JP2004082500A - Method for manufacturing short fiber-containing rubber sheet for driving belt - Google Patents

Method for manufacturing short fiber-containing rubber sheet for driving belt Download PDF

Info

Publication number
JP2004082500A
JP2004082500A JP2002246189A JP2002246189A JP2004082500A JP 2004082500 A JP2004082500 A JP 2004082500A JP 2002246189 A JP2002246189 A JP 2002246189A JP 2002246189 A JP2002246189 A JP 2002246189A JP 2004082500 A JP2004082500 A JP 2004082500A
Authority
JP
Japan
Prior art keywords
rubber
rubber sheet
short fibers
sheet
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002246189A
Other languages
Japanese (ja)
Other versions
JP3752207B2 (en
Inventor
Takaaki Ochi
越智 隆昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2002246189A priority Critical patent/JP3752207B2/en
Publication of JP2004082500A publication Critical patent/JP2004082500A/en
Application granted granted Critical
Publication of JP3752207B2 publication Critical patent/JP3752207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a short fiber-containing rubber sheet for a driving belt by shredding the rubber sheet having the structure such that the orientation (the direction orthogonal to the extrusion direction) of the short fiber in the inner/outer surface layers is inferior to that of the inner layer into a plurality of laminar rubber sheets, so as to apply the laminar rubber sheet to the use for the compressed rubber layer of the driving belt. <P>SOLUTION: This method for manufacturing the rubber sheet containing a short fiber which is used for the driving belt comprises: a step in which the kneaded rubber 7 containing the short length fiber is extrusion-molded into a cylindrical molded body of the structure such that the short fiber is oriented in the circumferential direction while being oriented in the circumferential direction by an annular expansion die 15 of a conical shape formed by gradually expanding the diameter toward a discharge aperture, and a step in which a single rubber sheet 18 containing the short length fiber is obtained by cutting the cylindrical molded body apart in the extrusion direction and the cut rubber sheet 18 is shredded into laminar rubber sheets 53a and 53b through a straining and splitting process. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は伝動ベルト用短繊維入りゴムシートの製造方法に係り、詳しくは短繊維混入ゴムを円周方向へ引き伸ばしながら短繊維を円周方向に配向させた筒状成形体を切開しながら一枚シートにし、この短繊維入りゴムシートを複数の薄片ゴムシートに裁断して、この薄片ゴムシートをVリブドベルト、ダブルリブドベルト、ローエッジVベルト等の伝動ベルトの圧縮ゴム層に充分適用可能にした伝動ベルト用短繊維入りゴムシートの製造方法に関する。
【0002】
【従来の技術】
従来、未加硫ゴム中に短繊維を一定方向へ配向させる方法としては、圧延シート作製工程のように、回転速度を変えた一対のカレンダーロールに短繊維入り未加硫ゴムを投入し、比較的薄く圧延されたゴムシート中の短繊維をシートの圧延方向に配向させ、そして成形するベルト幅に応じて切断していた。その後、カットした圧延シートを数枚重ね合わせて所定厚みに積層し、続いて巻付け工程のように短繊維が幅方向に配向した積層物を成形ドラムに巻き付けて伝動ベルトの作製に使用していた。
【0003】
即ち、VリブドベルトやローエッジVベルトのような伝動ベルトの製造方法では、円筒状の成型ドラムの周面に1〜複数枚のカバー帆布と接着ゴム層とを巻き付けた後、この上にコードからなる心線を螺旋状にスピニングし、更に圧縮ゴム層を順次巻き付けて積層体を得た後、これを加硫してベルトスリーブにしていた。ここで使用する圧縮ゴム層は、上記の比較的薄い圧延シートを3〜4枚重ね合わせた厚みのもので、シート幅方向に短繊維が配向したものを成型ドラムに巻き付けていた。
【0004】
しかし、圧延シートは、厚みを薄くしなければ、短繊維をシート圧延方向に充分に配向させることができないために、やむを得ずシートを重ねていたためにベルト成形用シートを得るには多大の工数を要していた。
【0005】
これを改善する方法として、特公平6−9847号公報には、拡張ダイを取付けた押出機を用い、短繊維を押出円筒体の円周方向に配向させるもので、中間空間に、入口空間の所定の流路幅から出口空間の所定の流路幅まで流路幅が変化する拡大空間部を設け、拡張ダイの出口空間の断面積を入口空間の断面積より所定量大きく形成し、さらに入口部分の流路幅が中間部分の流路幅よりも狭く、出口部分の流路幅が中間部分の流路幅以下に設定したものが、提案された。
【0006】
そして、更には、特開平6−106602号公報には、押出した短繊維を円周方向に配向させた円筒状エラストマーを軸方向に切開する切断装置と、切開されたエラストマーを平板状に展開する装置を設け、更に押出装置と切断装置との間に案内装置を設けて、ここから空気を吹出すようにして、円筒状エラストマーの円周方向への収縮を抑えながら冷却し、不均一な収縮に起因する短繊維を配向の乱れを阻止し、またシートの両端と中央との距離が等しくなるように展開機構の傾きを調節できるようにしてフレアの発生を阻止した製造装置が示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の拡張ダイを使用する方法でも、例えばクロロプレンのような粘着性が強く、せん断応力が大なる材料を用いる場合には、表面層、特に外周層はダイ内周面との間に大きな摩擦力を発生してスムーズにゴムが流れないために、ゴム表面に肌荒れが発生し、このためマトリクスであるゴムと繊維との密着性が悪く、配向性も悪く、現実には伝動ベルトの圧縮ゴム層に使用することはできなかった。
【0008】
本発明は叙上の如き実状に鑑み、これに対処するもので、内外表面層における短繊維の配向(押出方向と直角方向)が内層より劣る短繊維入りゴムシートを裁断して複数の薄片ゴムシートに仕上げて、伝動ベルトの圧縮ゴム層に適用できるようにした伝動ベルト用短繊維入りゴムシートの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記した目的を達成すべく本願請求項1記載の発明は、伝動ベルトに使用する短繊維入りゴムシートの製造方法であり、
混練りした短繊維混入ゴムを、吐出口へ向って徐々に径を拡張して円錐形にした環状拡張ダイによって円周方向へ引き伸ばしながら短繊維を円周方向に配向させた筒状成形体に押出成形し、
筒状成形体を押出方向に沿って切開して一枚の短繊維入りゴムシートにし、
切開した上記ゴムシートを複数の薄片ゴムシートに裁断した、
伝動ベルト用短繊維入りゴムシートの製造方法にある。
【0010】
即ち、短繊維の配向(押出方向と直角方向)がシート厚みにより内外表面層と内層で変化を受けやすくても、短繊維入りゴムシートを複数枚の薄片ゴムシートに裁断することにより、薄片ゴムシートには押出方向に対して平行方向と直角方向に機械的物性値の異方性が生じることから、このシートを伝動ベルトの圧縮ゴム層に適用できる。
【0011】
本願請求項2記載の発明は、内外表面層における短繊維の配向(押出方向と直角方向)が内層よりも劣っている短繊維入りゴムシートを、2枚の薄片ゴムシートに裁断した伝動ベルト用短繊維入りゴムシートの製造方法にあり、短繊維入りゴムシートを押出成形して、内外表面層における短繊維の配向(押出方向と直角方向)が内層より劣っていても、2枚の薄片ゴムシートに裁断することにより、短繊維の配向が劣る内外表面層を伝動ベルトの接着ゴム層側に配置し、短繊維の配向が良好なゴム層を圧縮ゴム層の最外層へ配置することが可能になる。
【0012】
本願請求項3記載の発明は、短繊維入りゴムシートのゴムがクロロプレンゴムである伝動ベルト用短繊維入りゴムシートの製造方法にあり、粘着性が強く、せん断応力の大なる材料であって内外表面層と内層での短繊維の配向が大きく相違しても、複数の薄片ゴムシートに裁断したシートの内層を伝動ベルトの圧縮ゴム層に使用することができる。
【0013】
本願請求項4記載の発明は、ウェルドラインを中心にした左右の位置で押出方向に沿って切断し、発生したスクラップ片を除去する短繊維入りゴムシートの製造方法にあり、筒状成形体に発生したウェルドラインを含むスクラップ片を押出方向に沿って切断除去しながら、一枚シートに巻き取り、サイドの伸長を抑制してシートの波打ち現象を阻止し、またウェルドラインを含むスクラップ片を切断除去して、シート厚みや短繊維の配向性を均一にすることができる。そして、未加硫ゴムのスクラップ片を再利用することができる。
【0014】
【発明の実施の形態】
以下、図1は本発明に係る短繊維入りゴムシートの製造装置の要部概略図、図2は図1の部分断面図、そして図3は図1をA−A方向から見た図である。
本発明の短繊維入りゴムシートの製造装置1では、押出スクリュー3の回転により短繊維を含むゴムを混練するシリンダー2と、短繊維混入ゴム7を次の工程へ移動させる連結管4からなる押出機6を有し、この押出機6から押出された短繊維混入ゴム7を内ダイ9と外ダイ10の間隙を通過させ、押出スクリュー3の回転軸に対して直角に立ち上がった吐出口11へ向って徐々に大きくなる円周方向への伸張を付与して、短繊維を円周方向へ配向させた筒状成形体13を押出する環状拡張ダイ15と、押出された直後の筒状成形体13の押出機側から180°対角側の1個所に発生するウェルドライン14を中心にして左右に設けた2個所の切断部材21を配置し、2個所切開しながらウェルドライン14を含むスクラップ片16を押出方向に沿って切断除去しながら、一枚のシート18にする切断手段20と、押出方向に切開したスクラップ片16を回収するスクラップ回収手段30と、そして上記一枚のシート18を巻き取る巻き取り手段40とを備えている。
【0015】
押出機6のシリンダー2は、図2に示すように、この中に回転可能な押出スクリュー3を収容し、短繊維を含むゴム配合物を原料投入口17から入れて押出スクリュー3の回転によって短繊維とゴムとを混練して短繊維混入ゴム7にする。この時にシリンダー2内の空気やゴム配合物から発生したガス等は排気口(図示せず)から排出される。シリンダー2の温度はゴム種に応じて変更するが、通常40〜100°Cに調節され、短繊維とゴムはミキシングされやすい温度に加熱して熱可塑化し、押出成形しやすい状態にする。また、この場合の混練時間はゴムの加硫が進行しない程度に調節する。連結管4は、短繊維混入ゴム7を環状拡張ダイ15までガイドするものである。
【0016】
環状拡張ダイ15は、図2に示すように、内ダイ9を吐出口11に向って径を徐々に拡張させた円錐形とし、これを外ダイ10に収容し、内ダイ9と外ダイ10の間に所定厚みの間隙を設けている。短繊維混入ゴム7は吐出口11に向って徐々に大きな円周方向への引き伸ばしを受けながら短繊維を円周方向に配向させた筒状成形体13に押出成形する。
【0017】
環状拡張ダイ15は水平に配置された押出機6に垂直に固定され、しかも吐出口11から押出される筒状成形体13が重力に抗するように置かれているため、筒状成形体13が重力により変形せず、寸法変化の少ない状態で押出できる。また垂直方向に配置した環状拡張ダイ15は、内ダイ9の自重によって撓みにくく、内ダイ9と外ダイ10との間隙が一定に保持され、これによって厚み変形量の小さな筒状成形体13に仕上げることができる。
【0018】
内ダイ9と外ダイ10の流路幅(ニップル)は、内ダイ9が押出機6に連結した根元部19から吐出口11まで均一になり、筒状成形体13の押出にブレーキをかけることなく長手方向Dへスムーズに流し、内部歪みのない均一な厚みの筒状成形体13に仕上げる。
【0019】
内ダイ9の形状は、根元部19から吐出口11に向って徐々に径が拡張し、そのテーパー角度θが30°≦θ<90°である。ゴム流路入口径が20〜60mm、ゴム流路出口径が100〜440mm、そしてその比率である拡張比(ゴム流路出口径/ゴム流路入口径)が1.5〜12.5に設定される。この設定範囲未満であれば、内ダイ9の吐出口11付近での円周方向への引き伸ばしが小さくて、厚みの大きな筒状成形体13の内外層では短繊維が円周方向に配向しにくくなり、一方この設定範囲を越えると、円周方向への引き伸ばしが大きくなり過ぎて、押出圧力が劣る場合には、筒状成形体13が裂けやすい。
【0020】
内ダイ9と外ダイ10間の短繊維混入ゴム7の内部発熱を抑制するために、内ダイ9の内部に冷却水を循環させた冷却装置(図示せず)を設けることもできる。冷却装置では、冷却水を内ダイ9の外部から入れ、ポンプによって内ダイ9に設けた通路を通過させて内ダイ9から排出して循環させる。
【0021】
切断手段20では、一対の切断部材21が押出された直後の筒状成形体13を1個所のウェルドライン14を中心にして左右2個所に設けられ、押出し方向に沿ってスクラップ片16を連続して除去する。一対の切断部材21の間隔は調節可能になっている。
【0022】
上記ウェルドライン14は、水平方向に配置された押出機6とこれに直角方向に配置された環状拡張ダイ15との連結部であって、短繊維混入ゴム7が水平方向から垂直方向へ変換する環状拡張ダイ15への入口部と180°対角の位置であって押出方向に沿って線状に出現する。このラインは右回りと左回り方向へ塑性流動中の短繊維混入ゴムが衝突する領域あるいは流れ難い領域になり、短繊維がランダムに配向し、また厚みも他の領域に比べて薄くなり、品質的に不具合のある領域となる。
【0023】
スクラップ片16は、押出方向に連続した所定幅の未加硫ゴムであり、スクラップ回収手段30の収容箱31に回収され、再利用することができる。
【0024】
上記スクラップ片16は塑性流動中のゴムの衝突領域になって、短繊維がランダムに配向し、また厚みも他の領域に比べて薄く成形され、ウェルドラインの特長が残存する領域である。スクラップ片16の円弧長は、押出し直後の筒状成形体13の外周長を100とすると、5〜25、好ましくは10〜25であり、5未満ではゴムシート18の両端部には上記ウェルドラインの特長が残存し、一方25を超えると、スクラップ片16の幅が大きくなって有効シート幅が狭くなり、必要以上にスクラップが発生する。
【0025】
また、図4に示すように、筒状成形体13のサイド25の切開点26とロール到達点27までの長さをL、サイド25以外の切開点26とロール到達点27までの長さをLにしたとき、(L−L)/L(%)が3〜7%の範囲であれば、サイド25とサイド25以外の伸長格差が適量範囲でシートの波打ちを解消することができる。サイド25の伸長量が7%を超えると、サイド25の伸びが大きくなってサイド25以外との伸長格差が大きく、シートにしたときその両側部で波打ちが発生する。一方、3%未満の場合には、シートの波打ちは発生しないが、スクラップ片16の幅が大きくなって、必要以上にスクラップが発生する。
【0026】
また、筒状成形体13のサイド25の長さ方向への伸び率E、サイド25以外の長さ方法への伸び率Eとしたとき、伸び率格差(E−E)は0〜5の範囲であり、この範囲であればシートの波打ちは発生しない。上記伸び率E、伸び率Eの測定では、筒状成形体13の切開した直後のサイドの長さ方向とそれ以外のところの長さ方向に沿って間隔10cmのマークを付け、巻き取る直前における寸法安定したゴムシート18のマーク間隔を測定し、伸び率を求める。
【0027】
上記切断部材21は、カッター、ナイフといった刃物、レーザーナイフ、超音波振動付きカッターからなり、筒状成形体13を引裂くように切断し、1枚の所定幅を有するゴムシート18に仕上げる。無論、刃物のような切断部材21を加熱保温すれば、筒状成形体13の切開を容易にすることもできる。
【0028】
また、図1及び図3に示すように、押出し直後の筒状成形体13に円周方向へ張力を与えて切開しやすくするように、冷風もしくは圧縮空気を排出する気体吹き付け装置35を設ける。具体的には、押出された直後の筒状成形体13を膨張させて円周方向へ引張り、また同時に筒状成形体13を早期に冷却する機能を備えている。この気体吹き付け装置35は、筒状成形体13の内部に配置され、圧縮空気を供給するコンプレッサー(図示せず)と、これに接続し筒状成形体13の内部に設置されたノズルからなり、圧縮空気をノズルから多方向へ排出して筒状成形体13を膨張させて円周方向へ張力を与え、これによって切開作業を容易にし、また早期に冷却して、ゴムのスコーチを阻止して品質を安定化させる。
【0029】
巻き取り手段40は、切断された1枚のゴムシート18を個別にガイドロール41を経由し、ライナー42に重ねて巻取ロール43に巻付ける。
【0030】
ここで使用するゴムは、天然ゴム、ブチルゴム、スチレン−ブタジエンゴム、クロロプレンゴム、エチレン−プロピレンゴム、アルキル化クロロスルファン化ポリエチレン、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマー、エチレン−プロピレンゴム(EPR)やエチレン−プロピレン−ジエンモノマー(EPDM)からなるエチレン−α−オレフィンエラストマー等のゴム材の単独、またはこれらの混合物が使用される。ジエンモノマーの例としては、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4−ヘキサジエン、シクロオクタジエンなどがあげられる。
しかし、本発明で最も効果を発揮する材料としては、粘着性が強く、せん断応力が大であった内ダイ9と外ダイ10表面へ付着しやすく、押出されたゴムシート18も内外表面層と内層において短繊維の配向が大きく異なるクロロプレンゴムである。
【0031】
上記ゴムには、アラミド繊維、ポリアミド繊維、ポリエステル繊維、綿等の繊維からなり繊維の長さは繊維の種類によって異なるが、1〜10mm程度の短繊維が用いられ、例えばアラミド繊維であると3〜5mm程度、ポリアミド繊維、ポリエステル繊維、綿であると5〜10mm程度のものが用いられる。その添加量はゴム100質量部に対して10〜40質量部である。
【0032】
更に、本発明のゴムには、軟化剤、カーボンブラックからなる補強剤、充填剤、老化防止剤、加硫促進剤、加硫剤等が添加される。
【0033】
上記軟化剤としては、一般的なゴム用の可塑剤、例えばジブチルフタレート(DBP)、ジオクチルフタレート(DOP)等のフタレート系、ジオクチルアジペート(DOA)等のアジペート系、ジオクチルセバケート(DOS)等のセバケート系、トリクレジルホスフェート等のホスフェートなど、あるいは一般的な石油系の軟化剤が含まれる。
【0034】
本発明では、予めゴムと少なくとも短繊維をオープンロール、混練機などによって荒練してマスターバッチを作製する。この方法では、オープンロールによってポリマー100質量部に10〜40質量部の短繊維を投入して混練した後、混練したマスターバッチをいったん放出し、これを20〜50°Cまで冷却する。これはゴムのスコーチを防止するためである。
【0035】
尚、短繊維とともに1〜10質量部の軟化剤を投入することができる。これによって短繊維とゴムのなじみが良くなり、ゴム中への分散が良くなるばかりか、短繊維自体が絡み合って綿状になるのを防ぐ効果がある。即ち、軟化剤が短繊維に浸透し、素繊維同士の絡み合いがほぐれるための潤滑剤としての役割をはたし、短繊維が綿状になるのを阻止し、かつ短繊維とゴムのなじみが良くなって短繊維の分散が良くなる
【0036】
続いて、短繊維を含んだゴムをシリンダー2の押出スクリュー3で混練りした後、シリンダー2の先端に垂直方向に接続した環状拡張ダイ15から押出して筒状成形体13を製造するが、内ダイ9を外ダイ10に収容して所定間隔(ニップル)を設け、短繊維混入ゴム7を吐出口11へ向って徐々に大きくなる円周方向へ引き伸ばして、短繊維を円周方向に配向させた筒状成形体13を押出成形する。
【0037】
その後、連続して押出成形された筒状成形体13は、2個所の切断部材21が押出機側から180°対角側の1個所で発生したウェルドライン14を中心にして左右に設けられ、ウェルドライン14を含むスクラップ片16を押出方向に沿って2個所切断除去しながら、一枚のゴムシート18にして該シート18を個別に巻き取る。
【0038】
得られたゴムシート18は、図5に示すように、内表面層46と外表面層47での短繊維45の配向(押出方向と直角方向)が内層48に比べて劣る場合、あるいは内層48から内外表面層46、47にかけて円周方向に均一に配向したもので、その厚さは3〜10mm、好ましくは4〜10mmである。短繊維が内外表面層での配向が内層に比べて劣る場合には、内外表面層の厚みは最大1.5mm程度である。
【0039】
そして、図6(a)に示すように、所定厚みのゴムシート18を、一対の送り込みロール50とゲージローラ51間を送り込み速度0〜20m/分(可変速)で図中矢印方向へ移動させながら、図6(b)に示すようにホルダー54内を先端が鋭角であってゴムシート18の移動方向と直角方向(図中矢印)へ回転するバンドナイフ52に当接してゴムシート18を漉割しつつ略均一な厚みをもった2つの薄片ゴムシート53a、53bに裁断する。バンドナイフ52は材質としてSKSやスウェーデン鋼を使用する。ゴムシートの最大裁断幅は1,500mm程度である。
【0040】
図7は2枚に裁断した薄片ゴムシートで、(a)が裁断した上側の薄片ゴムシート53aで、(b)が裁断した下側の薄片ゴムシート53bであり、これは内外表面層46,47での短繊維45の配向が内層48に比べて劣っているゴムシート18を2つの薄片ゴムシート53a,53bに裁断した場合である。
【0041】
無論、本発明では、図8に示すように裁断ゴムシート53a,53bのそれぞれを更に図6の方法によって2枚にスライスして4枚の裁断ゴムシート53c,53d,53e,53fに仕上ることもできる。4枚の裁断ゴムシートにすると、内層の53d,53eは短繊維の配向(押出方向と直角方向)は良好で、機械特性において異方性をもった裁断ゴムシートになり、伝動ベルトの圧縮ゴム層の最外層に使用することができる。また表面層の裁断ゴムシート53cと53fは、内層に比べて短繊維の配向(押出方向と直角方向)が劣っているけれども、圧縮ゴム層でも接着ゴム層に近接する位置に使用することができる。
【0042】
そして、図9に示すVリブドベルト55の断面図に示すように、短繊維45の配向が劣る内外表面層46が心線60を埋設した接着ゴム層56側に配置され、短繊維の配向が良好な内層48がリブ部58を有する圧縮ゴム層57の最外層へ配置されている。これによる伝動ベルトの不具合はない。尚、ベルト背面には基布59が1プライ積層している。
【0043】
短繊維45が内層48から内外表面層46,47にかけてほぼ均一に配向したゴムシート18を2つの薄片ゴムシートに裁断した場合には、薄片ゴムシートの伝動ベルトへの配置については特に制限がない。
【0044】
【実施例】
次に、伝動ベルト用短繊維入りゴムシートの製造方法に関する具体的実施例を以下に示す。
実施例1〜2、比較例1
表1に示すCRゴム配合物を用い、予めオープンロールによってゴムに短繊維を投入して混練した後、マスターバッチをいったん放出し、これを常温まで冷却する。このマスターバッチと他の配合剤を図1に示す短繊維入りゴムシートの製造装置のシリンダーに投入し、押出スクリューの回転により短繊維を混入した。
【0045】
【表1】

Figure 2004082500
【0046】
そして、表2に示す環状拡張ダイの拡張比、シリンダーの温度条件によって短繊維混入ゴムを吐出口に向って徐々に大きくなる円周方向へ引き伸ばして筒状成形体を押出成形した。更に、切断部材としてナイフを、押出された筒状成形体から180°対角側の1個所で発生したウェルドラインを中心にして左右に設けた2個所の切断部材を配置し、2個所切開しながらウェルドラインを含むスクラップ片を押出方向に沿って切断除去しながら、一枚のシートにし、これを帆布製ライナーに重ねて個々の巻取ロールに巻付けた。
得られたシートのサイドの伸長(L−L)/L(%)、伸び率格差(E−E)とシートの両端部(サイド)での波打ち、そしてシート厚みのバラツキを求めた。その結果を表2に示す。
【0047】
【表2】
Figure 2004082500
【0048】
かくして得られたシートでは、ウェルドラインが連続してトラブルなく切断された。
【0049】
そして、上記実施例2(厚さ6mm)の短繊維入りゴムシートを、一対の送り込みロール(直径100mm)とゲージローラ(直径100mm)間を送り込み速度2〜3m/分で移動させながら、回転するバンドナイフ(幅86mm)の鋭角な先端に当接させながらゴムシートを漉割しながら650mm幅で上下半分厚の2枚の薄片ゴムシートに裁断し、更に各薄片ゴムシートを上下半分厚に裁断して4枚の薄片ゴムシートを作製した。4枚の薄片ゴムシート(上から1層目、2層目、3層目、4層目)をプレス加硫(153℃×20分)し、押出方向と平行方向と直角方向の引張強さ(TB)、切断伸び(EB)をJIS K6251に準じて測定した。その結果を表3に示す。
【0050】
【表3】
Figure 2004082500
【0051】
この結果、4枚切りの薄片ゴムシートの2層目と3層目では、引張強さ(TB)、切断伸び(EB)において明確な異方性が出現し、伝動ベルトの圧縮ゴム層に適用できることが判る。また、2枚切りの薄片ゴムシートの場合には、明確な異方性を示す下半分を伝動ベルトの圧縮ゴム層の最外層に、上半分を接着ゴム層側に配置する。
【0052】
【発明の効果】
以上のように本願請求項に係る発明では、短繊維の配向(押出方向と直角方向)がシート厚みにより内外表面層と内層で変化を受けやすくても、短繊維入りゴムシートを複数枚の薄片ゴムシートに裁断することにより、薄片ゴムシートには押出方向に対して平行方向と直角方向に機械的物性値の異方性が生じることから、このシートを伝動ベルトの圧縮ゴム層に適用できる効果がある。
【0053】
また、短繊維入りゴムシートを押出成形して、内外表面層における短繊維の配向(押出方向と直角方向)が内層より劣っていても、2枚の薄片ゴムシートに裁断することにより、短繊維の配向が劣る内外表面層を伝動ベルトの接着ゴム層側に配置し、短繊維の配向が良好なゴム層を圧縮ゴム層の最外層へ配置することが可能になる。
【0054】
また、短繊維入りゴムシートのゴムとしてクロロプレンゴムのような粘着性が強く、せん断応力の大なる材料であって内外表面層と内層での短繊維の配向が大きく相違しても、複数の薄片ゴムシートに裁断したシートの内層を伝動ベルトの圧縮ゴム層に使用することができる。
【0055】
更に、ウェルドラインを中心にした左右の位置で押出方向に沿って切断し、発生したスクラップ片を除去する短繊維入りゴムシートの製造方法にあり、筒状成形体に発生したウェルドラインを含むスクラップ片を押出方向に沿って切断除去しながら、一枚シートに巻き取り、サイドの伸長を抑制してシートの波打ち現象を阻止し、またウェルドラインを含むスクラップ片を切断除去して、シート厚みや短繊維の配向性を均一にすることができ、そして未加硫ゴムのスクラップ片を再利用することができる効果がある。
【図面の簡単な説明】
【図1】本発明に係る短繊維入りゴム成形体の製造装置の要部概略図である。
【図2】図1の部分断面図である。
【図3】図1をA−A方向から見た図である。
【図4】本発明において押出成形した筒状成形体を切開した状態を示す図である。
【図5】得られたゴムシートの断面斜視図を示す。
【図6】薄片ゴムシートを裁断しているところを示し、(a)はゴムシートをバンドナイフによって漉割しながら2つの薄片ゴムシートに裁断する状態を示す図であり、(b)は(a)におけるバンドナイフの部分斜視図である。
【図7】2つに裁断した薄片ゴムシートで、(a)が裁断した一方の薄片ゴムシートで、(b)が裁断した他方の薄片ゴムシートである。
【図8】2枚に裁断した薄片ゴムシートを更に2枚に裁断した状態を示す図である。
【図9】裁断した薄片ゴムシートを圧縮ゴム層に使用したVリブドベルトの断面図を示す。
【符号の説明】
1  短繊維入りゴム成形体の製造装置
2  シリンダー
3  押出スクリュー
6  押出機
7  短繊維混入ゴム
9 内ダイ
10 外ダイ
13 筒状成形体
14 ウェルドライン
15 環状拡張ダイ
16 スクラップ片
18 ゴムシート
20 切断手段
21 切断部材
30 スクラップ回収手段
31 収容箱
40 巻き取り手段
50 送り込みロール
51 ゲージローラ
52 バンドナイフ
53a、53b 薄片ゴムシート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a rubber sheet containing short fibers for a power transmission belt, and more specifically, while cutting a short-fiber-mixed rubber in the circumferential direction while cutting a cylindrical molded body in which the short fibers are circumferentially oriented while cutting one piece. A power transmission belt in which the short-fiber-containing rubber sheet is cut into a plurality of flake rubber sheets, and the flake rubber sheet is sufficiently applicable to a compression rubber layer of a power belt such as a V-ribbed belt, a double-ribbed belt, or a low-edge V belt. The present invention relates to a method for producing a rubber sheet containing short fibers.
[0002]
[Prior art]
Conventionally, as a method of orienting short fibers in a certain direction in unvulcanized rubber, as in a rolled sheet manufacturing process, unvulcanized rubber containing short fibers is put into a pair of calender rolls with different rotation speeds, and compared. Short fibers in a thinly rolled rubber sheet were oriented in the rolling direction of the sheet and cut according to the width of the belt to be formed. Then, several cut rolled sheets are laminated and laminated to a predetermined thickness, and then a laminate in which short fibers are oriented in the width direction is wound around a forming drum to be used in the production of a power transmission belt as in a winding step. Was.
[0003]
That is, in a method for manufacturing a power transmission belt such as a V-ribbed belt or a low-edge V-belt, one or a plurality of cover canvases and an adhesive rubber layer are wound around the peripheral surface of a cylindrical forming drum, and a cord is formed thereon. The cord was spirally spun, and a compressed rubber layer was sequentially wound thereon to obtain a laminate, which was then vulcanized to form a belt sleeve. The compressed rubber layer used here had a thickness obtained by laminating three or four relatively thin rolled sheets described above, and a sheet in which short fibers were oriented in the sheet width direction was wound around a forming drum.
[0004]
However, if the thickness of the rolled sheet is not reduced, the short fibers cannot be sufficiently oriented in the sheet rolling direction. Was.
[0005]
As a method for improving this, Japanese Patent Publication No. 6-9847 discloses a method in which an extruder equipped with an expanding die is used to orient short fibers in a circumferential direction of an extruded cylindrical body. An enlarged space portion in which the flow path width changes from a predetermined flow path width to a predetermined flow path width of the outlet space is provided, and a cross-sectional area of the outlet space of the expansion die is formed larger by a predetermined amount than a cross-sectional area of the inlet space. It has been proposed that the passage width of the portion is smaller than the passage width of the middle portion and the passage width of the outlet portion is set to be equal to or less than the passage width of the middle portion.
[0006]
Further, JP-A-6-106602 discloses a cutting device for axially cutting a cylindrical elastomer in which extruded short fibers are oriented in a circumferential direction, and a flattening of the cut elastomer. A device is provided, and a guiding device is further provided between the extruding device and the cutting device, so that air is blown out from the device, cooling while suppressing circumferential shrinkage of the cylindrical elastomer, uneven shrinkage. There is shown a manufacturing apparatus in which short fibers caused by the above are prevented from being disordered in orientation, and the inclination of the unfolding mechanism can be adjusted so that the distance between both ends of the sheet and the center becomes equal, thereby preventing the occurrence of flare. .
[0007]
[Problems to be solved by the invention]
However, even in the method using a conventional expansion die, for example, when using a material having a strong adhesiveness such as chloroprene and a high shear stress, the surface layer, particularly the outer peripheral layer, is large between the die inner peripheral surface and the die. Since the rubber does not flow smoothly due to the frictional force, the surface of the rubber becomes rough, which results in poor adhesion between the matrix rubber and the fiber, poor orientation, and in reality compression of the power transmission belt. It could not be used for the rubber layer.
[0008]
The present invention has been made in view of the above-described situation in view of the above, and has been prepared by cutting a rubber sheet containing short fibers in which the orientation of short fibers in the inner and outer surface layers (direction perpendicular to the extrusion direction) is inferior to that of the inner layer. An object of the present invention is to provide a method for producing a rubber sheet containing short fibers for a power transmission belt, which is finished into a sheet and can be applied to a compressed rubber layer of the power transmission belt.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present application is a method for producing a rubber sheet containing short fibers used for a power transmission belt,
The kneaded short fiber-mixed rubber is gradually expanded in diameter toward the discharge port and expanded in the circumferential direction by a conical annular expansion die to form a cylindrical molded body in which the short fibers are circumferentially oriented. Extruded,
Cut the cylindrical molded body along the extrusion direction into one short fiber-containing rubber sheet,
The cut rubber sheet was cut into a plurality of thin rubber sheets,
A method for producing a rubber sheet containing short fibers for a power transmission belt.
[0010]
That is, even if the orientation of the short fibers (in the direction perpendicular to the extrusion direction) is easily changed between the inner and outer surface layers and the inner layer depending on the sheet thickness, by cutting the rubber sheet containing short fibers into a plurality of thin rubber sheets, the thin rubber sheet is cut. Since the sheet has anisotropy of mechanical properties in a direction parallel to and perpendicular to the extrusion direction, the sheet can be applied to the compression rubber layer of the power transmission belt.
[0011]
The invention according to claim 2 of the present application is for a power transmission belt obtained by cutting a rubber sheet containing short fibers, in which the orientation of short fibers in the inner and outer surface layers (direction perpendicular to the extrusion direction) is inferior to that of the inner layer, into two thin rubber sheets. In the method for producing a rubber sheet containing short fibers, the rubber sheet containing short fibers is extruded, and even if the orientation of the short fibers in the inner and outer surface layers (direction perpendicular to the extrusion direction) is inferior to that of the inner layer, two pieces of flaky rubber are used. By cutting into sheets, the inner and outer surface layers with inferior short fiber orientation can be placed on the adhesive rubber layer side of the power transmission belt, and the rubber layer with good short fiber orientation can be placed on the outermost layer of the compressed rubber layer. become.
[0012]
The invention according to claim 3 of the present application resides in a method for producing a short fiber-filled rubber sheet for a power transmission belt in which the rubber of the short fiber-filled rubber sheet is chloroprene rubber. Even if the orientation of the short fibers in the surface layer and the inner layer is significantly different, the inner layer of the sheet cut into a plurality of thin rubber sheets can be used as the compression rubber layer of the power transmission belt.
[0013]
The invention according to claim 4 of the present application is directed to a method for producing a rubber sheet containing short fibers, which cuts along the extrusion direction at left and right positions around a weld line and removes generated scrap pieces. While scraping the generated scrap line along the extrusion direction and removing it along the extrusion direction, it is wound up into a single sheet, suppressing side elongation to prevent the sheet from waving, and cutting the scrap line including the weld line By removing it, the sheet thickness and the orientation of the short fibers can be made uniform. And the scrap piece of an unvulcanized rubber can be reused.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic view of a main part of an apparatus for producing a rubber sheet containing short fibers according to the present invention, FIG. 2 is a partial cross-sectional view of FIG. 1, and FIG. 3 is a view of FIG. .
In the apparatus 1 for producing a rubber sheet containing short fibers according to the present invention, an extruder comprising a cylinder 2 for kneading rubber containing short fibers by rotation of an extrusion screw 3 and a connecting pipe 4 for moving short fiber mixed rubber 7 to the next step. The extruder 6 has a short fiber mixing rubber 7 extruded from the extruder 6 and passes through the gap between the inner die 9 and the outer die 10 to the discharge port 11 rising at right angles to the rotation axis of the extrusion screw 3. An annular expansion die 15 for applying a circumferential expansion that gradually increases toward the outside and extruding a cylindrical molded body 13 in which short fibers are oriented in the circumferential direction; and a cylindrical molded body immediately after being extruded. 13, two cutting members 21 provided on the left and right around a weld line 14 generated at a position 180 ° diagonally from the extruder side, and scrap pieces including the weld line 14 while being cut at two positions How to extrude 16 Cutting means 20 for cutting into one sheet 18 while cutting and removing along, scrap collecting means 30 for collecting scrap pieces 16 cut in the extrusion direction, and winding means for winding the single sheet 18 40.
[0015]
The cylinder 2 of the extruder 6 accommodates a rotatable extrusion screw 3 therein, as shown in FIG. The fiber and the rubber are kneaded to obtain the short fiber mixed rubber 7. At this time, the air and the gas generated from the rubber compound in the cylinder 2 are discharged from an exhaust port (not shown). The temperature of the cylinder 2 varies depending on the type of rubber, but is usually adjusted to 40 to 100 ° C., and the short fibers and rubber are heated to a temperature at which mixing is easily performed, thermoplasticized, and extruded. Further, the kneading time in this case is adjusted to such an extent that the vulcanization of the rubber does not proceed. The connecting pipe 4 guides the short fiber mixed rubber 7 to the annular expansion die 15.
[0016]
As shown in FIG. 2, the annular expanding die 15 has a conical shape in which the inner die 9 is gradually expanded in diameter toward the discharge port 11, and the conical shape is accommodated in the outer die 10. A gap having a predetermined thickness is provided therebetween. The short fiber mixed rubber 7 is extruded into a cylindrical molded body 13 in which the short fibers are oriented in the circumferential direction while being gradually stretched in the circumferential direction toward the discharge port 11.
[0017]
The annular expansion die 15 is vertically fixed to the horizontally arranged extruder 6, and the cylindrical molded body 13 extruded from the discharge port 11 is placed so as to resist gravity. Can be extruded without deformation due to gravity and with little dimensional change. Further, the annular expansion die 15 arranged in the vertical direction is hardly bent by the weight of the inner die 9, and the gap between the inner die 9 and the outer die 10 is kept constant, thereby forming the cylindrical molded body 13 having a small thickness deformation amount. Can be finished.
[0018]
The flow width (nipple) of the inner die 9 and the outer die 10 becomes uniform from the base 19 where the inner die 9 is connected to the extruder 6 to the discharge port 11, and a brake is applied to the extrusion of the cylindrical molded body 13. And smoothly flow in the longitudinal direction D to finish the cylindrical molded body 13 having a uniform thickness without internal distortion.
[0019]
The shape of the inner die 9 gradually increases in diameter from the root portion 19 toward the discharge port 11, and the taper angle θ is 30 ° ≦ θ <90 °. The rubber channel inlet diameter is 20 to 60 mm, the rubber channel outlet diameter is 100 to 440 mm, and the expansion ratio (rubber channel outlet diameter / rubber channel inlet diameter) is set to 1.5 to 12.5. Is done. If it is less than the set range, the circumferential stretching near the discharge port 11 of the inner die 9 is small, and the short fibers are less likely to be circumferentially oriented in the inner and outer layers of the thick cylindrical molded body 13. On the other hand, if it exceeds this setting range, the stretching in the circumferential direction becomes too large, and when the extrusion pressure is inferior, the tubular molded body 13 is easily torn.
[0020]
In order to suppress heat generation inside the short fiber mixed rubber 7 between the inner die 9 and the outer die 10, a cooling device (not shown) in which cooling water is circulated inside the inner die 9 may be provided. In the cooling device, cooling water is introduced from the outside of the inner die 9, passed through a passage provided in the inner die 9 by a pump, discharged from the inner die 9 and circulated.
[0021]
In the cutting means 20, the cylindrical molded body 13 immediately after the pair of cutting members 21 have been extruded is provided at two positions on the left and right with one weld line 14 as the center, and the scrap pieces 16 are continuously formed along the extrusion direction. To remove. The interval between the pair of cutting members 21 is adjustable.
[0022]
The weld line 14 is a connecting portion between the extruder 6 arranged in the horizontal direction and the annular expansion die 15 arranged in a direction perpendicular to the extruder 6, and the short fiber-mixed rubber 7 changes from the horizontal direction to the vertical direction. It is 180 ° diagonal to the entrance to the annular expansion die 15 and appears linearly along the extrusion direction. This line is an area where the short fiber-containing rubber in plastic flow collides or hardly flows in the clockwise and counterclockwise directions, the short fibers are randomly oriented, and the thickness is thinner than other areas, and the quality is low. This is an area with a problem in nature.
[0023]
The scrap pieces 16 are unvulcanized rubber having a predetermined width continuous in the extrusion direction, and are collected in the storage box 31 of the scrap collecting means 30 and can be reused.
[0024]
The scrap pieces 16 serve as collision areas of rubber during plastic flow, in which short fibers are randomly oriented, and are formed thinner than other areas, so that the features of the weld line remain. The arc length of the scrap piece 16 is 5 to 25, preferably 10 to 25, assuming that the outer peripheral length of the cylindrical molded body 13 immediately after extrusion is 100. If the scrap length is less than 5, the weld line is formed at both ends of the rubber sheet 18. On the other hand, if it exceeds 25, the width of the scrap pieces 16 becomes large, the effective sheet width becomes narrow, and scrap is generated more than necessary.
[0025]
As shown in FIG. 4, the length between the incision point 26 on the side 25 of the cylindrical molded body 13 and the roll reaching point 27 is L 1 , and the length between the incision point 26 other than the side 25 and the roll reaching point 27 is L 1 . when you L 2, if (L 1 -L 2) / L 2 (%) in the range 3-7% side 25 and side 25 than the extension gap is eliminated waving of the sheet with an appropriate amount range be able to. If the elongation of the side 25 exceeds 7%, the elongation of the side 25 becomes large, and the elongation difference between the side 25 and the other side is large. On the other hand, if it is less than 3%, the sheet does not undulate, but the width of the scrap pieces 16 increases, and scrap is generated more than necessary.
[0026]
Further, elongation E 1 in the length direction of the side 25 of the cylindrical molded bodies 13, when the elongation E 2 other than the side 25 to the length method, elongation difference (E 1 -E 2) 0 In this range, the sheet does not undulate. In the measurement of the elongation percentage E 1 and the elongation percentage E 2 , a mark with an interval of 10 cm is provided along the length direction of the side immediately after the incision of the cylindrical molded body 13 and the other length direction, and the roll is wound. The elongation is determined by measuring the mark interval of the dimensionally stable rubber sheet 18 immediately before.
[0027]
The cutting member 21 is composed of a cutter, a knife such as a knife, a laser knife, and a cutter with ultrasonic vibration. The cutting member 21 cuts the cylindrical molded body 13 so as to tear it, and finishes the rubber sheet 18 having one predetermined width. Of course, if the cutting member 21 such as a blade is heated and kept warm, the cutting of the cylindrical molded body 13 can be facilitated.
[0028]
As shown in FIGS. 1 and 3, a gas blowing device 35 for discharging cold air or compressed air is provided so as to apply a tension in the circumferential direction to the tubular molded body 13 immediately after the extrusion so as to facilitate cutting. Specifically, it has a function of expanding the cylindrical molded body 13 immediately after being extruded and pulling it in the circumferential direction, and at the same time, cooling the cylindrical molded body 13 early. The gas blowing device 35 includes a compressor (not shown) that is disposed inside the cylindrical molded body 13 and supplies compressed air, and a nozzle connected to the compressor and installed inside the cylindrical molded body 13. The compressed air is discharged from the nozzle in multiple directions to expand the cylindrical molded body 13 and to apply a tension in the circumferential direction, thereby facilitating the cutting operation, and also cooling early to prevent rubber scorch. Stabilize quality.
[0029]
The winding means 40 individually winds the cut one rubber sheet 18 on the liner 42 via the guide roll 41 and over the liner 42.
[0030]
The rubber used here is natural rubber, butyl rubber, styrene-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, alkylated chlorosulfanated polyethylene, hydrogenated nitrile rubber, hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt. , A rubber material such as an ethylene-α-olefin elastomer composed of ethylene-propylene rubber (EPR) or ethylene-propylene-diene monomer (EPDM) alone, or a mixture thereof. Examples of diene monomers include dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, cyclooctadiene, and the like.
However, the most effective material in the present invention is that it has a strong adhesiveness and is likely to adhere to the surfaces of the inner die 9 and the outer die 10 which have a large shear stress, and the extruded rubber sheet 18 is also in contact with the inner and outer surface layers. It is a chloroprene rubber in which the orientation of short fibers differs greatly in the inner layer.
[0031]
The rubber is made of fibers such as aramid fiber, polyamide fiber, polyester fiber, and cotton, and the length of the fiber varies depending on the type of the fiber. Short fibers of about 1 to 10 mm are used. Polyamide fiber, polyester fiber, and cotton having a size of about 5 to 10 mm are used. The addition amount is 10 to 40 parts by mass based on 100 parts by mass of the rubber.
[0032]
Further, a softener, a reinforcing agent composed of carbon black, a filler, an antioxidant, a vulcanization accelerator, a vulcanizing agent and the like are added to the rubber of the present invention.
[0033]
Examples of the softener include plasticizers for general rubbers, for example, phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), adipates such as dioctyl adipate (DOA), and dioctyl sebacate (DOS). It includes sebacate-based phosphates such as tricresyl phosphate, and general petroleum-based softeners.
[0034]
In the present invention, rubber and at least short fibers are preliminarily kneaded with an open roll, a kneading machine, or the like to prepare a master batch. In this method, 10 to 40 parts by mass of short fibers are put into 100 parts by mass of a polymer by an open roll and kneaded, and then the kneaded master batch is once released and cooled to 20 to 50 ° C. This is to prevent rubber scorch.
[0035]
In addition, 1 to 10 parts by mass of a softening agent can be added together with the short fibers. This improves the familiarity between the short fibers and the rubber and improves the dispersion in the rubber, and also has the effect of preventing the short fibers themselves from becoming entangled and becoming flocculent. In other words, the softener penetrates into the short fibers and acts as a lubricant to loosen the entanglement between the elementary fibers, prevents the short fibers from becoming cotton-like, and reduces the familiarity between the short fibers and the rubber. It becomes better and dispersion of short fibers becomes better.
Subsequently, after rubber containing short fibers is kneaded with the extrusion screw 3 of the cylinder 2, the rubber is extruded from an annular expansion die 15 vertically connected to the tip of the cylinder 2 to produce a cylindrical molded body 13. The die 9 is accommodated in the outer die 10 to provide a predetermined interval (nipple), and the short fiber mixed rubber 7 is stretched in the circumferential direction that gradually increases toward the discharge port 11 to orient the short fibers in the circumferential direction. The extruded cylindrical molded body 13 is extruded.
[0037]
Thereafter, the cylindrical molded body 13 continuously extruded is provided on the left and right around a weld line 14 in which two cutting members 21 are generated at one location 180 ° diagonally from the extruder side, While cutting and removing two portions of the scrap pieces 16 including the weld line 14 in the extrusion direction, the rubber sheets 18 are individually wound up into one rubber sheet 18.
[0038]
As shown in FIG. 5, the obtained rubber sheet 18 has an inferior orientation (in a direction perpendicular to the extrusion direction) of the short fibers 45 in the inner surface layer 46 and the outer surface layer 47 as compared with the inner layer 48, or And the inner and outer surface layers 46 and 47 are uniformly oriented in the circumferential direction, and have a thickness of 3 to 10 mm, preferably 4 to 10 mm. When the short fibers are inferior in orientation in the inner and outer surface layers compared to the inner layer, the thickness of the inner and outer surface layers is at most about 1.5 mm.
[0039]
Then, as shown in FIG. 6A, the rubber sheet 18 having a predetermined thickness is moved between the pair of feed rolls 50 and the gauge rollers 51 at a feed speed of 0 to 20 m / min (variable speed) in the direction of the arrow in the figure. As shown in FIG. 6B, the rubber sheet 18 is strained by abutting the inside of the holder 54 with a band knife 52 having an acute angle and rotating in a direction (arrow in the drawing) perpendicular to the moving direction of the rubber sheet 18. It is cut into two thin rubber sheets 53a and 53b having a substantially uniform thickness while being split. The band knife 52 uses SKS or Swedish steel as a material. The maximum cutting width of the rubber sheet is about 1,500 mm.
[0040]
7A and 7B show the cut thin rubber sheet 53a, the upper thin rubber sheet 53a cut, and the lower thin rubber sheet 53b cut, respectively. This is a case where the rubber sheet 18 in which the orientation of the short fibers 45 at 47 is inferior to that of the inner layer 48 is cut into two thin rubber sheets 53a and 53b.
[0041]
Of course, in the present invention, as shown in FIG. 8, each of the cut rubber sheets 53a and 53b may be further sliced into two pieces by the method of FIG. 6 to be finished into four cut rubber sheets 53c, 53d, 53e and 53f. it can. When four cut rubber sheets are used, the inner layers 53d and 53e have good short fiber orientation (direction perpendicular to the extrusion direction), and become cut rubber sheets having anisotropy in mechanical properties. It can be used for the outermost layer of the layer. Although the cut rubber sheets 53c and 53f of the surface layer are inferior in the orientation of the short fibers (in the direction perpendicular to the extrusion direction) as compared with the inner layer, even the compressed rubber layer can be used at a position close to the adhesive rubber layer. .
[0042]
Then, as shown in the sectional view of the V-ribbed belt 55 shown in FIG. 9, the inner and outer surface layers 46 in which the orientation of the short fibers 45 is inferior are arranged on the side of the adhesive rubber layer 56 in which the core wires 60 are embedded, and the orientation of the short fibers is good. The inner layer 48 is disposed on the outermost layer of the compressed rubber layer 57 having the rib portions 58. There is no malfunction of the transmission belt due to this. In addition, a base cloth 59 is laminated on the back of the belt in one ply.
[0043]
When the rubber sheet 18 in which the short fibers 45 are oriented substantially uniformly from the inner layer 48 to the inner and outer surface layers 46 and 47 is cut into two thin rubber sheets, the arrangement of the thin rubber sheet on the power transmission belt is not particularly limited. .
[0044]
【Example】
Next, specific examples relating to a method for producing a rubber sheet containing short fibers for a power transmission belt will be described below.
Examples 1 and 2, Comparative Example 1
Using the CR rubber compound shown in Table 1, short fibers are put into rubber in advance by an open roll and kneaded, and then the master batch is released once and cooled to room temperature. This masterbatch and other compounding agents were charged into the cylinder of the apparatus for manufacturing a rubber sheet containing short fibers shown in FIG. 1, and short fibers were mixed by rotating an extrusion screw.
[0045]
[Table 1]
Figure 2004082500
[0046]
Then, depending on the expansion ratio of the annular expansion die and the temperature conditions of the cylinder shown in Table 2, the short fiber-containing rubber was stretched in the circumferential direction, which gradually increased toward the discharge port, to extrude a cylindrical molded body. Furthermore, a knife is used as a cutting member, and two cutting members provided on the left and right around a weld line generated at one point on the 180 ° diagonal side from the extruded cylindrical molded body are arranged, and two cuts are made. While cutting and removing the scrap pieces including the weld line along the extrusion direction, the sheet was formed into a single sheet, which was stacked on a canvas liner and wound around individual winding rolls.
The side elongation (L 1 -L 2 ) / L 2 (%) of the obtained sheet, the elongation difference (E 1 -E 2 ), the waving at both ends (sides) of the sheet, and the variation in the sheet thickness are shown. I asked. Table 2 shows the results.
[0047]
[Table 2]
Figure 2004082500
[0048]
In the sheet thus obtained, the weld line was continuously cut without any trouble.
[0049]
The short-fiber-containing rubber sheet of Example 2 (thickness: 6 mm) is rotated while being moved between a pair of feeding rolls (diameter: 100 mm) and a gauge roller (diameter: 100 mm) at a feeding speed of 2 to 3 m / min. The rubber sheet is cut into two thin rubber sheets of 650 mm width and half upper and lower thickness while being cut into two pieces while being in contact with the sharp edge of a band knife (width 86 mm). Thus, four thin rubber sheets were produced. Four vulcanized rubber sheets (first layer, second layer, third layer, fourth layer from the top) are press-vulcanized (153 ° C x 20 minutes) and tensile strength in a direction perpendicular to the direction parallel to the extrusion direction. (TB) and elongation at break (EB) were measured according to JIS K6251. Table 3 shows the results.
[0050]
[Table 3]
Figure 2004082500
[0051]
As a result, in the second and third layers of the four-section thin rubber sheet, a clear anisotropy appears in the tensile strength (TB) and the elongation at break (EB), which are applied to the compression rubber layer of the power transmission belt. You can see what you can do. In the case of a two-piece thin rubber sheet, the lower half showing clear anisotropy is disposed on the outermost layer of the compression rubber layer of the transmission belt, and the upper half is disposed on the side of the adhesive rubber layer.
[0052]
【The invention's effect】
As described above, in the invention according to the claims of the present application, even if the orientation of the short fibers (the direction perpendicular to the extrusion direction) is easily changed between the inner and outer surface layers and the inner layer by the sheet thickness, the rubber sheet containing the short fibers is formed into a plurality of flakes. By cutting into a rubber sheet, the thin rubber sheet has anisotropy of mechanical properties in a direction perpendicular to the direction of extrusion and at right angles to the extruding direction, so that this sheet can be applied to the compression rubber layer of the power transmission belt. There is.
[0053]
In addition, even if the short-fiber-containing rubber sheet is extruded and the short fiber orientation (direction perpendicular to the extrusion direction) of the inner and outer surface layers is inferior to that of the inner layer, the short fiber is cut into two flaked rubber sheets. It is possible to dispose the inner and outer surface layers with poor orientation of the transmission belt on the side of the adhesive rubber layer of the power transmission belt, and arrange the rubber layer with good short fiber orientation on the outermost layer of the compressed rubber layer.
[0054]
Further, even if the material of the rubber sheet containing the short fibers is a material having strong adhesiveness such as chloroprene rubber and a large shear stress, and the orientation of the short fibers in the inner and outer surface layers and the inner layer is largely different, a plurality of flakes are required. The inner layer of the sheet cut into the rubber sheet can be used as the compression rubber layer of the power transmission belt.
[0055]
Furthermore, there is provided a method of manufacturing a rubber sheet containing short fibers, which cuts along the extrusion direction at left and right positions around a weld line and removes generated scrap pieces, and includes a scrap including a weld line generated in a cylindrical molded body. While cutting and removing the piece along the extrusion direction, it is wound on a single sheet, suppressing the elongation of the side to prevent the waving phenomenon of the sheet, and cutting and removing the scrap piece including the weld line, There is an effect that the orientation of the short fibers can be made uniform, and scrap pieces of unvulcanized rubber can be reused.
[Brief description of the drawings]
FIG. 1 is a schematic view of a main part of an apparatus for producing a rubber molded article containing short fibers according to the present invention.
FIG. 2 is a partial sectional view of FIG.
FIG. 3 is a view of FIG. 1 as viewed from the AA direction.
FIG. 4 is a view showing a state in which a cylindrical molded body extruded in the present invention is cut.
FIG. 5 shows a cross-sectional perspective view of the obtained rubber sheet.
FIG. 6 is a view showing a state in which a thin rubber sheet is being cut; FIG. 6 (a) is a view showing a state in which the rubber sheet is cut into two thin rubber sheets while being cut by a band knife; It is a fragmentary perspective view of the band knife in a).
FIGS. 7A and 7B are cut-away thin rubber sheets, wherein FIG. 7A shows one cut-off rubber sheet and FIG. 7B shows the other cut-off thin rubber sheet.
FIG. 8 is a view showing a state in which a thin rubber sheet cut into two sheets is further cut into two sheets.
FIG. 9 is a cross-sectional view of a V-ribbed belt using a cut thin rubber sheet for a compressed rubber layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of rubber molded article containing short fiber 2 Cylinder 3 Extrusion screw 6 Extruder 7 Rubber mixed with short fiber 9 Inner die 10 Outer die 13 Cylindrical molded article 14 Weld line 15 Ring expansion die 16 Scrap piece 18 Rubber sheet 20 Cutting means 21 Cutting member 30 Scrap collecting means 31 Storage box 40 Winding means 50 Feeding roll 51 Gauge roller 52 Band knives 53a, 53b Flake rubber sheet

Claims (4)

伝動ベルトに使用する短繊維入りゴムシートの製造方法であり、
混練りした短繊維混入ゴムを、吐出口へ向って徐々に径を拡張して円錐形にした環状拡張ダイによって円周方向へ引き伸ばしながら短繊維を円周方向に配向させた筒状成形体に押出成形し、
筒状成形体を押出方向に沿って切開して一枚の短繊維入りゴムシートにし、
切開した上記ゴムシートを複数の薄片ゴムシートに裁断した、
ことを特徴とする伝動ベルト用短繊維入りゴムシートの製造方法。
A method for producing a rubber sheet containing short fibers used for a power transmission belt,
The kneaded short fiber-mixed rubber is gradually expanded in diameter toward the discharge port and expanded in the circumferential direction by a conical annular expansion die to form a cylindrical molded body in which the short fibers are circumferentially oriented. Extruded,
Cut the cylindrical molded body along the extrusion direction into one short fiber-containing rubber sheet,
The cut rubber sheet was cut into a plurality of thin rubber sheets,
A method for producing a rubber sheet containing short fibers for a power transmission belt.
内外表面層における短繊維の配向(押出方向と直角方向)が内層よりも劣っている短繊維入りゴムシートを、2枚の薄片ゴムシートに裁断した請求項1記載の伝動ベルト用短繊維入りゴムシートの製造方法。2. A short fiber-containing rubber for a power transmission belt according to claim 1, wherein the rubber sheet containing short fibers, in which the orientation of the short fibers in the inner and outer surface layers (direction perpendicular to the extrusion direction) is inferior to that of the inner layer, is cut into two thin rubber sheets. Sheet manufacturing method. 短繊維入りゴムシートのゴムがクロロプレンゴムである請求項1又は2記載の伝動ベルト用短繊維入りゴムシートの製造方法。3. The method according to claim 1, wherein the rubber of the rubber sheet containing short fibers is chloroprene rubber. ウェルドラインを中心にした左右の位置で押出方向に沿って切断し、発生したスクラップ片を除去する請求項1〜3の何れかに記載の短繊維入りゴムシートの製造方法。The method for producing a short-fiber-containing rubber sheet according to any one of claims 1 to 3, wherein cutting is performed along the extrusion direction at left and right positions around the weld line to remove generated scrap pieces.
JP2002246189A 2002-08-27 2002-08-27 Manufacturing method of rubber sheet containing short fiber for transmission belt Expired - Fee Related JP3752207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246189A JP3752207B2 (en) 2002-08-27 2002-08-27 Manufacturing method of rubber sheet containing short fiber for transmission belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246189A JP3752207B2 (en) 2002-08-27 2002-08-27 Manufacturing method of rubber sheet containing short fiber for transmission belt

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005303993A Division JP2006069220A (en) 2005-10-19 2005-10-19 Manufacturing process of transmission belt and transmission belt

Publications (2)

Publication Number Publication Date
JP2004082500A true JP2004082500A (en) 2004-03-18
JP3752207B2 JP3752207B2 (en) 2006-03-08

Family

ID=32054139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246189A Expired - Fee Related JP3752207B2 (en) 2002-08-27 2002-08-27 Manufacturing method of rubber sheet containing short fiber for transmission belt

Country Status (1)

Country Link
JP (1) JP3752207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245348A (en) * 2006-03-13 2007-09-27 Mazda Motor Corp Manufacturing method of fiber-reinforced resin-molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245348A (en) * 2006-03-13 2007-09-27 Mazda Motor Corp Manufacturing method of fiber-reinforced resin-molded product

Also Published As

Publication number Publication date
JP3752207B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP2002113764A (en) Method and apparatus for manufacturing short fiber- containing formed item
JP3934012B2 (en) Transmission belt manufacturing method
JP4299110B2 (en) Transmission belt manufacturing method
JP3752207B2 (en) Manufacturing method of rubber sheet containing short fiber for transmission belt
JP3718194B2 (en) Manufacturing method and apparatus for manufacturing rubber sheet containing short fibers
JP3764413B2 (en) Transmission belt manufacturing method
JP3999490B2 (en) Manufacturing method and apparatus for manufacturing rubber sheet containing short fiber
JP2002127227A (en) Method and apparatus for manufacturing staple fiber- containing rubber sheet
JP4188172B2 (en) Method for producing double-layer rubber sheet for transmission belt
JP2005014304A (en) Method and apparatus for manufacturing short fiber-containing rubber sheet
JP2002127225A (en) Method and apparatus for manufacturing short fiber- filled rubber sheet
JP2006069220A (en) Manufacturing process of transmission belt and transmission belt
JP2002192595A (en) Apparatus for manufacturing short fiber-mixed rubber sheet and die unit used therefor
JP2004174772A (en) Method for producing transmission belt
JP2008162021A (en) Cylindrical object made of short fiber-containing rubber and its manufacturing method
JP2004160660A (en) Method for manufacturing driving belt
US7128853B2 (en) Method and apparatus for manufacturing a rubber sheet containing short fibers
JP4233924B2 (en) Transmission belt manufacturing method
JP4133310B2 (en) Transmission belt manufacturing method
JP2003136610A (en) Method for manufacturing transmission belt
JP2003001720A (en) Method for producing transmission belt
JP2003211554A (en) Manufacturing method for transmission belt
JP2003145637A (en) Method for manufacturing transmission belt
JP2007245578A (en) Method of manufacturing rubber sheet containing short fiber
JP2004175103A (en) Producing method for rubber sheet containing short fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees