【0001】
【発明の属する技術分野】内燃機関の点火装置及び内燃機関の燃焼室気体中に流れる荷電体電流を検出する装置に関する。
【0002】
【従来の技術】内燃機関の燃焼室気体に電場を加えて燃焼室気体中に流れる荷電体電流を検出する荷電体電流検出装置に於ける従来の技術の参考資料として、日本国公開特許公報の特開平10−61540を参照すると共に、本発明の図1及び図2を参照すると、前記特開平10−61540の図1及び図2に於ける装置は、点火栓を用いた各内燃機関の荷電体電流検出装置として、広く用いることを可能にすることも発明の目的の一つであった、しかし、前記特開平10−61540の図1及び図2に於ける装置は、内燃機関の燃焼室気体に電場を加える部分に於いて、点火用高電圧の電気エネルギーが消費され、点火性能向上に対し不利な傾向がある。
【0003】
【発明が解決しようとする課題】内燃機関の燃焼室気体に電場を加える部分に於いて、出来るだけ点火用高電圧の電気エネルギーが消費されないようにする。
【0004】前記の課題を解決する為に用いる点火用変圧器に起因する新たな課題として、点火用変圧器の各巻線の線輪の値と各巻線の浮遊静電容量の値及び各巻線の抵抗値、そして変圧器を構成する材質などに起因する影響で、特に周波数に関する影響が著しく、周波数に関する諸特性の劣化を招く。
【0005】
【課題を解決するための手段】特開平10−61540の図1及び図2と本発明の図1及び図2を参照すると、本発明の図1及び図2の点火栓の中芯電極31には点火用変圧器の2次巻線27のみの接続、即ち点火用変圧器の2次巻線高電圧端子253と点火栓の中芯電極31とを接続し、そして、点火用変圧器の2次巻線高電圧端子253と点火栓の中芯電極31の接続部と、接地間の浮遊静電容量を出来るだけ小さくする事に因り、前記接続部に於ける点火用高電圧の電気エネルギー消費の低減を図る。
【0006】又、内燃機関の燃焼室気体中に流れる荷電体電流の検出を可能にする為、点火栓の中芯電極31に電場用交番波を加えるが、従来の技術に因る電場用交番波は数10キロヘルツの電場用交番波を用いていた。
【0007】しかし本発明では、従来の技術に因る電場用交番波の周波数よりも低い周波数の電場用交番波からメガヘルツの周波数の電場用交番波に渡り、意図する周波数の電場用交番波を点火栓の中芯電極31に加えることが可能である。
【0008】従って、従来の技術に因る電場用交番波よりも電気エネルギーの大きいメガヘルツの電場用交番波を点火栓の中芯電極31に加えることで、電場電極である点火栓の中芯電極31と燃焼室体37の両電場電極間の燃焼室気体にメガヘルツの交番電場が加えられる。
【0009】そして、内燃機関の燃焼室気体中に偶然存在している自由電子及び荷電体が前記両電場電極間に加えられた交番電場の電界の方向に移動する事に因り、前記両電場電極間の燃焼室気体中に流がれる僅かな電流が、点火火花放電を引き起こす誘因電流として作用し、点火火花放電を引き起こし易くする。
【0010】点火用変圧器252に起因する影響で劣化した周波数に関する諸特性の改善は、点火用変圧器252に接続した電場用交番波挿入回路246及び点火用高電圧制御回路217の短絡電流調整用抵抗器245に因り改善する。
【0011】
【発明の実施の形態】本発明の図1を参照して説明すると、点火装置本体1の外部には点火用変圧器252と接地端子回路255があり、点火用変圧器252の形状は従来から一般に用いられている各点火用変圧器と略同様で有る。
【0012】また、接地端子回路255の大きさは約1.5立方センチ程度の小さな形をしている。従って、接地端子回路255は点火用変圧器252と一緒に一体成形が可能である。此の場合、前記従来の各点火用変圧器の形状と異なる。
【0013】
【実施例】本発明の図1及び図2に基づいて本発明の実施例に就いて説明する。
【0014】本発明の図1に於いて、1は点火装置本体であり、点火装置本体1に有る物で2は電場用交番波発生器、4は点火用蓄電器の充電回路、5は点火用蓄電器、217は点火用高電圧制御回路、34は水晶振動子、143は前置増幅器、42は導電線、3は濾波器、44は出力端子、246は電場用交番波挿入回路であり、電場用交番波挿入回路246は電場用交番波挿入用並列共振変圧器247と並列共振器248及び直列共振器249、そして開閉素子250と保護用整流器251等で構成されていて点火用変圧器の1次巻線26に接続している。
【0015】本発明の実施に於いて、電場用交番波挿入用並列共振変圧器247及び並列共振器248と直列共振器249の共振周波数は、電場用交番波発生器2から導電線35を経て電場用交番波挿入回路246に入る電場用交番波の周波数と略同じ周波数にしてある。
【0016】前記の電場用交番波挿入用並列共振変圧器247及び並列共振器248の共振インピーダンス(以後、共振インピーダンスのことを共振抵抗と呼ぶ。)は、電場用交番波挿入用並列共振変圧器247及び並列共振器248が電場用交番波の周波数には共振して高い値の共振抵抗と成り、その高い値の共振抵抗は、点火用変圧器の1次巻線26の電場用交番波の電気エネルギーが、点火用変圧器の1次巻線26を経る電場用交番波挿入回路246に於いて少ない消費と成るように働く。
【0017】また、直列共振器249は電場用交番波には共振して、直列共振器249の共振抵抗は低い値の共振抵抗と成り、直列共振器249は電場用交番波に関して、電場用交番波挿入用並列共振変圧器247と並列共振器248との短絡路を形成する、そして電場用交番波挿入回路246と点火用変圧器の1次巻線26を繋ぐことで、点火用変圧器の1次巻線26を経る電場用交番波挿入回路246に電場用交番波に関する電気回路が形成される。
【0018】尚、開閉素子250には電界効果形半導体開閉制御素子を用いていて、開閉素子250は点火装置本体1の制御回路に因り制御されている。
【0019】実施例では周波数約1メガヘルツ、波高値100ボルト以上の交番電場を燃焼室気体に加える事が可能で有るが、波高値は約30ボルト程度に抑えている。
【0020】電場用交番波発生器2から約1メガヘルツの電場用交番波が、導電線35を経て電場用交番波挿入回路246の電場用交番波挿入用並列共振変圧器247に入り、電場用交番波挿入用並列共振変圧器247に於いて、約1メガヘルツの電場用交番波は意図する電圧値に変圧され、点火用変圧器の1次巻線26に入り、点火用変圧器252に於いて変圧され、点火用変圧器の2次巻線高電圧端子253及び点火栓の中芯電極31と接地間、即ち、電場電極としての点火栓の中芯電極31と電場電極としての燃焼室体37間に、変圧された約1メガヘルツの電場用交番波が得られ、点火栓の中芯電極31と燃焼室体37の両電場電極間の燃焼室気体に約1メガヘルツの交番電場が加わる。
【0021】点火用変圧器の2次巻線接地側端子254に接続の接地端子回路255に於いて、接地端子回路255の直列共振器256の共振周波数は、点火用変圧器の2次巻線接地側端子254に生じた電場用交番波の周波数と略同じ周波数にしてあり、点火用変圧器の2次巻線接地側端子254に生じた電場用交番波が、接地端子回路255の直列共振器256に加わると、接地端子回路255の直列共振器256は電場用交番波の周波数に共振して、接地端子回路255の直列共振器256の共振抵抗は低い値の共振抵抗と成り、接地端子回路255の直列共振器256に加わった電場用交番波の電気エネルギーは、接地端子回路255の直列共振器256の低い値の共振抵抗に因り消費されて減衰する。
【0022】従って、点火用変圧器の2次巻線接地側端子254に生じた電場用交番波の電圧波は減衰する。
【0023】また、点火用変圧器の2次巻線接地側端子254に生じた点火用高電圧は、点火用変圧器の2次巻線接地側端子254に接続した接地端子回路255の定電圧整流器257と整流器258及び定電圧整流器259と整流器260に因り、意図した電圧値に抑えられる。
【0024】実施例では、点火用変圧器の2次巻線接地側端子254に生じた点火用高電圧を、正負約6ボルト程度以下の電圧値に抑えている。
【0025】そして、接地端子回路255の保護抵抗器261と蓄電器262で、電場用交番波の周波数を含む電圧波で、意図する周波数以上の周波数の電圧波を減衰させている。
【0026】接地端子回路255から出た電圧波は、荷電体電流波及び荷電体電流検出の妨げになる妨害波である正負約6ボルト程度以下に抑えられた点火用高電圧波と減衰した電場用交番波、そして分極電流波などの電圧波が混ざりあった混合波である。
【0027】接地端子回路255から出た電圧波、即ち混合波は前置増幅器143に入り前置増幅器143に於いて、妨害波である正負約6ボルト程度以下に抑えられた点火用高電圧波が主に減衰して、前置増幅器143から妨害波の減衰した混合波が導電線42を経て濾波器3に入る。
【0028】そして、濾波器3に於いて、濾波器3に入った前記混合波から分極電流と電場用交番波などが除去されると共に、妨害波も更に減衰して妨害波の影響の少ない荷電体電流波が得られ、濾波器3から荷電体電流に因る電圧波を出力端子44に送出する。
【0029】メガヘルツの電場用交番波を用いた本発明の実施において、点火時期及び点火火花放電をしている期間、点火用蓄電器5から点火用高電圧制御回路217及び電場用交番波挿入回路246と点火用変圧器の1次巻線26を経る回路に点火用蓄電器5の放電電流が流れるが、電場用交番波挿入回路246の電場用交番波挿入用並列共振変圧器247及び並列共振器248の線輪の値、そして直列共振器249の蓄電器の静電容量の値は、点火用変圧器の1次巻線26の線輪の値及び点火用変圧器の1次巻線26の浮遊静電容量の値と比べると充分に小さいので、電場用交番波挿入用並列共振変圧器247及び並列共振器248並び直列共振器249が、点火用蓄電器5の放電電流の流れを妨げる事は殆ど無い。
【0030】また、本発明に於いては点火用高電圧制御回路217の点火用高電圧抑止用開閉素子19と保護用整流器23の接続部と、点火用高電圧抑止用開閉素子20と保護整流器24の接続部とを、短絡電流調整用抵抗器245を介して接続した事に因って、短絡電流調整用抵抗器245の抵抗値を意図する値にして点火用変圧器の1次巻線26を短絡する事に因り、点火用変圧器の1次巻線26の短絡時に点火用変圧器の1次巻線26に流れる電流を、意図する電流値に調整出来る様にした。
【0031】そこで、荷電体電流波が流れる点火用変圧器の2次巻線27に点火用変圧器252の入力波として荷電体電流波が流れると、点火用変圧器の1次巻線26と電場用交番波挿入回路246及び、点火用高電圧制御回路217の短絡電流調整用抵抗器245を経る回路に変圧された荷電体電流波が流れる。
【0032】此の場合に於いては、前記の短絡電流調整用抵抗器245は点火用変圧器の1次巻線26の負荷抵抗となるので、従って短絡電流調整用抵抗器245の抵抗値を変化させれば点火用変圧器の1次巻線26に流れる電流値が変化し、点火用変圧器の2次巻線27に流れる電流値も変化する。
【0033】此の様にして、短絡電流調整用抵抗器245の抵抗値を意図する値にする事に因り、点火用変圧器の2次巻線27に流れる荷電体電流波の電流値を意図する値にすることが可能に成る。
【0034】従って、点火用変圧器の2次巻線27を経て流れる荷電体電流波は、点火用変圧器の2次巻線27を荷電体電流波が流れている時に、荷電体電流波は点火用変圧器252と短絡電流調整用抵抗器245の影響を受ける事になる。
【0035】そこで点火用変圧器252の各巻線の線輪の値と各巻線の浮遊静電容量の値及び各巻線の抵抗値、そして変圧器を構成する材質などに起因する影響で、特に周波数に関する影響が著しく、周波数に関する諸特性の劣化を招く事に成る。
【0036】しかし、本発明では前記の事柄を利用して、点火用変圧器の2次巻線27を経て流れる荷電体電流波の周波数に対する荷電体電流波の電圧特性を改善する事が、点火用高電圧制御回路217の短絡電流調整用抵抗器245の抵抗値を調整する事に因り可能である。
【0037】
【発明の効果】1、本発明の荷電体電流検出に用いる点火装置は、内燃機関の燃焼室気体に交番電場を加えながら点火をしても、荷電体電流の検出に用いない従来の点火装置の点火性能に劣らない点火性能を得る事ができる。
2、メガヘルツの電場用交番波を用いる事が出来るので、電場用交番波に関する部品の形状を小形に出来る。
3、点火用変圧器の2次巻線を経て流れる荷電体電流波の周波数に対する荷電体電流波の電圧特性を改善する事が可能で有る。
【図面の簡単な説明】
【図1】本発明の説明図。
【図2】本発明の実施例図。
【符号の説明】
1 点火装置本体
2 電場用交番波発生器
3 濾波器
4 点火用蓄電器の充電回路
5 点火用蓄電器
18 点火用蓄電器の放電用開閉素子
19 点火用高電圧抑止用開閉素子
20 点火用高電圧抑止用開閉素子
21 保護用整流器
22 保護用整流器
23 保護用整流器
24 保護用整流器
25 保護用整流器
26 点火用変圧器の1次巻線
27 点火用変圧器の2次巻線
31 点火栓の中芯電極
32 点火栓の電極間
34 水晶振動子
35 導電線
37 燃焼室体
42 導電線
44 出力端子
143 前置増幅器
217 点火用高電圧制御回路
245 短絡電流調整用抵抗器
246 電場用交番波挿入回路
247 電場用交番波挿入用並列共振変圧器
248 並列共振器
249 直列共振器
250 開閉素子
251 保護用整流器
252 点火用変圧器
253 点火用変圧器の2次巻線高電圧端子
254 点火用変圧器の2次巻線接地側端子
255 接地端子回路
256 直列共振器
257 定電圧整流器
258 整流器
259 定電圧整流器
260 整流器
261 保護抵抗器
262 蓄電器[0001]
[0001] 1. Field of the Invention [0002] The present invention relates to an ignition device for an internal combustion engine and an apparatus for detecting a charged current flowing in a combustion chamber gas of the internal combustion engine.
[0002]
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 2000-214,1992 discloses a conventional technique for detecting a charged substance current flowing in a combustion chamber gas by applying an electric field to a combustion chamber gas of an internal combustion engine. Referring to FIGS. 1 and 2 of the present invention while referring to Japanese Patent Application Laid-Open No. H10-61540, the apparatus shown in FIGS. It was also one of the objects of the invention to enable widespread use as a body current detecting device. However, the device shown in FIGS. 1 and 2 of Japanese Patent Application Laid-Open No. H10-61540 has a combustion chamber of an internal combustion engine. In the portion where an electric field is applied to the gas, high-voltage electric energy for ignition is consumed, which tends to be disadvantageous for improving ignition performance.
[0003]
SUMMARY OF THE INVENTION In a portion where an electric field is applied to a combustion chamber gas of an internal combustion engine, electric energy of ignition high voltage is not consumed as much as possible.
[0004] New problems caused by the ignition transformer used to solve the above-mentioned problems include the value of the wire loop of each winding of the ignition transformer, the value of the floating capacitance of each winding, and the value of each winding. The influence due to the resistance value, the material constituting the transformer, and the like has a remarkable influence particularly on the frequency, and causes deterioration of various characteristics related to the frequency.
[0005]
Referring to FIGS. 1 and 2 of JP-A-10-61540 and FIGS. 1 and 2 of the present invention, the center electrode 31 of the ignition plug of FIGS. Is connected only to the secondary winding 27 of the ignition transformer, that is, the secondary winding high voltage terminal 253 of the ignition transformer is connected to the core electrode 31 of the ignition plug, and the secondary winding 27 of the ignition transformer is connected. By minimizing the stray capacitance between the connection between the secondary winding high voltage terminal 253 and the center electrode 31 of the ignition plug and the ground, the electric energy consumption of the ignition high voltage at the connection is reduced. Reduction.
In order to enable detection of a charged body current flowing in a combustion chamber gas of an internal combustion engine, an alternating wave for an electric field is applied to the center electrode 31 of the ignition plug. The waves used alternating waves for electric fields of several tens of kilohertz.
However, according to the present invention, an electric field alternating wave having an intended frequency ranges from an electric field alternating wave having a frequency lower than the frequency of the electric field alternating wave according to the prior art to an electric field alternating wave having a frequency of megahertz. It can be added to the center electrode 31 of the ignition plug.
Therefore, by applying a megahertz electric field alternating wave having a larger electric energy than the electric field alternating wave according to the prior art to the center electrode 31 of the spark plug, the center electrode of the spark plug as the electric field electrode is provided. An alternating electric field of megahertz is applied to the combustion chamber gas between the electric field electrodes of the combustion chamber body 31 and the combustion chamber body 37.
Then, the free electrons and the charged bodies that are present in the combustion chamber gas of the internal combustion engine move in the direction of the electric field of the alternating electric field applied between the two electric field electrodes. The slight current flowing into the intervening combustion chamber gas acts as an inducing current to cause an ignition spark discharge, and tends to cause an ignition spark discharge.
The improvement of various characteristics relating to the frequency deteriorated by the influence of the ignition transformer 252 is achieved by adjusting the short-circuit current of the electric field alternating wave insertion circuit 246 and the ignition high voltage control circuit 217 connected to the ignition transformer 252. It is improved due to the use resistor 245.
[0011]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1 of the present invention, an ignition transformer 252 and a ground terminal circuit 255 are provided outside an ignition device main body 1, and the shape of the ignition transformer 252 is conventionally known. It is substantially the same as each ignition transformer generally used.
The size of the ground terminal circuit 255 is as small as about 1.5 cubic centimeters. Therefore, the ground terminal circuit 255 can be integrally formed with the ignition transformer 252. In this case, the shape of each of the conventional ignition transformers is different.
[0013]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 and 2 of the present invention.
In FIG. 1 of the present invention, reference numeral 1 denotes an ignition device main body, which is included in the ignition device main body 1, 2 is an alternating electric wave generator for an electric field, 4 is a charging circuit for an ignition accumulator, and 5 is an ignition device. 217 is a high voltage control circuit for ignition, 34 is a quartz oscillator, 143 is a preamplifier, 42 is a conductive wire, 3 is a filter, 44 is an output terminal, 246 is an alternating electric wave insertion circuit for electric field, The alternating wave insertion circuit 246 includes a parallel resonance transformer 247 for inserting an electric field alternating wave, a parallel resonator 248 and a series resonator 249, a switching element 250, a protection rectifier 251 and the like. It is connected to the next winding 26.
In the embodiment of the present invention, the resonance frequency of the parallel resonance transformer 247 for inserting an alternating electric wave for an electric field and the resonance frequency of the parallel resonator 248 and the series resonator 249 are transmitted from the electric wave alternating wave generator 2 via a conductive line 35. The frequency is substantially the same as the frequency of the electric field alternating wave entering the electric field alternating wave insertion circuit 246.
The resonance impedance of the parallel resonance transformer 247 and the parallel resonator 248 for inserting the alternating electric wave for electric field (hereinafter referred to as resonance resistance) is the parallel resonance transformer for inserting the alternating electric wave for electric field. 247 and the parallel resonator 248 resonate at the frequency of the electric field alternating wave to form a high-valued resonance resistance, and the high-valued resonance resistance corresponds to the electric field alternating wave of the primary winding 26 of the ignition transformer. The electrical energy serves to reduce consumption in the electric field alternating wave insertion circuit 246 through the primary winding 26 of the ignition transformer.
The series resonator 249 resonates with the electric field alternating wave, the resonance resistance of the series resonator 249 becomes a low-valued resonance resistance, and the series resonator 249 performs the electric field alternating wave with respect to the electric field alternating wave. By forming a short-circuit path between the wave insertion parallel resonance transformer 247 and the parallel resonator 248, and connecting the electric field alternating wave insertion circuit 246 and the primary winding 26 of the ignition transformer, An electric circuit relating to the electric field alternating wave is formed in the electric field alternating wave insertion circuit 246 passing through the primary winding 26.
The switching element 250 uses a field effect type semiconductor switching control element, and the switching element 250 is controlled by a control circuit of the ignition device body 1.
In the embodiment, an alternating electric field having a frequency of about 1 MHz and a peak value of 100 volts or more can be applied to the combustion chamber gas, but the peak value is suppressed to about 30 volts.
An electric field alternating wave of about 1 MHz from the electric field alternating wave generator 2 enters the electric field alternating wave insertion parallel resonance transformer 247 of the electric field alternating wave insertion circuit 246 via the conductive wire 35, and In the alternating wave insertion parallel resonant transformer 247, the electric field alternating wave of about 1 MHz is transformed into an intended voltage value, enters the primary winding 26 of the ignition transformer, and is transmitted to the ignition transformer 252. Between the high voltage terminal 253 of the secondary winding of the ignition transformer and the center electrode 31 of the ignition plug and the ground, that is, the center electrode 31 of the ignition plug as the electric field electrode and the combustion chamber body as the electric field electrode. Between 37, a transformed alternating wave for an electric field of about 1 MHz is obtained, and an alternating electric field of about 1 MHz is applied to the combustion chamber gas between the center electrode 31 of the ignition plug and the electric field electrodes of the combustion chamber body 37.
In the ground terminal circuit 255 connected to the secondary terminal 254 of the secondary winding of the ignition transformer, the resonance frequency of the series resonator 256 of the ground terminal circuit 255 depends on the secondary winding of the ignition transformer. The frequency of the electric field alternating wave generated at the ground side terminal 254 is substantially the same as that of the electric field alternating wave generated at the secondary winding ground side terminal 254 of the ignition transformer. When applied to the device 256, the series resonator 256 of the ground terminal circuit 255 resonates at the frequency of the alternating electric wave for the electric field, and the resonance resistance of the series resonator 256 of the ground terminal circuit 255 becomes a low-valued resonance resistance. The electric energy of the electric field alternating wave applied to the series resonator 256 of the circuit 255 is consumed and attenuated by the low-valued resonance resistance of the series resonator 256 of the ground terminal circuit 255.
Therefore, the voltage wave of the alternating electric field wave generated at the secondary winding ground terminal 254 of the ignition transformer is attenuated.
The high ignition voltage generated at the secondary winding ground terminal 254 of the ignition transformer is a constant voltage of the ground terminal circuit 255 connected to the secondary winding ground terminal 254 of the ignition transformer. The rectifier 257 and the rectifier 258 and the constant voltage rectifier 259 and the rectifier 260 suppress the voltage to an intended value.
In the embodiment, the ignition high voltage generated at the secondary winding ground terminal 254 of the ignition transformer is suppressed to a voltage value of about 6 volts or less.
The protection resistor 261 and the capacitor 262 of the ground terminal circuit 255 attenuate the voltage wave including the frequency of the electric field alternating wave and having a frequency higher than the intended frequency.
The voltage wave output from the ground terminal circuit 255 is a charged current wave and a high voltage wave for ignition suppressed to about 6 volts or less, which is an obstructive wave that hinders the detection of the charged current, and an attenuated electric field. It is a mixed wave obtained by mixing alternating waves and voltage waves such as polarized current waves.
The voltage wave output from the ground terminal circuit 255, that is, the mixed wave enters the preamplifier 143, and in the preamplifier 143, the ignition high voltage wave suppressed to about 6 volts or less, which is an interfering wave. Is mainly attenuated, and the attenuated mixed wave of the interference wave from the preamplifier 143 enters the filter 3 via the conductive line 42.
In the filter 3, the polarization current and the alternating wave for the electric field are removed from the mixed wave entering the filter 3, and the interfering wave is further attenuated, so that the charging is less affected by the interfering wave. A body current wave is obtained, and a voltage wave caused by the charged body current is sent from the filter 3 to the output terminal 44.
In the embodiment of the present invention using the alternating wave for electric field of megahertz, during the ignition timing and the period of the spark discharge, the high voltage control circuit 217 for ignition and the alternating wave insertion circuit 246 for electric field are supplied from the ignition accumulator 5. The discharge current of the ignition accumulator 5 flows through a circuit passing through the primary winding 26 of the ignition transformer and the primary winding 26 of the ignition transformer. The alternating electric wave alternating wave insertion parallel resonance transformer 247 and the parallel resonator 248 of the electric electric field alternating wave insertion circuit 246 are provided. And the capacitance value of the capacitor of the series resonator 249 are determined by the value of the loop of the primary winding 26 of the ignition transformer and the value of the floating static of the primary winding 26 of the ignition transformer. Since the value is sufficiently smaller than the capacitance value, the parallel resonance transformer 247 for inserting the alternating wave for the electric field, the parallel resonator 248 and the series resonator 249 hardly obstruct the flow of the discharge current from the ignition accumulator 5. .
Further, in the present invention, the connection between the ignition high-voltage suppression switching element 19 and the protection rectifier 23 of the ignition high-voltage control circuit 217, the ignition high-voltage suppression switching element 20 and the protection rectifier are provided. 24 is connected via the short-circuit current adjusting resistor 245, the resistance value of the short-circuit current adjusting resistor 245 is set to an intended value, and the primary winding of the ignition transformer is connected. By short-circuiting the primary winding 26, the current flowing through the primary winding 26 of the ignition transformer when the primary winding 26 of the ignition transformer is short-circuited can be adjusted to an intended current value.
Then, when the charged body current wave flows as the input wave of the ignition transformer 252 to the secondary winding 27 of the ignition transformer through which the charged body current wave flows, the primary winding 26 of the ignition transformer is connected to the primary winding 26 of the ignition transformer. The transformed charged body current wave flows through a circuit passing through the electric field alternating wave insertion circuit 246 and the short-circuit current adjustment resistor 245 of the ignition high voltage control circuit 217.
In this case, since the short-circuit current adjusting resistor 245 serves as a load resistance of the primary winding 26 of the ignition transformer, the resistance value of the short-circuit current adjusting resistor 245 is thus reduced. If it is changed, the value of the current flowing through the primary winding 26 of the ignition transformer changes, and the value of the current flowing through the secondary winding 27 of the ignition transformer also changes.
In this way, by setting the resistance value of the short-circuit current adjusting resistor 245 to an intended value, the current value of the charged current wave flowing through the secondary winding 27 of the ignition transformer is intended. Value.
Therefore, the charged body current wave flowing through the secondary winding 27 of the ignition transformer is charged when the charged body current wave is flowing through the secondary winding 27 of the ignition transformer. It is affected by the ignition transformer 252 and the short-circuit current adjusting resistor 245.
Therefore, the value of the wire loop of each winding of the ignition transformer 252, the value of the stray capacitance of each winding, the resistance value of each winding, and the influence of the material constituting the transformer, especially the frequency, The effect on the frequency is remarkable, and the characteristics of the frequency are deteriorated.
However, in the present invention, it is possible to improve the voltage characteristic of the charged current wave with respect to the frequency of the charged current wave flowing through the secondary winding 27 of the ignition transformer by utilizing the above-described matter. This can be achieved by adjusting the resistance value of the short-circuit current adjusting resistor 245 of the high-voltage control circuit 217.
[0037]
According to the present invention, the ignition device used for detecting the charged body current according to the present invention is a conventional ignition apparatus which is not used for detecting the charged body current even if the ignition is performed while applying an alternating electric field to the combustion chamber gas of the internal combustion engine. Ignition performance not inferior to that of the above.
2. Since the alternating wave for electric field of megahertz can be used, the shape of the parts related to the alternating wave for electric field can be made small.
3. It is possible to improve the voltage characteristic of the charged body current wave with respect to the frequency of the charged body current wave flowing through the secondary winding of the ignition transformer.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the present invention.
FIG. 2 is an embodiment diagram of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ignition device main body 2 Alternating wave generator for electric field 3 Filter 4 Charging circuit of ignition accumulator 5 Ignition accumulator 18 Switching element for discharging accumulator for ignition 19 Switching element for suppressing high voltage for ignition 20 For suppressing high voltage for ignition Switching element 21 Protective rectifier 22 Protective rectifier 23 Protective rectifier 24 Protective rectifier 25 Protective rectifier 26 Primary winding 27 of ignition transformer 27 Secondary winding 31 of ignition transformer 31 Core electrode 32 of ignition plug Between the electrodes of the spark plug 34 Crystal oscillator 35 Conducting wire 37 Combustion chamber 42 Conducting wire 44 Output terminal 143 Preamplifier 217 Ignition high voltage control circuit 245 Short circuit current adjusting resistor 246 Electric field alternating wave insertion circuit 247 Electric field Alternating wave insertion parallel resonance transformer 248 Parallel resonator 249 Series resonator 250 Switching element 251 Protection rectifier 252 Ignition transformer 253 Secondary winding height of ignition transformer Voltage terminal 254 secondary winding ground side terminal 255 ground terminal circuit 256 series resonator 257 constant voltage rectifier 258 rectifiers 259 constant voltage rectifier 260 rectifiers 261 protective resistor 262 capacitor of the ignition transformer