JP2004083427A - Cyclic hexapeptide and proteasome inhibitor - Google Patents

Cyclic hexapeptide and proteasome inhibitor Download PDF

Info

Publication number
JP2004083427A
JP2004083427A JP2002243200A JP2002243200A JP2004083427A JP 2004083427 A JP2004083427 A JP 2004083427A JP 2002243200 A JP2002243200 A JP 2002243200A JP 2002243200 A JP2002243200 A JP 2002243200A JP 2004083427 A JP2004083427 A JP 2004083427A
Authority
JP
Japan
Prior art keywords
group
amino acid
phenylalanyl
side chain
protected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002243200A
Other languages
Japanese (ja)
Inventor
Yasuhiko Muraoka
村岡 靖彦
Ryuichi Sekizawa
関澤 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microbial Chemistry Research Foundation
Original Assignee
Microbial Chemistry Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microbial Chemistry Research Foundation filed Critical Microbial Chemistry Research Foundation
Priority to JP2002243200A priority Critical patent/JP2004083427A/en
Publication of JP2004083427A publication Critical patent/JP2004083427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel cyclic hexapeptide which exhibits proteasome inhibiting activity. <P>SOLUTION: The novel cyclic hexapeptide exhibiting a proteasome inhibiting activity has a structure of a cyclo(-X-phenylalanyl-prolyl-X-phenylalanyl-prolyl) (wherein X is an α-amino acid residue, and the functional group as its side chain may be protected or modified). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プロテアソーム阻害活性を示す新規な環状ヘキサペプチドに関する。さらに本発明は、その新規な環状ヘキサペプチドを有効成分とするプロテアソーム阻害剤に関する。
【0002】
【従来の技術】
種々な多数の酵素阻害物質が知られており、また種々な多数の生理活性物質が知られている。酵素に阻害活性を有する物質、すなわち酵素阻害剤をもって、抗炎症剤あるいは抗腫瘍剤を含めて幅広い疾病に有効な薬剤として応用するための多くの研究がなされている。
【0003】
【発明が解決しようとする課題】
癌細胞の増殖や炎症が起きる際に、極めて重要な役割を果たす酵素にプロテアソームが挙げられる。この酵素の阻害物質を提供することによって、従来知られているまたは使用されている既知の抗炎症性化合物とは、異なる作用点を有し且つ新規な化学構造を有した抗炎症性を示す化合物の創製が期待され、そのための研究が行われている。また抗腫瘍性物質は、一般に強い毒性を有するものが多く、その抗腫瘍剤としての使用に当たって大きな制約となっている。そこで、毒性が低く且つ新規な化学構造を有する抗腫瘍性物質を発見または創製することが常に望まれており、そのための研究が行われている。
【0004】
【課題を解決するための手段】
本発明者らは、上記の要望に応えることができる新規なプロテアソーム阻害活性物質を提供することを目的に、従来より有用な生理活性物質の開発と実用化の研究を促進してきた。その結果、放線菌の一種であるストレプトミセス属に属するストレプトミセス sp.MK600−CF7株(FERM P−16609として寄託)が新しい構造骨格を有する生理活性物質を生産していることを見い出した。この新規生理活性物質を単離することに成功し、化学構造を決定し、それぞれを生理活性物質MK600−A,B,CおよびDと命名した。更に、この新規生理活性物質がプロテアソーム阻害活性を有すことを見出した(特願2001−95511号、「新規生理活性物質MK600−A, B, CおよびDとその製造方法」)。
【0005】
前記のMK600−A物質、MK600−B物質、MK600−C物質およびMK600−D物質はそれぞれ下記の式(A)、式(B)、式(C)および式(D)で表される環状ヘキサペプチドである。
【0006】

Figure 2004083427
【0007】
上記のMK600−A, B, CおよびD物質の構造をつぶさに検討すると、共通部分としてフェニルアラニル−プロリン(Phe−Pro)の配列を含有する6個のアミノ酸からなる環状ヘキサペプチド構造を見出すことができる。そこで、本発明者らはMK600物質の活性増大を意図して研究を行い、X−フェニルアラニル−プロリン配列(但し、Xは第三のアミノ酸を表す)からなる保護されたトリペプチド誘導体を合成し、次にこれの2量体を作り、さらに保護されたトリペプチド2量体を環化し且つ脱保護して環状のヘキサペプチドを合成することに成功した。さらにそのプロテアソーム阻害活性を検討し本発明を完成した。
【0008】
すなわち、第1の本発明では、次式(I)
Figure 2004083427
〔式中、Rは水素を表すか、または通常のα−アミノ酸側鎖、あるいは官能基を保護された通常のα−アミノ酸の側鎖、官能基を修飾されたα−アミノ酸側鎖を表す〕で表された環状ヘキサペプチドが提供される。ここで通常のα−アミノ酸とは、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、メチオニン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、クルタミンであり、また官能基を保護又は修飾された通常のα−アミノ酸としてはセリン、トレオニン、チロシン、アスバラギン酸、グルタミン酸、のエステル類、ヒスチジン、リジン、アルギニン等が挙げられる。
【0009】
また、前記された通常のα−アミノ酸側鎖とは、既知のα−アミノ酸のα炭素に側鎖として結合しているアルキル基、あるいは官能基(水酸基、アミノ基、カルボキシル基、カルボキサミド基、イミダゾール基、グアニジル基またはフェニル基など)を置換されているアルキル基を指す。
【0010】
第1の本発明による式(I)の環状ヘキサペプチドの好ましい具体例には、次式(Ia)
Figure 2004083427
のシクロヘキサペプチド;あるいは次式(Ib)
Figure 2004083427
のシクロヘキサペプチド;または式(Ib)のシクロヘキサペプチドのリジン部分(Lys)のアミノ基がベンジルオキシカルボニル基、p−クロロベンジル基、p−メトキシベンジル基、2−フリルメチル基、3−ピリジルメチル基、シクロヘキシルメチル基、シクロヘキシル基またはイソプロピル基で保護された誘導体;あるいは次式(Ic)
Figure 2004083427
のシクロヘキサペプチド;あるいは式(Ic)のシクロヘキサペプチドのグルタミン酸部分(Glu)のカルボキシル基がベンジル基で保護された誘導体が包含される。
【0011】
なお、上記の式(Ia)、式(Ib)、式(Ic)のそれぞれのシクロヘキサペプチドは、各々の式の6番目のProの後の部位で切断された直鎖状アミノ酸配列を有するものと見なした場合について、それらシクロヘキサペプチドのアミノ酸配列を後記の配列表の配列番号1、配列番号2、配列番号3にそれぞれ示される。
【0012】
第1の本発明の環状ヘキサペプチドは、通常実施されるペプチド合成法を組み合わせて合成することができる。すなわちプロリンのベンジルエステルまたはトリクロロエチルエステルなどのエステルを、該エステル形成基とは異なる反応条件で脱保護可能なアミノ保護基でアミノ基を保護されたフェニルアラニン、たとえばBoc−フェニルアラニンと縮合してジペプチドエステルを生成し、その後、そのジペプチドエステルのフェニルアラニン部分(Phe)のアミノ基を脱保護により遊離させる。アミノ基がBoc(すなわち第3級ブトキシカルボニル基)で保護されている場合はTFAまたは塩化水素−ジオキサン溶液、塩化水素−酢酸エチル溶液などの通常用いられる試薬をアミノ基からの脱保護に用いる。
【0013】
次に、ここに得られた遊離アミノ基をもつジペプチドエステルに対して、官能基を保護された第三のアミノ酸(X)をアミド縮合して保護トリペプチドエステルを合成する。この段階で十分精製をしたのち保護トリペプチドエステルの量を2分し、一方の保護トリペプチドエステルのアミノ末端を脱保護し、もう一方の保護トリペプチドエステルのカルボン酸末端を脱保護する。この場合の脱保護には通常の方法が用いられる。すなわちアミノ末端を脱保護するには、前述のTFAまたは塩化水素溶液を用いて脱保護でき、さらにカルボン酸末端を脱保護するにはベンジルエステルの場合では接触還元、接触水素移動還元、ケン化のいずれかの方法が用いられ、またトリクロロエチルエステルの場合では亜鉛−酢酸還元法が用いられる。
【0014】
次に、ここで得られた二種類の直鎖状の保護トリペプチドの遊離アミノ基をもつものと遊離カルボキシル基をもつものとをアミド縮合することによって、繰り返えされたアミノ酸配列を含有する保護ヘキサペプチドを合成する。次に、この保護ヘキサペプチドからカルボキシル保護基を前述の方法で除去し、次いでアミノ基から脱保護することによって直鎖状のヘキサペプチドのTFA又は塩酸塩とする。
【0015】
得られた直鎖状ヘキサペプチドの塩を大量のDMFまたはN−メチルピロリドンに溶解し、その溶液に過剰の炭酸水素ナトリウムを加え氷水で冷却攪拌し、さらにペプチドの環化に良く用いられる縮合剤、例えばDPPA(ジフェニル燐酸アジド)、PFPDP(ペンタフロロジフェニルフォスフィネート)などを加えてから室温〜5℃の程度の低温で3〜7日間攪拌して環化反応させる。環化の反応液を必要ならば減圧下に濃縮し、水で希釈後に酢酸エチルなどの溶媒で環状ヘキサペプチド生成物を抽出する。抽出液中には縮合剤の残滓が含まれるので、濃縮後にメタノールで平衡化したセファデックスLH20のカラムを通すことにより、容易に低分子のこれらの残滓を除く事ができる。得られた環状ヘキサペプチドは、さらに必要ならばシリカゲル、ODS−シリカゲルなどのクロマトグラフィーで精製することができる。
【0016】
前記の第三のアミノ酸としては、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、メチオニン、フェニルアラニン、チロシン、トリプトファン、アスバラギン酸、アスパラギン、クルタミン、グルタミン酸、ヒスチジン、リジン、アルギニンをあげることができる。
【0017】
前記の第三のアミノ酸が官能基を有したものであって、それが保護されていれば、通常の方法で脱保護してもよい。例えば、リジンのε−アミノ基がカルボベンジルオキシ基で保護されている場合には、接触還元または接触水素移動還元法で脱保護する。さらに、ここで新たに遊離した官能基は、通常行われている修飾をすることができる。例えばリジンのε−アミノ基は、アシル化、ウレタン化、アルキル化などの修飾を受けることができる。中でも、アルデヒド、ケトンとシアノ水素化ホウ素による還元的アルキル化は修飾に有効である。このようにして修飾された式(I)の環状ヘキサペプチドもシリカゲル、ODS−シリカゲル、セファデックスLH20 などのクロマトグラフィーで精製することができる。
【0018】
前記の式(1)で示される環状ヘキサペプチドのうちの代表的な化合物の中に存在する基Rの具体例を以下の表1に示す。また、表1には、その環状ヘキサペプチドの合成に第三のアミノ酸(X)として用いられたアミノ酸も併記する。表1で、Zはカルボベンジルオキシ基(すなわちベンジルオキシカルボニル基)の略号である。
【0019】
【表1】
Figure 2004083427
【0020】
さらに、第1の本発明の環状ヘキサペプチドはプロテアソーム阻害活性を有するものである。
【0021】
本発明による環状ヘキサペプチドのプロテアソーム阻害活性は下記の表2に示される。このプロテアソーム阻害活性は、以下のようにして測定した。即ち、マウス肝臓から調製したプロテアソームを含む画分を酵素として用い、またキモトリプシン様ペプチダーゼの蛍光基質(Suc−LLVY−MCA、ペプチド研究所製)を基質として用いた。これらの酵素と基質とを、ATP(アデノシン−5’−3リン酸)とともに本発明の環状ヘキサペプチドの存在下または非存在下で37℃にて30分間反応させた。反応終了後、プロテアソームにより分解され遊離した物質の蛍光強度を測定して、本発明の環状ヘキサペプチドの存在下の反応の場合と非存在下の反応の場合との比較によって、蛍光強度が環状ヘキサペプチドにより抑制される程度を測定し、この測定によって本発明の環状ヘキサペプチドのプロテアソーム阻害活性のIC50値を判定した。
【0022】
【表2】
Figure 2004083427
【0023】
従って、第2の本発明においては、式(I)の環状ヘキサペプチドを有効成分とするプロテアソーム阻害剤が提供される。
【0024】
【発明の実施の形態】
次に実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例中に示されたアミノ酸のD,Lは特記されているもの以外はL体である。
【0025】
以下の実施例において、薄層クロマトグラフィーではプレートとしてメルク社製品(SILICAGEL60F−254)を用いてRf値を測定した。展開溶媒として酢酸エチル−n−ヘキサン(1:1)を用いた場合にはRf1値として表示し、またクロロホルム−メタノール (10:1)を用いた場合にはRf2値として表示した。プレートとしてメルク社製品(RP−18F−254)を用い且つ展開溶媒として4%酢酸カリウム+0.8%クエン酸緩衝液−アセトニトリル(1:1)を用いた場合にはRf3値として表示した。
【0026】
【実施例1】
(a) Boc−D−フェニルアラニル−L−プロリン ベンジルエステルの合成
Boc−D−フェニルアラニン 1.5g(5.66mmol)、 L−プロリン ベンジルエステル、Tos 1.51g(6.25mmol,1.1当量)、Bop試薬2.76g(1.1当量)、HOBt 0.85g (1.1当量)をナス型フラスコに入れ、DMF12mlを加えてマグネチックスターラーで攪拌下に溶解した。得られた溶液を氷水で冷却し、トリエチルアミン2.38mlを加えた。30分後に氷水浴を取り除き、室温で1夜攪拌してアミド縮合反応を行った。
得られた反応液に酢酸エチル200mlを加え、200ml×2の10%クエン酸水溶液、4%炭酸水素ナトリウム水溶液で順次に洗浄し、飽和食塩水で1回洗浄した。その後、硫酸ナトリウムで1時間乾燥した。ろ過、濃縮すると無色水飴状物質2.93gを与えた(理論収量は2.56g)。これをクロロフォルムに溶かし、100mlのシリカゲルカラムにつけクロロフォルム−酢酸エチル(3:1)で展開、UVでモニター、濃縮乾固すると、2.66gの表題物質を得た。
【0027】
(b) D−フェニルアラニル−L−プロリン ベンジルエステル 塩酸塩の合成
上記Boc−D−フェニルアラニル−L−プロリン ベンジルエステルを5ml無水THFに溶解し、その溶液に15mlの4N塩酸/ジオキサンを加えた。溶液を収容するフラスコの口にしぼんだ風船をつけて外気と遮断し、室温で1時間放置した(Bocの脱離反応)。1時間後に濃縮する。さらに酢酸エチルを加えて濃縮を繰り返して乾固すると、表題物質を得た。
【0028】
(c) Boc−L−ロイシル−D−フェニルアラニル−L−プロリン ベンジルエステルの合成
4mmolのBoc−D−フェニルアラニンから上記の(b)で合成したD−フェニルアラニル−L−プロリン ベンジルエステル塩酸塩(2工程で100%と計算する)に対して1097mg(1.1当量)のBoc−L−ロイシン1水和物、1946mg(1.1当量)のBop試薬、595mg(1.1当量)のHOBtを加えてDMF12ml程度に溶解した。その溶液に1.68 ml(3当量)のトリエチルアミンを加えて1夜攪拌してアミド縮合反応をする。その反応液を減圧下に濃縮乾固した。150mlの酢酸エチルに溶かし、その溶液を実施例1(a)と同様に酸、アルカリで洗浄後、乾燥して濃縮乾固する。得られた乾燥固体をクロロフォルムに溶かし、100mlのシリカゲルカラムにつけクロロフォルム−酢酸エチル(3:1)で展開、UVでモニター、濃縮乾固すると、2012mgの表題物質(保護トリペプチド)を得た。
【0029】
(d) Boc−(L−ロイシル−D−フェニルアラニル−L−プロリル−) ベンジルエステルの合成
(i)実施例1(c)で得られたBoc−L−ロイシル−D−フェニルアラニル−L−プロリン ベンジルエステル 630mgを酢酸エチル10mlに溶かし、その溶液へパラジウム黒50mgを加えた。常温常圧下で一夜水素還元する(ベンジル基の脱離)。触媒を濾過して除き濃縮乾固してBoc−L−ロイシル−D−フェニルアラニル−L−プロリンを得た。
(ii)同じく実施例1(c)で得られた630mgのBoc−L−ロイシル−D−フェニルアラニル−L−プロリン ベンジルエステルを1mlの脱水THFに溶解し、その溶液に3mlの4N塩酸−ジオキサン溶液を加え常温一時間反応した(Bocの脱離)。その後濃縮、シロップ状の残滓に酢酸エチルを加え濃縮乾固してL−ロイシル−D−フェニルアラニル−L−プロリン ベンジルエステル塩酸塩を得た。
【0030】
(iii)上記の(ii)の生成物に上記(i)で得たBoc−L−ロイシル−D−フェニルアラニル−L−プロリンとBop試薬の591mg(1.2当量)とHOBtの166mg(1.1当量)とDMFの10mlを加え溶解し、これを氷水で冷却し、トリエチルアミン0.468mlを加えた。30分後に氷水浴を取り除き、室温で1夜攪拌してアミド縮合反応を行った。
生成された線状の保護ヘキサペプチドを含む反応液に酢酸エチル100mlを加え、100ml×2の10%クエン酸水溶液、4%炭酸水素ナトリウム水溶液、で洗浄し、さらに飽和食塩水で1回洗浄後、硫酸ナトリウムで1時間乾燥した。ろ過、濃縮すると無色水飴状物質1200mgを与えた。これをクロロフォルムに溶かし、100mlのシリカゲルカラムにつけクロロフォルム−酢酸エチル(3:1)で展開、UVでモニター、濃縮乾固して990mgの表題物質(保護ヘキサペプチド)を得た。
【0031】
(e) シクロ(−L−ロイシル−D−フェニルアラニル−プロリル−)の合成
実施例1(d)(iii)で得られたBoc−(L−ロイシル−D−フェニルアラニル−L−プロリル−) ベンジルエステル 900mgを、酢酸エチル15mlに溶かし、その溶液にパラジウム黒80mgを加え常温常圧下に一夜水素還元する(ベンジル基の脱離)。触媒を濾過して除き濃縮乾固してBoc−(L−ロイシル−D−フェニルアラニル−L−プロリル−)−OHを得た。
【0032】
次に得られた固体に、トリフロロ酢酸10mlを加え常温一時間反応してBocを脱離させた。その後、濃縮、得られたシロップ状の残滓に酢酸エチルを加え濃縮乾固する。得られた(L−ロイシル−D−フェニルアラニル−L−プロリル)−OHにDMF90mlを加えて溶かし、炭酸水素ナトリウム1g、を加え氷水で冷却、攪拌し、この溶液に0.3mlのDPPA(ジフェニル燐酸アジド)を加え5℃の低温実験室で90時間攪拌した(環化反応)。
【0033】
この環化反応液に酢酸エチル400mlを加え400ml×2の10%クエン酸水溶液、4%炭酸水素ナトリウム水溶液で洗浄、さらに飽和食塩水で1回洗浄後、硫酸ナトリウムで1時間乾燥し、ろ過、濃縮すると淡黄色の油状物質を得る。
【0034】
これを少量のメタノールに溶解し、メタノールで充填した500mlのセファデックスLH20カラムに注ぎ、メタノールで展開し、UV吸収をモニターして最初のピークを集める。溶媒を減圧で除き残滓を60%アセトニトリルに溶解し、ODSシリカゲル 37mmID×300mmのカラムに吸着させて段階的にアセトニトリルの濃度を高めて展開する。溶出液をUV吸収をモニターしてアセトニトリル90%で主生成物を得た。濃縮乾固して180mgの目的の表題物質(環状ヘキサペプチド)を無色固体として得た。
FAB−MS: m/z=715(M+H)
Rf2=0.53
【0035】
【実施例2】
(a) Boc−D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステルの合成
L−プロリン 2,2,2−トリクロロエチルエステル塩酸塩2.637g、Boc−D−フェニルアラニン 2.594g、Bop試薬4.695g、HOBt1.383gをDMF 16mlに溶解し、その溶液を氷水で冷却攪拌してトリエチルアミン3.915mlを加えて30分攪拌、室温で一夜攪拌した(アミド縮合反応)。
反応液に酢酸エチル200mlを加え、200ml×2の10%クエン酸水溶液、4%炭酸水素ナトリウム水溶液で洗浄、飽和食塩水で1回洗浄後、硫酸ナトリウムで1時間乾燥した。ろ過、濃縮すると無色固体として表題物質の4.565gを与えた。
FAB−MS: m/z=493(M+H)
Rf1=0.74
【0036】
(b) Boc−(ε−ベンジルオキシカルボニル−L−リジル)−D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステルの合成
実施例2(a)で得られたBoc−D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステル 2.6675gをTHF10mlに溶解し、その溶液に4N塩酸ジオキサン溶液20mlを加えて室温で一時間放置した後、減圧で塩酸、溶媒を溜去すると、D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステル塩酸塩を得た。
これにBoc−(ε−ベンジルオキシカルボニル)−L−リジンの2.266g、Bop試薬の2.647g、HOBTの809mgを添加し、15mlのDMFに溶解し、氷水で冷却攪拌してトリエチルアミン2.271mlを加えて冷却下に30分攪拌、室温で一夜攪拌した(アミド縮合反応)。
【0037】
反応液に酢酸エチル200mlを加え、200ml×2の10%クエン酸水溶液、4%炭酸水素ナトリウム水溶液で洗浄、飽和食塩水で1回洗浄後、硫酸ナトリウムで1時間乾燥した。ろ過、濃縮すると、無色固体としてBoc−(ε−ベンジルオキシカルボニル−L−リジル)−D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステルの3.372gを得た。
FAB−MS: m/z=755(M+H)
Rf1=0.32
【0038】
(c) Boc−(ε−ベンジルオキシカルボニル−L−リジル)−D−フェニルアラニル−L−プロリル−(ε−ベンジルオキシカルボニル−L−リジル)−D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステルの合成
(i)実施例2(b)で得られた物質3.34gを二等分した。一方をTHF3mlに溶解し、4N塩酸−ジオキサン溶液12mlを加えて室温一時間放置してBocを脱離した。その後、減圧で塩酸、溶媒を溜去し、ε−ベンジルオキシカルボニル−L−リジル−D−フェニルアラニル−L−プロリン 2,2,2−トリクロロエチルエステル塩酸塩を得た。
(ii)もう一方を、15mlの90%酢酸に溶解し、攪拌下に亜鉛末2gを三回に分け加え、一夜攪拌した(2,2,2−トリクロロエチル基の脱離反応)。過剰の亜鉛を含む不溶物を濾別し濾液を減圧下に濃縮した。残滓を100ml酢酸エチルに溶解し、水100mlで二回洗浄し飽和食塩水で洗浄し、さらに硫酸ナトリウムで乾燥後に減圧下に濃縮乾固してBoc−(ε−ベンジルオキシカルボニル−L−リジル)−D−フェニルアラニル−L−プロリンを得た。
【0039】
(iii)これら両者、すなわち上記の(i)の生成物と(ii)の生成物を併せBop試薬1077mg、HOBt330mgを加えて10mlDMFに溶解し、氷冷攪拌下にトリエチルアミン0.33mlを加えた。一時間後室温に戻し一夜攪拌した(アミド縮合反応)。  反応液に酢酸エチル200mlを加え、200ml×2の10%クエン酸水溶液、4%炭酸水素ナトリウム水溶液で洗浄、飽和食塩水で1回洗浄後、硫酸ナトリウムで1時間乾燥した。ろ過、濃縮すると無色固体2.586gを得た。これを10mlのメタノールに溶解しメタノールで充填したセファデックスLH20、1Lのカラムに注ぎメタノールで展開した。溶出液を紫外部吸収をモニターして分画した。前半はHPLC分析で単一であったので濃縮乾固して1.178gの固体を得た。後半は不純物を含み1.036gであった。これをクロロフォルムに溶解して200mlのシリカゲルカラムに吸着、クロロフォルム:メタノール(40:1)で展開し、837mgの目的物を得た。合計収率:2.005g。
FAB−MS: m/z=1175(M+H)
Rf1=0.10
【0040】
(d) シクロ(−ε−ベンジルオキシカルボニル−L−リジル−D−フェニルアラニル−プロリル−ε−ベンジルオキシカルボニル−L−リジル−D−フェニルアラニル−プロリル−)の合成
実施例2(c)で得られた生成物の物質1.55gを11mlの90%酢酸に溶解して、その溶液に攪拌下に亜鉛末1gを三回に分け加え、一夜攪拌下に反応した。過剰の亜鉛を含む不溶物を濾別し濾液を減圧濃縮した。残滓を100ml酢酸エチルに溶解し水100mlで洗浄し減圧濃縮乾固した。残滓にメタノールを加え溶解しメタノールで充填したセファデックスLH20、200mlのカラムに注ぎ、メタノールで展開した。UVでモニターして最初のピークを集めて減圧濃縮乾固し1.343gを得た。
このうち1.303gにトリフルオロ酢酸14mlを加えて一時間攪拌した。減圧下トリフルオロ酢酸を溜去し残滓にトルエン3mlを加えて減圧濃縮を二回行って遊離したアミノ基およびカルボキシル基を有したヘキサペプチドのトリフルオロ酢酸塩を得た。これを100mlDMFに溶解し、炭酸水素ナトリウム760mgを加えて氷水で冷却下に攪拌してジフェニル燐酸アジド0.6mlを加えた。5℃の低温実験室で64時間攪拌した。
【0041】
反応液を600mlの酢酸エチルで希釈し、400mlの4%炭酸水素ナトリウム水溶液で二回、10%クエン酸水溶液、飽和食塩水溶液で洗浄後硫酸ナトリウムで一時間乾燥、ろ過、濃縮すると、淡黄色の油状物質を得る。これを少量のメタノールに溶解し、メタノールで充填した500mlのセファデックスLH20カラムに注ぎ、メタノールで展開し、UV吸収をモニターして最初のピークを集める。溶媒を減圧で除き1.036mgの無色固体として得た。これを少量のクロロフォルムに溶解し、クロロフォルムで充填したシリカゲル200mlのカラムに注ぎクロロフォルム:メタノール(40:1)ついで(20:1)で展開した。UV吸収をモニターして分画を集め濃縮乾固して885mgの無色固体を得た。60%アセトニトリルに溶解しODSシリカゲルクロマトグラフィーでさらに精製をすると、728mgの表題物質を得た。
FAB−MS: m/z=1013(M+H)
Rf2=0.44
【0042】
(e) シクロ(−リジル−D−フェニルアラニル−プロリル−リジル−D−フェニルアラニル−プロリル−)の合成
実施例2(d)の生成物380mgを5mlのメタノールに溶解して、その溶液に少量の水で湿したパラジウム黒48mgを加えて攪拌し、これに5%蟻酸アンモニウムのメタノール溶液6mlを加えた攪拌を続ける。7時間後HPLCで原料物質の消失を認めたので濾過、減圧濃縮して残滓を2mlのメタノールに溶解しメタノールで充填したセファデックスLH20のカラムに注ぎメタノールで展開し312mgの表題物質の蟻酸塩を得た。
FAB−MS: m/z=745(M+H)
Rf3=0.57
【0043】
【実施例3】
(a) Boc−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリン 2,2,2−トリクロロエチルエステルの合成
実施例2(b)と同様にして、Boc−ε−ベンジルオキシカルボニル−L−リジンの代わりに用いられるBoc−グルタミン酸δ−ベンジルエステル614mgと、807mgのBoc−D−フェニルアラニル−プロリン−L−プロリン 2,2,2−トリクロロエチルエステルから製造したD−フェニルアラニル−プロリンL−プロリン 2,2,2−トリクロロエチルエステル塩酸塩とを用いて、アミド縮合した。反応液を実施例2(b)と同様に処理し872mgの表題物質を得た。
【0044】
(b) Boc−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリル−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリン 2,2,2−トリクロロエチルエステルの合成
実施例3(a)で得られたBoc−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリン 2,2,2−トリクロロエチルエステル776mgを二等分した。実施例
2(c)と同様に一方を酢酸−亜鉛末で処理して且つもう一方を塩酸−ジオキサンで処理した後にBop試薬とHOBtでアミド縮合した。実施例2(c)と同様に後処理をして表題物質の605.4mgを得た。
【0045】
(c) シクロ−(−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリル−)の合成
実施例3(b)で得られたBoc−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリル−(δ−ベンジル)グルタミル−D−フェニルアラニル−プロリン 2,2,2−トリクロロエチルエステル580mgを実施例2(d)と同様に酢酸−亜鉛末で処理し且つTFA処理して遊離のへキサペプチドを得た。さらに、希釈DMF溶液中でDPPA−炭酸水素ナトリウムで環化し反応を行った。反応液から抽出、セファデックスLH20クロマトグラフィー、ODS−シリカゲルクロマトグラフィーで精製し、表題物質302mgを得た。
FAB−MS: m/z=927(M+H)
Rf2=0.42
なお、上記(c)の生成物を実施例2(e)と同様にパラジウム黒の存在下にベンジル基の脱離のため水素還元すると、シクロ−(−グルタミル−D−フェニルアラニル−プロリル)が合成できた。
【0046】
【実施例4】
シクロ(−ε−ベンジルリジル−D−フェニルアラニル−プロリル−ε−ベンジルリジル−D−フェニルアラニル−プロリル−)の合成
実施例2(e)で得られたシクロ(−リジル−D−フェニルアラニル−プロリル−リジル−D−フェニルアラニル−プロリル−)40mgをメタノール2mlに溶解し、その溶液にベンズアルデヒド50μl、シアノトリヒドロ硼酸ナトリウム(NaBH3CN)13mgを加えて室温6時間攪拌した。
反応液をメタノールで充填したセファデックスLH20、500mlカラムに注ぎメタノールで展開し、最初に溶出する紫外部吸収を示す分画を集めた。溶媒を減圧で溜去し、残滓を50%アセトニトリルに溶解しODSシリカゲルクロマトグラフィーで精製し、28mgの表題物質を得た。
FAB−MS: m/z=925(M+H)
Rf3=0.38
【0047】
【実施例5】
シクロ(−ε−(p−クロロベンジル)リジル−D−フェニルアラニル−プロリル−ε−(p−クロロベンジル)−D−フェニルアラニル−プロリル−)の合成
実施例4のベンズアルデヒドに代えて、p−クロロベンズアルデヒド50mgを加えて実施例4と同様に反応を行った。精製をして29mgの表題物質を得た。
FAB−MS: m/z=985(M+H)
Rf3=0.37
【0048】
【実施例6】
シクロ(−ε−(p−メトキシベンジル)リジル−D−フェニルアラニル−プロリル−ε−(p−メトキシベンジル)−D−フェニルアラニル−プロリル−)の合成
実施例4のベンズアルデヒドに代えて、p−メトキシベンズアルデヒド50mgを加えて実施例4と同様に反応を行った。精製をして27mgの表題物質を得た。
FAB−MS: m/z=993(M+H)
Rf3=0.24
【0049】
【実施例7】
シクロ(−ε−(2−フリルメチル)リジル−D−フェニルアラニル−プロリル−ε−(2−フリルメチル)リジル−D−フェニルアラニル−プロリル−)の合成
実施例4のベンズアルデヒドに代えて、フルフラール50μLを加えて実施例4と同様に反応を行った。精製をして25mgの表題物質を得た。
FAB−MS: m/z=905(M+H)
Rf3=0.25
【0050】
【実施例8】
シクロ(−ε−(3−ピリジルメチル)リジル−D−フェニルアラニル−プロリルε−(3−ピリジルメチル)−D−フェニルアラニル−プロリル−)の合成
実施例4のベンズアルデヒドに代えて、3−ピリジンカルボアルデヒド50μLを加えて実施例4と同様に反応を行った。精製をして25mgの表題物質を得た。
FAB−MS: m/z=927(M+H)
Rf3=0.42
【0051】
【実施例9】
シクロ(−ε−シクロヘキシルメチルリジル−D−フェニルアラニル−プロリルε−シクロヘキシルメチルリジル−D−フェニルアラニル−プロリル−)の合成実施例4のベンズアルデヒドに代えて、シクロヘキサンカルボアルデヒド50μLを加えて実施例4と同様に反応を行った。精製をして28mgの表題物質を得た。
FAB−MS: m/z=937(M+H)
Rf3=0.23
【0052】
【実施例10】
シクロ(−ε−シクロヘキシルリジル−D−フェニルアラニル−プロリルε−シクロヘキシルリジル−D−フェニルアラニル−プロリル−)の合成
実施例4のベンズアルデヒドに代えて、シクロヘキサンノン50μLを加えて実施例4と同様に反応を行った。精製をして28mgの表題物質を得た。
FAB−MS: m/z=909(M+H)
Rf3=0.35
【0053】
【実施例11】
シクロ(−ε−イソプロピルリジル−D−フェニルアラニル−プロリル−ε−イソプロピル−D−フェニルアラニル−プロリル−)の合成
実施例4のベンズアルデヒドに代えて、アセトン50μLを加えて実施例4と同様に反応を行った。精製をして28mgの表題物質を得た。
FAB−MS: m/z=829(M+H)
Rf3=0.55
【0054】
【配列表】
Figure 2004083427
【0055】
Figure 2004083427
【0056】
Figure 2004083427
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel cyclic hexapeptide having a proteasome inhibitory activity. Furthermore, the present invention relates to a proteasome inhibitor comprising the novel cyclic hexapeptide as an active ingredient.
[0002]
[Prior art]
Many various enzyme inhibitors are known, and various many biologically active substances are known. Many studies have been made to apply a substance having an inhibitory activity to an enzyme, that is, an enzyme inhibitor, as an effective drug for a wide range of diseases including an anti-inflammatory agent or an antitumor agent.
[0003]
[Problems to be solved by the invention]
Proteasome is an enzyme that plays a very important role in the proliferation and inflammation of cancer cells. By providing an inhibitor of this enzyme, a compound exhibiting a different action point from the conventionally known or used known anti-inflammatory compounds and exhibiting an anti-inflammatory property having a novel chemical structure Is expected and research is being conducted for that purpose. In addition, many antitumor substances generally have strong toxicity, which greatly restricts their use as antitumor agents. Therefore, it has always been desired to discover or create an antitumor substance having a low toxicity and a novel chemical structure, and research for that purpose has been conducted.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have conventionally promoted research on development and practical application of useful physiologically active substances for the purpose of providing a novel proteasome inhibitory active substance that can meet the above demand. As a result, Streptomyces {sp. MK600-CF7 strain (deposited as FERM @ P-16609) was found to produce a bioactive substance having a new structural skeleton. This new physiologically active substance was successfully isolated, the chemical structure was determined, and these were named as physiologically active substances MK600-A, B, C and D, respectively. Further, they have found that this novel physiologically active substance has proteasome inhibitory activity (Japanese Patent Application No. 2001-95511, "New physiologically active substances MK600-A, ΔB, ΔC and D and a method for producing the same").
[0005]
The MK600-A substance, MK600-B substance, MK600-C substance and MK600-D substance are cyclic hexamers represented by the following formulas (A), (B), (C) and (D), respectively. Is a peptide.
[0006]
Figure 2004083427
[0007]
A close examination of the structure of the above MK600-A, ΔB, ΔC and D substances reveals a cyclic hexapeptide structure consisting of 6 amino acids containing the sequence of phenylalanyl-proline (Phe-Pro) as a common part. Can be. Therefore, the present inventors conducted a study aiming at increasing the activity of the MK600 substance, and synthesized a protected tripeptide derivative consisting of an X-phenylalanyl-proline sequence (where X represents a third amino acid). The dimer was then produced, and the protected tripeptide dimer was cyclized and deprotected to successfully synthesize a cyclic hexapeptide. Furthermore, the present inventors completed the present invention by examining its proteasome inhibitory activity.
[0008]
That is, in the first invention, the following formula (I)
Figure 2004083427
[Wherein, R represents hydrogen or a normal α-amino acid side chain, or a side chain of a normal α-amino acid having a protected functional group, or an α-amino acid side chain having a modified functional group] Is provided. Here, the normal α-amino acid is alanine, valine, leucine, isoleucine, serine, threonine, methionine, phenylalanine, tyrosine, tryptophan, asparagine, curtamine, and a normal α-amino acid whose functional group is protected or modified. Examples thereof include esters of serine, threonine, tyrosine, aspartic acid, glutamic acid, histidine, lysine, arginine and the like.
[0009]
The above-mentioned ordinary α-amino acid side chain is an alkyl group or a functional group (hydroxyl group, amino group, carboxyl group, carboxamide group, imidazole) bonded to the α-carbon of a known α-amino acid as a side chain. Group, guanidyl group or phenyl group).
[0010]
Preferred specific examples of the first cyclic hexapeptide of the formula (I) according to the present invention include the following formula (Ia)
Figure 2004083427
Or a cyclohexapeptide of the following formula (Ib)
Figure 2004083427
Wherein the amino group of the lysine portion (Lys) of the cyclohexapeptide of the formula (Ib) is benzyloxycarbonyl, p-chlorobenzyl, p-methoxybenzyl, 2-furylmethyl, 3-pyridyl A derivative protected by a methyl group, a cyclohexylmethyl group, a cyclohexyl group or an isopropyl group; or the following formula (Ic):
Figure 2004083427
Or a derivative in which the carboxyl group of the glutamic acid moiety (Glu) of the cyclohexapeptide of the formula (Ic) is protected with a benzyl group.
[0011]
The cyclohexapeptide of each of the above formulas (Ia), (Ib) and (Ic) has a linear amino acid sequence cleaved at the site after the sixth Pro in each formula. The amino acid sequences of these cyclohexapeptides are shown in SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3 in the sequence listing below.
[0012]
The cyclic hexapeptide of the first invention can be synthesized by a combination of commonly practiced peptide synthesis methods. That is, an ester such as benzyl ester or trichloroethyl ester of proline is condensed with a phenylalanine whose amino group is protected with an amino protecting group that can be deprotected under reaction conditions different from the ester forming group, for example, Boc-phenylalanine to form a dipeptide ester. And the amino group of the phenylalanine moiety (Phe) of the dipeptide ester is liberated by deprotection. When the amino group is protected with Boc (that is, a tertiary butoxycarbonyl group), a commonly used reagent such as TFA or a hydrogen chloride-dioxane solution or a hydrogen chloride-ethyl acetate solution is used for deprotection from the amino group.
[0013]
Next, the resulting dipeptide ester having a free amino group is subjected to amide condensation with a third amino acid (X) having a protected functional group to synthesize a protected tripeptide ester. After sufficient purification at this stage, the amount of the protected tripeptide ester is divided into 2 minutes, the amino terminal of one protected tripeptide ester is deprotected, and the carboxylic acid terminal of the other protected tripeptide ester is deprotected. In this case, a usual method is used for deprotection. That is, the amino terminal can be deprotected by using the above-mentioned TFA or hydrogen chloride solution, and the carboxylic acid terminal can be deprotected by catalytic reduction, catalytic hydrogen transfer reduction or saponification in the case of benzyl ester. Either method is used, and in the case of trichloroethyl ester, a zinc-acetic acid reduction method is used.
[0014]
Next, the two types of linearly protected tripeptides obtained here contain a repeated amino acid sequence by amide condensation of those having a free amino group and those having a free carboxyl group. Synthesize the protected hexapeptide. Next, the carboxyl protecting group is removed from the protected hexapeptide by the method described above, and then deprotected from the amino group to obtain a linear hexapeptide TFA or hydrochloride.
[0015]
The obtained salt of the linear hexapeptide is dissolved in a large amount of DMF or N-methylpyrrolidone, excess sodium bicarbonate is added to the solution, the mixture is cooled and stirred with ice water, and a condensing agent often used for peptide cyclization. For example, DPPA (diphenylphosphoric azide), PFPDP (pentafluorodiphenyl phosphinate) and the like are added, and the mixture is stirred at a low temperature of room temperature to 5 ° C. for 3 to 7 days to carry out a cyclization reaction. The reaction solution for cyclization is concentrated under reduced pressure if necessary, and after dilution with water, the cyclic hexapeptide product is extracted with a solvent such as ethyl acetate. Since the extract contains residues of the condensing agent, it can be easily removed by passing through a column of Sephadex LH20 equilibrated with methanol after concentration. The obtained cyclic hexapeptide can be further purified by chromatography on silica gel, ODS-silica gel or the like, if necessary.
[0016]
Examples of the third amino acid include glycine, alanine, valine, leucine, isoleucine, serine, threonine, methionine, phenylalanine, tyrosine, tryptophan, aspartic acid, asparagine, curtamine, glutamic acid, histidine, lysine, and arginine. .
[0017]
If the third amino acid has a functional group and is protected, it may be deprotected by a usual method. For example, when the ε-amino group of lysine is protected with a carbobenzyloxy group, deprotection is performed by catalytic reduction or catalytic hydrogen transfer reduction. Furthermore, the functional group newly released here can be modified in a usual manner. For example, the ε-amino group of lysine can be modified by acylation, urethanation, alkylation and the like. Among them, reductive alkylation with aldehydes and ketones and cyanoborohydride is effective for modification. The thus-modified cyclic hexapeptide of the formula (I) can also be purified by chromatography on silica gel, ODS-silica gel, Sephadex LH20 or the like.
[0018]
Specific examples of the group R present in a representative compound of the cyclic hexapeptide represented by the above formula (1) are shown in Table 1 below. Table 1 also shows the amino acids used as the third amino acid (X) in the synthesis of the cyclic hexapeptide. In Table 1, Z is an abbreviation for carbobenzyloxy group (that is, benzyloxycarbonyl group).
[0019]
[Table 1]
Figure 2004083427
[0020]
Furthermore, the cyclic hexapeptide of the first invention has a proteasome inhibitory activity.
[0021]
The proteasome inhibitory activity of the cyclic hexapeptide according to the present invention is shown in Table 2 below. This proteasome inhibitory activity was measured as follows. That is, a fraction containing proteasome prepared from mouse liver was used as an enzyme, and a fluorescent substrate of chymotrypsin-like peptidase (Suc-LLVY-MCA, manufactured by Peptide Institute) was used as a substrate. These enzymes and substrates were reacted with ATP (adenosine-5'-3 phosphate) for 30 minutes at 37 ° C in the presence or absence of the cyclic hexapeptide of the present invention. After the completion of the reaction, the fluorescence intensity of the substance decomposed and released by the proteasome is measured, and the fluorescence intensity is compared with the reaction in the presence and absence of the cyclic hexapeptide of the present invention. The degree of inhibition by the peptide was measured, and this measurement was used to determine the IC of the proteasome inhibitory activity of the cyclic hexapeptide of the present invention.50The value was determined.
[0022]
[Table 2]
Figure 2004083427
[0023]
Accordingly, a second aspect of the present invention provides a proteasome inhibitor comprising a cyclic hexapeptide of the formula (I) as an active ingredient.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. In addition, D and L of the amino acids shown in the examples are L-forms except those specially described.
[0025]
In the following examples, Rf values were measured by thin-layer chromatography using Merck's product (SILICAGEL60F-254) as a plate. When ethyl acetate-n-hexane (1: 1) was used as a developing solvent, it was indicated as an Rf1 value, and when chloroform-methanol (10: 1) was used, it was indicated as an Rf2 value. When a product of Merck (RP-18F-254) was used as a plate and 4% potassium acetate + 0.8% citrate buffer-acetonitrile (1: 1) was used as a developing solvent, the Rf3 value was displayed.
[0026]
Embodiment 1
(A) Synthesis of {Boc-D-phenylalanyl-L-proline} benzyl ester
Boc-D-phenylalanine 1.5 g (5.66 mmol), L-proline benzyl ester, Tos 1.51 g (6.25 mmol, 1.1 eq), Bop reagent 2.76 g (1.1 eq), HOBt 0. 85 g (1.1 equivalent) was placed in an eggplant-shaped flask, to which 12 ml of DMF was added and dissolved by stirring with a magnetic stirrer. The obtained solution was cooled with ice water, and 2.38 ml of triethylamine was added. After 30 minutes, the ice-water bath was removed, and the mixture was stirred at room temperature overnight to perform an amide condensation reaction.
Ethyl acetate (200 ml) was added to the obtained reaction solution, and the mixture was washed successively with 200 ml × 2 10% aqueous citric acid solution and 4% aqueous sodium hydrogen carbonate solution, and washed once with saturated saline. Then, it dried with sodium sulfate for 1 hour. Filtration and concentration gave 2.93 g of a colorless syrupy substance (theoretical yield 2.56 g). This was dissolved in chloroform, applied to a 100 ml silica gel column, developed with chloroform-ethyl acetate (3: 1), monitored by UV, and concentrated to dryness to obtain 2.66 g of the title substance.
[0027]
(B) Synthesis of {D-phenylalanyl-L-proline} benzyl ester} hydrochloride
The above Boc-D-phenylalanyl-L-proline benzyl ester was dissolved in 5 ml of anhydrous THF, and 15 ml of 4N hydrochloric acid / dioxane was added to the solution. A closed balloon was attached to the mouth of the flask containing the solution to shield it from the outside air, and the flask was allowed to stand at room temperature for 1 hour (Boc elimination reaction). Concentrate after 1 hour. Ethyl acetate was further added, and the mixture was repeatedly concentrated to dryness to obtain the title substance.
[0028]
(C) Synthesis of {Boc-L-leucyl-D-phenylalanyl-L-proline} benzyl ester
1097 mg (1.1 equivalents) of D-phenylalanyl-L-proline benzyl ester hydrochloride (calculated as 100% in two steps) synthesized from 4 mmol of Boc-D-phenylalanine in (b) above. Boc-L-leucine monohydrate, 1946 mg (1.1 equivalents) of Bop reagent, and 595 mg (1.1 equivalents) of HOBt were added and dissolved in about 12 ml of DMF. 1.68 ml (3 equivalents) of triethylamine is added to the solution, and the mixture is stirred overnight to perform an amide condensation reaction. The reaction was concentrated to dryness under reduced pressure. It is dissolved in 150 ml of ethyl acetate, and the solution is washed with an acid and an alkali in the same manner as in Example 1 (a), dried and concentrated to dryness. The obtained dried solid was dissolved in chloroform, applied to a 100 ml silica gel column, developed with chloroform-ethyl acetate (3: 1), monitored by UV, and concentrated to dryness to obtain 2012 mg of the title substance (protected tripeptide).
[0029]
(D) Boc- (L-leucyl-D-phenylalanyl-L-prolyl-)2Synthesis of benzyl ester
(I) 630 mg of Boc-L-leucyl-D-phenylalanyl-L-proline {benzyl ester} obtained in Example 1 (c) was dissolved in 10 ml of ethyl acetate, and 50 mg of palladium black was added to the solution. Hydrogen reduction at room temperature and pressure overnight (elimination of benzyl group). The catalyst was removed by filtration and concentrated to dryness to obtain Boc-L-leucyl-D-phenylalanyl-L-proline.
(Ii) 630 mg of Boc-L-leucyl-D-phenylalanyl-L-proline dibenzyl ester obtained in Example 1 (c) was dissolved in 1 ml of dehydrated THF, and 3 ml of 4N hydrochloric acid was added to the solution. A dioxane solution was added and reacted at room temperature for 1 hour (Boc desorption). After concentration, ethyl acetate was added to the syrupy residue and concentrated to dryness to obtain L-leucyl-D-phenylalanyl-L-proline benzyl ester hydrochloride.
[0030]
(Iii) 591 mg (1.2 equivalents) of Boc-L-leucyl-D-phenylalanyl-L-proline obtained in (i) above and Bop reagent and 166 mg of HOBt ( 1.1 eq.) And 10 ml of DMF were added and dissolved, the mixture was cooled with ice water, and 0.468 ml of triethylamine was added. After 30 minutes, the ice-water bath was removed, and the mixture was stirred at room temperature overnight to perform an amide condensation reaction.
100 ml of ethyl acetate is added to the reaction solution containing the generated linear protected hexapeptide, and the mixture is washed with 100 ml × 2 of a 10% aqueous citric acid solution and a 4% aqueous sodium hydrogen carbonate solution, and further washed once with a saturated saline solution. , And dried over sodium sulfate for 1 hour. Filtration and concentration gave 1200 mg of a colorless syrupy substance. This was dissolved in chloroform, applied to a 100 ml silica gel column, developed with chloroform-ethyl acetate (3: 1), monitored by UV, and concentrated to dryness to obtain 990 mg of the title substance (protected hexapeptide).
[0031]
(E) Cyclo (-L-leucyl-D-phenylalanyl-prolyl-)2Synthesis of
Boc- (L-leucyl-D-phenylalanyl-L-prolyl-) obtained in Example 1 (d) (iii)2900 mg of {benzyl ester} is dissolved in 15 ml of ethyl acetate, and 80 mg of palladium black is added to the solution, and the mixture is hydrogen-reduced at room temperature and normal pressure overnight (elimination of benzyl group). The catalyst was removed by filtration and concentrated to dryness. Boc- (L-leucyl-D-phenylalanyl-L-prolyl-)2-OH was obtained.
[0032]
Next, 10 ml of trifluoroacetic acid was added to the obtained solid and reacted at room temperature for 1 hour to desorb Boc. Then, ethyl acetate is added to the syrupy residue obtained by concentration, and the mixture is concentrated to dryness. Obtained (L-leucyl-D-phenylalanyl-L-prolyl)2-OH was dissolved in 90 ml of DMF, 1 g of sodium hydrogen carbonate was added, the mixture was cooled and stirred with ice water, 0.3 ml of DPPA (diphenylphosphate azide) was added to the solution, and the mixture was stirred in a low-temperature laboratory at 5 ° C for 90 hours ( Cyclization reaction).
[0033]
400 ml of ethyl acetate was added to the cyclization reaction solution, and the mixture was washed with 400 ml × 2 of a 10% aqueous citric acid solution, a 4% aqueous sodium hydrogen carbonate solution, and once with a saturated saline solution, dried over sodium sulfate for 1 hour, filtered and filtered. Concentrate to give a pale yellow oil.
[0034]
This is dissolved in a small amount of methanol, poured into a 500 ml Sephadex LH20 column filled with methanol, developed with methanol, and monitored for UV absorption to collect the first peak. The solvent is removed under reduced pressure, the residue is dissolved in 60% acetonitrile, and adsorbed on a column of ODS silica gel @ 37 mm ID × 300 mm to develop the acetonitrile concentration stepwise. The eluate was monitored for UV absorption to give the main product with 90% acetonitrile. After concentrating to dryness, 180 mg of the desired title substance (cyclic hexapeptide) was obtained as a colorless solid.
FAB-MS: Δm / z = 715 (M + H)+
Rf2 = 0.53
[0035]
Embodiment 2
(A) Synthesis of {Boc-D-phenylalanyl-L-proline} 2,2,2-trichloroethyl ester
2.637 g of L-proline 2,2,2-trichloroethyl ester hydrochloride, 2.594 g of Boc-D-phenylalanine, 4.695 g of Bop reagent, and 1.383 g of HOBt were dissolved in 16 ml of DMF, and the solution was cooled and stirred with ice water. Then, 3.915 ml of triethylamine was added, and the mixture was stirred for 30 minutes and stirred at room temperature overnight (amide condensation reaction).
Ethyl acetate (200 ml) was added to the reaction solution, and the mixture was washed with 200 ml × 2 10% aqueous citric acid solution and 4% aqueous sodium hydrogen carbonate solution, washed once with saturated saline, and then dried over sodium sulfate for 1 hour. Filtration and concentration gave 4.565 g of the title material as a colorless solid.
FAB-MS: Δm / z = 493 (M + H)+
Rf1 = 0.74
[0036]
(B) Synthesis of {Boc- (ε-benzyloxycarbonyl-L-lysyl) -D-phenylalanyl-L-proline} 2,2,2-trichloroethyl ester
2.6675 g of Boc-D-phenylalanyl-L-proline {2,2,2-trichloroethyl ester} obtained in Example 2 (a) was dissolved in 10 ml of THF, and 20 ml of a 4N hydrochloric acid-dioxane solution was added to the solution. After leaving at room temperature for 1 hour, hydrochloric acid and the solvent were distilled off under reduced pressure to obtain D-phenylalanyl-L-proline @ 2,2,2-trichloroethyl ester hydrochloride.
To this, 2.266 g of Boc- (ε-benzyloxycarbonyl) -L-lysine, 2.647 g of Bop reagent and 809 mg of HOBT were added, dissolved in 15 ml of DMF, cooled with ice water and stirred, and cooled with triethylamine. After adding 271 ml, the mixture was stirred under cooling for 30 minutes and stirred at room temperature overnight (amide condensation reaction).
[0037]
Ethyl acetate (200 ml) was added to the reaction solution, and the mixture was washed with 200 ml × 2 10% aqueous citric acid solution and 4% aqueous sodium hydrogen carbonate solution, washed once with saturated saline, and then dried over sodium sulfate for 1 hour. After filtration and concentration, 3.372 g of Boc- (ε-benzyloxycarbonyl-L-lysyl) -D-phenylalanyl-L-proline 2,2,2-trichloroethyl ester was obtained as a colorless solid.
FAB-MS: Δm / z = 755 (M + H)+
Rf1 = 0.32
[0038]
(C) {Boc- (ε-benzyloxycarbonyl-L-lysyl) -D-phenylalanyl-L-prolyl- (ε-benzyloxycarbonyl-L-lysyl) -D-phenylalanyl-L-proline} 2 Synthesis of 2,2-trichloroethyl ester
(I) 3.34 g of the substance obtained in Example 2 (b) was bisected. One was dissolved in 3 ml of THF, 12 ml of a 4N hydrochloric acid-dioxane solution was added, and the mixture was left at room temperature for 1 hour to remove Boc. Thereafter, hydrochloric acid and the solvent were distilled off under reduced pressure to obtain ε-benzyloxycarbonyl-L-lysyl-D-phenylalanyl-L-proline−2,2,2-trichloroethyl ester hydrochloride.
(Ii) The other was dissolved in 15 ml of 90% acetic acid, 2 g of zinc dust was added in three portions with stirring, and the mixture was stirred overnight (elimination reaction of 2,2,2-trichloroethyl group). The insoluble matter containing excess zinc was filtered off, and the filtrate was concentrated under reduced pressure. The residue was dissolved in 100 ml of ethyl acetate, washed twice with 100 ml of water, washed with saturated saline, further dried over sodium sulfate, and then concentrated to dryness under reduced pressure to obtain Boc- (ε-benzyloxycarbonyl-L-lysyl). -D-Phenylalanyl-L-proline was obtained.
[0039]
(Iii) Both of these, that is, the product of (i) and the product of (ii) were combined, 1077 mg of Bop reagent and 330 mg of HOBt were added, dissolved in 10 ml of DMF, and 0.33 ml of triethylamine was added under ice-cooling and stirring. One hour later, the mixture was returned to room temperature and stirred overnight (amide condensation reaction). (4) 200 ml of ethyl acetate was added to the reaction solution, and the mixture was washed with 200 ml × 2 of a 10% aqueous citric acid solution and a 4% aqueous sodium hydrogen carbonate solution, washed once with a saturated saline solution, and then dried over sodium sulfate for 1 hour. After filtration and concentration, 2.586 g of a colorless solid was obtained. This was dissolved in 10 ml of methanol, poured into a 1 L column of Sephadex LH20 filled with methanol, and developed with methanol. The eluate was fractionated by monitoring ultraviolet absorption. The first half was single by HPLC analysis and was concentrated to dryness to obtain 1.178 g of a solid. The latter half weighed 1.036 g including impurities. This was dissolved in chloroform, adsorbed on a 200 ml silica gel column, and developed with chloroform: methanol (40: 1) to obtain 837 mg of the desired product. Total yield: 2.005 g.
FAB-MS: Δm / z = 1175 (M + H)+
Rf1 = 0.10
[0040]
(D) Synthesis of cyclo (-ε-benzyloxycarbonyl-L-lysyl-D-phenylalanyl-prolyl-ε-benzyloxycarbonyl-L-lysyl-D-phenylalanyl-prolyl-)
1.55 g of the product substance obtained in Example 2 (c) was dissolved in 11 ml of 90% acetic acid, and 1 g of zinc dust was added to the solution with stirring three times, and the mixture was reacted overnight with stirring. . The insoluble matter containing excess zinc was filtered off, and the filtrate was concentrated under reduced pressure. The residue was dissolved in 100 ml of ethyl acetate, washed with 100 ml of water, and concentrated to dryness under reduced pressure. Methanol was added to the residue, dissolved, poured into a 200 ml column of Sephadex LH20 filled with methanol, and developed with methanol. The first peak was collected by monitoring with UV and concentrated under reduced pressure to dryness to obtain 1.343 g.
14 ml of trifluoroacetic acid was added to 1.303 g of the mixture and stirred for 1 hour. The trifluoroacetic acid was distilled off under reduced pressure, 3 ml of toluene was added to the residue, and the mixture was concentrated under reduced pressure twice to obtain a trifluoroacetic acid salt of a hexapeptide having a released amino group and a carboxyl group. This was dissolved in 100 ml of DMF, 760 mg of sodium hydrogen carbonate was added, and the mixture was stirred while cooling with ice water, and 0.6 ml of diphenylphosphoric azide was added. Stirred in a cold laboratory at 5 ° C. for 64 hours.
[0041]
The reaction solution was diluted with 600 ml of ethyl acetate, washed twice with 400 ml of a 4% aqueous sodium bicarbonate solution, with a 10% aqueous citric acid solution and a saturated saline solution, dried over sodium sulfate for 1 hour, filtered, and concentrated to give a pale yellow solution. An oil is obtained. This is dissolved in a small amount of methanol, poured into a 500 ml Sephadex LH20 column filled with methanol, developed with methanol, and monitored for UV absorption to collect the first peak. The solvent was removed under reduced pressure to obtain 1.036 mg of a colorless solid. This was dissolved in a small amount of chloroform, poured into a 200 ml column of silica gel packed with chloroform, and developed with chloroform: methanol (40: 1) and then (20: 1). The fractions were collected by monitoring UV absorption and concentrated to dryness to obtain 885 mg of a colorless solid. Dissolution in 60% acetonitrile and further purification by ODS silica gel chromatography gave 728 mg of the title material.
FAB-MS: Δm / z = 1013 (M + H)+
Rf2 = 0.44
[0042]
(E) Synthesis of cyclo (-lysyl-D-phenylalanyl-prolyl-lysyl-D-phenylalanyl-prolyl-)
380 mg of the product of Example 2 (d) was dissolved in 5 ml of methanol, 48 mg of palladium black moistened with a small amount of water was added to the solution, and the mixture was stirred, and 6 ml of a 5% ammonium formate methanol solution was added. Continue stirring. After 7 hours, the disappearance of the starting material was confirmed by HPLC, and the mixture was filtered and concentrated under reduced pressure. The residue was dissolved in 2 ml of methanol, poured into a Sephadex LH20 column filled with methanol, developed with methanol, and developed with 312 mg of the formate of the title substance. Obtained.
FAB-MS: Δm / z = 745 (M + H)+
Rf3 = 0.57
[0043]
Embodiment 3
(A) Synthesis of {Boc- (δ-benzyl) glutamyl-D-phenylalanyl-proline} 2,2,2-trichloroethyl ester
In the same manner as in Example 2 (b), 614 mg of Boc-glutamic acid δ-benzyl ester used in place of Boc-ε-benzyloxycarbonyl-L-lysine and 807 mg of Boc-D-phenylalanyl-proline-L Amide condensation was carried out using D-phenylalanyl-proline L-proline {2,2,2-trichloroethyl ester hydrochloride prepared from -proline} 2,2,2-trichloroethyl ester. The reaction solution was treated in the same manner as in Example 2 (b) to obtain 872 mg of the title substance.
[0044]
(B) Synthesis of {Boc- (δ-benzyl) glutamyl-D-phenylalanyl-prolyl- (δ-benzyl) glutamyl-D-phenylalanyl-proline} 2,2,2-trichloroethyl ester
776 mg of Boc- (δ-benzyl) glutamyl-D-phenylalanyl-proline 2,2,2-trichloroethyl ester obtained in Example 3 (a) were bisected. Example
Similarly to 2 (c), one was treated with acetic acid-zinc powder and the other was treated with hydrochloric acid-dioxane, followed by amide condensation with a Bop reagent and HOBt. Post-treatment was carried out in the same manner as in Example 2 (c) to obtain 605.4 mg of the title substance.
[0045]
(C) {Cyclo-(-(δ-benzyl) glutamyl-D-phenylalanyl-prolyl-)2Synthesis of
Boc- (δ-benzyl) glutamyl-D-phenylalanyl-prolyl- (δ-benzyl) glutamyl-D-phenylalanyl-proline {2,2,2-trichloroethyl ester obtained in Example 3 (b) 580 mg of the compound was treated with zinc acetate-zinc powder and treated with TFA in the same manner as in Example 2 (d) to obtain a free hexapeptide. Further, the reaction was cyclized with DPPA-sodium bicarbonate in a diluted DMF solution to carry out a reaction. The reaction mixture was extracted and purified by Sephadex LH20 chromatography and ODS-silica gel chromatography to obtain 302 mg of the title substance.
FAB-MS: Δm / z = 927 (M + H)+
Rf2 = 0.42
The product of the above (c) was subjected to hydrogen reduction in the presence of palladium black for elimination of a benzyl group in the same manner as in Example 2 (e) to give cyclo-(-glutamyl-D-phenylalanyl-prolyl).2Could be synthesized.
[0046]
Embodiment 4
Synthesis of cyclo (-ε-benzylidyl-D-phenylalanyl-prolyl-ε-benzyllidyl-D-phenylalanyl-prolyl-)
40 mg of cyclo (-lysyl-D-phenylalanyl-prolyl-lysyl-D-phenylalanyl-prolyl-) obtained in Example 2 (e) was dissolved in 2 ml of methanol, and 50 µl of benzaldehyde and cyanotriene were added to the solution. 13 mg of sodium hydroborate (NaBH3CN) was added, and the mixture was stirred at room temperature for 6 hours.
The reaction solution was poured into a 500 ml column of Sephadex LH20 filled with methanol, developed with methanol, and the fraction eluted first and exhibiting ultraviolet absorption was collected. The solvent was distilled off under reduced pressure, and the residue was dissolved in 50% acetonitrile and purified by ODS silica gel chromatography to obtain 28 mg of the title substance.
FAB-MS: Δm / z = 925 (M + H)+
Rf3 = 0.38
[0047]
Embodiment 5
Synthesis of cyclo (-ε- (p-chlorobenzyl) lysyl-D-phenylalanyl-prolyl-ε- (p-chlorobenzyl) -D-phenylalanyl-prolyl-)
The reaction was carried out in the same manner as in Example 4 except that 50 mg of p-chlorobenzaldehyde was added instead of the benzaldehyde of Example 4. Purification gave 29 mg of the title material.
FAB-MS: Δm / z = 985 (M + H)+
Rf3 = 0.37
[0048]
Embodiment 6
Synthesis of cyclo (-ε- (p-methoxybenzyl) lysyl-D-phenylalanyl-prolyl-ε- (p-methoxybenzyl) -D-phenylalanyl-prolyl-)
The reaction was carried out in the same manner as in Example 4 except that 50 mg of p-methoxybenzaldehyde was added instead of the benzaldehyde of Example 4. Purification gave 27 mg of the title material.
FAB-MS: Δm / z = 993 (M + H)+
Rf3 = 0.24
[0049]
Embodiment 7
Synthesis of cyclo (-ε- (2-furylmethyl) lysyl-D-phenylalanyl-prolyl-ε- (2-furylmethyl) lysyl-D-phenylalanyl-prolyl-)
The reaction was carried out in the same manner as in Example 4 except that 50 μL of furfural was added instead of the benzaldehyde of Example 4. Purification gave 25 mg of the title material.
FAB-MS: Δm / z = 905 (M + H)+
Rf3 = 0.25
[0050]
Embodiment 8
Synthesis of cyclo (-ε- (3-pyridylmethyl) lysyl-D-phenylalanyl-prolyl ε- (3-pyridylmethyl) -D-phenylalanyl-prolyl-)
The reaction was carried out in the same manner as in Example 4 except that 50 μL of 3-pyridinecarbaldehyde was added in place of the benzaldehyde of Example 4. Purification gave 25 mg of the title material.
FAB-MS: Δm / z = 927 (M + H)+
Rf3 = 0.42
[0051]
Embodiment 9
Synthesis of cyclo (-ε-cyclohexylmethyl lysyl-D-phenylalanyl-prolyl ε-cyclohexylmethyl lysyl-D-phenylalanyl-prolyl-) In place of benzaldehyde of Example 4, 50 μL of cyclohexanecarbaldehyde was added The reaction was carried out as in Example 4. Purification gave 28 mg of the title material.
FAB-MS: Δm / z = 937 (M + H)+
Rf3 = 0.23
[0052]
Embodiment 10
Synthesis of cyclo (-ε-cyclohexyl ridyl-D-phenylalanyl-prolyl ε-cyclohexyl lysyl-D-phenylalanyl-prolyl-)
The reaction was carried out in the same manner as in Example 4 except that 50 μL of cyclohexanenone was added instead of the benzaldehyde of Example 4. Purification gave 28 mg of the title material.
FAB-MS: Δm / z = 909 (M + H)+
Rf3 = 0.35
[0053]
Embodiment 11
Synthesis of cyclo (-ε-isopropylridyl-D-phenylalanyl-prolyl-ε-isopropyl-D-phenylalanyl-prolyl-)
The reaction was carried out in the same manner as in Example 4 except that 50 μL of acetone was added instead of the benzaldehyde of Example 4. Purification gave 28 mg of the title material.
FAB-MS: Δm / z = 829 (M + H)+
Rf3 = 0.55
[0054]
[Sequence list]
Figure 2004083427
[0055]
Figure 2004083427
[0056]
Figure 2004083427

Claims (8)

次式(I)
Figure 2004083427
〔式中、Rは水素または通常のα−アミノ酸の側鎖、あるいは官能基を保護された通常のα−アミノ酸の側鎖、あるいは官能基を修飾された通常のα−アミノ酸の側鎖を表す〕で表される環状ヘキサペプチド。
The following formula (I)
Figure 2004083427
[Wherein, R represents hydrogen or a side chain of a normal α-amino acid, a side chain of a normal α-amino acid in which a functional group is protected, or a side chain of a normal α-amino acid in which a functional group is modified. ] The cyclic hexapeptide represented by these.
式(I)において、Rが水素であるか、または通常のα−アミノ酸としてアラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、メチオニン、フェニルアラニン、チロシン、トリプトファン、アスバラギン酸、アスパラギン、クルタミン、グルタミン酸、ヒスチジン、リジンまたはアルギニンのアミノ酸側鎖を表すか、あるいは保護基または修飾基で保護または修飾されたセリン、トレオニン、チロシン、アスバラギン酸、グルタミン酸、ヒスチジン、リジンまたはアルギニンのアミノ酸側鎖を表すものである、請求項1に記載の環状ヘキサペプチド。In the formula (I), R is hydrogen or as a normal α-amino acid, alanine, valine, leucine, isoleucine, serine, threonine, methionine, phenylalanine, tyrosine, tryptophan, aspartic acid, asparagine, curtamine, glutamic acid, histidine Represents the amino acid side chain of lysine or arginine, or represents the amino acid side chain of serine, threonine, tyrosine, aspartic acid, glutamic acid, histidine, lysine or arginine protected or modified with a protecting or modifying group, A cyclic hexapeptide according to claim 1. 請求項2において保護基または修飾基で保護または修飾されたアミノ酸側鎖(R)がアスバラギン酸ベンジルエステル、グルタミン酸ベンジルエステル、ベンジル基のベンゼン環に置換基があってもよいベンジルオキシカルボニルリジン、ε−R−CH−リジン、ε−(R)(R)−CH−リジン[式中、Rは置換基のあってもよいフェニル基、ピリジル基、フリル基、シクロヘキシル基を表わし、RとRはそれぞれ同一の低級アルキル基であるか、又はRとRは合併して1個の低級アルキレン鎖を表わす]のアミノ酸側鎖である、請求項1に記載の環状ヘキサペプチド。3. The amino acid side chain (R) protected or modified with a protecting group or a modifying group according to claim 2, wherein the amino acid side chain (R) is benzyl aspartate, benzyl glutamic acid, benzyloxycarbonyl lysine which may have a substituent on the benzene ring of the benzyl group, ε. —R 2 —CH 2 —lysine, ε- (R 3 ) (R 4 ) —CH-lysine, wherein R 2 represents a phenyl group, a pyridyl group, a furyl group, or a cyclohexyl group which may have a substituent. , R 3 and R 4 are the same lower alkyl group, respectively, or R 3 and R 4 are combined to form one lower alkylene chain]. Hexapeptide. 請求項1の式(I)においてフェニルアラニンがD体であり、プロリンがL体である、請求項1に記載の化合物。The compound according to claim 1, wherein in formula (I) of claim 1, phenylalanine is in the D form and proline is in the L form. 請求項2においてフェニルアラニンがD体であり、プロリンがL体である、請求項1に記載の化合物。The compound according to claim 1, wherein phenylalanine is in D form and proline is in L form in claim 2. 請求項3においてフェニルアラニンがD体であり、プロリンがL体である、請求項1に記載の化合物。The compound according to claim 1, wherein phenylalanine is in the D form and proline is in the L form in claim 3. 次式(Ia)
Figure 2004083427
のシクロヘキサペプチド;あるいは次式(Ib)
Figure 2004083427
のシクロヘキサペプチド;または式(Ib)のシクロヘキサペプチドのリジン部分(Lys)のアミノ基がベンジルオキシカルボニル基、p−クロロベンジル基、p−メトキシベンジル基、2−フリルメチル基、3−ピリジルメチル基、シクロヘキシルメチル基、シクロヘキシル基またはイソプロピル基で保護された誘導体;あるいは次式(Ic)
Figure 2004083427
のシクロヘキサペプチド;または式(Ic)のシクロヘキサペプチドのグルタミン酸部分(Glu)のカルボキシル基がベンジル基で保護された誘導体である、請求項1に記載の化合物。
The following formula (Ia)
Figure 2004083427
Or a cyclohexapeptide of the following formula (Ib)
Figure 2004083427
Wherein the amino group of the lysine portion (Lys) of the cyclohexapeptide of the formula (Ib) is benzyloxycarbonyl, p-chlorobenzyl, p-methoxybenzyl, 2-furylmethyl, 3-pyridyl A derivative protected by a methyl group, a cyclohexylmethyl group, a cyclohexyl group or an isopropyl group; or the following formula (Ic):
Figure 2004083427
The compound according to claim 1, wherein the carboxyl group of the glutamic acid moiety (Glu) of the cyclohexapeptide of the formula (Ic) is protected by a benzyl group.
請求項1の式(I)の環状ヘキサペプチドを有効成分とするプロテアソーム阻害剤。A proteasome inhibitor comprising the cyclic hexapeptide of the formula (I) according to claim 1 as an active ingredient.
JP2002243200A 2002-08-23 2002-08-23 Cyclic hexapeptide and proteasome inhibitor Pending JP2004083427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002243200A JP2004083427A (en) 2002-08-23 2002-08-23 Cyclic hexapeptide and proteasome inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002243200A JP2004083427A (en) 2002-08-23 2002-08-23 Cyclic hexapeptide and proteasome inhibitor

Publications (1)

Publication Number Publication Date
JP2004083427A true JP2004083427A (en) 2004-03-18

Family

ID=32052018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002243200A Pending JP2004083427A (en) 2002-08-23 2002-08-23 Cyclic hexapeptide and proteasome inhibitor

Country Status (1)

Country Link
JP (1) JP2004083427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518622A (en) * 2004-11-08 2008-06-05 ニューヨーク・ユニバーシティ Peptide antitumor drugs
CN113150077A (en) * 2021-05-21 2021-07-23 中国科学院南海海洋研究所 Cyclic hexapeptide compound desootamide A4 and application thereof in preparation of antibacterial drugs
CN116162135A (en) * 2022-01-25 2023-05-26 上海中翊日化有限公司 Cyclic peptides with excellent performance and application thereof
CN116621942A (en) * 2022-05-19 2023-08-22 浙江湃肽生物股份有限公司 Anti-skin-aging cyclohexapeptide compound and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518622A (en) * 2004-11-08 2008-06-05 ニューヨーク・ユニバーシティ Peptide antitumor drugs
CN113150077A (en) * 2021-05-21 2021-07-23 中国科学院南海海洋研究所 Cyclic hexapeptide compound desootamide A4 and application thereof in preparation of antibacterial drugs
CN116162135A (en) * 2022-01-25 2023-05-26 上海中翊日化有限公司 Cyclic peptides with excellent performance and application thereof
CN116162135B (en) * 2022-01-25 2023-09-26 上海中翊日化有限公司 Cyclic peptides with excellent performance and application thereof
CN116621942A (en) * 2022-05-19 2023-08-22 浙江湃肽生物股份有限公司 Anti-skin-aging cyclohexapeptide compound and preparation method thereof

Similar Documents

Publication Publication Date Title
AU600226B2 (en) Novel peptidase inhibitors
JP3453357B2 (en) Thrombin inhibitors and substrates
EP0468339B1 (en) Alpha-keto-amide derivatives having protease inhibiting activity
AU611850B2 (en) Oligopeptidyl nitrile derivatives, agents containing them, a process for their preparation, and their use
US4713369A (en) Oligopeptidylargininol derivatives and their homologs, a process for their preparation, their use and agents containing them
HUT64084A (en) Process for producing pharmaceutical compositions comprising quininogenase inhibitors
JPH03502578A (en) Factor 7/7a active site inhibitor
JP2000501382A (en) Novel amino acid derivatives, their preparation methods and pharmaceutical compositions containing these compounds
JPS6256458A (en) Novel amino acid derivative
SK63194A3 (en) Peptide derivatives
JPH03386B2 (en)
US5849893A (en) Nucleic acid-binding oligomers possessing C-branching for therapy and diagnostics
Cheng et al. Synthesis and biological activity of ketomethylene pseudopeptide analogs as thrombin inhibitors
EP0009898B1 (en) Novel anti-hypertensive mercaptoacylamino acid derivatives, their preparation and use
IE883321L (en) Novel derivatives of l-proline, their preparation and their biological uses
DK149110B (en) METHOD OF ANALOGUE FOR THE PREPARATION OF BESTATIN OR ANALOGUE DIPEPTIDE AND ALFA-HYDROXY-BETA-AMINOCARBOXYL ACIDS FOR USE AS THEIR BASED COMPOUNDS
JP2004083427A (en) Cyclic hexapeptide and proteasome inhibitor
US4954158A (en) 2,3-methanoproline
US4713367A (en) Retro-inverso analogs of the bradykinin potentiating peptide BPP5a
JPH0386870A (en) Amino-substituted complex cyclic compound as renin blocking agent
AU721261B2 (en) Peptide inhibitors of hematopoietic cell proliferation
JPS5828867B2 (en) New tetrapeptide derivatives
Makowski et al. Synthesis of Tetrapeptide p‐nitrophenylanilides containing dehydroalanine and dehydrophenylalanine and their influence on cathepsin C activity
US6482797B1 (en) N-terminal site selective inhibitors of human angiotensin conversion enzyme (ACE)
WO1994001126A1 (en) Compounds for inhibition of proteolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081029