JP2004083956A - Hydrogen production device - Google Patents

Hydrogen production device Download PDF

Info

Publication number
JP2004083956A
JP2004083956A JP2002243744A JP2002243744A JP2004083956A JP 2004083956 A JP2004083956 A JP 2004083956A JP 2002243744 A JP2002243744 A JP 2002243744A JP 2002243744 A JP2002243744 A JP 2002243744A JP 2004083956 A JP2004083956 A JP 2004083956A
Authority
JP
Japan
Prior art keywords
electrode
water
cathode
hydrogen
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002243744A
Other languages
Japanese (ja)
Other versions
JP3781705B2 (en
Inventor
Shinichiro Kojima
小嶋 信一郎
Yuji Obara
小原 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002243744A priority Critical patent/JP3781705B2/en
Publication of JP2004083956A publication Critical patent/JP2004083956A/en
Application granted granted Critical
Publication of JP3781705B2 publication Critical patent/JP3781705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce hydrogen by energizing without adding an electrolyte of acid or alkali to water to be decomposed while reducing the loss of electric power to be applied. <P>SOLUTION: An electrode material is formed like a flat plate provided with a pair of confronted surface-back two faces. The flat plate is provided with a connection port through which only either side is made conductive and a connection port through which only the other side is made conductive to form a pole plate with either side as an anode and the other side as a cathode. The pole plate is set inside a decomposition tank in a dipped state into water charged thereto and to be decomposed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、水素を、水に浸漬させた電極に通電することで、水を原料として取り出す水素発生手段に関する。
【0002】
【従来の技術】
水を原料とし、水素に取り出す手段には、水の電気分解による手段が従来から知られている。この手段は、水槽状に形成した槽内に、硫酸等の電解質を加えた水を張り込み、その水の中に、陽極と陰極とする一対の電極を浸漬させるよう配設し、その電極に通電することで、電解液とした水を電気分解して、酸素と水素とをガスとして発生させる手段である。
【0003】
【発明が解決しようとする課題】
従前の通電により水を電気分解することで水素を取り出す手段は、水に酸またはアルカリを加えて電離させ、電離した水素イオンおよび酸素イオンに、それぞれ負と正の電極から電気量を与えて電極に向け移動させ、電極における放電により、陽極において酸素ガスと水素イオンを発生させ、その水素イオンの陰極への移動による陰極での放電で水素ガスを発生させることから、イオン粒子の移動に伴う抵抗による損失によって、入力する電力に対し発生する水素ガスの発生量が少なく効率が悪い問題がある。
【0004】
また、水を電離させるのに、酸またはアルカリの電解質を加えることが必要なことから、取り扱いに危険を伴う問題がある。
【0005】
本発明は、従前手段に生じている上述の問題を解決するためになされたものであって、通電による水素ガスの発生が入力する電力の損失を少なくして効率的に行えるようにする新たな手段を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上述の目的を達成するために、種々の研究と実験を重ねて得られた知見に基づいてなされたものでる。
【0007】
即ち、電極に使用する電極材を、平板状に成形して、それの表裏の両面に、表面側にだけ導通する接続口と、裏面側にだけ導通する接続口をそれぞれ設け、これら接続口にプラス側とマイナス側のリードを接続することで、陽極と陰極とが電極材自体で一体に結合して導通する極板を構成し、これを水中に浸漬して、通電したところ、この極板の陽極とした表面側において、酸素ガスが発生し、裏面側において、水素ガスが発生してくる結果が得られた。
【0008】
これは、通電により陽極側において水が分解して酸素ガスと水素イオンに変化し、その水素イオンが電極材を介して裏面側に流れ、そこで放電して水素ガスを発生させている、ということが推論される。
【0009】
この陽極と陰極とが表裏の両面に存在する形態の極板を用いて行う水の電気分解による水素の発生量は、陽極側において生成される水素イオンが陰極に向け移動するときに殆ど抵抗を受けないことから、電解質を加えた水中に、一対の電極を互いに離した位置に配設して、それら電極に通電することで行う従前の電気分解による水素の発生手段に比して、入力した電力を基準とする対比においてはるかに多いものとなる。
【0010】
また、この電極材を一対に対向する表裏の二つの面を具備する平板状に形成して、それの一方の面を陽極とし他方の面を陰極とした極板を、水中に浸漬し、これに通電することで水素ガスを発生させる手段は、分解する水に電解質を加えることを要さずに行えることで、酸・アルカリを扱う危険から解放されるようになる。
【0011】
そして、このことから、本発明においては、上述の目的を達成するための手段として、電極材を一対に対向する表裏の二つの面を具備する平板状に成形し、それに一方の面にだけ導通する接続口と他方の面にだけ導通する接続口を設けて、一方の面を陽極とし他方の面を陰極とした極板を形成し、この極板を、分解槽内に、そこに張り込まれる分解すべき水の中に浸漬状態に設置して、これに通電することで水を分解せしめて水素ガスを発生させることを特徴とする水素発生装置を提起するものである。
【0012】
また、電極材を表裏の二面を具備する平板状に成形して、それの一方の面を陽極とし、他方の面を陰極とした極板を用い、その極板を水中に浸漬して、通電することで、水を分解して酸素ガスと水素ガスとを発生させるとき、極板を、複数枚、相互に近接させて積層状態に並列させて組み合わせて、水素ガスの発生装置を構成するようにすると、そのときに発生してくる水素ガスの量が、1枚の極板を用いた場合に発生してくる水素ガスの量に組み合わせた極板の枚数を掛けた量よりも多くなってくる結果が得られた。
【0013】
これは、積層状態に並列させて組み合わせた各極板が、相互に電磁誘導をおこして、イオンの発生率を向上させていることによるものと推理される。
【0014】
このことから、本発明においては、上述の手段に併せて、電極材を一対に対向する表裏の二つの面を具備する平板状に成形し、それに一方の面にだけ導通するターミナルと他方の面にだけ導通するターミナルを設けて、一方の面を陽極とし他方の面を陰極とした極板を形成し、この極板を複数枚、相互に近接して並列するよう配置して、分解槽内に、そこに張り込まれる分解すべき水の中に浸漬状態に設置し、これら極板に通電することで水を分解せしめて水素ガスを発生させることを特徴とする水素発生装置を提起するものである。
【0015】
さらに、この極板の陽極とする表面側と陰極とする裏面側との表裏の両面に、それぞれイオン交換膜を近接状態に配置して、極板を、それの陽極および陰極との面に対しイオン交換膜を組み合わせた形態のものに構成すると、水を陽極側において酸素ガスと水素イオンとに分解して陰極側において水素ガスを発生させる極板の性能が向上して、イオンの発生の効率が一層向上してくること、および、このようにイオン交換膜と組み合わせた極板を、複数枚積層状態に並列させて水素ガス発生装置を構成すると、極板を並列組み合わせることによる水素ガスの発生量の増大の割合が一層顕著なものとなる結果が得られた。
【0016】
そして、このことから、上述の手段に併せて、さらに、分解槽内に設置する極板の、陽極とする一方の面および陰極とする他方の面の各外面側に、イオン交換膜を密接状態に配設しておくことを特徴とする請求項1記載の水素発生装置および、分解槽内に、並列させて設置する複数枚の極板の、それぞれの陽極とする一方の面および陰極とする他方の面の各外面側に、イオン交換膜を密接状態に配設しておくことを特徴とする請求項2記載の水素発生装置の手段を提起するものである。
【0017】
【発明の実施の形態】
次に本発明手段の実施の態様を説明する。
図1は本発明手段の実施に用いる極板1を示す。
【0018】
極板1は、電極材を、表面および裏面となる対向する広い2つの面を具備する薄手の平板状に成形して形成する。極板1には、端子の取付用の取付穴10を、表裏に透通するように設ける。この取付穴10は、極板1の中央部位または周縁部位等の適宜の位置に設けてよいが、この例においては、極板1の四隅のコーナー部位にそれぞれ形設している。
【0019】
そして、この取付穴10…にブッシュ2を介し接続口とする陽極端子3および陰極端子4を挿通して締着することでこれらを装着するが、そのブッシュ2は絶縁ブッシュに形成して、図2に示しているように、陽極端子3にあっては、極板1の裏面側1bとの導通を遮断して表面側1aにだけ導通し、陰極端子4にあっては極板1の表面側1aとの導通を遮断して裏面側1bにだけ導通する状態に接続し、これにより、極板1の表面側1aが陽極となって裏面側1bが陰極となるようにする。
【0020】
極板1の陽極とする表面側1aおよび陰極とする裏面側1bは、極板1を図面に従い説明するのに定めているもので、平板状に成形する極板1自体には表裏の別はなく、何れの側を表面側1aとしてよいものである。
【0021】
図1において、11は極板1で電子の飛翔・導通をよくするために極板1の表面側1aとに形設した溝であり、ジグザグ状に蛇行する形状に形設してある。
【0022】
図3は、上述の極板1に陽極端子3と陰極端子4とを組み付けて組み立てた電極aを示す。この電極aは、極板1の四隅のコーナー部位に開設した取付穴10のうちの、対向する2つのコーナー部の取付穴10・10に陽極端子3をそれぞれ取り付け、これと別の対向するコーナー部位の取付穴10・10に陰極端子4をそれぞれ取り付けて、前述の2つの陽極端子3・3を入力端子としてここから電力を入力し、2つの陰極端子4・4を出力端子としてアース側に導くようにしている。
【0023】
図4は、この電極aを、分解する水が張られる分解槽b内に、水中に浸漬状態として設置して構成した水素発生装置Aを示す。
【0024】
この水素発生装置Aは、陽極からの酸素ガスの発生と陰極からの水素ガスの発生とが、極板1の表面側1aと裏面側1bとの極く近い位置で行われることで、極板1の上方にこれら酸素ガスと水素ガスとを合わせて回収する回収器cを設けて、ここに回収した酸素ガスおよび水素ガスを低温で湿度を保持せしめた分離槽dに導き、ここで、酸素ガスと水素ガスとに分離して、それぞれをタンクに貯留していくようにしている。
【0025】
この水素発生装置Aにおいて、極板1の表裏の両面側に、イオン交換膜eを組み合わせて装設するときは、そのイオン交換膜eは、それぞれ極板1の表面側1aおよび裏面側1bに密接状態でそれらを覆い込むように装設してよい。
【0026】
次に図5は、上述の極板1を多数枚並列させて組み合わせた形態の水素発生装置Aを示す。
【0027】
分離槽d内に並列させた極板1は、前述の図3および図4に示している極板1か、または同様に構成したもので、それらに設けた陽極端子3および陰極端子4は、それぞれ直列に接続させてある。
【0028】
また、各極板1…の陽極側とする表面側1aおよび裏面側1bには、それぞれイオン交換膜eが、密接状態に装設してある。
【0029】
また、この装置においても、分解槽b内には、そこに並列させた極板1…の上方に回収器cを配設し、これに混合状態で回収した酸素ガスおよび水素ガスを分離槽dに導いて酸素ガスと水素ガスとに分離し、それぞれ各別のタンクに導き貯留していくようにしている。
【0030】
【発明の効果】
以上説明したように、本発明による水素発生装置は、水に浸漬させた電極に通電することで、水を原料とし、その水を分解して水素を発生させるのに、通電により陽極側に発生させた水素イオンを、陰極側に移動させるのに、極板を構成する電極機自体を介して行わせるようにすることから、水に電解質を加えることなく、かつ、水素イオンの移動に伴う抵抗による損失を少なくして水素を発生させ得るので水素ガスを発生させる効率を良くし得る。
【図面の簡単な説明】
【図1】本発明手段に用いる成形した極板の斜視図である。
【図2】同上極板の接続口とする陽極端子および陰極端子を取り付けた状態の部分の断面図である。
【図3】同上極板を電極に組み立てた状態の斜視図である。
【図4】同上の電極を分解槽内に組み付け設置して組み立てた水素発生装置の断面図である。
【図5】電極に組み立てた極板を多連に並列させて分解槽内に設置した形態の水素発生装置の一部破断した斜視図である。
【符号の説明】
A…水素発生装置、a…電極、b…分解槽、c…回収器、d…分離槽、e…イオン交換膜、1…極板,1a…表面側、1b…裏面側、10…取付穴、11…溝、2…ブッシュ、3…陽極端子、4…陰極端子。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen generating means for extracting water as a raw material by supplying hydrogen to an electrode immersed in water.
[0002]
[Prior art]
2. Description of the Related Art As a means for extracting water into hydrogen using water as a raw material, a means based on electrolysis of water is conventionally known. In this means, water containing an electrolyte such as sulfuric acid is poured into a tank formed in the shape of a water tank, and a pair of electrodes serving as an anode and a cathode are immersed in the water. This is a means for electrolyzing water as an electrolytic solution to generate oxygen and hydrogen as gases.
[0003]
[Problems to be solved by the invention]
The means for extracting hydrogen by electrolyzing water by the conventional energization is to add an acid or alkali to water to ionize it, and to give the ionized hydrogen ions and oxygen ions electricity from the negative and positive electrodes, respectively. To generate oxygen gas and hydrogen ions at the anode by the discharge at the electrode, and generate hydrogen gas by the discharge at the cathode due to the movement of the hydrogen ions to the cathode. There is a problem that the amount of hydrogen gas generated with respect to the input electric power is small and the efficiency is poor due to the loss caused by the power.
[0004]
Further, since it is necessary to add an acid or alkali electrolyte to ionize water, there is a problem that handling is dangerous.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem occurring in the conventional means, and has been developed to reduce the loss of input electric power and efficiently generate hydrogen gas by energization. It is intended to provide a means.
[0006]
[Means for Solving the Problems]
The present invention has been made based on findings obtained through repeated research and experiments in order to achieve the above-mentioned object.
[0007]
That is, the electrode material used for the electrode is formed into a flat plate shape, and on both the front and back surfaces thereof, a connection port that conducts only to the front side and a connection port that conducts only to the back side are provided. By connecting the positive and negative leads, the anode and cathode are integrally connected by the electrode material itself to form an electrode plate that conducts electricity.When this is immersed in water and energized, this electrode plate As a result, oxygen gas was generated on the front side of the anode and hydrogen gas was generated on the back side.
[0008]
This means that water is decomposed on the anode side by electricity and changes to oxygen gas and hydrogen ions, and the hydrogen ions flow to the back side through the electrode material, where they are discharged to generate hydrogen gas. Is inferred.
[0009]
The amount of hydrogen generated by the electrolysis of water using an electrode plate in which the anode and the cathode are present on both the front and back surfaces is almost equal to the resistance when hydrogen ions generated on the anode side move toward the cathode. Because it is not received, the pair of electrodes is arranged in a position apart from each other in the water to which the electrolyte is added, and compared with the conventional means for generating hydrogen by electrolysis performed by energizing the electrodes, the input is performed. It is much more in comparison with power.
[0010]
In addition, this electrode material is formed in a flat plate shape having two front and back surfaces opposed to each other in a pair, and an electrode plate having one surface as an anode and the other surface as a cathode is immersed in water. Since the means for generating hydrogen gas by energizing the water can be performed without adding an electrolyte to decomposed water, the danger of handling acids and alkalis is released.
[0011]
In view of this, in the present invention, as a means for achieving the above-mentioned object, the electrode material is formed into a flat plate shape having two front and back surfaces opposed to each other, and only one surface thereof is electrically connected to the electrode material. To form an electrode plate with one surface serving as an anode and the other surface serving as a cathode. The present invention provides a hydrogen generator characterized in that the hydrogen generator is installed in a state of being immersed in water to be decomposed and energized to decompose water to generate hydrogen gas.
[0012]
Also, the electrode material is formed into a flat plate having two surfaces, front and back, and one of the surfaces is used as an anode, and the other is used as a cathode, and the electrode is immersed in water. When electricity is supplied to decompose water to generate oxygen gas and hydrogen gas, a hydrogen gas generating device is configured by combining a plurality of electrode plates in close proximity to each other and in parallel in a stacked state. By doing so, the amount of hydrogen gas generated at that time becomes larger than the amount obtained by multiplying the amount of hydrogen gas generated when one electrode plate is used by the number of combined electrode plates. The result that came was obtained.
[0013]
This is presumed to be due to the fact that the respective electrode plates combined in parallel in the stacked state induce mutual electromagnetic induction to improve the ion generation rate.
[0014]
In view of this, in the present invention, in addition to the above-described means, the electrode material is formed into a flat plate shape having two front and back surfaces facing each other, and a terminal that conducts only to one surface and the other surface are formed. To form an electrode having one surface as an anode and the other surface as a cathode, and arranging a plurality of such electrodes in parallel with each other in close proximity to each other. to, and Installation immersion state in the water to be decomposed to Harikoma there poses a hydrogen generating apparatus characterized by generating the hydrogen gas caused to decompose water by energizing these electrode plates Things.
[0015]
Furthermore, ion exchange membranes are arranged in close proximity to the front and back surfaces of the front and rear surfaces of the electrode plate, ie, the anode and the cathode, respectively. When configured in the form of a combination of ion-exchange membranes, the performance of the electrode plate, which decomposes water into oxygen gas and hydrogen ions on the anode side and generates hydrogen gas on the cathode side, improves the efficiency of ion generation. The hydrogen gas generation device is constructed by combining a plurality of electrode plates in parallel with each other in such a manner that a plurality of electrode plates combined with an ion exchange membrane are arranged in a stacked state. The result was that the rate of increase in the amount was more pronounced.
[0016]
From this, in addition to the above-mentioned means, furthermore, the ion exchange membrane is in intimate contact with each of the outer surfaces of one surface serving as the anode and the other surface serving as the cathode of the electrode plate installed in the decomposition tank. The hydrogen generating apparatus according to claim 1, wherein a plurality of electrode plates are arranged in parallel in the decomposition tank, and each of the anode plates has one surface and a cathode. 3. The means for a hydrogen generator according to claim 2, wherein an ion exchange membrane is disposed in close contact with each outer surface of the other surface.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described.
FIG. 1 shows an electrode plate 1 used for implementing the means of the present invention.
[0018]
Plate 1, the electrode material is formed by molding a thin flat plate having a wide two opposite surfaces a front surface and rear surface. The electrode plate 1 is provided with mounting holes 10 for mounting terminals so as to penetrate both sides. The mounting holes 10 may be provided at appropriate positions such as a central portion or a peripheral portion of the electrode plate 1, but are formed at four corners of the electrode plate 1 in this example.
[0019]
Then, the anode terminal 3 and the cathode terminal 4 serving as connection ports are inserted into the mounting holes 10 through the bush 2 and tightened to mount them. The bush 2 is formed as an insulating bush. As shown in FIG. 2, in the anode terminal 3, conduction with the back side 1 b of the electrode plate 1 is interrupted and conduction is conducted only on the front side 1 a, and in the cathode terminal 4, the surface of the electrode plate 1 The connection with the side 1a is interrupted and the connection is made so as to conduct only to the back side 1b, whereby the front side 1a of the electrode plate 1 becomes an anode and the back side 1b becomes a cathode.
[0020]
The front side 1a serving as an anode and the back side 1b serving as a cathode of the electrode plate 1 are defined for explaining the electrode plate 1 with reference to the drawings. Instead, either side may be the front side 1a.
[0021]
In FIG. 1, reference numeral 11 denotes a groove formed on the electrode plate 1 and on the front side 1a of the electrode plate 1 to improve the flight and conduction of electrons, and is formed in a zigzag meandering shape.
[0022]
FIG. 3 shows an electrode a assembled by assembling the anode terminal 3 and the cathode terminal 4 on the electrode plate 1 described above. The electrode a is formed by mounting the anode terminals 3 in the mounting holes 10 at two opposing corners of the mounting holes 10 formed at the four corners of the electrode plate 1, respectively, The cathode terminals 4 are respectively attached to the mounting holes 10 of the parts, and power is input from the two anode terminals 3.3 as input terminals, and the two cathode terminals 4.4 are output terminals to the ground side. I try to guide.
[0023]
FIG. 4 shows a hydrogen generator A in which this electrode a is installed in a decomposition tank b filled with water to be decomposed and immersed in water.
[0024]
In the hydrogen generator A, the generation of oxygen gas from the anode and the generation of hydrogen gas from the cathode are performed at a position very close to the front side 1a and the back side 1b of the electrode plate 1. A recovering device c for recovering the oxygen gas and the hydrogen gas together is provided above the fuel cell 1, and the recovered oxygen gas and the hydrogen gas are led to a separation tank d in which the humidity is maintained at a low temperature. Gas and hydrogen gas are separated and stored in tanks.
[0025]
In this hydrogen generator A, when the ion exchange membrane e is installed in combination on both the front and back sides of the electrode plate 1, the ion exchange membrane e is placed on the front side 1a and the back side 1b of the electrode plate 1, respectively. They may be mounted so as to cover them closely.
[0026]
Next, FIG. 5 shows a hydrogen generator A in which a large number of the above-described electrode plates 1 are arranged in parallel and combined.
[0027]
The electrode plate 1 arranged in parallel in the separation tank d is the same as the electrode plate 1 shown in FIGS. 3 and 4 described above, or has the same configuration, and the anode terminal 3 and the cathode terminal 4 provided thereon are Each is connected in series.
[0028]
Further, ion exchange membranes e are provided in close contact with each other on the front side 1a and the back side 1b which are the anode side of each electrode plate 1.
[0029]
Also in this apparatus, in the decomposition tank b, a collector c is disposed above the electrode plates 1 arranged in parallel therewith, and oxygen gas and hydrogen gas collected in a mixed state are separated therefrom by the separation tank d. To separate them into oxygen gas and hydrogen gas, and each of them is stored in a separate tank.
[0030]
【The invention's effect】
As described above, the hydrogen generator according to the present invention generates water on the anode side by energizing an electrode immersed in water to generate water by using water as a raw material and decomposing the water to generate hydrogen. The hydrogen ions are moved to the cathode side via the electrode unit itself, which constitutes the electrode plate, so that the electrolyte is not added to the water and the resistance associated with the movement of the hydrogen ions. Hydrogen can be generated with less loss due to the hydrogen gas, so that the efficiency of generating hydrogen gas can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a molded electrode plate used in the means of the present invention.
FIG. 2 is a cross-sectional view of a state where an anode terminal and a cathode terminal serving as connection ports of the electrode plate are attached.
FIG. 3 is a perspective view showing a state where the pole plate is assembled to an electrode.
FIG. 4 is a cross-sectional view of the hydrogen generator assembled by assembling and installing the above electrode in a decomposition tank.
FIG. 5 is a partially cutaway perspective view of a hydrogen generator in which electrode plates assembled to electrodes are arranged in multiples and arranged in a decomposition tank.
[Explanation of symbols]
A: hydrogen generator, a: electrode, b: decomposition tank, c: recovery tank, d: separation tank, e: ion exchange membrane, 1: electrode plate, 1a: front side, 1b: back side, 10: mounting hole , 11 ... groove, 2 ... bush, 3 ... anode terminal, 4 ... cathode terminal.

Claims (4)

電極材を一対に対向する表裏の二つの面を具備する平板状に成形し、それに一方の面にだけ導通する接続口と他方の面にだけ導通する接続口を設けて、一方の面を陽極とし他方の面を陰極とした極板を形成し、この極板を、分解槽内に、そこに張り込まれる分解すべき水の中に浸漬状態に設置して、これに通電することで水を分解せしめて水素ガスを発生させることを特徴とする水素発生装置。The electrode material is molded into a flat plate having two surfaces, one on the front and the other on the back, and a connection port that conducts only on one surface and a connection port that conducts only on the other surface are provided. Then, an electrode plate having the other surface as a cathode is formed, and the electrode plate is placed in a decomposition tank in a state of being immersed in water to be decomposed, and the electricity is supplied to the electrode plate to supply water. A hydrogen generator that decomposes hydrogen to generate hydrogen gas. 電極材を一対に対向する表裏の二つの面を具備する平板状に成形し、それに一方の面にだけ導通する接続口と他方の面にだけ導通する接続口を設けて、一方の面を陽極とし他方の面を陰極とした極板を形成し、この極板を複数枚、相互に近接して並列するよう配置して、分解槽内に、そこに張り込まれる分解すべき水の中に浸漬状態に設置し、これら極板に通電することで水を分解せしめて水素ガスを発生させることを特徴とする水素発生装置。The electrode material is molded into a flat plate having two surfaces, one on the front and the other on the back, and a connection port that conducts only on one surface and a connection port that conducts only on the other surface are provided. And forming an electrode plate having the other surface as a cathode, arranging a plurality of these electrode plates in parallel with each other in close proximity to each other, and in the decomposition tank, in the water to be decomposed which is stuck there. A hydrogen generator, which is installed in an immersed state and energizes these electrodes to decompose water to generate hydrogen gas. 分解槽内に設置する極板の、陽極とする一方の面および陰極とする他方の面の各外面側に、イオン交換膜を密接状態に配設しておくことを特徴とする請求項1記載の水素発生装置。2. The ion exchange membrane is disposed in close contact with each of the outer surfaces of one of an anode plate and the other cathode plate of an electrode plate installed in the decomposition tank. Hydrogen generator. 分解槽内に、並列させて設置する複数枚の極板の、それぞれの陽極とする一方の面および陰極とする他方の面の各外面側に、イオン交換膜を密接状態に配設しておくことを特徴とする請求項2記載の水素発生装置。In the decomposition tank, the ion-exchange membrane is disposed in close contact with each of a plurality of electrode plates to be installed in parallel, on each outer surface side of one surface serving as an anode and the other surface serving as a cathode. 3. The hydrogen generator according to claim 2, wherein:
JP2002243744A 2002-08-23 2002-08-23 Hydrogen generator Expired - Fee Related JP3781705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243744A JP3781705B2 (en) 2002-08-23 2002-08-23 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243744A JP3781705B2 (en) 2002-08-23 2002-08-23 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2004083956A true JP2004083956A (en) 2004-03-18
JP3781705B2 JP3781705B2 (en) 2006-05-31

Family

ID=32052434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243744A Expired - Fee Related JP3781705B2 (en) 2002-08-23 2002-08-23 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP3781705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203388A (en) * 2016-05-09 2017-11-16 義夫 大河 Liquid fuel reduction device used in diesel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203388A (en) * 2016-05-09 2017-11-16 義夫 大河 Liquid fuel reduction device used in diesel engine

Also Published As

Publication number Publication date
JP3781705B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
CN103806014B (en) A kind of proton exchange membrane water electrolyzer device
CN1966777B (en) Water electrolysis device with proton exchange membrane
TW499779B (en) Fuel cell with cooling system based on direct injection of liquid water
SU1618281A3 (en) Electrolyzer for producing chlorine and solution of hydroxide of alkali metal
US4425215A (en) Gas generator
US20210075078A1 (en) Aluminum-air battery units and stacks
JP2008536015A (en) Electrochemical cell structure
JPH09143778A (en) Oxygen/hydrogen electrolyzed gas generating device
KR940010444A (en) Membrane flow cell battery
JP6001717B2 (en) Fuel cell
JP2011086549A (en) Fuel cell system
JP4852157B2 (en) Water electrolysis equipment
US3497388A (en) Hybrid gas-depolarized electrical power unit
JP2004083956A (en) Hydrogen production device
KR100812757B1 (en) Electric generator utility by using fuel cell coupled electrolyzer for education
CN212085141U (en) Novel fuel cell system, power generation system and electric vehicle
KR101289112B1 (en) Separator for stack of solid oxide fuel cell
JP2004250736A (en) Water electrolysis unit
US7914934B2 (en) Hydro-oxy fuel generator
CN110880607A (en) Hydrogen-oxygen-hydrogen material, preparation method, electrolytic water catalytic material, fuel cell system and electric vehicle system
JP2007234315A (en) Fuel cell
JP4160338B2 (en) Electrode plate used in hydrogen generator, hydrogen generator and power generator
CN219117570U (en) Water electrolysis device and water welding machine
JP2003268581A (en) Gaseous hydrogen and oxygen mixture generator
CN217025436U (en) From high-efficient electrolysis water module of taking ionic membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees