この小蓋25と前蓋24とをボルト27によって連結・一体化することで、前蓋24の回転が不可能になり、前蓋24の緩み止めがなされる。
また、複列軸受3の両側には、接触型の密封装置28が装着されており、この密封装置28によって複列軸受3内への異物の侵入や、軸受内部からの潤滑剤の漏出が防止されている。
【0007】
【特許文献1】
特開平7−293570号公報
【0008】
【発明が解決しようとする課題】
ところで、図13に示したように、各内輪11,12において、円筒状のストレート部11c,12cと挿入案内面11b,12bとの交差部は、鈍角の稜線部18,19となっている。
一般に、鉄道車両車軸1は、台車や車体からの負荷で微小であるがベンディング(撓み)を生じており、撓んだ状態で回転駆動される。
【0009】
そのため、軸1の回転時には、前記稜線部18,19と軸1との間で微少の繰り返し滑りが発生し、この稜線部18,19が擦れた軸1の外周面にはフレッチング摩耗による円周方向に沿った傷が発生する。特に、鉄道車両車軸においては、軸1の肩部1aに近い側の軸受3の内輪12の稜線部19付近で、傷が顕著である。このようなフレッチングは、内輪11,12と鉄道車両車軸1との間に潤滑を行っていない状態で嵌合されている場合に、より頻繁に発生しやすい。
この様な傷が発生した場合、修正可能であれば軸1の傷部分を修正して再使用しており手間がかかる。また、傷が一定深さ以上になると軸1は廃棄処分となってしまうので不経済である。
【0010】
従って、本発明の目的は上記課題を解消することに係り、互いに軸方向の端面同士を突き合わせた状態で軸に嵌合する一対の内輪の各内周面の稜線部との擦れによって軸の外周面に生じる傷を防止することができる良好な転がり軸受を提供することである。
【0011】
【課題を解決するための手段】
本発明の上記目的は、互いに軸方向の端面同士を突き合わせた状態で軸に嵌合する一対の内輪を備え、各内輪の内周面には、前記軸が緊密嵌合する円筒状のストレート部と、端面に連なる内周面端縁に形成された挿入案内面とが施されている転がり軸受であって、前記各内輪における前記ストレート部と前記挿入案内面との交差部である稜線部間の距離をL、前記軸の直径をdとした際に、これら距離Lと直径dとの関係が、L/d<0.03とされることを特徴とする転がり軸受により達成される。
【0012】
上記構成によれば、各内輪の稜線部でのエッジロード(面圧)が緩和され、これにより、軸の外周面にフレッチング摩耗による円周方向に沿った傷が発生するのを防止することができる。
【0013】
また、上記の転がり軸受において、前記各内輪における前記挿入案内面の軸方向長さをそれぞれl、lとした際に、l>0.1[mm]、かつ、l>0.1[mm]とされることで、内輪の加工性を落とさずに済む。
【0014】
さらに、上記の転がり軸受において、少なくとも前記軸の肩部に近い側に配置された前記内輪は、前記端面と前記内輪の外周面とが交差する肩に切り取り部が設けられる。これにより、内輪の肩のボリュームを減らすことができ、挿入案内面のフープ応力による締め付け力を軽減することができる。
【0015】
また、本発明の上記目的は、互いに軸方向の端面同士を突き合わせた状態で軸に嵌合する一対の内輪を備え、各内輪の内周面には、前記軸が緊密嵌合する円筒状のストレート部と、端面に連なる内周面端縁に形成された挿入案内面とが施されている転がり軸受であって、少なくとも前記軸の肩部に近い側に配置された前記内輪は、前記端面と前記内輪の外周面とが交差する肩に切り取り部が設けられることを特徴とする転がり軸受により達成される。
【0016】
【発明の実施の形態】
以下、添付図面に基づいて本発明の実施形態に係る転がり軸受を詳細に説明する。
図1は本発明の第1実施形態に係る転がり軸受を備えた鉄道車両車軸の支持構造の縦断面図であり、図2は図1のB部拡大概略図である。
本実施形態の鉄道車両車軸用複列軸受31は、図12及び図13で説明した従来の鉄道車両車軸用複列軸受3と同様の構成を有する転がり軸受であり、従来の鉄道車両車軸用複列軸受3と相違する部分についてのみ説明し、同一部分は詳細な説明を省略する。
【0017】
図1に示した本発明の第1実施形態に係る鉄道車両車軸用複列軸受31は、軸方向に分割された一対の内輪33,34と、単一の外輪14と、各内輪33,34と外輪14との間に装備される複数個の転動体15と、内外輪間の転動体15相互を等間隔に保持する保持器16,17とを備えた構成である。
【0018】
一対の内輪33,34は、対向する互いの端部を突き合わせた密着状態で使用され、これら内輪33,34の内周に軸1が嵌合している。
また、各内輪33,34は、図2に示したように、突き合わせ端面33a,34aに連なる内周面端縁に、該突き合わせ端面33a,34aに向かって徐々に拡径するテーパ状の挿入案内面33b,34bが形成されており、前記軸1への軸受挿入時の案内面とされている。
【0019】
即ち、前記内輪33,34の内周面は、内径が一定で軸1が緊密嵌合する円筒状のストレート部33c,34cと、突き合わせ端面33a,34aに連なる挿入案内面33b,34bとを具備した構造になっており、円筒状のストレート部33c,34cと挿入案内面33b,34bとの交差部は、鈍角の稜線部38,39となっている。
【0020】
そして、前記内輪33側の稜線部38と内輪34側の稜線部39との間の距離をL、前記軸1の直径をdとした際に、これら距離Lと直径dとの関係が、L/d<0.03と成るように構成されている。即ち、前記内輪33側の挿入案内面33b及び内輪34側の挿入案内面34bの軸方向長さをそれぞれl,l とした際に、l=lとして、l/d<0.015と成るように構成されている。
これにより、前記稜線部38,39でのエッジロード(面圧)が緩和され、軸1の外周面にフレッチング摩耗による円周方向に沿った傷が発生するのを防止することができる。
【0021】
図3は、本発明の第2実施形態に係る転がり軸受を備えた鉄道車両車軸の支持構造の縦断面図であり、図4は図3のC部拡大概略図である。
本実施形態の鉄道車両車軸用複列軸受51は、図1および図2で説明した第1実施形態の鉄道車両車軸軸受31と同様の構成を有する転がり軸受である。図3に示した本発明の第2実施形態の軸受51は、一対の内輪53,54と、単一の外輪14との間に装備される複数個の転動体15と、保持器16,17とを備えた構成である。
【0022】
軸受51は、図4に示すように、内輪53,54の突き合わせ端面53a,54aと外周面とが交差する、内輪53の肩および内輪54の肩をそれぞれ断面が矩形に近い形状で切り取り、それぞれに切り取り部である段差53d、54dを設けて、内輪の肩のボリュームを減らしている。
【0023】
また、前記内輪53,54の内周面は、内径が一定で軸1が緊密嵌合する円筒状のストレート部53c、54cと、突き合わせ端面53a,54aに連なる挿入案内面53b、54bとを具備した構造になっており、円筒状のストレート部53c、54cと挿入案内面53b、54bとの交差部は、鈍角の稜線部58、59となっている。稜線部58と59の距離をL、軸1の直径をdとした際に、第1実施形態同様、L/d<0.03となるように構成されている。また、挿入案内面53b、54bの軸方向長さをそれぞれl、lとした際に、l=lとして、l/d<0.015となるように構成されている。
【0024】
このように、第2実施形態では、内輪の肩のボリュームを減らすことによって、内輪53側の挿入案内面53bおよび内輪54側の挿入案内面54bのフープ応力による締め付け力が軽減できる。したがって、稜線部58,59でのエッジロードが緩和され、軸1の外周面にフレッチング摩耗による円周方向に沿った傷が発生するのを防止することができる。なお、内輪の肩の切り取る形状は、矩形にこだわらず、任意の形状で構わない。また、内輪の肩に切り取り部を設ける構成と、稜線部部の距離と軸の直径との関係とを合わせて用いることで、稜線部58,59でのエッジロードをさらに緩和でき、フレッチング磨耗に対する効果を向上させることができる。
【0025】
図5は、本発明の第3実施形態に係る転がり軸受を備えた鉄道車両車軸の支持構造の要部拡大断面図である。第3実施形態は、内輪63の肩には段差を設けず、内輪64の肩のみに断面が矩形に近い形状で切り取られた段差64dを設けて、内輪の肩のボリュームを減らしている点で第2実施形態と異なる。即ち、第3実施形態は、車軸1の肩部1aに近い内輪64のみの肩のボリュームを軽減した。これにより、一対の内輪それぞれに段差を設ける必要はなく、軸1の外周面にフレッチング磨耗による傷が発生しやすい側の内輪の肩だけに段差を設けて、ボリュームを軽減することができる。
この場合も、上記構成と、第1実施形態での稜線部部の距離と軸の直径との関係とを合わせて用いることで、稜線部58,59でのエッジロードをさらに緩和でき、フレッチング磨耗に対する効果を向上させることができる。
【0026】
次に、前記距離Lと前記直径dとの関係を、l=lとした場合、L/d<0.03(=l /d<0.015)と成るように構成することにより、稜線部38,39でのエッジロードを緩和できる二つの理由を説明する。
先ず、前記軸1と内輪33,34の接触面圧は、内輪33,34のフープ応力による締め付け力により発生するが、内輪33側の挿入案内面33b及び内輪34側の挿入案内面34bは軸1と接触しないため、この部分の締め付け力は他の嵌め合い面(ストレート部33c,34c)で受ける必要があり、前記稜線部38,39には高いエッジロードが発生してしまう。
【0027】
即ち、第1の理由は、前記内輪33側の挿入案内面33b及び前記内輪34側の挿入案内面34bの各軸方向長さl,l を小さくすれば、この部分のフープ応力が小さくなり、結果として前記稜線部38,39でのエッジロードが緩和されるということである。
そこで、前記軸方向長さl,l を短くすることによるエッジロード軽減の効果を調べるために、有限要素法の軸対称解析により前記軸方向長さlとlを等しくした場合、前記軸方向長さlと軸1の直径dとの比(l /d)と、エッジロードとの関係を調べた。
【0028】
上記解析には、内輪分割型の複列円すいころ軸受(内径125mm×外径235mm×幅165mm)に使用されている一方の内輪(単列)を使用した。このサイズの内輪の前記軸方向長さlは、小さいものでl =0.008×d、大きなものでl =0.08×d程度である。
解析結果を図6に示す。縦軸はl =0.08×dの場合の稜線部でのエッジロード(面圧)を1としたときの面圧比を示す(lが長いものを基準とした) 。
図6より、l /dが小さくなればエッジロードが小さくなるのが分る。
【0029】
次に、第2の理由は、前記距離Lと前記直径dとの関係を、L/d<0.03と成るように構成することにより、各内輪が軸を変形させる影響を受け、その結果、エッジロードが緩和されるというものである。
図7に各稜線部38,39間の距離Lが長い場合の軸1の変形形状を、図8に各稜線部38,39間の距離Lが短い場合の軸1の変形形状を示す。即ち、距離Lが長い場合の軸1の膨らみ量Δ1は、距離Lが短い場合の軸1の膨らみ量Δ2に比べて大きく、その分、高いエッジロードが発生する。
【0030】
互いに軸方向の端面同士を突き合わせた状態で軸に嵌合している各内輪が影響しあう効果をみるために、一方の内輪(単列)で行った先の解析(図6)と同じ条件で、一対の内輪(複列)での解析を行った。解析結果を図9に示す。尚、この解析では、各内輪の端面同士が直接接している条件で解析を行っており、2×l =Lの関係になっている。
【0031】
図9より、一対の内輪がそれぞれ軸を変形させ、そのため単列の場合に比べてエッジロードが緩和されるのが明らかである。但し、各内輪の軸方向長さl が長い場合(距離Lが長い場合) は、エッジロードの緩和の度合いは小さくなっている。l/d<0.08では、単列と複列でエッジロードに差が殆ど無いといえる。
【0032】
図10に前記距離Lとエッジロードとの関係を示す(但し、図10は、図9の複列時の横軸における軸方向長さl1 を距離Lに置き換えたものである)。
図10より、前記距離Lと前記直径dとの関係をL/d<0.03とすることによって、前記軸方向長さl がl =0.08×dの場合と比較してエッジロードが6割緩和されているのが明らかである。従って、前記距離Lと前記直径dとの関係は、L/d<0.03とする。
また、d=60[mm]、L=2[mm]、l=l=1[mm]となる内輪、即ち、L/d=0.033の内輪を使用して、耐久性について実験を行った。その結果、客先が要求している耐久寿命(車軸の外周にフレッチング磨耗による傷が発生するまでの時間)の約3倍の寿命があることが確認された。安全率を考えて、要求寿命の3倍の寿命を持ち、加工公差も考えると、L/d<0.03がよい。
【0033】
尚、本発明の転がり軸受の構成は、上記実施形態の構成に限定されるものではなく、本発明の趣旨に基づいて種々の形態を採りうることは言うまでもない。
例えば、上記第1実施形態では、各内輪33,34の突き合わせ端面33a,34a同士が直接接している場合を例に採ったが、これに代えて、図11に示したように、各内輪41,42の端面41a,42a間に軸方向長さl の間座40を介装するようにしてもよい。
【0034】
この場合、内輪41側の稜線部48と内輪42側の稜線部49との間の距離Lと軸1の直径dとの関係をL/d<0.03とする為に、前記内輪41の小つば側の挿入案内面41b及び前記内輪42の小つば側の挿入案内面42bにおける各軸方向長さl 及び前記軸方向長さl とも、短くする必要がある。
なお、第2実施形態での各内輪53,54や、第3実施形態での各内輪63,64の場合も同様に間座を介装してもよい。
また、請求項2に記載のように、請求項1に記載の軸受において、L/d<0.03、かつ、内輪の加工性を考慮して、l>0.1[mm]、かつ、l>0.1[mm]であることが好ましい。
【0035】
さらに、図2に示したように、各内輪33,34の突き合わせ端面33a,34aに設けられた面取り長さをそれぞれr1、r3とすると、軸受を車軸に組み込むときの作業性を考慮して、r1>1[mm]、かつ、r3>1[mm]にすると、より好ましい。これは、上述したすべての実施形態の軸受にも同様のことがいえる。
【0036】
又、上記実施形態では、内輪分割型の複列軸受に本発明を適用した場合を例に採ったが、これに限定されず、互いに突き合わせた状態で軸に嵌合される一対の内輪を備えた組合せ軸受に本発明を適用することもできる。
更に、上記実施形態では、各内輪の挿入案内面における軸方向長さl を同一寸法として説明しているが、前記距離Lと前記直径dとの関係をL/d<0.03とすることを条件に、各内輪の挿入案内面における軸方向長さl,lが相違してもよい。
のみを短くして、lを短くしない場合、l側の軸の膨らみ量が大きくなり、l側の軸にも影響を及ぼして、l側のエッジロードが高くなるため、L/d<0.03を満たす必要がある。
【0037】
本発明は、鉄道車両車軸用軸受だけに限定されるものでなく、自動車車軸用軸受、鉄鋼や産業機械用等の軸受に適用可能であり、転がり軸受も複列円すいころ軸受に限らず、複列円筒ころ軸受やアンギュラ玉軸受等の端面同士を突き合わせた状態で軸に嵌合して使用されるすべての転がり軸受に適用可能であり、ベンディングの生じる軸に使用される場合に有効である。特に、鉄道車両、自動車等の移送機器のように、振動が発生する場合に有効である。
【0038】
【発明の効果】
以上、上述した本発明の転がり軸受によれば、各内輪の稜線部間の距離Lと軸の直径dとの関係をL/d<0.03とすることにより、各内輪の稜線部でのエッジロード(面圧)が緩和され、これにより、軸の外周面にフレッチング摩耗による円周方向に沿った傷が発生するのを防止することができる。
従って、軸の傷部分を修正する修復処理の回数を低減させることができると共に、傷を検出するための定期点検の頻度を減らすこともできる。又、軸の寿命を延長させ、維持コスト低減を図ることもできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る転がり軸受を備えた鉄道車両車軸の支持構造の縦断面図である。
【図2】図1のB部拡大概略図である。
【図3】本発明の第2実施形態に係る転がり軸受を備えた鉄道車両車軸の支持構造の縦断面図である。
【図4】図3のC部拡大概略図である。
【図5】本発明の第3実施形態に係る転がり軸受を備えた鉄道車両車軸の支持構造の要部拡大概略図である。
【図6】内輪の挿入案内面における軸方向長さl と軸の直径dとの比(l /d)と、稜線部での面圧比との関係を示すグラフ図である。
【図7】各内輪の稜線部間の距離Lが長い場合の軸の変形形状を説明するための説明図である。
【図8】各内輪の稜線部間の距離Lが短い場合の軸の変形形状を説明するための説明図である。
【図9】一対の内輪(複列)の端面同士が直接接している条件での各内輪の挿入案内面における軸方向長さl と軸の直径dとの比(l /d)と、稜線部での面圧比との関係を示すグラフ図である。
【図10】各内輪の稜線部間の距離Lと軸の直径dとの比(L/d)と、稜線部での面圧比との関係を示すグラフ図である。
【図11】本発明の他の実施形態に係る転がり軸受の要部断面図である。
【図12】従来の鉄道車両車軸用複列軸受を示す断面図である。
【図13】図12のA部拡大概略図である。
【符号の説明】
1 鉄道車両車軸(軸)
31,51,61 鉄道車両車軸用複列軸受(転がり軸受)
33,34,53,54,63,64 内輪
33a,34a,53a,54a,63a,64a 突き合わせ端面
33b,34b,53b,54b,63b,64b 挿入案内面
33c,34c,53c,54c,63c,64c ストレート部
38,39,58,59,68,69 稜線部
53d,54d,64d 内輪肩段差部(切り取り部)
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing, and more particularly, to an improvement for preventing scratches generated on an outer peripheral surface of a shaft due to friction between the inner peripheral surfaces of a pair of inner rings fitted to the shaft with their axial end surfaces abutting each other. It is about.
[0002]
[Prior art]
2. Description of the Related Art In the related art, there is known a railway vehicle axle support structure including a railway vehicle axle double row bearing (for example, see Patent Document 1).
The railway vehicle axle support structure shown in FIG. 12 is a railway vehicle axle (hereinafter, also simply referred to as an axle) 1 rotatably supported by a railway vehicle axle double-row bearing (hereinafter, also simply referred to as a double-row bearing) 3. It is.
[0003]
The double-row bearing 3 for an axle of a railway vehicle has a pair of inner rings 11 and 12 divided in the axial direction, a single outer ring 14, and a plurality of pieces provided between the inner rings 11 and 12 and the outer ring 14. The configuration includes a rolling element 15 and retainers 16 and 17 for holding the rolling elements 15 between the inner and outer rings at equal intervals. In the illustrated example, the rolling elements 15 are tapered rollers.
[0004]
The pair of inner rings 11 and 12 are used in a contact state in which opposing ends of the inner rings 11 and 12 abut against each other, and the shaft 1 is fitted to the inner periphery of the inner rings 11 and 12.
As shown in FIG. 13, each of the inner races 11 and 12 has a tapered insertion guide that gradually increases in diameter toward the butting end faces 11a and 12a at an inner peripheral surface edge continuous with the butting end faces 11a and 12a. Surfaces 11b and 12b are formed and serve as guide surfaces when the bearing is inserted into the shaft 1.
[0005]
That is, the inner peripheral surfaces of the inner rings 11 and 12 include cylindrical straight portions 11c and 12c having a fixed inner diameter and the shaft 1 being tightly fitted, and insertion guide surfaces 11b and 12b connected to the butted end surfaces 11a and 12a. It has a structured structure.
The inner rings 11 and 12 are arranged between a front slinger 21 fitted to the shaft 1 and a rear slinger 23 fitted to the shoulder 1a of the shaft 1. The two inner rings 11 and 12 are press-fitted and fixed due to a dimensional difference between the inner ring inner diameter and the shaft.
[0006]
On the shaft end of the shaft 1, a small lid 25 having a rotation preventing protrusion 25 a protruding from the inner peripheral surface is mounted in a state where the rotation preventing protrusion 25 a is engaged with the locking groove 1 b on the outer periphery of the shaft 1. I have. By connecting and integrating the small lid 25 and the front lid 24 with the bolts 27, the rotation of the front lid 24 becomes impossible, and the front lid 24 is prevented from loosening.
Further, on both sides of the double-row bearing 3, contact-type sealing devices 28 are mounted, which prevent foreign substances from entering the double-row bearing 3 and leakage of lubricant from the inside of the bearing. Have been.
[0007]
[Patent Document 1]
JP-A-7-293570
[Problems to be solved by the invention]
By the way, as shown in FIG. 13, in each of the inner races 11, 12, the intersections between the cylindrical straight portions 11 c, 12 c and the insertion guide surfaces 11 b, 12 b are obtuse ridges 18, 19.
Generally, the railcar axle 1 is slightly bent due to a load from a bogie or a vehicle body, and is bent (bent), and is rotated and driven in a bent state.
[0009]
Therefore, when the shaft 1 rotates, a small amount of repeated sliding occurs between the ridges 18, 19 and the shaft 1, and the outer circumferential surface of the shaft 1 on which the ridges 18, 19 are rubbed has a circumferential surface due to fretting wear. Scratches along the direction occur. Particularly, in the axle of the railway vehicle, the damage is remarkable near the ridge 19 of the inner ring 12 of the bearing 3 on the side near the shoulder 1a of the shaft 1. Such fretting tends to occur more frequently when the inner rings 11, 12 and the railcar axle 1 are fitted without lubrication.
When such a flaw occurs, if the flaw can be corrected, the flaw portion of the shaft 1 is corrected and reused, which is troublesome. Further, if the scratches have a depth equal to or more than a certain depth, the shaft 1 is discarded, which is uneconomical.
[0010]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, and the outer periphery of the shaft is rubbed against the ridges of the inner peripheral surfaces of a pair of inner races that are fitted to the shaft with their axial end faces abutting each other. An object of the present invention is to provide a good rolling bearing capable of preventing a surface from being damaged.
[0011]
[Means for Solving the Problems]
The object of the present invention is to provide a pair of inner races which are fitted to a shaft in a state where the end faces in the axial direction abut each other, and the inner peripheral surface of each inner race has a cylindrical straight portion in which the shaft is tightly fitted. And an insertion guide surface formed on an edge of an inner peripheral surface continuous with the end surface, wherein the ridge line portion is an intersection of the straight portion and the insertion guide surface in each of the inner rings. Where L is the distance of the shaft and d is the diameter of the shaft, the relationship between the distance L and the diameter d is L / d <0.03.
[0012]
According to the above configuration, the edge load (surface pressure) at the ridge portion of each inner ring is reduced, thereby preventing the outer circumferential surface of the shaft from being damaged along the circumferential direction due to fretting wear. it can.
[0013]
In the above-mentioned rolling bearing, when the axial length of the insertion guide surface in each of the inner rings is l 1 and l 3 , respectively, l 1 > 0.1 [mm] and l 3 > 0. By setting it to 1 [mm], the workability of the inner ring does not need to be reduced.
[0014]
Further, in the above-mentioned rolling bearing, the inner ring arranged at least on the side closer to the shoulder of the shaft is provided with a cutout portion at a shoulder where the end face and the outer peripheral surface of the inner ring intersect. Thereby, the volume of the shoulder of the inner race can be reduced, and the tightening force due to the hoop stress of the insertion guide surface can be reduced.
[0015]
Further, the object of the present invention is to provide a pair of inner races which are fitted to the shaft in a state where the end faces in the axial direction abut each other, and the inner peripheral surface of each inner race has a cylindrical shape in which the shaft is tightly fitted. A rolling bearing provided with a straight portion and an insertion guide surface formed at an edge of an inner peripheral surface continuous with an end surface, wherein the inner ring disposed at least on a side closer to a shoulder of the shaft has the end face. The rolling bearing is characterized in that a cut-out portion is provided at a shoulder where the outer surface of the inner ring intersects with the outer ring.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a rolling bearing according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view of a railcar axle support structure provided with a rolling bearing according to a first embodiment of the present invention, and FIG. 2 is an enlarged schematic view of a portion B in FIG.
The railway vehicle axle double row bearing 31 of this embodiment is a rolling bearing having the same configuration as the conventional railway vehicle axle double row bearing 3 described with reference to FIGS. Only parts different from the row bearing 3 will be described, and detailed description of the same parts will be omitted.
[0017]
The double-row bearing 31 for a railway vehicle axle according to the first embodiment of the present invention shown in FIG. 1 includes a pair of inner rings 33 and 34 divided in the axial direction, a single outer ring 14, and each inner ring 33 and 34. And a plurality of rolling elements 15 provided between the inner ring and the outer ring 14, and retainers 16 and 17 for holding the rolling elements 15 between the inner and outer rings at equal intervals.
[0018]
The pair of inner rings 33 and 34 are used in a contact state in which opposing ends thereof are abutted with each other, and the shaft 1 is fitted to the inner periphery of the inner rings 33 and 34.
As shown in FIG. 2, each of the inner races 33, 34 has a tapered insertion guide that gradually increases in diameter toward the butting end faces 33a, 34a at an inner peripheral surface edge continuous with the butting end faces 33a, 34a. Surfaces 33b and 34b are formed and serve as guide surfaces when the bearing is inserted into the shaft 1.
[0019]
That is, the inner peripheral surfaces of the inner rings 33, 34 include cylindrical straight portions 33c, 34c having a fixed inner diameter and the shaft 1 tightly fitted thereto, and insertion guide surfaces 33b, 34b connected to the butted end surfaces 33a, 34a. The intersections between the cylindrical straight portions 33c, 34c and the insertion guide surfaces 33b, 34b are obtuse ridges 38, 39.
[0020]
When the distance between the ridge 38 on the inner ring 33 side and the ridge 39 on the inner ring 34 side is L and the diameter of the shaft 1 is d, the relationship between the distance L and the diameter d is L /D<0.03. That is, the axial length of the insertion guide surface 34b of the insertion guide surface 33b and the inner ring 34 side of the inner ring 33 side upon a l 3, l 1, respectively, as l 1 = l 3, l 1 / d <0 .015.
Thereby, the edge load (surface pressure) at the ridge portions 38 and 39 is reduced, and it is possible to prevent the circumferential surface of the shaft 1 from being damaged by fretting wear.
[0021]
FIG. 3 is a longitudinal sectional view of a railway vehicle axle support structure including a rolling bearing according to a second embodiment of the present invention, and FIG. 4 is an enlarged schematic view of a portion C in FIG.
The double row bearing 51 for a railway vehicle axle of the present embodiment is a rolling bearing having the same configuration as the railway vehicle axle bearing 31 of the first embodiment described with reference to FIGS. 1 and 2. The bearing 51 according to the second embodiment of the present invention shown in FIG. 3 includes a plurality of rolling elements 15 provided between a pair of inner rings 53 and 54 and a single outer ring 14, and retainers 16 and 17. This is a configuration including:
[0022]
As shown in FIG. 4, the bearing 51 cuts off the shoulders of the inner ring 53 and the inner ring 54 where the butted end surfaces 53a, 54a of the inner rings 53, 54 intersect with the outer peripheral surface in a shape having a substantially rectangular cross section. Are provided with steps 53d and 54d, which are cutout portions, to reduce the shoulder volume of the inner ring.
[0023]
The inner peripheral surfaces of the inner rings 53, 54 include cylindrical straight portions 53c, 54c having a fixed inner diameter and tightly fitted with the shaft 1, and insertion guide surfaces 53b, 54b connected to the butted end surfaces 53a, 54a. The intersection between the cylindrical straight portions 53c, 54c and the insertion guide surfaces 53b, 54b forms obtuse ridges 58, 59. Assuming that the distance between the ridge portions 58 and 59 is L and the diameter of the shaft 1 is d, L / d <0.03 as in the first embodiment. When the lengths of the insertion guide surfaces 53b and 54b in the axial direction are l 3 and l 1 , respectively, l 1 = l 3 and l 1 /d<0.015.
[0024]
As described above, in the second embodiment, the tightening force due to the hoop stress of the insertion guide surface 53b on the inner ring 53 side and the insertion guide surface 54b on the inner ring 54 side can be reduced by reducing the volume of the shoulder of the inner ring. Therefore, the edge load at the ridge portions 58 and 59 is reduced, and it is possible to prevent the circumferential surface of the shaft 1 from being damaged by fretting wear. It should be noted that the shape of the shoulder of the inner ring is not limited to a rectangle, but may be any shape. In addition, by using the configuration in which the cut-out portion is provided on the shoulder of the inner ring in combination with the relationship between the distance of the ridge portion and the diameter of the shaft, the edge load at the ridge portions 58 and 59 can be further reduced, and the fretting wear is reduced. The effect can be improved.
[0025]
FIG. 5 is an enlarged sectional view of a main part of a railcar axle support structure provided with a rolling bearing according to a third embodiment of the present invention. The third embodiment is different from the first embodiment in that the shoulder of the inner ring 63 is not provided with a step, and the shoulder of the inner ring 64 is provided with a step 64d cut in a shape close to a rectangle, thereby reducing the shoulder volume of the inner ring. Different from the second embodiment. That is, in the third embodiment, the shoulder volume of only the inner ring 64 near the shoulder 1a of the axle 1 is reduced. Accordingly, it is not necessary to provide a step on each of the pair of inner rings, and the volume can be reduced by providing a step only on the shoulder of the inner ring on the outer surface of the shaft 1 on which the flaws due to fretting wear are likely to occur.
Also in this case, by using the above configuration in combination with the relationship between the distance between the ridge portions and the diameter of the shaft in the first embodiment, the edge load at the ridge portions 58 and 59 can be further reduced, and the fretting wear is reduced. Can be improved.
[0026]
Next, when the relationship between the distance L and the diameter d is l 1 = l 3 , L / d <0.03 (= l 1 /d<0.015). Two reasons why the edge load at the ridge portions 38 and 39 can be reduced will be described.
First, the contact surface pressure between the shaft 1 and the inner races 33 and 34 is generated by the tightening force due to the hoop stress of the inner races 33 and 34. The insertion guide surface 33b on the inner race 33 side and the insertion guide surface 34b on the inner race 34 side are Since it does not come into contact with 1, the tightening force of this portion needs to be received by the other fitting surfaces (straight portions 33c, 34c), and a high edge load occurs on the ridge lines 38, 39.
[0027]
That is, the first reason is that if the axial lengths l 3 and l 1 of the insertion guide surface 33b on the inner ring 33 side and the insertion guide surface 34b on the inner ring 34 side are reduced, the hoop stress in this portion is reduced. As a result, the edge load at the ridge portions 38 and 39 is reduced.
Therefore, in order to examine the effect of the edge load relief by shortening the axial length l 3, l 1, when equal to the axial length l 3 and l 1 by the axisymmetric analysis of the finite element method, The relationship between the ratio (l 1 / d) of the axial length l 1 to the diameter d of the shaft 1 (l 1 / d) and the edge load was examined.
[0028]
In the above analysis, one inner ring (single row) used in an inner ring split type double row tapered roller bearing (inner diameter 125 mm × outer diameter 235 mm × width 165 mm) was used. The axial length l 1 of the inner ring of this size is about l 1 = 0.008 × d for a small one, and about l 1 = 0.08 × d for a large one.
FIG. 6 shows the analysis results. The vertical axis indicates the surface pressure ratio when the edge load (surface pressure) at the ridgeline portion is 1 when l 1 = 0.08 × d (based on the case where l 1 is long).
From FIG. 6, it can be seen that the edge load decreases as l 1 / d decreases.
[0029]
Next, the second reason is that, by configuring the relationship between the distance L and the diameter d so that L / d <0.03, each inner ring is affected by deforming the shaft, and as a result, The edge load is reduced.
FIG. 7 shows a deformed shape of the shaft 1 when the distance L between the ridges 38 and 39 is long, and FIG. 8 shows a deformed shape of the shaft 1 when the distance L between the ridges 38 and 39 is short. That is, the swelling amount Δ1 of the shaft 1 when the distance L is long is larger than the swelling amount Δ2 of the shaft 1 when the distance L is short, and accordingly, a high edge load is generated.
[0030]
The same conditions as in the previous analysis (Fig. 6) performed on one inner ring (single row) to see the effect of each inner ring fitted to the shaft with their axial end faces abutting each other Then, analysis was performed on a pair of inner rings (double rows). FIG. 9 shows the analysis result. Note that, in this analysis, the analysis is performed under the condition that the end faces of the inner rings are in direct contact with each other, and has a relationship of 2 × l 1 = L.
[0031]
It is clear from FIG. 9 that the pair of inner races respectively deform the shaft, so that the edge load is reduced as compared with the case of a single row. However, if the axial length l 1 of the inner ring is long (when the distance L is long), the degree of the edge load relieving is small. When l 1 /d<0.08, it can be said that there is almost no difference in the edge load between the single row and the double row.
[0032]
Shows the relationship between the distance L and the edge load 10 (where FIG. 10 is obtained by replacing the axial length l 1 in the horizontal axis at the double row of FIG. 9 to the distance L).
From FIG. 10, by setting the relationship between the distance L and the diameter d to be L / d <0.03, the edge length is compared with the case where the axial length l 1 is l 1 = 0.08 × d. It is clear that the load has been reduced by 60%. Therefore, the relationship between the distance L and the diameter d is L / d <0.03.
In addition, the durability was tested using an inner ring where d = 60 [mm], L = 2 [mm], and l 1 = l 3 = 1 [mm], that is, an inner ring with L / d = 0.033. Was done. As a result, it was confirmed that the service life was about three times as long as the service life required by the customer (the time until the fretting wear occurred on the outer periphery of the axle). L / d <0.03 is preferable in consideration of the safety factor, having a life three times as long as the required life and also considering processing tolerances.
[0033]
Note that the configuration of the rolling bearing of the present invention is not limited to the configuration of the above-described embodiment, and it goes without saying that various configurations can be adopted based on the spirit of the present invention.
For example, in the first embodiment, the case where the butted end surfaces 33a and 34a of the inner races 33 and 34 are in direct contact with each other is taken as an example. Instead, as shown in FIG. , the end face 41a of 42, may be interposed an axial length between seat 40 l 2 between 42a.
[0034]
In this case, the relationship between the distance L between the ridge 48 on the inner ring 41 side and the ridge 49 on the inner ring 42 and the diameter d of the shaft 1 is L / d <0.03. each axial length l 1 and the axial length l 2 both in the insertion guide surface 42b of the small flange of the insertion guide surface 41b and the inner ring 42 of the small rib side, it is necessary to shorten.
In addition, in the case of each of the inner races 53 and 54 in the second embodiment and each of the inner races 63 and 64 in the third embodiment, a spacer may be interposed similarly.
Further, as described in claim 2, in the bearing according to claim 1, L / d <0.03, l 1 > 0.1 [mm] in consideration of the workability of the inner ring, and , L 3 > 0.1 [mm].
[0035]
Further, as shown in FIG. 2, when the chamfer lengths provided on the butted end surfaces 33a, 34a of the inner rings 33, 34 are r1 and r3, respectively, the workability when the bearing is incorporated into the axle is taken into consideration. It is more preferable that r1> 1 [mm] and r3> 1 [mm]. The same can be said for the bearings of all the embodiments described above.
[0036]
Further, in the above embodiment, the case where the present invention is applied to the inner ring split type double row bearing is taken as an example, but the invention is not limited to this, and the inner ring is provided with a pair of inner rings fitted to the shaft in abutting state. The present invention can also be applied to combined bearings.
Further, in the above embodiment, it is assumed that the axial length l 1 of the insertion guide surfaces of the inner ring as the same size, the relationship between the diameter d and the distance L and L / d <0.03 On the condition, the axial lengths l 3 and l 1 of the insertion guide surfaces of the respective inner rings may be different.
Shorten only l 1, If shortening the l 3, increase the amount of bulging of the axis of l 3 side, also affecting the shaft of l 1 side, since the edge load of l 1 side becomes high, It is necessary to satisfy L / d <0.03.
[0037]
The present invention is not limited to bearings for railway vehicle axles, but can be applied to automotive axle bearings, bearings for steel and industrial machinery, etc., and rolling bearings are not limited to double-row tapered roller bearings. The present invention is applicable to all rolling bearings that are used by fitting to a shaft in a state where end faces of a row cylindrical roller bearing, an angular ball bearing, and the like are abutted with each other, and is effective when used for a shaft where bending occurs. In particular, it is effective in the case where vibration is generated as in the case of transfer equipment such as a railway vehicle and an automobile.
[0038]
【The invention's effect】
As described above, according to the above-described rolling bearing of the present invention, the relationship between the distance L between the ridges of each inner ring and the diameter d of the shaft is set to L / d <0.03, so that the ridges of each inner ring are formed. Edge load (surface pressure) is reduced, thereby preventing circumferential flaws due to fretting wear on the outer peripheral surface of the shaft.
Therefore, it is possible to reduce the number of times of the repair processing for correcting the flaw portion of the shaft, and it is also possible to reduce the frequency of the periodic inspection for detecting the flaw. In addition, the life of the shaft can be extended and the maintenance cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a railway vehicle axle support structure including a rolling bearing according to a first embodiment of the present invention.
FIG. 2 is an enlarged schematic view of a portion B in FIG. 1;
FIG. 3 is a longitudinal sectional view of a railcar axle support structure provided with a rolling bearing according to a second embodiment of the present invention.
FIG. 4 is an enlarged schematic view of a portion C in FIG. 3;
FIG. 5 is an enlarged schematic view of a main part of a railcar axle support structure including a rolling bearing according to a third embodiment of the present invention.
FIG. 6 is a graph showing a relationship between a ratio (l 1 / d) of an axial length l 1 and a diameter d of a shaft on an insertion guide surface of an inner ring, and a surface pressure ratio at a ridge portion.
FIG. 7 is an explanatory diagram for explaining a deformed shape of a shaft when a distance L between ridge portions of each inner ring is long.
FIG. 8 is an explanatory diagram for explaining a deformed shape of a shaft when a distance L between ridge portions of each inner ring is short.
FIG. 9 shows the ratio (l 1 / d) between the axial length l 1 and the shaft diameter d on the insertion guide surface of each inner ring under the condition that the end faces of a pair of inner rings (double row) are in direct contact with each other. It is a graph which shows the relationship with the surface pressure ratio in a ridgeline part.
FIG. 10 is a graph showing the relationship between the ratio (L / d) between the distance L between the ridges of each inner ring and the diameter d of the shaft, and the surface pressure ratio at the ridges.
FIG. 11 is a cross-sectional view of a main part of a rolling bearing according to another embodiment of the present invention.
FIG. 12 is a cross-sectional view showing a conventional double-row bearing for a railway vehicle axle.
FIG. 13 is an enlarged schematic view of a portion A in FIG.
[Explanation of symbols]
1 railway vehicle axle (axis)
31,51,61 Double row bearings for rolling stock axles (rolling bearings)
33, 34, 53, 54, 63, 64 Inner rings 33a, 34a, 53a, 54a, 63a, 64a Butt end surfaces 33b, 34b, 53b, 54b, 63b, 64b Insert guide surfaces 33c, 34c, 53c, 54c, 63c, 64c Straight parts 38, 39, 58, 59, 68, 69 Ridge parts 53d, 54d, 64d Inner ring shoulder step (cut-out part)

Claims (4)

互いに軸方向の端面同士を突き合わせた状態で軸に嵌合する一対の内輪を備え、各内輪の内周面には、前記軸が緊密嵌合する円筒状のストレート部と、端面に連なる内周面端縁に形成された挿入案内面とが施されている転がり軸受であって、
前記各内輪における前記ストレート部と前記挿入案内面との交差部である稜線部間の距離をL、前記軸の直径をdとした際に、これら距離Lと直径dとの関係が、L/d<0.03とされることを特徴とする転がり軸受。
A pair of inner races are fitted to the shafts with their axial end surfaces abutting each other. The inner peripheral surface of each inner race has a cylindrical straight portion in which the shafts are tightly fitted, and an inner periphery connected to the end surfaces. A rolling bearing provided with an insertion guide surface formed at a surface edge,
When the distance between the ridges, which are the intersections of the straight portion and the insertion guide surface, in each of the inner rings is L, and the diameter of the shaft is d, the relationship between these distances L and the diameter d is L / L. A rolling bearing, wherein d <0.03.
前記各内輪における前記挿入案内面の軸方向長さをそれぞれl、lとした際に、l>0.1[mm]、かつ、l>0.1[mm]とされることを特徴とする請求項1に記載の転がり軸受。When the axial length of the insertion guide surface in each of the inner rings is l 1 and l 3 , respectively, l 1 > 0.1 [mm] and l 3 > 0.1 [mm]. The rolling bearing according to claim 1, wherein: 少なくとも前記軸の肩部に近い側に配置された前記内輪は、前記端面と前記内輪の外周面とが交差する肩に切り取り部が設けられることを特徴とする請求項1又は2に記載の転がり軸受。The rolling according to claim 1, wherein the inner ring arranged at least on a side closer to a shoulder of the shaft is provided with a cutout at a shoulder where the end face and the outer peripheral surface of the inner ring intersect. 3. bearing. 互いに軸方向の端面同士を突き合わせた状態で軸に嵌合する一対の内輪を備え、各内輪の内周面には、前記軸が緊密嵌合する円筒状のストレート部と、端面に連なる内周面端縁に形成された挿入案内面とが施されている転がり軸受であって、
少なくとも前記軸の肩部に近い側に配置された前記内輪は、前記端面と前記内輪の外周面とが交差する肩に切り取り部が設けられることを特徴とする転がり軸受。
A pair of inner races are fitted to the shafts with their axial end surfaces abutting each other. The inner peripheral surface of each inner race has a cylindrical straight portion in which the shafts are tightly fitted, and an inner periphery connected to the end surfaces. A rolling bearing provided with an insertion guide surface formed at a surface edge,
A rolling bearing, wherein at least the inner ring disposed on the side near the shoulder of the shaft is provided with a cutout at a shoulder where the end face and the outer peripheral surface of the inner ring intersect.
JP2003176711A 2002-06-27 2003-06-20 Rolling bearing Pending JP2004084938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176711A JP2004084938A (en) 2002-06-27 2003-06-20 Rolling bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002188103 2002-06-27
JP2003176711A JP2004084938A (en) 2002-06-27 2003-06-20 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2004084938A true JP2004084938A (en) 2004-03-18

Family

ID=32071726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176711A Pending JP2004084938A (en) 2002-06-27 2003-06-20 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2004084938A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115003A1 (en) 2005-04-18 2006-11-02 Ntn Corporation Roller bearing and bearing structure
US20150139584A1 (en) * 2013-10-24 2015-05-21 Aktiebolaget Skf Bearing assembly
EP3561324A1 (en) * 2018-04-24 2019-10-30 Jtekt Corporation Ball screw apparatus and double row bearing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115003A1 (en) 2005-04-18 2006-11-02 Ntn Corporation Roller bearing and bearing structure
EP2345821A1 (en) 2005-04-18 2011-07-20 NTN Corporation Roller bearing and bearing structure
US8636420B2 (en) 2005-04-18 2014-01-28 Ntn Corporation Roller bearing and bearing structure
US20150139584A1 (en) * 2013-10-24 2015-05-21 Aktiebolaget Skf Bearing assembly
US9328767B2 (en) * 2013-10-24 2016-05-03 Aktiebolaget Skf Bearing assembly
EP3561324A1 (en) * 2018-04-24 2019-10-30 Jtekt Corporation Ball screw apparatus and double row bearing device

Similar Documents

Publication Publication Date Title
JP5366665B2 (en) Wheel bearing device
EP1908970B1 (en) Needle roller bearing and bearing structure
JP2002250358A (en) Rolling bearing unit for supporting wheel
JP2007085371A (en) Bearing device for wheel
US20120148181A1 (en) Wheel Bearing
EP1721757B1 (en) Bearing apparatus for a wheel of vehicle
US7635226B2 (en) Bearing apparatus for a wheel of vehicle
EP1249623B1 (en) Tapered roller bearing
US11220279B2 (en) Insert and wear ring for a railway roller bearing
JP2004084938A (en) Rolling bearing
WO2016121420A1 (en) Tapered roller bearing
JP2004011715A (en) Double row bearing for rolling stock axle
JP3529691B2 (en) Axle bearing device
JP4027047B2 (en) Split type rolling bearing device
JP2006300130A (en) Bearing structure
JP2005163873A (en) Rolling bearing
JP2009156450A (en) Bearing device for wheel
JP4731198B2 (en) Roller bearing
JP2012167750A (en) Bearing device for axle
JP2006064037A (en) Roller bearing
JP2003314566A (en) Double row bearing for rolling stock axle
JP2004011716A (en) Double row bearing for rolling stock axle
KR20110045287A (en) Outer ring for wheel bearing
US8636420B2 (en) Roller bearing and bearing structure
JP2009257386A (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090114