JP2004082150A - Continuous casting method - Google Patents
Continuous casting method Download PDFInfo
- Publication number
- JP2004082150A JP2004082150A JP2002244468A JP2002244468A JP2004082150A JP 2004082150 A JP2004082150 A JP 2004082150A JP 2002244468 A JP2002244468 A JP 2002244468A JP 2002244468 A JP2002244468 A JP 2002244468A JP 2004082150 A JP2004082150 A JP 2004082150A
- Authority
- JP
- Japan
- Prior art keywords
- solidification
- casting
- stress
- crack
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、アルミ、銅、鉄鋼などの鋳塊を高品質に効率良く安定して連続鋳造する方法に関する。
【0002】
【従来の技術】
従来、アルミ、銅、鉄鋼などをDC法などにより連続鋳造する場合、その鋳造条件は、鋳塊の降下速度(引出速度)や注湯温度などを過去の経験をもとに種々変化させ、試行錯誤を繰り返して決めていた。
【0003】
【発明が解決しようとする課題】
しかし、このような方法では、高品質の鋳塊を歩留まり良く安定して鋳造することが困難であった。
このため、本発明者等は、高品質鋳塊を効率良く鋳造することを目的に、凝固割れについて調査し分析して、(1)凝固割れ(鋳造時の割れ)は固液共存域に位置する高い割れ感受性領域で発生すること、(2)固液共存域においては、割れ感受性分布による方が主応力分布によるよりも凝固割れが発生し易い領域を適切に示せることを知見し、さらに検討を重ねて本発明を完成させるに至った。
本発明の課題は、試行錯誤せずに、高品質鋳塊を効率良く安定して連続鋳造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、凝固収縮ひずみによる荷重効果と流動応力の温度依存性とから凝固応力モデルを構築し、前記モデルに基づいて鋳塊の主応力分布を計算し、前記主応力分布から割れ感受性指標を計算し、前記指標が凝固割れを発生し難い数値範囲に入る場合はそのまま鋳造を続け、前記指標が凝固割れを発生し易い数値範囲に入る場合は前記指標が凝固割れを発生し難い数値範囲となるように鋳造条件を調整して鋳造することを特徴とする連続鋳造方法である。
【0005】
【発明の実施の形態】
本発明は、鋳造合金の機械的特性値および熱的物性値を用いて、凝固割れが発生するか否かを数値シュミレーションし、このシュミレーションの結果に基づいて、予め設定した鋳造条件を調整して連続鋳造する方法である。
本発明によれば、凝固割れの発生箇所(領域)や割れ伝搬挙動が予測でき、その予測に基づいて鋳造条件を調整するので、高品質の鋳塊が、試行錯誤せずに、効率良く得られる。特に、新合金の鋳造に適用して、その効果が大きい。
【0006】
以下に、本発明の実施手順を図1を参照して説明する。
(1)鋳造合金の機械的特性値および熱的物性値を入力し計算体系を整備する。
(2)前記特性値および物性値を凝固温度モデルの基礎式に代入して鋳塊内温度分布を計算する。
(3)凝固熱応力モデルの基礎式により鋳塊内の応力分布を計算する。
(4)主応力分布と割れ感受性分布を計算する。
(5)凝固割れ感受性の大きさ(割れ感受性指標)の計算結果から割れ発生の可能性を評価する。
(6)割れ発生の可能性がある場合は(1)に戻って鋳造条件を見直す。割れ発生の可能性がない場合は(2)から(4)までの計算と(5)の評価を行いつつ鋳造を続ける。この間、高品質の鋳塊が鋳造される。
【0007】
前記(2)の凝固温度モデル基礎式については、図2(イ)に示すように、温度回復法により潜熱放出を考慮した一般的な熱伝導方程式をガラーキン法にて有限要素化し、時間についてもクランク−ニコルソン法にて離散化して、最終的な有限要素法方程式を得る。アルミDC鋳造の境界条件は、体系に対して、降下速度を上昇させることにより鋳造を模擬する。図2(ロ)は鋳塊説明図である。
【0008】
前記(3)の凝固熱応力モデルについては、図3に示すように、ひずみ増分理論に基づく弾塑性応力モデルを採用したが、特に熱収縮ひずみと凝固収縮ひずみは、固相率と固相率変化で表現することにより、前者は固相域のみ、後者は固液共存域のみを計算対象とする。
【0009】
本発明では、前記ひずみ増分理論に基づく式に、熱収縮と凝固収縮のひずみ増分、フックの弾性式、後続の降伏関数、プラガーの適応条件、相当塑性ひずみの定義、塑性ひずみ増分の法線則を組み合わせることにより凝固応力モデルの根幹となる構成式を得る。そして仮想仕事の原理を用いて、最終的に接点変位増分に対する剛性方程式の有限要素式を得る。
右辺の荷重ベクトルには、表面力、体積力、弾性的および塑性的熱ひずみの荷重、弾性的及び塑性的凝固収縮ひずみによる荷重、流動応力の温度依存性に起因する見かけの荷重が表現されている。
【0010】
凝固時の鋳塊の表面割れは鋳塊表層の起点から鋳塊内部へ進行する熱間割れであり、この表面割れを根本的に防止するには、先ず、割れの起点を見つけ出し、そこから割れの原因を探る必要がある。その場合、本発明は有効に利用できる。
【0011】
【実施例】
以下に、本発明を実施例により具体的に説明する。
(実施例1)
JIS−3004アルミ合金(Al−Mn系合金)鋳塊の圧延面に縦に走る表面割れを防止するために、前記鋳塊の温度分布を測定し、また応力分布(x方向の垂直応力と相当応力)を計算した。結果を図4に示す。
図4から明らかなように、固液共存域であるサンプ面に沿って、凝固割れ起点となり得る高い応力分布領域が認められ、それ以外にも既に凝固した鋳塊尻部に高い応力分布領域が認められた。
【0012】
次に、実施例1の応力分布を基に割れ感受性分布を計算した。結果を図5に示す。図5から明らかなように、凝固割れの起点となり得る高い応力分布領域が、図4に示した応力分布図よりも明瞭に示された。
【0013】
前記高い応力分布領域の割れ感受性指標を計算したところ、予備実験で求めた凝固割れが発生し易い数値範囲に入ったので、前記指標が凝固割れが発生し難い数値範囲となるように鋳造条件を調整した。即ち、注湯温度を低下させ、二次冷却能を増加させた。その結果、割れのない高品質の鋳塊が安定して鋳造できた。
【0014】
(実施例2)
一般に表面割れは注湯温度が高いほど悪化することが経験的に分かっている。ここでは、この傾向を、本発明方法により、JIS−3004アルミ合金鋳塊を用いて、注湯温度が720℃と680℃の場合について確かめた。
結果を図6に示す。図6(イ)は鋳塊の温度分布図、(ロ)は垂直応力分布図(幅方向)、(ハ)は割れ感受性分布図(幅方向)である。
【0015】
表面割れに及ぼす注湯温度の影響は、図6(ロ)に示した垂直応力分布図からは、鋳塊内部では認められたが、鋳塊表層では殆ど認められなかった。
これに対し、図6(ハ)に示した割れ感受性分布図からは、鋳塊表層でも差が明瞭に認められ、注湯温度が高い方が割れ易いことが明瞭に示された。
このように、本発明方法によれば、割れの発生箇所(領域)が的確に予測できるので、鋳造条件の調整が適正に行える。
【0016】
凝固ひずみを考慮しない場合の割れ感受性は、図7(ハ)(右側)に示すように、割れ起点が固液共存域から外れた位置にあって、割れ伝播を司るサンプ面上での割れ感受性が引張応力状態となっていないため表面割れを表現できない。
【0017】
市販解析ソフトでは垂直応力分布により割れ感受性を表現しているため、前記表面割れの挙動は、本発明のように正しく予測できないことが多い。
また、モデル式に関しても、凝固ひずみを熱ひずみに組み入れる熱処理法が多いため、熱間割れ伝搬を予測するのは無理がある。つまり、前記熱処理法では、固液共存域に凝固ひずみによる引張応力を集中分布させることができない。
【0018】
前記実施例では、JIS−3004アルミ合金について説明したが、本発明は、他のアルミ合金、純アルミ、純銅、銅合金、鉄鋼などに適用して、同様の効果が得られるものである。
【0019】
【発明の効果】
以上に述べたように、本発明は、凝固収縮ひずみによる荷重効果と流動応力の温度依存性とから凝固応力モデルを構築し、前記モデルに基づいて鋳塊の主応力分布を計算し、前記主応力分布から割れ感受性指標を計算し、前記指標が凝固割れが発生し易い数値範囲に入る場合は、前記指標が凝固割れが発生し難い数値範囲となるように鋳造条件を調整して鋳造するので、凝固割れを生じない適正な鋳造条件が効率良く安定して得られ、工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態を示すフローチャートである。
【図2】(イ)は凝固温度モデルの基礎式、(ロ)は鋳塊説明図である。
【図3】凝固熱応力モデルの基礎式である。
【図4】計算で求めた(イ)は温度分布図、(ロ)は垂直応力分布図、(ハ)は相当応力分布図で、左側が鋳塊の内側、右側が鋳塊の外側である。
【図5】計算で求めた(イ)は主応力方向図、(ロ)は主応力分布図、(ハ)は割れ感受性分布図であり、(ロ)、(ハ)で左側は鋳塊内側、右側は鋳塊外側である。
【図6】JIS−3004アルミ合金鋳塊の凝固ひずみを考慮した場合の(イ)温度分布図、(ロ)垂直応力分布図、(ハ)割れ感受性分布図で、左側が注湯温度720℃の場合、右側が注湯温度680℃の場合である。
【図7】JIS−3004アルミ合金鋳塊の注湯温度が720℃の場合の(イ)温度分布図、(ロ)主応力分布図、(ハ)割れ感受性分布図で、左側が凝固ひずみを考慮した場合、右側が凝固ひずみを考慮しない場合である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for efficiently and stably continuously casting an ingot of aluminum, copper, steel or the like with high quality.
[0002]
[Prior art]
Conventionally, when continuously casting aluminum, copper, steel, etc. by the DC method or the like, the casting conditions are varied by changing the ingot descent speed (drawing speed), pouring temperature, etc. based on past experience, and performing trials. It was decided by repeating mistakes.
[0003]
[Problems to be solved by the invention]
However, with such a method, it has been difficult to cast a high-quality ingot with good yield and stability.
For this reason, the present inventors have investigated and analyzed solidification cracks for the purpose of efficiently casting high quality ingots. (1) Solidification cracks (cracks during casting) are located in the solid-liquid coexistence region. (2) In the solid-liquid coexistence area, it was found that the crack susceptibility distribution could properly indicate the region where solidification cracking was more likely to occur than the main stress distribution, and was further examined. To complete the present invention.
An object of the present invention is to provide a method for continuously casting a high-quality ingot efficiently and stably without trial and error.
[0004]
[Means for Solving the Problems]
The present invention constructs a solidification stress model from the load effect due to solidification shrinkage strain and the temperature dependence of flow stress, calculates the main stress distribution of the ingot based on the model, and calculates the crack susceptibility index from the main stress distribution. Calculate, if the index falls into a numerical range in which solidification cracking is unlikely to occur, continue casting as it is, and if the index falls in a numerical range in which solidification cracking is likely to occur, the index is a numerical range in which solidification cracking is unlikely to occur. This is a continuous casting method characterized in that casting is performed while adjusting casting conditions so as to be as follows.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention uses a mechanical property value and a thermal physical property value of a cast alloy to numerically simulate whether or not solidification cracks occur, and adjusts a preset casting condition based on a result of the simulation. This is a method of continuous casting.
According to the present invention, the location (region) of solidification cracking and crack propagation behavior can be predicted, and casting conditions are adjusted based on the prediction, so that a high-quality ingot can be obtained efficiently without trial and error. Can be In particular, the effect is great when applied to the casting of a new alloy.
[0006]
The procedure for implementing the present invention will be described below with reference to FIG.
(1) Enter the mechanical and thermal properties of the cast alloy and prepare a calculation system.
(2) The temperature distribution in the ingot is calculated by substituting the characteristic values and physical property values into the basic formula of the solidification temperature model.
(3) Calculate the stress distribution in the ingot by the basic equation of the solidification thermal stress model.
(4) Calculate the main stress distribution and the crack susceptibility distribution.
(5) The possibility of crack generation is evaluated from the calculation result of the magnitude of solidification crack sensitivity (crack sensitivity index).
(6) If there is a possibility of cracking, return to (1) and review the casting conditions. If there is no possibility of cracking, the casting is continued while performing the calculations from (2) to (4) and the evaluation of (5). During this time, a high quality ingot is cast.
[0007]
As for the solidification temperature model basic expression of the above (2), as shown in FIG. 2 (a), a general heat conduction equation taking latent heat release into consideration by the temperature recovery method is converted into a finite element by the Galerkin method, and the time is also reduced. Discrete by the Crank-Nicholson method to obtain a final finite element method equation. The boundary condition of aluminum DC casting simulates casting by increasing the descent speed for the system. FIG. 2B is an explanatory diagram of the ingot.
[0008]
As for the solidification thermal stress model of (3), as shown in FIG. 3, an elasto-plastic stress model based on the strain increment theory was adopted. By expressing it as a change, the former is calculated only for the solid phase region and the latter is calculated only for the solid-liquid coexisting region.
[0009]
In the present invention, in the formula based on the strain increment theory, the strain increment of heat shrinkage and solidification shrinkage, elasticity equation of hook, subsequent yield function, adaptation condition of plugger, definition of equivalent plastic strain, normal rule of plastic strain increment Are combined to obtain a constitutive equation that is the basis of the solidification stress model. Finally, using the principle of virtual work, a finite element formula of a rigidity equation for the contact displacement increment is finally obtained.
The load vector on the right side expresses the surface force, body force, elastic and plastic thermal strain load, elastic and plastic solidification shrinkage strain load, and apparent load due to temperature dependence of flow stress. I have.
[0010]
Surface cracks of ingots during solidification are hot cracks that progress from the starting point of the surface of the ingot to the inside of the ingot.To fundamentally prevent this surface cracking, first find the starting point of the crack, and then You need to find out the cause. In that case, the present invention can be used effectively.
[0011]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
(Example 1)
In order to prevent surface cracks running vertically on the rolling surface of the JIS-3004 aluminum alloy (Al-Mn alloy) ingot, the temperature distribution of the ingot was measured, and the stress distribution (equivalent to the vertical stress in the x direction) was measured. Stress) was calculated. FIG. 4 shows the results.
As is clear from FIG. 4, along the sump surface, which is a solid-liquid coexistence region, a high stress distribution region that can be a solidification crack initiation point is recognized, and in addition, a high stress distribution region is present in the already solidified ingot butt. Admitted.
[0012]
Next, a crack susceptibility distribution was calculated based on the stress distribution of Example 1. FIG. 5 shows the results. As is clear from FIG. 5, a high stress distribution region which can be a starting point of solidification cracking is clearly shown from the stress distribution diagram shown in FIG.
[0013]
When calculating the crack susceptibility index of the high stress distribution region, since it entered a numerical range in which solidification cracking is likely to occur, which was obtained in preliminary experiments, the casting conditions were set so that the index was in a numerical range in which solidification cracking was unlikely to occur. It was adjusted. That is, the pouring temperature was lowered and the secondary cooling capacity was increased. As a result, a high quality ingot without cracks could be cast stably.
[0014]
(Example 2)
It has been empirically found that surface cracking generally worsens as the pouring temperature increases. Here, this tendency was confirmed by the method of the present invention in the case of pouring temperatures of 720 ° C. and 680 ° C. using a JIS-3004 aluminum alloy ingot.
FIG. 6 shows the results. 6A is a temperature distribution diagram of the ingot, FIG. 6B is a vertical stress distribution diagram (width direction), and FIG. 6C is a crack susceptibility distribution diagram (width direction).
[0015]
The effect of the pouring temperature on the surface cracks was observed inside the ingot from the vertical stress distribution diagram shown in FIG. 6B, but was hardly observed in the surface layer of the ingot.
On the other hand, the crack susceptibility distribution diagram shown in FIG. 6 (c) clearly shows the difference even in the surface layer of the ingot, and clearly shows that the higher the pouring temperature, the easier the crack.
As described above, according to the method of the present invention, the location (region) where a crack occurs can be accurately predicted, so that the casting conditions can be properly adjusted.
[0016]
As shown in Fig. 7 (c) (right side), the crack susceptibility without considering the solidification strain is the crack susceptibility on the sump surface that controls the crack propagation when the crack initiation point is out of the solid-liquid coexistence region. Is not in a state of tensile stress, so that surface cracks cannot be expressed.
[0017]
Since commercially available analysis software expresses the crack susceptibility by the vertical stress distribution, the behavior of the surface crack cannot often be predicted correctly as in the present invention.
Also, regarding the model formula, since there are many heat treatment methods that incorporate solidification strain into thermal strain, it is impossible to predict hot crack propagation. That is, in the heat treatment method, tensile stress due to solidification strain cannot be concentratedly distributed in the solid-liquid coexistence region.
[0018]
Although the JIS-3004 aluminum alloy has been described in the above embodiments, the present invention can be applied to other aluminum alloys, pure aluminum, pure copper, copper alloys, steels, and the like, and similar effects can be obtained.
[0019]
【The invention's effect】
As described above, the present invention constructs a solidification stress model from the load effect due to solidification shrinkage strain and the temperature dependence of flow stress, calculates the main stress distribution of the ingot based on the model, Calculate the crack susceptibility index from the stress distribution, and when the index falls within a numerical range in which solidification cracking is likely to occur, the index is adjusted to a numerical range in which solidification cracking is unlikely to occur. In addition, appropriate casting conditions that do not cause solidification cracking can be efficiently and stably obtained, and have a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an embodiment of the present invention.
2A is a basic equation of a solidification temperature model, and FIG. 2B is an explanatory diagram of an ingot.
FIG. 3 is a basic equation of a solidification thermal stress model.
FIG. 4 (a) is a temperature distribution diagram, (b) is a vertical stress distribution diagram, and (c) is an equivalent stress distribution diagram obtained by calculation. .
FIG. 5 (a) is a principal stress direction diagram, (b) is a main stress distribution diagram, (c) is a crack susceptibility distribution diagram obtained by calculation, and (b) and (c) are the left side of the ingot. The right side is the outside of the ingot.
FIG. 6 is a (a) temperature distribution diagram, (b) a vertical stress distribution diagram, and (c) a crack susceptibility distribution diagram in consideration of the solidification strain of the JIS-3004 aluminum alloy ingot. In the case of, the right side is a case where the pouring temperature is 680 ° C.
FIG. 7 is a diagram showing (a) a temperature distribution diagram, (b) a main stress distribution diagram, and (c) a crack susceptibility distribution diagram when the pouring temperature of the JIS-3004 aluminum alloy ingot is 720 ° C. When considering, the right side is a case where solidification strain is not considered.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002244468A JP2004082150A (en) | 2002-08-26 | 2002-08-26 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002244468A JP2004082150A (en) | 2002-08-26 | 2002-08-26 | Continuous casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004082150A true JP2004082150A (en) | 2004-03-18 |
Family
ID=32052916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002244468A Pending JP2004082150A (en) | 2002-08-26 | 2002-08-26 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004082150A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009262235A (en) * | 2008-03-31 | 2009-11-12 | Kobe Steel Ltd | Method for estimating solidification cracking, casting method using the same, solidification cracking estimation device, and solidification cracking estimation program |
JP2010221282A (en) * | 2009-03-24 | 2010-10-07 | Kobe Steel Ltd | Method for predicting solidification cracking, casting method using the same, solidification cracking prediction device, and solidification cracking prediction program |
CN103920859A (en) * | 2013-01-14 | 2014-07-16 | 中冶南方工程技术有限公司 | Continuous casting sheet billet internal crack online prediction method |
EP3488948B1 (en) | 2017-11-24 | 2020-01-08 | SMS Group GmbH | Method for analysing causes of errors in continuous casting |
CN114769540A (en) * | 2022-04-26 | 2022-07-22 | 武汉钢铁有限公司 | Production method of high-grade non-oriented silicon steel casting blank |
-
2002
- 2002-08-26 JP JP2002244468A patent/JP2004082150A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009262235A (en) * | 2008-03-31 | 2009-11-12 | Kobe Steel Ltd | Method for estimating solidification cracking, casting method using the same, solidification cracking estimation device, and solidification cracking estimation program |
JP2010221282A (en) * | 2009-03-24 | 2010-10-07 | Kobe Steel Ltd | Method for predicting solidification cracking, casting method using the same, solidification cracking prediction device, and solidification cracking prediction program |
CN103920859A (en) * | 2013-01-14 | 2014-07-16 | 中冶南方工程技术有限公司 | Continuous casting sheet billet internal crack online prediction method |
EP3488948B1 (en) | 2017-11-24 | 2020-01-08 | SMS Group GmbH | Method for analysing causes of errors in continuous casting |
CN114769540A (en) * | 2022-04-26 | 2022-07-22 | 武汉钢铁有限公司 | Production method of high-grade non-oriented silicon steel casting blank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sengupta et al. | Quantification of temperature, stress, and strain fields during the start-up phase of direct chill casting process by using a 3D fully coupled thermal and stress model for AA5182 ingots | |
Liu et al. | A study on the numerical simulation of thermal stress during the solidification of shaped castings | |
JP2007167871A (en) | Apparatus and method for determining operating state of working surfaces of casting mold or casting die, method for operating casting mold or casting die, computer program, and recording medium readable by computer | |
Spinelli et al. | Evaluation of heat transfer coefficients during upward and downward transient directional solidification of Al–Si alloys | |
JP2004082150A (en) | Continuous casting method | |
Vaghefi et al. | Investigating the effects of cooling rate and casting speed on continuous casting process using a 3D thermo-mechanical meshless approach | |
Fjær et al. | Coupled stress, thermal and fluid flow modelling of the start-up phase of Aluminium sheet ingot casting | |
WO2020195599A1 (en) | Device for estimating solidifying shell thickness in casting mold, and method for estimating solidifying shell thickness in casting mold | |
Jabbari et al. | Numerical modeling of coupled heat transfer and phase transformation for solidification of the gray cast iron | |
Guo et al. | Modeling of alloy casting solidification | |
Li et al. | Ideal taper prediction for billet casting | |
JP7021608B2 (en) | Method for estimating the central solid phase ratio of continuously cast slabs | |
Sengupta et al. | The effect of water ejection and water incursion on the evolution of thermal field during the start-up phase of the direct chill casting process | |
JP5302737B2 (en) | Solidification crack prediction method, casting method using the same, solidification crack prediction device, and solidification crack prediction program | |
JP5351575B2 (en) | Solidification crack prediction method, casting method using the same, solidification crack prediction device, and solidification crack prediction program | |
Eqal | Experimental and simulation study of solidification of commercial pure aluminium by sand casting | |
Pedersen et al. | Undercooling and nodule count in thin walled ductile iron castings | |
de Barcellos et al. | Analysis of metal mould heat transfer coefficients during continuous casting of steel | |
Ao et al. | Study on Influence of Water-cooled Stool During the Process of Unidirectional Solidification | |
An et al. | Control Center Segregation in Continuously Cast GCr15 Bloom by Optimization of Solidification Structure | |
KR101545937B1 (en) | Method for determining the occurence of surface crack of slab | |
Quaresma et al. | The effect of solidification thermal variables on surface quality of Al–Cu ingots | |
JP2009233703A (en) | Continuous casting method | |
Koshikawa et al. | Study of hot tearing and macrosegregation through ingot bending test and its numerical simulation | |
Chakraborty et al. | Heat Flow and Solidification Modeling of Industrial Scale, Ingot Casting Operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20040202 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A621 | Written request for application examination |
Effective date: 20050808 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071023 |