JP2004082098A - Exhaust gas cleaning filter and its production method - Google Patents

Exhaust gas cleaning filter and its production method Download PDF

Info

Publication number
JP2004082098A
JP2004082098A JP2003109391A JP2003109391A JP2004082098A JP 2004082098 A JP2004082098 A JP 2004082098A JP 2003109391 A JP2003109391 A JP 2003109391A JP 2003109391 A JP2003109391 A JP 2003109391A JP 2004082098 A JP2004082098 A JP 2004082098A
Authority
JP
Japan
Prior art keywords
exhaust gas
cell
partition wall
partition
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003109391A
Other languages
Japanese (ja)
Other versions
JP3873924B2 (en
Inventor
Mamoru Nishimura
西村 養
Mikio Ishihara
石原 幹男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003109391A priority Critical patent/JP3873924B2/en
Priority to FR0307545A priority patent/FR2841151B1/en
Priority to DE10328118A priority patent/DE10328118A1/en
Publication of JP2004082098A publication Critical patent/JP2004082098A/en
Application granted granted Critical
Publication of JP3873924B2 publication Critical patent/JP3873924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/20Shape of filtering material
    • B01D2275/206Special forms, e.g. adapted to a certain housing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding

Landscapes

  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of an exhaust gas cleaning filter of a high strength which cleans exhaust gas by collecting particulates with excellent cleaning efficiency, while smoothly introducing and discharging the exhaust gas and which can be easily produced, and to provide the filter. <P>SOLUTION: A honeycomb molded body 100 having partition walls 11 and a plurality of cells 12 of roughly a triangle shape in cross section is made by extrusion molding, drying and cutting in a predetermined length a ceramic material containing an organic binder. The partition walls 11 at openings 13 of the cells 12 of the body 100 is deformed to provide large openings of roughly a regular hexagonal shape in front view and closing parts, adjacent thereto. Then, the body 100 is burned. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は,内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタ及びその製造方法に関する。
【0002】
【従来技術】
従来より,ディーゼルエンジン等の内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタがある。該排ガス浄化フィルタは,例えば図14,図15に示すごとく,ハニカム構造体90のセル92の一端に栓材94を配設してなる。
【0003】
上記排ガス浄化フィルタ9を用いて,排ガス4を浄化する際には,図15に示すごとく,上記排ガス浄化フィルタ9の一方の端面991におけるセル92の開口部93から排ガス4を導入する。上記セル92に導入された排ガス4は,上記隔壁91を通過して,隣のセル92へ移る。このとき,上記排ガス4中のパティキュレートが上記隔壁91に捕集され,上記排ガス4が浄化される。また,例えば,上記隔壁91に触媒を担持させておくことにより,捕集したパティキュレートを触媒反応により分解除去することができる。
【0004】
そして,浄化された排ガス4は,上記排ガス浄化フィルタ9の他方の端面992における上記セル92の開口部93から排出される。
このようにして,上記排ガス浄化フィルタ9によって,排ガス4の浄化を行うことができる。
【0005】
【特許文献1】
特表平8−508199号公報
【0006】
【解決しようとする課題】
しかしながら,上記従来の排ガス浄化フィルタ9には以下の問題がある。
即ち,上記セル92の一方の開口部93には上記栓材94が配設されている。そして,該栓材94は,通常パティキュレートの捕集機能を有していない。それ故,上記栓材94の部分,即ち上記セル92の一端をフィルタとして有効に使用することができず,排ガス4の浄化効率が不充分となる場合がある。
また,パティキュレートが,上記排ガス浄化フィルタ9の両端面991,992付近に集中して堆積して,セル92の開口部93を閉塞するおそれがあるという問題もある。
【0007】
上記の問題に対して,図16に示すごとく,隔壁81を変形させてセル82の一端を塞いだフィルタ8が開示されている(特許文献1参照)。
該フィルタ8は,パティキュレートの捕集機能を有する上記隔壁81によってセル82の一端を塞いでいる。このセル82の一端においても排ガス4が上記隔壁81を通過することによって,排ガス4を浄化することができる。そのため,排ガス4の浄化効率を向上させることができる。
【0008】
しかし,上記隔壁81の変形は,押出し成形し,乾燥したハニカム成形体に対して行なうため,上記隔壁81の端部には,大きな押圧力を加える必要がある。それ故,上記隔壁81を,円滑に所望の形状に変形させることが困難である。
また,上記隔壁81の端部を,ソーキング液体によってソーキングして,変形しやすい状態とした後,上記隔壁81を押圧して変形させる方法が開示されている。しかし,この場合には,ソーキング工程が新たに必要となり,また,上記ソーキングには時間を要するため,生産効率が低下するという問題がある。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,浄化効率に優れ,排ガスの導入・排出を円滑に行なうことができる,製造容易かつ強度の高い排ガス浄化フィルタ及びその製造方法を提供しようとするものである。
【0010】
【課題の解決手段】
第1の発明は,内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタにおいて,
該排ガス浄化フィルタは,ハニカム状に設けられた隔壁と,該隔壁により仕切られた断面略三角形状の複数のセルとを有するハニカム構造体を備え,
上記セルの各々は,上記ハニカム構造体の一端において上記隔壁が拡がった正面視略六角形状の大開口部を有し,他端において上記隔壁が内方へ絞られた閉塞部とを有し,
上記ハニカム構造体の両端面には,それぞれ上記大開口部と上記閉塞部とが互いに隣り合うようにして混在していることを特徴とする排ガス浄化フィルタにある(請求項1)。
【0011】
上記大開口部及び閉塞部は,上記セルの開口部における隔壁を上記隔壁を部分的に屈曲させたり,引き伸ばしたりして変形させることにより形成することができる。
上記のごとく,上記ハニカム成形体における各セルは,断面略三角形状を有し,この断面略三角形状の開口部を,正面視略六角形状に変形することにより,上記大開口部を形成すると共に,上記閉塞部を形成する。
そのため,上記隔壁を変形させる際の屈曲角度や引き伸ばし量を小さくすることができる。即ち,上記隔壁の屈曲角度及び引き伸ばし量が小さくても,上記大開口部及び閉塞部を形成することができる。
【0012】
それ故,上記隔壁における亀裂発生を防止することができると共に,強度の高い排ガス浄化フィルタを得ることができる。
なお,セルの断面形状と,上記屈曲角度,引き伸ばし量との関係については,下記実施例1において詳述する。
【0013】
また,上記排ガス浄化フィルタは,上記セルの一端に閉塞部を有する。それ故,上記セルに導入された排ガスは,上記隔壁を通過して隣のセルへ移った後,他端の大開口部から排出される。これにより,上記排ガス中のパティキュレートが上記隔壁に捕集される。
【0014】
また,上記閉塞部は,パティキュレートの捕集機能を有する隔壁を変形させることにより形成されている。そのため,上記セルの端部,即ち上記閉塞部の周囲においても,排ガスが上記隔壁を通過することによって,充分に排ガスの浄化が行われる。それ故,排ガスの浄化効率を向上させることができる。
【0015】
また,上記排ガス浄化フィルタは,上記セルの一端に大開口部を設けてなる。そのため,排ガス浄化フィルタの端面にパティキュレートが堆積しても,セルの開口面積を充分に確保することができ,排ガスの導入・排出を円滑に行うことができる。
【0016】
以上のごとく,第1の発明によれば,浄化効率に優れ,排ガスの導入・排出を円滑に行なうことができる,強度の高い排ガス浄化フィルタを提供することができる。
【0017】
第2の発明は,内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタにおいて,
該排ガス浄化フィルタは,ハニカム状に設けられた隔壁と,該隔壁により仕切られた断面略三角形状の複数のセルとを有するハニカム構造体を備え,
上記複数のセルのうちの一部のセルは,上記ハニカム構造体における排ガス導入側の一端において上記隔壁が拡がった正面視略六角形状の大開口部を有し,他端には上記セルを閉塞する栓材を配設してなり,
他のセルは,排ガス導入側の一端において上記隔壁が内方へ絞られた閉塞部を有し,
上記ハニカム構造体には,上記大開口部を有するセルと上記閉塞部を有するセルとが互いに隣り合うようにして混在していることを特徴とする排ガス浄化フィルタにある(請求項2)。
【0018】
第2の発明にかかる排ガス浄化フィルタにおいても,上記第1の発明の場合と同様に,上記ハニカム成形体における各セルが断面略三角形状を有し,この断面略三角形状の開口部を,正面視略六角形状に変形することにより,上記大開口部を形成すると共に,上記閉塞部を形成する。
それ故,上記隔壁における亀裂発生を防止することができると共に,強度の高い排ガス浄化フィルタを得ることができる。
【0019】
また,上記排ガス浄化フィルタは,上記セルの排ガス導入側の一端に大開口部を設けてなる。そのため,排ガス浄化フィルタの端面にパティキュレートが堆積しても,セルの開口面積を充分に確保することができ,排ガスの導入・排出を円滑に行うことができる。
【0020】
また,上記セルにおける排ガス導入側と反対側の一端の閉塞は,栓材の配設により行っている。そのため,上記上記排ガス浄化フィルタを製造するに当り,隔壁を変形させるのは,排ガス導入側の端部だけで済む。それ故,製造容易,かつ生産効率に優れた排ガス浄化フィルタを得ることができる。
【0021】
以上のごとく,第2の発明によれば,浄化効率に優れ,排ガスの導入・排出を円滑に行なうことができる,強度の高い排ガス浄化フィルタを提供することができる。
【0022】
第3の発明は,内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタを製造する方法において,
有機バインダを含有したセラミック材料を押出し成形し,乾燥し,所定長さに切断して,ハニカム状に設けられた隔壁と,該隔壁により仕切られていると共に両端面に貫通してなる断面略三角形状の複数のセルとを有するハニカム成形体を作製し,
該ハニカム成形体のセルの開口部における隔壁を変形させることにより,上記セルの開口部を拡げて正面視略六角形状の大開口部を設けると共に,その隣のセルの開口部を内方へ絞って閉塞部を設け,
その後,上記ハニカム成形体を焼成することを特徴とする排ガス浄化フィルタの製造方法にある(請求項3)。
【0023】
次に,本発明の作用効果につき説明する。
上記セルの開口部における隔壁を変形させるに当っては,上記隔壁を部分的に屈曲させたり,引き伸ばしたりすることとなる。
本製造方法においては,上記ハニカム成形体における断面略三角形状の開口部を,正面視略六角形状に変形することにより,上記大開口部を形成すると共に,上記閉塞部を形成することができる。
そのため,上記隔壁を変形させる際の屈曲角度や引き伸ばし量を小さくすることができる。即ち,上記隔壁の屈曲角度及び引き伸ばし量が小さくても,上記大開口部及び閉塞部を形成することができる。
【0024】
それ故,上記隔壁における亀裂発生を防止することができると共に,強度の高い排ガス浄化フィルタを得ることができる。
なお,セルの断面形状と,上記屈曲角度,引き伸ばし量との関係については,下記実施例1において詳述する。
【0025】
また,上記製造方法により得られる排ガス浄化フィルタは,セルの一端が,上記閉塞部により閉塞されることとなる。それ故,上記セルの一端から導入された排ガスは,上記隔壁を通過して隣のセルへ移った後,他端の大開口部から排出される。これにより,上記排ガス中のパティキュレートが上記隔壁に捕集される。
【0026】
また,上記閉塞部は,パティキュレートの捕集機能を有する隔壁を変形させることにより形成されている。そのため,上記セルの端部,即ち上記閉塞部の周囲においても,排ガスが上記隔壁を通過することによって,充分に排ガスの浄化が行われる。それ故,排ガスの浄化効率を向上させることができる。
【0027】
また,上記製造方法により得られる排ガス浄化フィルタには,セルの一端に大開口部が設けられることとなる。そのため,排ガス浄化フィルタの端面にパティキュレートが堆積しても,セルの開口面積を充分に確保することができ,排ガスの導入・排出を円滑に行うことができる。
【0028】
以上のごとく,第3の発明によれば,浄化効率に優れ,排ガスの導入・排出を円滑に行なうことができる,製造容易かつ強度の高い排ガス浄化フィルタの製造方法を提供することができる。
【0029】
【発明の実施の形態】
上記第3の発明(請求項3)において,上記有機バインダとしては,例えば,メチルセルロース,ヒドロキシメチルセルロース,合成樹脂等を用いることができる。
また,上記内燃機関としては,例えば,ディーゼルエンジン等がある。
【0030】
また,テーパ状の先端部を有するテーパ治具を,上記ハニカム成形体のセルの開口部に差し込むと共に,上記隔壁を加熱して軟化させ,上記テーパ治具の押圧力によって上記隔壁を変形させることが好ましい(請求項4)。
この場合には,上記隔壁を容易に変形させることができる。
即ち,上記隔壁を構成するセラミック材料は,有機バインダを含有しているため,上記隔壁は,加熱することにより軟化させることができる。そして,上記隔壁を加熱して軟化させた状態で,隔壁に押圧力を加えることにより,隔壁を容易に変形させることができる。
【0031】
ここで,上記押圧力は,上記ハニカム成形体のセルの開口部に差し込んだテーパ治具により付与する。そして,その押圧力により上記隔壁を変形させる。そのため,上記テーパ治具を差し込んだセルの周囲に位置する隔壁は,上記テーパ治具の先端部のテーパ形状に沿って外方に大きく広がる。それ故,上記テーパ治具を差し込んだセルの開口部は,上記のごとく大開口部となり,一方,その隣のセルの開口部は,必然的に隔壁が内方に変形して上記閉塞部となる。
【0032】
また,上記テーパ治具は,略六角錐形状の先端部を有することが好ましい(請求項5)。
この場合には,正面視略六角形状の大開口部を,容易かつ確実に形成することができる。
また,上記テーパ治具の先端部は,略三角錐形状とすることもできる。この場合にも,正面視略六角形状の大開口部を形成することができる。
【0033】
【実施例】
(実施例1)
本発明の実施例にかかる排ガス浄化フィルタ及びその製造方法につき,図1〜図7を用いて説明する。
本例の排ガス浄化フィルタの製造方法は,図7に示すごとく,ディーゼルエンジン等の内燃機関から排出される排ガス4中のパティキュレートを捕集して排ガス4の浄化を行なう排ガス浄化フィルタ1を製造する方法である。
【0034】
即ち,まず,有機バインダを含有したセラミック材料を押出し成形し,乾燥し,所定長さに切断して,図2に示すハニカム成形体100を作製する。該ハニカム成形体100は,図2,図3(A)に示すごとく,ハニカム状に設けられた隔壁11と,該隔壁11により仕切られていると共に両端面191,192に貫通してなる断面略三角形状の複数のセル12とを有する。
【0035】
次いで,図1の矢印Fに示すごとく,テーパ状の先端部31を有するテーパ治具3を,上記ハニカム成形体100のセル12の開口部13に差し込むと共に,上記隔壁11を加熱して軟化させる。そして,上記テーパ治具30の押圧力によって上記隔壁11を変形させる(図1の矢印G)。これにより,図3(B),図4〜図6に示すごとく,上記セル12の開口部13を拡げて正面視略六角形状の大開口部131を設けると共に,その隣のセル12の開口部13を内方へ絞って閉塞部132を設ける。
その後,上記ハニカム成形体100を焼成する。これにより,上記排ガス浄化フィルタ1を製造する(図7)。
【0036】
上記排ガス浄化フィルタ1の製造方法につき,以下に,より具体的に説明する。
まず,タルク,シリカ,カオリン,アルミナ,水酸化アルミニウム等のセラミック材料と,カーボン,樹脂等の造孔材とを所定量用意し,コージェライト組成となるように配合する。そこへ,有機バインダ及び水を加え,混合・混練し,粘土化する。
この粘土を真空押出し成形機により,ハニカム状に押出し成形し,乾燥し,所定長さに切断する。
【0037】
上記セラミック材料は,例えば,アクリル系樹脂,ステアリン酸メチル,塩化ビニール系樹脂等の熱可塑性樹脂を含有している。
また,上記有機バインダとしては,例えば,メチルセルロース,ヒドロキシメチルセルロース等を用いることができる。
【0038】
これにより得られたハニカム成形体100(図2,図3(A))の両端面191,192に,上記のごとく,テーパ治具3を用いて,上記セル12の開口部13における隔壁11を変形させる(図1)。このとき,上記隔壁11を100〜500℃に加熱して,軟化させた状態で変形させる。
【0039】
上記テーパ治具3は,図1に示すごとく,略六角錐形状の先端部31を有する。そして,上記のごとくテーパ治具3をセル12に差し込むに当っては,上記先端部31の6個のコーナー部32のうちの3個のコーナー部32を,それぞれセル12の3つの辺の略中央部に接触させる。このとき,他の3個のコーナー部32は,上記セル32の角部に対応する位置に配置される。
【0040】
この状態で,上記テーパ治具3を前進させることにより,図4に示すごとく,破線で示した三角形状のセル12の開口部13が,略六角形状に変形して大開口部131となる。
即ち,断面略三角形状の各辺は,その略中央部において約120°に屈曲され,各頂角は,約60°から約120°に拡げられる。
【0041】
また,上記テーパ治具3を差し込むセル12と隔壁11を介して隣り合うセル12は,図5に示すごとく,該セル12を取り囲む3個のセル12が断面略六角形状に拡げられるのに伴い閉塞される。即ち,このセル12は,周りの隔壁11同士が密着することにより,開口部が絞られて閉塞部132を形成する(図3(B),図6)。
【0042】
上記大開口部131と閉塞部132とは,図6に示すごとく,上記ハニカム成形体100における端面191,192に交互に配置する。
なお,上記テーパ治具3による上記開口部13の変形は,各開口部13ごとに個別に行なってもよく,また,複数のテーパ治具3を同時に複数の開口部13に差し込んで,該複数の開口部13を一度に変形してもよい。
【0043】
次いで,上記ハニカム成形体100を焼成して,ハニカム構造体10を得る。次いで,該ハニカム構造体10の隔壁11に,白金等の触媒を担持させて,排ガス浄化フィルタ1を得る(図7)。
得られる排ガス浄化フィルタ1は,コージェライトセラミックからなる。また,その形状は,例えば,円筒型,楕円筒型等であり,直径が50〜300mm,上記両端面191,192間の長さが50〜250mmである。
【0044】
上記製造方法により得られる排ガス浄化フィルタ1は,図6,図7に示すごとく,上記隔壁11と複数の上記セル12とを有するハニカム構造体10を備えている。
上記セル12の各々は,上記ハニカム構造体10の一端において上記隔壁11が拡がった正面視略六角形状の大開口部131を有し,他端において上記隔壁13が内方へ絞られた閉塞部132とを有する。
上記ハニカム構造体10の両端面191,192には,それぞれ上記大開口部131と上記閉塞部132とが互いに隣り合うようにして混在している。
また,上記隔壁11には,該隔壁11に捕集されたパティキュレートを分解除去するための触媒が担持されている(図示略)。
【0045】
上記排ガス浄化フィルタ1は,図7に示すごとく,ディーゼルエンジン等の内燃機関から排出される排ガス4を,一方の端面191における上記大開口部131から,セル12内に導入する。該セル12は,他方の端面192において,閉塞部132によって閉塞されている。そして,上記隔壁11は,多数の細孔を有する多孔体である。
【0046】
そのため,図7に示すごとく,上記セル12に導入された排ガス4は,上記隔壁11を通過する。このとき,排ガス4中のカーボン粒子等のパティキュレートが,上記隔壁11に捕集され,排ガス4が浄化される。上記隔壁11に捕集されたパティキュレートは,上記隔壁11に担持された触媒の作用によって,分解除去される。
【0047】
次に,本例の作用効果につき説明する。
上記隔壁11を構成するセラミック材料は,有機バインダを含有している。そのため,上記隔壁11は,加熱することにより軟化させることができる。そして,上記隔壁11を加熱して軟化させた状態で,隔壁11に押圧力を加えることにより,隔壁11を容易に変形させることができる。
【0048】
ここで,図1に示すごとく,上記押圧力は,上記ハニカム成形体100のセル12の開口部13に差し込んだテーパ治具3により付与する。そして,その押圧力により上記隔壁11を変形させる。そのため,上記テーパ治具3を差し込んだセル12の周囲に位置する隔壁11は,上記テーパ治具3の先端部31のテーパ形状に沿って外方に大きく広がる。それ故,上記テーパ治具3を差し込んだセル12の開口部13は,上記のごとく大開口部131となり,一方,その隣のセル12の開口部13は,必然的に隔壁11が内方に変形して上記閉塞部132となる。
【0049】
このように,上記セル12の開口部13における隔壁11を変形させるに当っては,上記隔壁11を部分的に屈曲させたり,引き伸ばしたりする。
本製造方法においては,上記ハニカム成形体100における断面略三角形状の開口部13を,正面視略六角形状に変形することにより,上記大開口部131を形成すると共に,上記閉塞部132を形成することができる。
【0050】
そのため,上記隔壁11を変形させる際の屈曲角度や引き伸ばし量を小さくすることができる。即ち,上記隔壁11の屈曲角度及び引き伸ばし量が小さくても,上記大開口部131及び閉塞部132を形成することができる。
具体的には,図4に示すごとく,隔壁11の屈曲角度は,約120°と緩やかである。また,変形前の隔壁11の長さに対して,変形後の隔壁11の長さは約2√3/3倍(1.15倍)であり,引き伸ばし量も小さい。
それ故,上記隔壁11における亀裂発生を防止することができると共に,強度の高い排ガス浄化フィルタ1を得ることができる。
【0051】
また,図1に示すごとく,上記テーパ治具3は,略六角錐形状の先端部31を有する。そのため,正面視略六角形状の大開口部131を,容易かつ確実に形成することができる。
【0052】
また,上記製造方法により得られる本例の排ガス浄化フィルタ1は,図7に示すごとく,上記セル12の一端に閉塞部132を有する。それ故,上記セル12に導入された排ガス4は,上記隔壁11を通過して隣のセル12へ移った後,他端の大開口部131から排出される。これにより,上記排ガス4中のパティキュレートが上記隔壁11に捕集される。
【0053】
また,上記閉塞部132は,パティキュレートの捕集機能を有する隔壁11を変形させることにより形成されている。そのため,上記セル12の端部,即ち上記閉塞部132の周囲においても,排ガス4が上記隔壁11を通過することによって,充分に排ガス4の浄化が行われる。それ故,排ガス4の浄化効率を向上させることができる。
【0054】
また,上記排ガス浄化フィルタ1は,上記セル12の一端に大開口部132を設けてなる。そのため,排ガス浄化フィルタ1の端面にパティキュレートが堆積しても,セル12の開口面積を充分に確保することができ,排ガス4の導入・排出を円滑に行うことができる。
【0055】
以上のごとく,本例によれば,浄化効率に優れ,排ガスの導入・排出を円滑に行なうことができる,製造容易かつ強度の高い排ガス浄化フィルタ,及びその製造方法を提供することができる。
【0056】
(実施例2)
本例は,隔壁を変形させるために用いるテーパ治具の先端部を,略三角錐形状とした例である。
この場合,上記テーパ治具の先端部をハニカム成形体のセルの開口部に差し込むに当っては,上記先端部における3つのコーナー部を,三角形状の上記開口部における各辺の略中央に当接させる。
その他は,実施例1と同様である。
この場合にも,正面視略六角形状の大開口部を形成することができると共に,閉塞部を形成することができる。
その他,実施例1と同様の作用効果を有する。
【0057】
なお,上記実施例1,2の排ガス浄化フィルタ1は,ハニカム構造体10に触媒を担持させたものとして示したが,触媒を担持していない排ガス浄化フィルタ1とすることもできる。
【0058】
(実施例3)
本例は,図8に示すごとく,複数のセル12のうちの一部のセル12は,ハニカム構造体10における排ガス導入側の一端(端面191)において隔壁11が拡がった大開口部131を有し,他端には上記セル12を閉塞する栓材14を配設してなる排ガス浄化フィルタ1の例である。
【0059】
また,他のセル12は,排ガス導入側の一端(端面192)において上記隔壁11が内方へ絞られた閉塞部132を有する。
上記ハニカム構造体10には,上記大開口部131を有するセル12と上記閉塞部132を有するセル12とが互いに隣り合うようにして混在している。
【0060】
即ち,上記端面191において,上記大開口部131と閉塞部132とは,互いに隣り合うように混在している。また,上記大開口部131及び閉塞部132の形成は,実施例1と同様の方法で隔壁11を変形させることにより行う。
その他は,実施例1と同様である。
【0061】
本例の排ガス浄化フィルタ1は,上記セル12の排ガス導入側の一端に大開口部131を設けてなる。そのため,排ガス浄化フィルタ1の端面191にパティキュレートが堆積しても,セル12の開口面積を充分に確保することができ,排ガスの導入・排出を円滑に行うことができる。
【0062】
また,上記セル12における排ガス導入側と反対側の一端(端面192)の閉塞は,栓材14の配設により行っている。そのため,上記上記排ガス浄化フィルタ1を製造するに当り,隔壁11を変形させるのは,排ガス導入側の端部だけで済む。それ故,製造容易,かつ生産効率に優れた排ガス浄化フィルタを得ることができる。
その他,実施例1と同様の作用効果を有する。
【0063】
(比較例)
本例は,図9〜図13に示すごとく,断面略正方形状のセル712を有するハニカム成形体700に対して,略四角錐形状の先端部731を有するテーパ治具73を用いて,開口部713の変形を行なう例である。
この場合,上記テーパ治具73の先端部731におけるコーナー部732を正方形状の上記開口部713における各辺の略中央に当接させる。
これにより,図10〜図13に示すごとく,正面視略正方形状の大開口部714が形成されると共に,閉塞部715が形成される。
【0064】
しかし,本例の場合,図10に示すごとく,上記隔壁711は,略90°と大きく屈曲される。そして,引き伸ばし量も,約√2倍(1.41倍)と大きくなる。
そのため,図13に示すごとく,上記隔壁711には亀裂が入ることがある。特に,隔壁711の屈曲部分719には亀裂79が入りやすくなる。
【0065】
図13に示すごとく,上記閉塞部715は,上記屈曲部分719が重なり合うことにより形成される。しかし,該屈曲部分719に亀裂79が生じていると,隙間718が形成され,閉塞部715を確実に形成することができないおそれがある。
また,屈曲部分719以外の隔壁711における亀裂79も,同様の不具合の原因となるおそれがある。
また,上記亀裂79は,ハニカム構造体自体の強度が低下する原因となるおそれもある。
【0066】
これに対し,実施例1〜3の排ガス浄化フィルタ1は,図4に示すごとく,隔壁11の屈曲角度は,約120°と緩やかである。また,変形前の隔壁11の長さに対して変形後の隔壁の長さは約2√3/3倍(1.15倍)であり,引き伸ばし量も小さい。
そのため,上記のような亀裂発生を抑制することができ,隔壁11の強度を確保することができる。その結果,確実に閉塞部132を形成することができると共に,ハニカム構造体10の強度を確保することができる。
【図面の簡単な説明】
【図1】実施例1における,排ガス浄化フィルタの製造方法の説明図。
【図2】実施例1における,ハニカム成形体の斜視図。
【図3】実施例1における,(A)ハニカム成形体の断面説明図,(B)隔壁を変形させた後のハニカム成形体の断面説明図。
【図4】実施例1における,隔壁を変形させて大開口部を形成する方法の説明図。
【図5】実施例1における,隔壁を変形させて閉塞部を形成する方法の説明図。
【図6】図3(B)のC視図。
【図7】実施例1における,排ガス浄化フィルタの断面説明図。
【図8】実施例3における,排ガス浄化フィルタの断面説明図。
【図9】比較例における,排ガス浄化フィルタの製造方法の説明図。
【図10】比較例における,隔壁を変形させて大開口部を形成する方法の説明図。
【図11】比較例における,排ガス浄化フィルタを端面から見た説明図。
【図12】比較例における,1つのセルの開口部付近における斜視図。
【図13】比較例における,排ガス浄化フィルタの端面から見た閉塞部付近の説明図。
【図14】従来例における,排ガス浄化フィルタの斜視図。
【図15】従来例における,排ガス浄化フィルタの断面説明図。
【図16】他の従来例における,排ガス浄化フィルタの断面説明図。
【符号の説明】
1...排ガス浄化フィルタ,
10...ハニカム構造体,
100...ハニカム成形体,
11...隔壁,
12...セル,
13...開口部,
131...大開口部,
132...閉塞部,
191,192...端面,
3...テーパ治具,
31...先端部,
4...排ガス,
[0001]
【Technical field】
The present invention relates to an exhaust gas purification filter for collecting particulates in exhaust gas discharged from an internal combustion engine and purifying the exhaust gas, and a method for manufacturing the same.
[0002]
[Prior art]
BACKGROUND ART Conventionally, there is an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine such as a diesel engine and purifies the exhaust gas. The exhaust gas purification filter has a plug member 94 provided at one end of a cell 92 of a honeycomb structure 90 as shown in FIGS. 14 and 15, for example.
[0003]
When purifying the exhaust gas 4 using the exhaust gas purifying filter 9, as shown in FIG. 15, the exhaust gas 4 is introduced from the opening 93 of the cell 92 at one end surface 991 of the exhaust gas purifying filter 9. The exhaust gas 4 introduced into the cell 92 passes through the partition wall 91 and moves to an adjacent cell 92. At this time, the particulates in the exhaust gas 4 are collected by the partition 91, and the exhaust gas 4 is purified. Further, for example, by supporting a catalyst on the partition wall 91, the collected particulates can be decomposed and removed by a catalytic reaction.
[0004]
Then, the purified exhaust gas 4 is discharged from the opening 93 of the cell 92 at the other end surface 992 of the exhaust gas purification filter 9.
Thus, the exhaust gas 4 can be purified by the exhaust gas purification filter 9.
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. Hei 8-508199 [0006]
[Problem to be solved]
However, the conventional exhaust gas purification filter 9 has the following problems.
That is, the plug member 94 is disposed in one opening 93 of the cell 92. The plug member 94 does not normally have a function of collecting particulates. Therefore, the plug 94, that is, one end of the cell 92, cannot be effectively used as a filter, and the purification efficiency of the exhaust gas 4 may be insufficient.
Further, there is also a problem that the particulates are concentrated and deposited near both end surfaces 991 and 992 of the exhaust gas purifying filter 9 and may close the opening 93 of the cell 92.
[0007]
To solve the above problem, as shown in FIG. 16, a filter 8 in which a partition 81 is deformed to close one end of a cell 82 is disclosed (see Patent Document 1).
The filter 8 has one end of a cell 82 closed by the partition wall 81 having a function of collecting particulates. Even at one end of the cell 82, the exhaust gas 4 can be purified by passing the exhaust gas 4 through the partition 81. Therefore, the purification efficiency of the exhaust gas 4 can be improved.
[0008]
However, since deformation of the partition 81 is performed on the extruded and dried honeycomb formed body, it is necessary to apply a large pressing force to the end of the partition 81. Therefore, it is difficult to smoothly deform the partition 81 into a desired shape.
Further, there is disclosed a method in which an end of the partition 81 is soaked with a soaking liquid to make it easily deformed, and then the partition 81 is pressed to deform. However, in this case, there is a problem that a soaking process is newly required, and the soaking requires a long time, so that the production efficiency is reduced.
[0009]
The present invention has been made in view of such conventional problems, and provides an easy-to-manufacture and high-strength exhaust gas purification filter which is excellent in purification efficiency and can smoothly introduce and discharge exhaust gas, and a method for producing the same. What you are trying to do.
[0010]
[Means for solving the problem]
A first invention relates to an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine and purifies the exhaust gas.
The exhaust gas purifying filter includes a honeycomb structure having a honeycomb-shaped partition wall and a plurality of cells having a substantially triangular cross section partitioned by the partition wall.
Each of the cells has a large opening having a substantially hexagonal shape in a front view in which the partition extends at one end of the honeycomb structure, and a closed portion in which the partition is narrowed inward at the other end.
The exhaust gas purifying filter is characterized in that the large opening and the closed portion are adjacent to each other on both end surfaces of the honeycomb structure so as to be adjacent to each other (claim 1).
[0011]
The large opening and the closed portion can be formed by deforming the partition in the opening of the cell by partially bending or stretching the partition.
As described above, each cell in the honeycomb formed body has a substantially triangular cross-section, and the large-opening is formed by deforming the substantially triangular cross-section opening into a substantially hexagonal shape in a front view. , Forming the closed part.
Therefore, the bending angle and the amount of extension when deforming the partition can be reduced. That is, the large opening and the closed portion can be formed even if the bending angle and the amount of extension of the partition are small.
[0012]
Therefore, the generation of cracks in the partition walls can be prevented, and a high-strength exhaust gas purification filter can be obtained.
The relationship between the cross-sectional shape of the cell, the bending angle, and the amount of stretching will be described in detail in Example 1 below.
[0013]
The exhaust gas purifying filter has a closed portion at one end of the cell. Therefore, the exhaust gas introduced into the cell passes through the partition and moves to the next cell, and then is discharged from the large opening at the other end. As a result, the particulates in the exhaust gas are collected on the partition walls.
[0014]
Further, the closed portion is formed by deforming a partition having a function of collecting particulates. Therefore, even at the end of the cell, that is, around the closed portion, the exhaust gas passes through the partition wall, whereby the exhaust gas is sufficiently purified. Therefore, the purification efficiency of the exhaust gas can be improved.
[0015]
The exhaust gas purification filter has a large opening at one end of the cell. Therefore, even if particulates accumulate on the end face of the exhaust gas purification filter, the opening area of the cell can be sufficiently ensured, and the introduction and discharge of the exhaust gas can be performed smoothly.
[0016]
As described above, according to the first aspect of the invention, it is possible to provide a high-strength exhaust gas purification filter which is excellent in purification efficiency and can smoothly introduce and discharge exhaust gas.
[0017]
A second invention relates to an exhaust gas purification filter that purifies exhaust gas by collecting particulates in exhaust gas discharged from an internal combustion engine.
The exhaust gas purifying filter includes a honeycomb structure having a honeycomb-shaped partition wall and a plurality of cells having a substantially triangular cross section partitioned by the partition wall.
Some of the plurality of cells have a large hexagonal opening in front view in which the partition wall is expanded at one end of the honeycomb structure on the exhaust gas introduction side, and the cell is closed at the other end. To provide a plug material
The other cell has a closed part in which the partition wall is narrowed inward at one end on the exhaust gas introduction side,
The exhaust gas purifying filter is characterized in that the honeycomb structure has a cell having the large opening and a cell having the closed portion mixed together so as to be adjacent to each other (claim 2).
[0018]
In the exhaust gas purifying filter according to the second aspect of the present invention, similarly to the first aspect, each cell of the honeycomb formed body has a substantially triangular cross section, and the opening having the substantially triangular cross section is formed in the front. By deforming into a substantially hexagonal shape when viewed, the large opening is formed and the closed portion is formed.
Therefore, the generation of cracks in the partition walls can be prevented, and a high-strength exhaust gas purification filter can be obtained.
[0019]
The exhaust gas purification filter has a large opening at one end of the cell on the exhaust gas introduction side. Therefore, even if particulates accumulate on the end face of the exhaust gas purification filter, the opening area of the cell can be sufficiently ensured, and the introduction and discharge of the exhaust gas can be performed smoothly.
[0020]
In addition, one end of the cell opposite to the exhaust gas introduction side is closed by providing a plug material. Therefore, in manufacturing the exhaust gas purifying filter, only the end on the exhaust gas introduction side needs to deform the partition wall. Therefore, an exhaust gas purifying filter which is easy to manufacture and excellent in production efficiency can be obtained.
[0021]
As described above, according to the second aspect of the invention, it is possible to provide a high-strength exhaust gas purification filter which is excellent in purification efficiency and can smoothly introduce and discharge exhaust gas.
[0022]
A third invention relates to a method for manufacturing an exhaust gas purifying filter for purifying exhaust gas by collecting particulates in exhaust gas discharged from an internal combustion engine.
A ceramic material containing an organic binder is extruded, dried, cut to a predetermined length, and a partition wall provided in a honeycomb shape, and a substantially triangular cross-section partitioned by the partition wall and penetrating through both end surfaces. A honeycomb formed body having a plurality of cells having a shape is manufactured,
By deforming the partition wall at the cell opening of the honeycomb formed body, the cell opening is expanded to provide a large opening having a substantially hexagonal shape in a front view, and the opening of the adjacent cell is narrowed inward. To provide an obstruction,
Thereafter, there is provided a method for manufacturing an exhaust gas purifying filter, characterized by firing the honeycomb formed body (claim 3).
[0023]
Next, the operation and effect of the present invention will be described.
In deforming the partition in the opening of the cell, the partition is partially bent or stretched.
In the present manufacturing method, the large opening portion and the closed portion can be formed by deforming the opening having a substantially triangular cross section in the honeycomb formed body into a substantially hexagonal shape in a front view.
Therefore, the bending angle and the amount of extension when deforming the partition can be reduced. That is, the large opening and the closed portion can be formed even if the bending angle and the amount of extension of the partition are small.
[0024]
Therefore, the generation of cracks in the partition walls can be prevented, and a high-strength exhaust gas purification filter can be obtained.
The relationship between the cross-sectional shape of the cell, the bending angle, and the amount of stretching will be described in detail in Example 1 below.
[0025]
Further, in the exhaust gas purifying filter obtained by the above manufacturing method, one end of the cell is closed by the closing portion. Therefore, the exhaust gas introduced from one end of the cell passes through the partition and moves to the next cell, and is then discharged from the large opening at the other end. As a result, the particulates in the exhaust gas are collected on the partition walls.
[0026]
Further, the closed portion is formed by deforming a partition having a function of collecting particulates. Therefore, even at the end of the cell, that is, around the closed portion, the exhaust gas passes through the partition wall, whereby the exhaust gas is sufficiently purified. Therefore, the purification efficiency of the exhaust gas can be improved.
[0027]
Further, the exhaust gas purification filter obtained by the above manufacturing method has a large opening at one end of the cell. Therefore, even if particulates accumulate on the end face of the exhaust gas purification filter, the opening area of the cell can be sufficiently ensured, and the introduction and discharge of the exhaust gas can be performed smoothly.
[0028]
As described above, according to the third aspect of the present invention, it is possible to provide a method of manufacturing an exhaust gas purification filter which is excellent in purification efficiency, can smoothly introduce and discharge exhaust gas, is easy to manufacture and has high strength.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
In the third invention (claim 3), for example, methylcellulose, hydroxymethylcellulose, synthetic resin, or the like can be used as the organic binder.
The internal combustion engine includes, for example, a diesel engine.
[0030]
In addition, a taper jig having a tapered tip is inserted into an opening of a cell of the honeycomb formed body, and the partition is heated and softened, and the partition is deformed by a pressing force of the taper jig. Is preferable (claim 4).
In this case, the partition can be easily deformed.
That is, since the ceramic material forming the partition contains an organic binder, the partition can be softened by heating. By applying a pressing force to the partition wall in a state where the partition wall is heated and softened, the partition wall can be easily deformed.
[0031]
Here, the pressing force is applied by a taper jig inserted into an opening of a cell of the honeycomb formed body. Then, the partition wall is deformed by the pressing force. For this reason, the partition located around the cell into which the taper jig is inserted is largely spread outward along the tapered shape at the tip of the taper jig. Therefore, the opening of the cell into which the taper jig is inserted becomes a large opening as described above, while the opening of the cell adjacent to the cell is inevitably deformed inward by the partition wall so that the opening is closed. Become.
[0032]
Preferably, the taper jig has a substantially hexagonal pyramid-shaped tip.
In this case, a large opening having a substantially hexagonal shape in a front view can be easily and reliably formed.
Further, the tip portion of the taper jig may have a substantially triangular pyramid shape. Also in this case, a large opening having a substantially hexagonal shape when viewed from the front can be formed.
[0033]
【Example】
(Example 1)
An exhaust gas purifying filter and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 7, the manufacturing method of the exhaust gas purifying filter of the present embodiment manufactures an exhaust gas purifying filter 1 that purifies the exhaust gas 4 by collecting particulates in the exhaust gas 4 discharged from an internal combustion engine such as a diesel engine. How to
[0034]
That is, first, a ceramic material containing an organic binder is extruded, dried, and cut into a predetermined length to produce a honeycomb formed body 100 shown in FIG. As shown in FIG. 2 and FIG. 3A, the honeycomb formed body 100 has a partition wall 11 provided in a honeycomb shape, and a cross-section substantially formed by partitioning the partition wall 11 and penetrating both end surfaces 191 and 192. And a plurality of triangular cells 12.
[0035]
Next, as shown by the arrow F in FIG. 1, the taper jig 3 having the tapered tip portion 31 is inserted into the opening 13 of the cell 12 of the honeycomb formed body 100, and the partition wall 11 is heated and softened. . Then, the partition wall 11 is deformed by the pressing force of the taper jig 30 (arrow G in FIG. 1). As a result, as shown in FIGS. 3B and 4 to 6, the opening 13 of the cell 12 is expanded to provide a large opening 131 having a substantially hexagonal shape when viewed from the front, and the opening of the cell 12 adjacent thereto. 13 is squeezed inward to provide a closing portion 132.
Thereafter, the honeycomb formed body 100 is fired. Thus, the exhaust gas purifying filter 1 is manufactured (FIG. 7).
[0036]
The method for manufacturing the exhaust gas purifying filter 1 will be described more specifically below.
First, a predetermined amount of a ceramic material such as talc, silica, kaolin, alumina and aluminum hydroxide and a pore-forming material such as carbon and resin are prepared and blended so as to have a cordierite composition. There, an organic binder and water are added, mixed, kneaded, and clayified.
The clay is extruded into a honeycomb shape by a vacuum extruder, dried, and cut into a predetermined length.
[0037]
The ceramic material contains, for example, a thermoplastic resin such as an acrylic resin, methyl stearate, or a vinyl chloride resin.
In addition, as the organic binder, for example, methyl cellulose, hydroxymethyl cellulose, or the like can be used.
[0038]
As described above, the partition walls 11 in the openings 13 of the cells 12 are formed on both end surfaces 191 and 192 of the honeycomb formed body 100 (FIGS. 2 and 3A) obtained by using the taper jig 3 as described above. Deform (Fig. 1). At this time, the partition 11 is heated to 100 to 500 ° C. and deformed in a softened state.
[0039]
As shown in FIG. 1, the taper jig 3 has a substantially hexagonal pyramid-shaped tip portion 31. When the taper jig 3 is inserted into the cell 12 as described above, three corners 32 of the six corners 32 of the distal end portion 31 are respectively approximated to three sides of the cell 12. Contact the center. At this time, the other three corner portions 32 are arranged at positions corresponding to the corner portions of the cell 32.
[0040]
In this state, when the taper jig 3 is advanced, as shown in FIG. 4, the opening 13 of the triangular cell 12 shown by the broken line is transformed into a substantially hexagonal shape to become a large opening 131.
That is, each side of the substantially triangular cross section is bent at about 120 ° at the substantially central portion, and each apex angle is expanded from about 60 ° to about 120 °.
[0041]
As shown in FIG. 5, the cell 12 into which the taper jig 3 is inserted and the cell 12 adjacent to the cell 12 via the partition wall 11 are expanded as the three cells 12 surrounding the cell 12 are expanded into a substantially hexagonal cross section. Closed. In other words, in the cell 12, when the surrounding partition walls 11 are in close contact with each other, the opening is narrowed to form a closed portion 132 (FIGS. 3B and 6).
[0042]
As shown in FIG. 6, the large openings 131 and the closed portions 132 are alternately arranged on end faces 191 and 192 of the honeycomb formed body 100.
The deformation of the openings 13 by the taper jigs 3 may be performed individually for each of the openings 13, or the plurality of taper jigs 3 may be simultaneously inserted into the plurality of openings 13 to May be deformed at once.
[0043]
Next, the honeycomb formed body 100 is fired to obtain the honeycomb structure 10. Next, a catalyst such as platinum is carried on the partition walls 11 of the honeycomb structure 10 to obtain the exhaust gas purification filter 1 (FIG. 7).
The resulting exhaust gas purification filter 1 is made of cordierite ceramic. The shape is, for example, a cylindrical type, an elliptical cylindrical type, or the like, with a diameter of 50 to 300 mm and a length between the both end surfaces 191 and 192 of 50 to 250 mm.
[0044]
The exhaust gas purifying filter 1 obtained by the above manufacturing method includes a honeycomb structure 10 having the partition walls 11 and a plurality of the cells 12 as shown in FIGS.
Each of the cells 12 has a large opening 131 having a substantially hexagonal shape in a front view in which the partition 11 expands at one end of the honeycomb structure 10, and a closed portion in which the partition 13 is narrowed inward at the other end. 132.
On both end surfaces 191 and 192 of the honeycomb structure 10, the large opening portion 131 and the closing portion 132 are mixed so as to be adjacent to each other.
The partition 11 carries a catalyst (not shown) for decomposing and removing the particulates collected by the partition 11.
[0045]
As shown in FIG. 7, the exhaust gas purifying filter 1 introduces exhaust gas 4 discharged from an internal combustion engine such as a diesel engine into the cell 12 from the large opening 131 on one end surface 191. The cell 12 is closed by a closing portion 132 on the other end surface 192. The partition 11 is a porous body having many pores.
[0046]
Therefore, as shown in FIG. 7, the exhaust gas 4 introduced into the cell 12 passes through the partition 11. At this time, particulates such as carbon particles in the exhaust gas 4 are collected by the partition 11 and the exhaust gas 4 is purified. The particulates collected on the partition 11 are decomposed and removed by the action of the catalyst carried on the partition 11.
[0047]
Next, the operation and effect of this embodiment will be described.
The ceramic material forming the partition 11 contains an organic binder. Therefore, the partition walls 11 can be softened by heating. Then, by applying a pressing force to the partition 11 in a state where the partition 11 is heated and softened, the partition 11 can be easily deformed.
[0048]
Here, as shown in FIG. 1, the pressing force is applied by the taper jig 3 inserted into the opening 13 of the cell 12 of the honeycomb formed body 100. Then, the partition wall 11 is deformed by the pressing force. For this reason, the partition 11 located around the cell 12 into which the taper jig 3 is inserted greatly spreads outward along the tapered shape of the tip 31 of the taper jig 3. Therefore, the opening 13 of the cell 12 into which the taper jig 3 is inserted becomes the large opening 131 as described above, while the opening 13 of the cell 12 adjacent thereto necessarily has the partition 11 inward. It is deformed to become the closed portion 132.
[0049]
As described above, when deforming the partition 11 in the opening 13 of the cell 12, the partition 11 is partially bent or stretched.
In the present manufacturing method, the large opening 131 and the closed portion 132 are formed by deforming the opening 13 having a substantially triangular cross section in the honeycomb formed body 100 into a substantially hexagonal shape in a front view. be able to.
[0050]
Therefore, the bending angle and the amount of extension when deforming the partition 11 can be reduced. That is, the large opening 131 and the closed part 132 can be formed even if the bending angle and the amount of extension of the partition 11 are small.
Specifically, as shown in FIG. 4, the bending angle of the partition 11 is gentle at about 120 °. The length of the partition 11 after the deformation is about 2/3/3 times (1.15 times) the length of the partition 11 before the deformation, and the amount of stretching is small.
Therefore, the generation of cracks in the partition walls 11 can be prevented, and the exhaust gas purification filter 1 having high strength can be obtained.
[0051]
As shown in FIG. 1, the tapered jig 3 has a substantially hexagonal pyramid-shaped tip portion 31. Therefore, the large opening 131 having a substantially hexagonal shape in a front view can be easily and reliably formed.
[0052]
Further, the exhaust gas purifying filter 1 of this example obtained by the above-described manufacturing method has a closed portion 132 at one end of the cell 12 as shown in FIG. Therefore, the exhaust gas 4 introduced into the cell 12 passes through the partition 11 and moves to the adjacent cell 12, and then is discharged from the large opening 131 at the other end. Thus, the particulates in the exhaust gas 4 are collected on the partition 11.
[0053]
Further, the closing portion 132 is formed by deforming the partition wall 11 having a function of collecting particulates. Therefore, even at the end of the cell 12, that is, around the closed portion 132, the exhaust gas 4 passes through the partition 11, so that the exhaust gas 4 is sufficiently purified. Therefore, the purification efficiency of the exhaust gas 4 can be improved.
[0054]
Further, the exhaust gas purifying filter 1 is provided with a large opening 132 at one end of the cell 12. Therefore, even if particulates accumulate on the end face of the exhaust gas purification filter 1, the opening area of the cell 12 can be sufficiently ensured, and the introduction and discharge of the exhaust gas 4 can be performed smoothly.
[0055]
As described above, according to the present embodiment, it is possible to provide an easy-to-manufacture and high-strength exhaust gas purification filter which is excellent in purification efficiency and can smoothly introduce and discharge exhaust gas, and a method for producing the same.
[0056]
(Example 2)
This example is an example in which the tip of a taper jig used to deform a partition has a substantially triangular pyramid shape.
In this case, when the tip of the taper jig is inserted into the opening of the cell of the honeycomb formed body, the three corners of the tip are brought into contact with the approximate center of each side of the triangular opening. Contact
Others are the same as the first embodiment.
Also in this case, a large opening having a substantially hexagonal shape in a front view can be formed, and a closed portion can be formed.
In addition, the third embodiment has the same functions and effects as the first embodiment.
[0057]
Although the exhaust gas purifying filters 1 of the first and second embodiments are shown as supporting the catalyst on the honeycomb structure 10, the exhaust gas purifying filter 1 not supporting the catalyst may be used.
[0058]
(Example 3)
In this example, as shown in FIG. 8, some of the plurality of cells 12 have a large opening 131 in which the partition wall 11 is expanded at one end (end surface 191) of the honeycomb structure 10 on the exhaust gas introduction side. The other end is an example of the exhaust gas purification filter 1 in which a plug member 14 for closing the cell 12 is provided.
[0059]
The other cell 12 has a closed part 132 in which the partition wall 11 is narrowed inward at one end (end surface 192) on the exhaust gas introduction side.
In the honeycomb structure 10, the cells 12 having the large openings 131 and the cells 12 having the closed portions 132 are mixed so as to be adjacent to each other.
[0060]
That is, on the end surface 191, the large opening portion 131 and the closing portion 132 are mixed so as to be adjacent to each other. Further, the formation of the large opening 131 and the closed portion 132 is performed by deforming the partition 11 in the same manner as in the first embodiment.
Others are the same as the first embodiment.
[0061]
The exhaust gas purifying filter 1 of this embodiment is provided with a large opening 131 at one end of the cell 12 on the exhaust gas introduction side. Therefore, even if particulates accumulate on the end surface 191 of the exhaust gas purification filter 1, the opening area of the cell 12 can be sufficiently ensured, and the introduction and discharge of exhaust gas can be performed smoothly.
[0062]
Further, one end (end face 192) of the cell 12 on the side opposite to the exhaust gas introduction side is closed by providing a plug material 14. Therefore, in manufacturing the exhaust gas purifying filter 1 described above, only the end on the exhaust gas introduction side needs to deform the partition wall 11. Therefore, an exhaust gas purifying filter which is easy to manufacture and excellent in production efficiency can be obtained.
In addition, the third embodiment has the same functions and effects as the first embodiment.
[0063]
(Comparative example)
In this example, as shown in FIGS. 9 to 13, an opening is formed on a honeycomb formed body 700 having a cell 712 having a substantially square cross section by using a taper jig 73 having a substantially quadrangular pyramid-shaped tip 731. 713 is an example of performing the modification.
In this case, the corner 732 of the tip 731 of the taper jig 73 is brought into contact with the approximate center of each side of the square opening 713.
As a result, as shown in FIGS. 10 to 13, a large opening 714 having a substantially square shape in a front view is formed, and a closing portion 715 is formed.
[0064]
However, in the case of the present example, as shown in FIG. 10, the partition wall 711 is largely bent by approximately 90 °. And the amount of enlargement also increases to about と 2 times (1.41 times).
Therefore, as shown in FIG. 13, the partition 711 may be cracked. In particular, a crack 79 is likely to enter the bent portion 719 of the partition 711.
[0065]
As shown in FIG. 13, the closing portion 715 is formed by overlapping the bent portions 719. However, if the crack 79 is formed in the bent portion 719, a gap 718 is formed, and there is a possibility that the closed portion 715 cannot be reliably formed.
Further, a crack 79 in the partition 711 other than the bent portion 719 may cause a similar problem.
Further, the cracks 79 may cause a decrease in the strength of the honeycomb structure itself.
[0066]
On the other hand, in the exhaust gas purifying filters 1 of the first to third embodiments, as shown in FIG. 4, the bending angle of the partition wall 11 is gentle, about 120 °. The length of the partition wall after deformation is about 2/3/3 times (1.15 times) the length of the partition wall 11 before deformation, and the amount of stretching is small.
Therefore, the occurrence of cracks as described above can be suppressed, and the strength of the partition walls 11 can be ensured. As a result, the closed portion 132 can be reliably formed, and the strength of the honeycomb structure 10 can be ensured.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method for manufacturing an exhaust gas purification filter according to a first embodiment.
FIG. 2 is a perspective view of a honeycomb formed body according to the first embodiment.
3A is a cross-sectional explanatory view of a honeycomb formed body in Example 1, and FIG. 3B is a cross-sectional explanatory view of a honeycomb formed body after a partition is deformed.
FIG. 4 is an explanatory diagram of a method of forming a large opening by deforming a partition wall in the first embodiment.
FIG. 5 is an explanatory diagram of a method of forming a closed portion by deforming a partition wall in the first embodiment.
FIG. 6 is a view as viewed from C in FIG. 3 (B).
FIG. 7 is an explanatory cross-sectional view of an exhaust gas purification filter according to the first embodiment.
FIG. 8 is an explanatory sectional view of an exhaust gas purification filter according to a third embodiment.
FIG. 9 is an explanatory view of a method for manufacturing an exhaust gas purification filter in a comparative example.
FIG. 10 is an explanatory view of a method of forming a large opening by deforming a partition in a comparative example.
FIG. 11 is an explanatory view of an exhaust gas purifying filter as viewed from an end face in a comparative example.
FIG. 12 is a perspective view in the vicinity of an opening of one cell in a comparative example.
FIG. 13 is an explanatory view of the vicinity of a closed portion viewed from an end surface of an exhaust gas purification filter in a comparative example.
FIG. 14 is a perspective view of an exhaust gas purification filter in a conventional example.
FIG. 15 is an explanatory sectional view of an exhaust gas purification filter in a conventional example.
FIG. 16 is an explanatory sectional view of an exhaust gas purifying filter in another conventional example.
[Explanation of symbols]
1. . . Exhaust gas purification filter,
10. . . Honeycomb structure,
100. . . Honeycomb formed body,
11. . . Partition walls,
12. . . cell,
13. . . Aperture,
131. . . Large opening,
132. . . Obstruction,
191, 192. . . End face,
3. . . Taper jig,
31. . . Tip,
4. . . Exhaust gas,

Claims (5)

内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタにおいて,
該排ガス浄化フィルタは,ハニカム状に設けられた隔壁と,該隔壁により仕切られた断面略三角形状の複数のセルとを有するハニカム構造体を備え,
上記セルの各々は,上記ハニカム構造体の一端において上記隔壁が拡がった正面視略六角形状の大開口部を有し,他端において上記隔壁が内方へ絞られた閉塞部とを有し,
上記ハニカム構造体の両端面には,それぞれ上記大開口部と上記閉塞部とが互いに隣り合うようにして混在していることを特徴とする排ガス浄化フィルタ。
In an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine and purifies the exhaust gas,
The exhaust gas purifying filter includes a honeycomb structure having a honeycomb-shaped partition wall and a plurality of cells having a substantially triangular cross section partitioned by the partition wall.
Each of the cells has a large opening having a substantially hexagonal shape in a front view in which the partition wall extends at one end of the honeycomb structure, and a closed portion in which the partition wall is narrowed inward at the other end.
The exhaust gas purifying filter according to claim 1, wherein the large opening and the closed portion are adjacent to each other on both end surfaces of the honeycomb structure.
内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタにおいて,
該排ガス浄化フィルタは,ハニカム状に設けられた隔壁と,該隔壁により仕切られた断面略三角形状の複数のセルとを有するハニカム構造体を備え,
上記複数のセルのうちの一部のセルは,上記ハニカム構造体における排ガス導入側の一端において上記隔壁が拡がった正面視略六角形状の大開口部を有し,他端には上記セルを閉塞する栓材を配設してなり,
他のセルは,排ガス導入側の一端において上記隔壁が内方へ絞られた閉塞部を有し,
上記ハニカム構造体には,上記大開口部を有するセルと上記閉塞部を有するセルとが互いに隣り合うようにして混在していることを特徴とする排ガス浄化フィルタ。
In an exhaust gas purification filter that collects particulates in exhaust gas discharged from an internal combustion engine and purifies the exhaust gas,
The exhaust gas purifying filter includes a honeycomb structure having a honeycomb-shaped partition wall and a plurality of cells having a substantially triangular cross section partitioned by the partition wall.
Some of the plurality of cells have a large hexagonal opening in front view in which the partition wall is expanded at one end of the honeycomb structure on the exhaust gas introduction side, and the cell is closed at the other end. To provide a plug material
The other cell has a closed part in which the partition wall is narrowed inward at one end on the exhaust gas introduction side,
An exhaust gas purifying filter, wherein the honeycomb structure has a cell having the large opening and a cell having the closed portion mixed together so as to be adjacent to each other.
内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行なう排ガス浄化フィルタを製造する方法において,
有機バインダを含有したセラミック材料を押出し成形し,乾燥し,所定長さに切断して,ハニカム状に設けられた隔壁と,該隔壁により仕切られていると共に両端面に貫通してなる断面略三角形状の複数のセルとを有するハニカム成形体を作製し,
該ハニカム成形体のセルの開口部における隔壁を変形させることにより,上記セルの開口部を拡げて正面視略六角形状の大開口部を設けると共に,その隣のセルの開口部を内方へ絞って閉塞部を設け,
その後,上記ハニカム成形体を焼成することを特徴とする排ガス浄化フィルタの製造方法。
In a method of manufacturing an exhaust gas purifying filter for purifying exhaust gas by collecting particulates in exhaust gas discharged from an internal combustion engine,
A ceramic material containing an organic binder is extruded, dried, cut into a predetermined length, and a partition wall provided in a honeycomb shape, and a substantially triangular cross-section partitioned by the partition wall and penetrating both end surfaces. A honeycomb formed body having a plurality of cells having a shape is manufactured,
By deforming the partition walls at the cell openings of the honeycomb formed body, the cell openings are expanded to provide a large hexagonal opening as viewed from the front, and the openings of adjacent cells are narrowed inward. To provide an obstruction,
Then, the method for manufacturing an exhaust gas purifying filter comprises firing the honeycomb formed body.
請求項3において,テーパ状の先端部を有するテーパ治具を,上記ハニカム成形体のセルの開口部に差し込むと共に,上記隔壁を加熱して軟化させ,上記テーパ治具の押圧力によって上記隔壁を変形させることを特徴とする排ガス浄化フィルタの製造方法。4. The honeycomb structure according to claim 3, wherein a tapered jig having a tapered tip is inserted into an opening of a cell of the honeycomb formed body, and the partition is heated and softened. A method for producing an exhaust gas purifying filter, comprising deforming the filter. 請求項4の発明において,上記テーパ治具は,略六角錐形状の先端部を有することを特徴と排ガス浄化フィルタの製造方法。5. The method for manufacturing an exhaust gas purifying filter according to claim 4, wherein said taper jig has a substantially hexagonal pyramid-shaped tip.
JP2003109391A 2002-06-24 2003-04-14 Exhaust gas purification filter and manufacturing method thereof Expired - Fee Related JP3873924B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003109391A JP3873924B2 (en) 2002-06-24 2003-04-14 Exhaust gas purification filter and manufacturing method thereof
FR0307545A FR2841151B1 (en) 2002-06-24 2003-06-23 EXHAUST GAS CLEANING FILTER AND METHOD FOR MANUFACTURING THE CLU-CI
DE10328118A DE10328118A1 (en) 2002-06-24 2003-06-23 Emission control filter and process for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002183328 2002-06-24
JP2003109391A JP3873924B2 (en) 2002-06-24 2003-04-14 Exhaust gas purification filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004082098A true JP2004082098A (en) 2004-03-18
JP3873924B2 JP3873924B2 (en) 2007-01-31

Family

ID=29720909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109391A Expired - Fee Related JP3873924B2 (en) 2002-06-24 2003-04-14 Exhaust gas purification filter and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP3873924B2 (en)
DE (1) DE10328118A1 (en)
FR (1) FR2841151B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272318A (en) * 2005-03-01 2006-10-12 Denso Corp Manufacturing method of exhaust gas purifying filter
US8017067B2 (en) 2006-08-29 2011-09-13 Corning Incorporated Method of making a single fire honeycomb structure
WO2014103839A1 (en) * 2012-12-27 2014-07-03 住友化学株式会社 Method for manufacturing honeycomb structure
CN105283282A (en) * 2013-06-28 2016-01-27 住友化学株式会社 Honeycomb structure manufacturing method and green honeycomb molding sealing jig

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032902B2 (en) * 2002-09-25 2008-01-16 トヨタ自動車株式会社 Substrate for exhaust purification and method for manufacturing the same
CN102949932B (en) * 2012-11-09 2014-06-04 浙江达峰汽车技术有限公司 Honeycomb carrier of catalytic cleaner for purifying tail gases
JP7102223B2 (en) * 2018-05-17 2022-07-19 日本碍子株式会社 Honeycomb structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002649A1 (en) * 1990-01-30 1991-08-01 Interatom Blank ceramic honeycomb body - has spikes to distort webs to seal separate channels before the body is fired
DE4215481A1 (en) * 1992-05-11 1993-11-18 Siemens Ag Fine honeycomb ceramic catalyst for nitrogen oxide(s) redn. in waste gas - contg. e.g. one or more of titanium di:oxide, tungsten oxide, molybdenum oxide and vanadium oxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272318A (en) * 2005-03-01 2006-10-12 Denso Corp Manufacturing method of exhaust gas purifying filter
US7504057B2 (en) 2005-03-01 2009-03-17 Denso Corporation Manufacturing method of exhaust gas purifying filter
US8017067B2 (en) 2006-08-29 2011-09-13 Corning Incorporated Method of making a single fire honeycomb structure
WO2014103839A1 (en) * 2012-12-27 2014-07-03 住友化学株式会社 Method for manufacturing honeycomb structure
JP5677648B2 (en) * 2012-12-27 2015-02-25 住友化学株式会社 Manufacturing method of honeycomb structure
JPWO2014103839A1 (en) * 2012-12-27 2017-01-12 住友化学株式会社 Manufacturing method of honeycomb structure
CN105283282A (en) * 2013-06-28 2016-01-27 住友化学株式会社 Honeycomb structure manufacturing method and green honeycomb molding sealing jig

Also Published As

Publication number Publication date
JP3873924B2 (en) 2007-01-31
FR2841151B1 (en) 2005-12-02
FR2841151A1 (en) 2003-12-26
DE10328118A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4186530B2 (en) Manufacturing method of exhaust gas purification filter
JP5185616B2 (en) Honeycomb structure
US4283210A (en) Ceramic honeycomb filter and a method of producing the same
JP4404497B2 (en) Honeycomb filter and manufacturing method thereof
JP4421858B2 (en) Honeycomb structure and manufacturing method thereof
EP1696109A2 (en) Method of manufacturing plugged honeycomb structure and plugged honeycomb structure
EP0036321B1 (en) Ceramic filter
JP2001269585A (en) Filter for cleaning exhaust gas
JP2003238271A (en) Method of producing porous ceramic material
JP2004261664A (en) Honeycomb structure and mouthpiece for extrusion molding of honeycomb structure
JP2007290945A (en) Honeycomb structure and method of producing the same
JPS63185425A (en) Ceramic honeycomb filter for cleaning exhaust gas
JP2003025316A (en) Honeycomb structure and method for manufacturing the honeycomb structure
JP3873924B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP2006116483A (en) Ceramic honeycomb structure body and its production method
JP2004116369A (en) Substrate for exhaust emission control, and its manufacturing method
JP3945452B2 (en) Manufacturing method of exhaust gas purification filter
CN109833693B (en) Honeycomb filter
JP5677648B2 (en) Manufacturing method of honeycomb structure
JP2010005837A (en) Method for manufacturing honeycomb structure
JP2006000685A (en) Honeycomb structural body and manufacturing method therefor
US11786856B2 (en) Honeycomb filter
KR100631774B1 (en) Method for producing composite material
JP2004074564A (en) Honeycomb structure with slit, honeycomb structure, and manufacturing method therefor
WO2014208276A1 (en) Honeycomb structure manufacturing method and green honeycomb molding sealing jig

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees