JP2004081202A - Method for testing cytotoxicity - Google Patents

Method for testing cytotoxicity Download PDF

Info

Publication number
JP2004081202A
JP2004081202A JP2003160007A JP2003160007A JP2004081202A JP 2004081202 A JP2004081202 A JP 2004081202A JP 2003160007 A JP2003160007 A JP 2003160007A JP 2003160007 A JP2003160007 A JP 2003160007A JP 2004081202 A JP2004081202 A JP 2004081202A
Authority
JP
Japan
Prior art keywords
cells
stip
cell line
test method
cytotoxicity test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003160007A
Other languages
Japanese (ja)
Other versions
JP4452458B2 (en
JP2004081202A5 (en
Inventor
Shinichi Ono
小野 信一
Kiyoshi Hiraoka
平岡 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikin Inc
Original Assignee
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikin Inc filed Critical Fujikin Inc
Priority to JP2003160007A priority Critical patent/JP4452458B2/en
Priority to US10/606,803 priority patent/US7132230B2/en
Publication of JP2004081202A publication Critical patent/JP2004081202A/en
Priority to US11/285,305 priority patent/US7217564B2/en
Publication of JP2004081202A5 publication Critical patent/JP2004081202A5/ja
Application granted granted Critical
Publication of JP4452458B2 publication Critical patent/JP4452458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for testing cytotoxicity, by using a new established fish cell line. <P>SOLUTION: This method for testing the cytotoxicity comprises evaluating toxicity of a test object based on the toxicity to an established cell line derived from a sturgeon, wherein a STIP-1 cell line (FERM P-18909) or a STIP-3 cell line (FERM P-18910) is exemplified as the suitable established cell line derived from the sturgeon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、化学物質や重金属などの各種の被検物質の細胞毒性試験方法に関する。
【0002】
【従来の技術】
これまで、化学物質や重金属(亜鉛、カドミウム、銅、砒素、コバルト、モリブデン、ニッケル、鉛、セレン、クロム、錫、水銀など)などの各種の被検物質の毒性試験は動物個体を用いて行われてきたが、動物個体を用いた方法は、時間と費用がかかり過ぎるという問題だけでなく、動物愛護の観点からも問題がある。従って、近年、株化細胞(培養細胞)を用いた毒性試験方法、即ち、細胞毒性試験方法が検討されている。
【0003】
【発明が解決しようとする課題】
水環境における被検物質の毒性試験は魚類由来の株化細胞を用いて行うことが望ましく、ニジマス卵巣由来の線維芽性株化細胞であるRTG−2細胞やファットヘッドミノー由来の上皮性株化細胞であるFHM細胞などを用いた毒性試験方法が既に検討されている。しかしながら、これらの方法は感受性などの面において十分なものではなく、また、RTG−2細胞は、増殖速度が遅いといった問題や、増殖温度範囲が狭いといった問題があり、利便性の面においても必ずしも満足できるものではない。
そこで本発明は、新規な魚類株化細胞を用いた細胞毒性試験方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記の点に鑑みてなされた本発明は、請求項1記載の通り、チョウザメ由来の株化細胞に対する毒性に基づいて被検物質の毒性評価を行う細胞毒性試験方法である。
また、請求項2記載の細胞毒性試験方法は、ベステル由来の株化細胞を用いるものである。
また、請求項3記載の細胞毒性試験方法は、上皮細胞由来の株化細胞を用いるものである。
また、請求項4記載の細胞毒性試験方法は、眼球上皮細胞由来の株化細胞を用いるものである。
また、請求項5記載の細胞毒性試験方法は、虹彩色素上皮細胞由来の株化細胞を用いるものである。
また、請求項6記載の細胞毒性試験方法は、細胞外基質を添加することなしに継代培養が可能な株化細胞を用いるものである。
また、請求項7記載の細胞毒性試験方法は、50回以上の継代培養が可能な株化細胞を用いるものである。
また、請求項8記載の細胞毒性試験方法は、20℃での培養開始後2日目〜6日目のダブリングタイムが50時間未満である株化細胞を用いるものである。
また、請求項9記載の細胞毒性試験方法は、培養皿に添加してから接着するまでの着定率が1時間後に75%以上である株化細胞を用いるものである。
また、請求項10記載の細胞毒性試験方法は、チョウザメ眼球由来の株化細胞であるSTIP−1細胞(FERM P−18909)を用いるものである。
また、請求項11記載の細胞毒性試験方法は、チョウザメ眼球由来の株化細胞であるSTIP−3細胞(FERM P−18910)を用いるものである。
また、請求項12記載の細胞毒性試験方法は、被検物質の毒性評価にアラマーブルーアッセイ法を用いるものである。
【0005】
【発明の実施の形態】
本発明の細胞毒性試験方法においては、被検物質の毒性評価を行うためにチョウザメ由来の株化細胞を用いる。チョウザメ(sturgeon)としては、例えば、Huso属やAcipenser属に属するものが挙げられるが、好適にはHuso属に属するベルーガ(Huso)の雌とAcipenser属に属するステールリヤチ(ruthenus)の雄から作出された品種改良種であるベステル(Bester)が挙げられる。ベステルは交雑種であるため、ベステル由来の株化細胞は、各種の被検物質に対する感受性に関してHuso属チョウザメの細胞とAcipenser属チョウザメの細胞の双方の特性を兼ね備えていることが期待されるからである。
【0006】
チョウザメ由来の株化細胞は、例えば、上皮細胞から樹立される。当該上皮細胞は、チョウザメのどの部位の組織のものであってもよいが、眼球のいずれかの組織の上皮細胞であることが望ましく、好適な上皮細胞としては、外界と非接触の状態で存在する虹彩色素上皮細胞や網膜色素上皮細胞などが挙げられる。これらの細胞は元来、微生物汚染の可能性がないので、無菌的に細胞を取出せば、その後の作業を無菌的に行うことで株化細胞の微生物汚染を確実に防ぐことができるからである。なお、株化細胞は、腎臓や卵巣を由来とする上皮細胞から樹立されたものであってもよいが、この場合、株化細胞を樹立するに当たっては、これらの組織から上皮細胞のみを選択して分離培養するためにはある程度の時間と労力を必要とするといった点や、微生物汚染の可能性が否定できないといった点を認識しておく必要がある。
【0007】
株化細胞の樹立方法は、公知の方法に従って、初代培養細胞を継代培養することで行えばよい。培地は、魚類細胞の培養に通常用いられるL15培地に牛胎児血清(FBS)を加えたようなものでよい。
【0008】
チョウザメ由来の株化細胞として好適なものは、例えば、ベステル眼球の虹彩色素上皮細胞由来の株化細胞であるSTIP−1細胞(FERM P−18909)とSTIP−3細胞(FERM P−18910)が挙げられる。いずれの細胞も、RTG−2細胞やFHM細胞などよりも感受性が高いという利点を有する。また、いずれの細胞も、細胞外基質を添加することなしに継代培養が可能であること、50回以上の継代培養が可能であることから、利便性の面において優れている。とりわけ、STIP−1細胞は、20℃での培養開始後2日目〜6日目のダブリングタイムが50時間未満であるといった特性や、培養皿に添加してから接着するまでの着定率が1時間後に75%以上であるといった特性を有するので、一度に大量の試験区を設定しても簡便かつ迅速に試験を行うことができる。
【0009】
被検物質のチョウザメ由来の株化細胞に対する毒性は、例えば、アラマーブルーアッセイ法を用いて評価すればよい。
アラマーブルーアッセイ法は、動物細胞などの細胞代謝を測定するために開発されたバイオアッセイ法の一つである。アラマーブルーは、その還元に細胞への取込みを必要とする酸化還元色素であり、ミトコンドリア内で行われている呼吸代謝系の還元反応により、酸化型(無蛍光・青)から還元型(蛍光・赤)に変化する性質を持つ。細胞代謝が正常であると還元反応が進行する一方、細胞代謝に異常をきたすと酸化型のままであるので、色の変化を測定して細胞代謝の異常を調べることができる。また、細胞代謝の測定を蛍光や吸光に基づいて行ってもよい。この場合、蛍光は530nm〜560nmの励起波長と590nmの検出波長でモニターされ、吸光は570nmと600nmでモニターされる。
アラマーブルーアッセイ法は、アラマーブルーが水溶性であり、ニュートラルレッドなどの他の色素を用いたバイオアッセイ法において必要とされる抽出操作や固定操作が不要なため、評価を簡便に行うことができるという点において望ましいものである。
なお、このアラマーブルーアッセイ法は、例えば、市販のキット(BIOSOURCE 社製) を用いて行うことができる。
【0010】
【実施例】
以下に参考例と実施例を挙げ、本発明を具体的に説明する。
【0011】
参考例:チョウザメ由来の株化細胞の樹立
1.ベステル眼球からの虹彩色素上皮細胞の分離
体長約15cmのベステル30尾から眼球を摘出して70%エタノール中で殺菌処理した後、殺菌処理した眼球をペニシリンとストレプトマイシンを添加したPBS(−)中でよく洗浄した。その後、眼球から角膜とレンズを取り除いて虹彩を切り出した。こうして得られた虹彩を0.05%EDTAで約40分間処理し、虹彩色素上皮細胞と、虹彩のストローマや強膜などの結合組織との分離を容易にした後、これらの結合組織を取り除き、分離したシート状の虹彩色素上皮細胞を0.125%トリプシンで酵素処理してシングルセル状態の細胞(初代細胞)を得た。
【0012】
2.初代培養
上記のようにして得られた初代細胞を、直径3.5cmプラスチックディシュ(培養皿)に加えた、Leibovit’s L15培地(Gibco社製)に10%FBS(Gibco社製の牛胎児血清)とペニシリン(10unit/ml)とストレプトマイシン(50μg/ml)を添加した培地を用い、20℃のCOインキュベータ内(但し大気雰囲気)で培養した。初代細胞の中から増殖性の優れた細胞を選択し、継代培養を繰り返した。
【0013】
3.継代培養
培養皿が細胞で集密的(confluent)な状態になったら、0.05%EDTAと0.125%トリプシンを含有する溶液で細胞を培養皿から剥離し遠心分離により細胞を回収し、別の培養皿に移し、上記の培地を用いて培養を継続した。これを繰り返すことによって、長期間培養可能な2種類の株化細胞(STIP−1細胞とSTIP−3細胞)を得た。いずれの株化細胞も、継代培養の際、コラーゲンなどの細胞外基質を培養皿底面にコーティングするといったような添加をしなくても培養皿に着定した。なお、上記の2種類の株化細胞は独立行政法人産業技術総合研究所特許生物寄託センターに寄託されており、それらの受託番号は、STIP−1細胞がFERM P−18909、STIP−3細胞がFERM P−18910である。この特許出願の時点において、株化細胞STIP−1の継代培養回数は140回を超え、株化細胞STIP−3の継代培養回数は80回を超える。
【0014】
4.STIP−1細胞とSTIP−3細胞の特性
(細胞の形態)
STIP−1細胞は細長い細胞であるが上皮性の細胞であった(図1参照:培養開始後8日目の倍率100倍の顕微鏡写真)。一方、STIP−3細胞は典型的な敷石状の上皮性の細胞であった(図2参照:培養開始後14日目の倍率100倍の顕微鏡写真)。
【0015】
(細胞の温度特性)
図3に示したように、STIP−1細胞は15℃〜32℃の広い温度範囲で良好な増殖性を示し、特に20℃での増殖性が優れていた。20℃での培養開始後2日目〜6日目の細胞のダブリングタイム(指数関数的に細胞が増殖する時間)は38.9時間であり、RTG−2細胞と比較して約2倍の増殖速度を有していた。一方、図4に示したように、STIP−3細胞は15℃〜20℃で良好な増殖性を示したが、30℃以上ではその増殖性は阻害された。20℃での培養開始後2日目〜6日目の細胞のダブリングタイムは74.9時間であった。
【0016】
(細胞増殖に対するFBSの影響)
図5に示したように、STIP−1細胞を増殖せしめるために必要なL15培地に添加されるFBSの濃度は4%で足りた。また、図6に示したように、STIP−3細胞を増殖せしめるために必要なL15培地に添加されるFBSの濃度も4%で足りた。よって、これらの株化細胞を増殖せしめるために必要なFBSは少量であることから、これらの株化細胞の大量培養は経済的に有利であることがわかった。
【0017】
(細胞の染色体数)
STIP−1細胞とSTIP−3細胞の染色体数を、継代培養80回目の細胞について、培養6日目の対数増殖期の細胞にコルヒチン処理を行う常法にて調べた。具体的には、細胞に最終濃度が0.20μg/mlになるようにコルヒチンを加え、18時間培養した後に培地を取り除いてから細胞をPBS(−)で洗浄した。次に、0.05%EDTAと0.125%トリプシンを含有する溶液で細胞を培養皿から剥離し遠心分離により細胞を回収した。こうして回収した細胞に0.075MのKClを添加して室温にて20分間静置して低張処理を行った。低張処理した細胞懸濁液はカルノア液を用いて20分間氷中で固定した後、フレームドライ法によって染色体標本とした。これをギムザ染色し、顕微鏡(倍率1000倍)で染色体を計数した。その結果、STIP−1細胞の染色体数は2n=166±7.6本、STIP−3細胞の染色体数は2n=121±6.1本となり、いずれの細胞もベステルの染色体数である2n=117本と比較して増加していた(図7参照)。この結果は、いずれの細胞も株化細胞であることを特徴付けるものである。染色体を分類すると、いずれの細胞も基本的には2倍体であるが、ランダムに異数性を示していた。2n=173本のSTIP−1細胞の一例の染色体標本を図8に、2n=126本のSTIP−3細胞の一例の染色体標本を図9に示す。
【0018】
(細胞の接着性)
STIP−1細胞の培養皿への接着性を、細胞を培養皿に添加してから接着するまでの時間(着定率:Plating Efficiency:一定時間後に培養皿に定着した細胞数を細胞皿に添加した全細胞数で割った値を百分率で表したもの)により調べた。結果を図10に示す。図10から明らかなように、STIP−1細胞は細胞を培養皿に添加してから5分後には51.4%の着定率を示し、1時間後には83.5%、24時間後には94.8%と極めて高い数値を示した。
【0019】
実施例1:STIP−1細胞とSTIP−3細胞を用いた重金属類の細胞毒性試験
(A)STIP−1細胞とSTIP−3細胞に対するカドミウムの毒性評価を以下のようにして行った。
【0020】
1.方法
細胞を96穴マイクロプレート内で集密的(confluent)な状態になるまで20℃のCOインキュベータ内(但し大気雰囲気)で培養した。培養はLeibovit’s L15培地(Gibco社製)に10%FBS(Gibco社製の牛胎児血清)とペニシリン(10unit/ml)とストレプトマイシン(50μg/ml)を添加した培地を用いて行った。
被検物質(塩化カドミウム:CdCl・2HO)の0.2M水溶液を作成し、0.2μmのフィルタで濾過滅菌してから4℃で保存した。
このカドミウム水溶液から0.01mM,0.025mM,0.05mM,0.075mM,0.1mM,0.25mM,0.5mM,0.75mM,1mMの9段階の濃度のカドミウム水溶液を作成し、各ウェルに接種した。コントロールには培地のみを加えた。24時間経過後、アラマーブルー色素を加えてさらに24時間培養を続けた。
次に、マイクロプレートリーダを用いて2波長(570nmと600nm)で各ウェルの吸光度を測定した。カドミウム水溶液による細胞代謝の阻害値は、培地のみ加えたウェルをコントロールとして、カドミウム水溶液を接種したウェル(サンプル)のコントロールに対する減少率として求めた。計算式は以下に示す通りである。
【0021】
阻害値(%)=100−(A/B)×100
※ A=サンプルウェル(A570nm−A600nm)−ブランクウェル(A570nm−A600nm)
B=コントロールウェル(A570nm−A600nm)−ブランクウェル(A570nm−A600nm)
なお、(A/B)×100は細胞の生存率(%)を意味する。
【0022】
以上の方法によって、50%の細胞に影響が認められる毒性濃度EC50値でもってSTIP−1細胞とSTIP−3細胞に対するカドミウムの毒性評価を行った。
【0023】
2.結果
STIP−1細胞に対するカドミウムのEC50値は0.089mMであり、STIP−3細胞に対するカドミウムのEC50値は0.1mMであった(図11参照)。このEC50値は、RTG−2細胞を用いた場合やFHM細胞を用いた場合のEC50値である0.18mM〜0.38mMよりも低く、STIP−1細胞とSTIP−3細胞は、RTG−2細胞やFHM細胞よりも感受性が高いことがわかった。
【0024】
(B)STIP−1細胞に対するカドミウム以外の8種類の重金属類の毒性評価を(A)に記載の方法と同様にして行った。結果を表1に示す。
【0025】
【表1】

Figure 2004081202
【0026】
(C)実施例1のまとめ
STIP−1細胞に対する9種類の重金属類の毒性評価を行った結果、トリブチルスズが最も強い毒性を示し、そのEC50値は9×10−4mMであった。トリブチルスズは他の重金属類よりも約100倍の低濃度で細胞に対して毒性を示した。また、STIP−1細胞に対する重金属類を毒性の強い順に並べると、スズ>水銀>カドミウム>亜鉛=マンガン>銅>コバルト>鉛>ニッケルのようになり、既に報告されている他の魚類由来の培養細胞に対する毒性と同様の傾向であった。この中で、マンガンはSTIP−1細胞に対して他の魚類由来の培養細胞よりも約10倍以上強い毒性を示した。
【0027】
実施例2:STIP−1細胞を用いたフェノール類の細胞毒性試験
STIP−1細胞に対する12種類のフェノール類の毒性評価を実施例1の(A)に記載の方法と同様にして行った。結果を表2に示す。
【0028】
【表2】
Figure 2004081202
【0029】
表2から明らかなように、2,4,5−トリクロロフェノールがSTIP−1細胞に対して最も強い毒性を示した。今回調べた12種類のフェノール類のEC50値は、他の魚類由来の培養細胞に対するEC50値よりも2倍〜6倍低い値であった。これはSTIP−1細胞がフェノール類の毒性を調べる上で有用な細胞であることを示唆するものであった。
【0030】
【発明の効果】
本発明によれば、新規な魚類株化細胞、即ち、チョウザメ由来の株化細胞を用いた細胞毒性試験方法が提供される。
【図面の簡単な説明】
【図1】STIP−1細胞の顕微鏡写真。
【図2】STIP−3細胞の顕微鏡写真。
【図3】各温度におけるSTIP−1細胞の増殖曲線。
【図4】各温度におけるSTIP−3細胞の増殖曲線。
【図5】STIP−1細胞の増殖に対するFBSの影響を示すグラフ。
【図6】STIP−3細胞の増殖に対するFBSの影響を示すグラフ。
【図7】STIP−1細胞とSTIP−3細胞の染色体数を示すグラフ。
【図8】STIP−1細胞の染色体標本。
【図9】STIP−3細胞の染色体標本。
【図10】STIP−1細胞の培養皿への接着性を示すグラフ。
【図11】STIP−1細胞とSTIP−3細胞に対するカドミウムの毒性を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for testing cytotoxicity of various test substances such as chemical substances and heavy metals.
[0002]
[Prior art]
To date, toxicity tests for various test substances such as chemical substances and heavy metals (zinc, cadmium, copper, arsenic, cobalt, molybdenum, nickel, lead, selenium, chromium, tin, mercury, etc.) have been conducted using animal individuals. As has been described, the method using an individual animal has problems not only in that it takes too much time and cost, but also in terms of animal welfare. Therefore, recently, a toxicity test method using a cell line (cultured cell), that is, a cytotoxicity test method has been studied.
[0003]
[Problems to be solved by the invention]
The toxicity test of the test substance in the water environment is desirably carried out using a fish-derived cell line, such as a rainbow trout ovary-derived fibroblast cell line, RTG-2 cell, or a fathead minnow-derived epithelial cell line. Toxicity test methods using FHM cells, which are cells, have already been studied. However, these methods are not sufficient in terms of sensitivity and the like, and RTG-2 cells have problems such as a slow growth rate and a narrow growth temperature range, and are not necessarily convenient. Not satisfactory.
Therefore, an object of the present invention is to provide a cytotoxicity test method using a novel fish cell line.
[0004]
[Means for Solving the Problems]
The present invention made in view of the above points is a cytotoxicity test method for evaluating the toxicity of a test substance based on the toxicity to a sturgeon-derived cell line, as described in claim 1.
Further, the cytotoxicity test method according to claim 2 uses a cell line derived from Vestel.
Further, the cytotoxicity test method according to claim 3 uses a cell line derived from epithelial cells.
Further, the cytotoxicity test method according to claim 4 uses a cell line derived from ocular epithelial cells.
The cytotoxicity test method according to claim 5 uses an iris pigmented epithelial cell-derived cell line.
Further, the cytotoxicity test method according to claim 6 uses a cell line that can be subcultured without adding an extracellular matrix.
The cytotoxicity test method according to claim 7 uses a cell line that can be subcultured 50 times or more.
The cytotoxicity test method according to claim 8 uses a cell line having a doubling time of less than 50 hours from the second day to the sixth day after the start of the culture at 20 ° C.
The cytotoxicity test method according to the ninth aspect uses a cell line having a fixed rate of 75% or more after one hour from the addition to the culture dish to the adhesion.
The cytotoxicity test method according to claim 10 uses STIP-1 cells (FERM P-18909), which are cell lines derived from sturgeon eyeballs.
Further, the cytotoxicity test method according to claim 11 uses STIP-3 cells (FERM P-18910), which are cell lines derived from sturgeon eyeballs.
The cytotoxicity test method according to the twelfth aspect uses the alamar blue assay method for evaluating the toxicity of a test substance.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In the cytotoxicity test method of the present invention, a sturgeon-derived cell line is used to evaluate the toxicity of a test substance. The sturgeon includes, for example, those belonging to the genus Huso and the genus Acipenser. Preferably, the female of the beluga ( H. Huso ) belonging to the genus Huso and the male of the stern lychee ( A. ruthenus ) belonging to the genus Acipenser are preferred. Vestel, which is a breeding breed produced by the Company. Since Vestel is a hybrid, cell lines derived from Vestel are expected to have both characteristics of Huso sturgeon cells and Acipenser sturgeon cells in terms of sensitivity to various test substances. is there.
[0006]
Sturgeon-derived cell lines are established, for example, from epithelial cells. The epithelial cells may be from any part of the tissue of the sturgeon, but are preferably epithelial cells of any of the tissues of the eyeball. Suitable epithelial cells exist in a state of non-contact with the outside world. And retinal pigment epithelial cells. Since these cells originally have no possibility of microbial contamination, if the cells are removed aseptically, the subsequent work can be performed aseptically, thereby reliably preventing the microbial contamination of the established cells. . The cell line may be established from epithelial cells derived from kidney or ovary.In this case, in establishing the cell line, only epithelial cells are selected from these tissues. It is necessary to recognize that it takes a certain amount of time and effort to separate and culture the cells, and that the possibility of microbial contamination cannot be denied.
[0007]
The established cell line may be established by subculturing primary culture cells according to a known method. The medium may be an L15 medium usually used for culturing fish cells plus fetal bovine serum (FBS).
[0008]
Suitable sturgeon-derived cell lines include, for example, STIP-1 cells (FERM P-18909) and STIP-3 cells (FERM P-18910), which are cell lines derived from the iris pigmented epithelial cells of the Vestel eyeball. No. All cells have the advantage that they are more sensitive than RTG-2 cells, FHM cells, and the like. In addition, all the cells can be subcultured without adding an extracellular matrix, and can be subcultured 50 times or more, which is excellent in terms of convenience. In particular, STIP-1 cells have characteristics such as a doubling time of less than 50 hours from day 2 to day 6 after the start of culturing at 20 ° C. Since it has a characteristic of being 75% or more after time, the test can be performed easily and quickly even if a large number of test plots are set at one time.
[0009]
The toxicity of the test substance to the sturgeon-derived cell line may be evaluated, for example, using the Alamar Blue assay.
The Alamar Blue Assay is one of the bioassays developed to measure cell metabolism of animal cells and the like. Alamar Blue is a redox dye that requires its uptake into cells for its reduction. It is reduced from oxidized (non-fluorescent / blue) to reduced (fluorescent) by the respiratory metabolic system's reduction reaction performed in mitochondria.・ Red). If the cell metabolism is normal, the reduction reaction proceeds, while if the cell metabolism is abnormal, it remains in the oxidized form. Therefore, the color change can be measured to examine the cell metabolism abnormality. The measurement of cell metabolism may be performed based on fluorescence or light absorption. In this case, the fluorescence is monitored at an excitation wavelength of 530 nm to 560 nm and a detection wavelength of 590 nm, and the absorption is monitored at 570 nm and 600 nm.
The Alamar Blue Assay method is simple to evaluate because Alamar Blue is water-soluble and does not require extraction or fixation operations required in bioassays using other dyes such as neutral red. This is desirable in that it can be performed.
The alamar blue assay can be performed using, for example, a commercially available kit (manufactured by BIOSOURCE).
[0010]
【Example】
Hereinafter, the present invention will be specifically described with reference to Reference Examples and Examples.
[0011]
Reference Example: Establishment of sturgeon-derived cell lines Isolation of Iris Pigment Epithelial Cells from Vestel Eyes The eyes were excised from 30 tails of about 15 cm in length, and sterilized in 70% ethanol. Washed well. Then, the cornea and lens were removed from the eyeball, and the iris was cut out. The iris thus obtained is treated with 0.05% EDTA for about 40 minutes to facilitate separation of iris pigmented epithelial cells from connective tissues such as stroma and sclera of the iris, and these connective tissues are removed. The separated sheet-shaped iris pigmented epithelial cells were subjected to an enzyme treatment with 0.125% trypsin to obtain single-cell cells (primary cells).
[0012]
2. Primary culture The primary cells obtained as described above were added to a Leibovit's L15 medium (manufactured by Gibco) added to a 3.5 cm-diameter plastic dish (culture dish) and 10% FBS (fetal bovine serum manufactured by Gibco). ), Penicillin (10 unit / ml) and streptomycin (50 μg / ml) were added, and the cells were cultured in a CO 2 incubator at 20 ° C. (but in an air atmosphere). Cells having excellent proliferation were selected from the primary cells, and subculture was repeated.
[0013]
3. When the subculture dish became confluent with the cells, the cells were detached from the culture dish with a solution containing 0.05% EDTA and 0.125% trypsin, and the cells were collected by centrifugation. Then, the cells were transferred to another culture dish, and the culture was continued using the above medium. By repeating this, two types of cell lines (STIP-1 cells and STIP-3 cells) that can be cultured for a long period were obtained. All of the cell lines were settled on the culture dish during the subculture without adding an extracellular matrix such as collagen to the bottom of the culture dish. The above two types of cell lines have been deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary, and their accession numbers are as follows: STIP-1 cells are FERM P-18909, STIP-3 cells. FERM P-18910. At the time of this patent application, the cell line STIP-1 has been subcultured more than 140 times and the cell line STIP-3 has been subcultured more than 80 times.
[0014]
4. Characteristics of STIP-1 and STIP-3 cells (cell morphology)
The STIP-1 cells were elongated cells but epithelial cells (see FIG. 1: micrograph at 100 × magnification on the 8th day after the start of culture). On the other hand, STIP-3 cells were typical cobblestone-like epithelial cells (see FIG. 2: micrograph at 100 × magnification on 14 days after the start of culture).
[0015]
(Temperature characteristics of cells)
As shown in FIG. 3, STIP-1 cells exhibited good proliferation in a wide temperature range of 15 ° C. to 32 ° C., and particularly exhibited excellent proliferation at 20 ° C. The doubling time of the cells from day 2 to day 6 after the start of the culture at 20 ° C. (exponentially growing cells) is 38.9 hours, which is about twice that of the RTG-2 cells. It had a growth rate. On the other hand, as shown in FIG. 4, STIP-3 cells exhibited good proliferation at 15 ° C. to 20 ° C., but their proliferation was inhibited at 30 ° C. or higher. The doubling time of the cells from day 2 to day 6 after the start of the culture at 20 ° C. was 74.9 hours.
[0016]
(Effect of FBS on cell proliferation)
As shown in FIG. 5, the concentration of FBS added to the L15 medium required for growing STIP-1 cells was 4%. Further, as shown in FIG. 6, the concentration of FBS added to the L15 medium required for growing the STIP-3 cells was 4%, which was sufficient. Therefore, since a small amount of FBS is required for growing these cell lines, it has been found that mass culture of these cell lines is economically advantageous.
[0017]
(Number of chromosomes in cells)
The number of chromosomes of the STIP-1 cells and STIP-3 cells was examined by a conventional method in which cells in the logarithmic growth phase on day 6 of the culture were subjected to colchicine treatment, on the 80th subculture. Specifically, colchicine was added to the cells to a final concentration of 0.20 μg / ml, and after culturing for 18 hours, the medium was removed, and then the cells were washed with PBS (−). Next, the cells were detached from the culture dish with a solution containing 0.05% EDTA and 0.125% trypsin, and the cells were collected by centrifugation. The cells thus collected were added with 0.075 M KCl and left at room temperature for 20 minutes to perform hypotonic treatment. The cell suspension subjected to the hypotonic treatment was fixed in ice for 20 minutes using Carnoy's solution, and then used as a chromosome sample by the frame dry method. This was stained with Giemsa, and the chromosomes were counted under a microscope (magnification: 1000). As a result, the number of chromosomes in the STIP-1 cells was 2n = 166 ± 7.6, and the number of chromosomes in the STIP-3 cells was 2n = 121 ± 6.1. The number was increased as compared with 117 lines (see FIG. 7). This result characterizes that each cell is a cell line. When the chromosomes were classified, all cells were basically diploid, but showed aneuploidy at random. FIG. 8 shows a chromosome sample of an example of 2n = 173 STIP-1 cells, and FIG. 9 shows a chromosome sample of an example of 2n = 126 STIP-3 cells.
[0018]
(Cell adhesion)
The adhesion of the STIP-1 cells to the culture dish was determined by the time from when the cells were added to the culture dish to when they adhered (fixation rate: Plating Efficiency: the number of cells fixed on the culture dish after a certain time was added to the cell dish. Value divided by the total cell number and expressed as a percentage). The results are shown in FIG. As is clear from FIG. 10, the STIP-1 cells exhibited a set rate of 51.4% 5 minutes after the cells were added to the culture dish, 83.5% after 1 hour, and 94% after 24 hours. It was an extremely high value of 0.8%.
[0019]
Example 1: Cytotoxicity test of heavy metals using STIP-1 cells and STIP-3 cells (A) The toxicity of cadmium to STIP-1 cells and STIP-3 cells was evaluated as follows.
[0020]
1. Methods Cells were cultured in a 96-well microplate in a CO 2 incubator at 20 ° C. (but in an air atmosphere) until confluent. The culture was performed using a medium in which 10% FBS (fetal calf serum from Gibco), penicillin (10 unit / ml), and streptomycin (50 μg / ml) were added to Leibovit's L15 medium (Gibco).
A 0.2 M aqueous solution of a test substance (cadmium chloride: CdCl 2 .2H 2 O) was prepared, sterilized by filtration with a 0.2 μm filter, and stored at 4 ° C.
From this cadmium aqueous solution, cadmium aqueous solutions having nine levels of concentrations of 0.01 mM, 0.025 mM, 0.05 mM, 0.075 mM, 0.1 mM, 0.25 mM, 0.5 mM, 0.75 mM and 1 mM were prepared. Wells were inoculated. Medium alone was added to controls. After 24 hours, the alamar blue dye was added, and the culture was continued for another 24 hours.
Next, the absorbance of each well was measured at two wavelengths (570 nm and 600 nm) using a microplate reader. The inhibition value of cell metabolism by the cadmium aqueous solution was determined as a reduction ratio of the well (sample) inoculated with the cadmium aqueous solution, with the well containing only the medium as a control. The calculation formula is as shown below.
[0021]
Inhibition value (%) = 100− (A / B) × 100
* A = sample well (A570nm-A600nm)-blank well (A570nm-A600nm)
B = control well (A570 nm-A600 nm) -blank well (A570 nm-A600 nm)
Note that (A / B) × 100 means the cell survival rate (%).
[0022]
By the above method, it was toxicity assessment of cadmium for STIP-1 cells and STIP-3 cells with 50% of the toxic concentration The EC 50 values found affect cells.
[0023]
2. Results The cadmium EC 50 value for STIP-1 cells was 0.089 mM, and the cadmium EC 50 value for STIP-3 cells was 0.1 mM (see FIG. 11). This EC 50 value is lower than the EC 50 value of 0.18 mM to 0.38 mM when RTG-2 cells or FHM cells are used, and STIP-1 cells and STIP-3 cells are -2 cells and FHM cells.
[0024]
(B) Toxicity evaluation of eight types of heavy metals other than cadmium to STIP-1 cells was performed in the same manner as in (A). Table 1 shows the results.
[0025]
[Table 1]
Figure 2004081202
[0026]
(C) Summary of Example 1 As a result of evaluating the toxicity of nine types of heavy metals to STIP-1 cells, tributyltin showed the strongest toxicity, and its EC 50 value was 9 × 10 −4 mM. Tributyltin was toxic to cells at approximately 100-fold lower concentrations than other heavy metals. In addition, when heavy metals for STIP-1 cells are arranged in the order of toxicity, they are as follows: tin>mercury>cadmium> zinc = manganese>copper>cobalt>lead> nickel, and other fish-derived cultures already reported. The tendency was similar to the toxicity to cells. Among them, manganese showed about 10 times more toxicity to STIP-1 cells than cultured cells derived from other fish.
[0027]
Example 2: Cytotoxicity test of phenols using STIP-1 cells Toxicity evaluation of 12 kinds of phenols to STIP-1 cells was performed in the same manner as in the method described in (A) of Example 1. Table 2 shows the results.
[0028]
[Table 2]
Figure 2004081202
[0029]
As is clear from Table 2, 2,4,5-trichlorophenol showed the strongest toxicity on STIP-1 cells. The EC 50 values of the 12 phenols examined this time were 2 to 6 times lower than the EC 50 values for cultured cells derived from other fish. This suggested that STIP-1 cells were useful cells for examining the toxicity of phenols.
[0030]
【The invention's effect】
According to the present invention, there is provided a cytotoxicity test method using a novel fish cell line, that is, a sturgeon-derived cell line.
[Brief description of the drawings]
FIG. 1 is a micrograph of STIP-1 cells.
FIG. 2 is a micrograph of STIP-3 cells.
FIG. 3 shows a growth curve of STIP-1 cells at each temperature.
FIG. 4 is a growth curve of STIP-3 cells at each temperature.
FIG. 5 is a graph showing the effect of FBS on the proliferation of STIP-1 cells.
FIG. 6 is a graph showing the effect of FBS on the proliferation of STIP-3 cells.
FIG. 7 is a graph showing chromosome numbers of STIP-1 cells and STIP-3 cells.
FIG. 8 is a chromosome specimen of STIP-1 cells.
FIG. 9 is a chromosome specimen of STIP-3 cells.
FIG. 10 is a graph showing the adhesion of STIP-1 cells to a culture dish.
FIG. 11 is a graph showing the toxicity of cadmium to STIP-1 cells and STIP-3 cells.

Claims (12)

チョウザメ由来の株化細胞に対する毒性に基づいて被検物質の毒性評価を行う細胞毒性試験方法。A cytotoxicity test method for evaluating the toxicity of a test substance based on the toxicity to a sturgeon-derived cell line. ベステル由来の株化細胞を用いる請求項1記載の細胞毒性試験方法。The cytotoxicity test method according to claim 1, wherein a cell line derived from Vestel is used. 上皮細胞由来の株化細胞を用いる請求項1記載の細胞毒性試験方法。The cytotoxicity test method according to claim 1, wherein an epithelial cell-derived cell line is used. 眼球上皮細胞由来の株化細胞を用いる請求項3記載の細胞毒性試験方法。The cytotoxicity test method according to claim 3, wherein a cell line derived from eyeball epithelial cells is used. 虹彩色素上皮細胞由来の株化細胞を用いる請求項4記載の細胞毒性試験方法。The cytotoxicity test method according to claim 4, wherein a cell line derived from an iris pigmented epithelial cell is used. 細胞外基質を添加することなしに継代培養が可能な株化細胞を用いる請求項1乃至5のいずれかに記載の細胞毒性試験方法。The cytotoxicity test method according to any one of claims 1 to 5, wherein a cell line that can be subcultured without adding an extracellular substrate is used. 50回以上の継代培養が可能な株化細胞を用いる請求項1乃至6のいずれかに記載の細胞毒性試験方法。The cytotoxicity test method according to any one of claims 1 to 6, wherein a cell line that can be subcultured 50 times or more is used. 20℃での培養開始後2日目〜6日目のダブリングタイムが50時間未満である株化細胞を用いる請求項1乃至7のいずれかに記載の細胞毒性試験方法。The cytotoxicity test method according to any one of claims 1 to 7, wherein a cell line having a doubling time of less than 50 hours from 2 days to 6 days after the start of the culture at 20 ° C is used. 培養皿に添加してから接着するまでの着定率が1時間後に75%以上である株化細胞を用いる請求項1乃至8のいずれかに記載の細胞毒性試験方法。The cytotoxicity test method according to any one of claims 1 to 8, wherein a cell line having a set rate of 75% or more after 1 hour from the addition to the culture dish to the adhesion is used. チョウザメ眼球由来の株化細胞であるSTIP−1細胞(FERM P−18909)を用いる請求項1記載の細胞毒性試験方法。The cytotoxicity test method according to claim 1, wherein STIP-1 cells (FERM @ P-18909), which are cell lines derived from sturgeon eyeballs, are used. チョウザメ眼球由来の株化細胞であるSTIP−3細胞(FERM P−18910)を用いる請求項1記載の細胞毒性試験方法。The cytotoxicity test method according to claim 1, wherein STIP-3 cells (FERM @ P-18910), which are cell lines derived from sturgeon eyeballs, are used. 被検物質の毒性評価にアラマーブルーアッセイ法を用いる請求項1乃至11のいずれかに記載の細胞毒性試験方法。The cytotoxicity test method according to any one of claims 1 to 11, wherein an alamar blue assay is used for evaluating the toxicity of the test substance.
JP2003160007A 2002-06-28 2003-06-04 Cytotoxicity test method Expired - Fee Related JP4452458B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003160007A JP4452458B2 (en) 2002-06-28 2003-06-04 Cytotoxicity test method
US10/606,803 US7132230B2 (en) 2002-06-28 2003-06-27 Cytotoxic assay and new established cell line of sturgeon origin
US11/285,305 US7217564B2 (en) 2002-06-28 2005-11-23 Cytotoxic assay and new established cell line of sturgeon origin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002189283 2002-06-28
JP2003160007A JP4452458B2 (en) 2002-06-28 2003-06-04 Cytotoxicity test method

Publications (3)

Publication Number Publication Date
JP2004081202A true JP2004081202A (en) 2004-03-18
JP2004081202A5 JP2004081202A5 (en) 2006-07-13
JP4452458B2 JP4452458B2 (en) 2010-04-21

Family

ID=32071768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160007A Expired - Fee Related JP4452458B2 (en) 2002-06-28 2003-06-04 Cytotoxicity test method

Country Status (1)

Country Link
JP (1) JP4452458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406051B (en) * 2021-06-17 2022-07-05 中国农业科学院农业质量标准与检测技术研究所 High-throughput analysis method for combined screening of early injury of fish epithelial cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406051B (en) * 2021-06-17 2022-07-05 中国农业科学院农业质量标准与检测技术研究所 High-throughput analysis method for combined screening of early injury of fish epithelial cells

Also Published As

Publication number Publication date
JP4452458B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
Smith et al. A rapid micro method for the simultaneous determination of phagocytic-microbiocidal activity of human peripheral blood leukocytes in vitro
Boulos et al. LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water
Monsma et al. FluoroMyelin™ Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin
WO2006055338A2 (en) Methods and systems for identifying and isolating stem cells and for observing mitochondrial structure and distribution in living cells
US7217564B2 (en) Cytotoxic assay and new established cell line of sturgeon origin
Leinfelder et al. A highly sensitive cell assay for validation of purification regimes of alginates
CN110241071A (en) A kind of normal renal tubule primary cell of people and its Isolation and culture and application
CN104819966B (en) Calixarenes fluorescence probe is applied to Zn in living cells2+、F-The method of fluorescence imaging
Paerl et al. The relation between adenosine triphosphate and microbial biomass in diverse aquatic ecosystems
Willoughby et al. Quantitative assessment of marine sponge cells in vitro: development of improved growth medium
JP4452458B2 (en) Cytotoxicity test method
Duncan et al. A novel method using quantum dots for testing the barrier function of cultured epithelial cell sheets
JP4065150B2 (en) A new cell line derived from sturgeon
Martínez-Expósito et al. Proliferation kinetics of mussel (Mytilus galloprovincialis) gill cells
Schothorst et al. In vitro studies on the protoporphyrin uptake and photosensitivity of normal skin fibroblasts and fibroblasts from patients with erythropoietic protoporphyria.
Caro et al. Physiological changes of Salmonella typhimurium cells under osmotic and starvation conditions by image analysis
Morselt et al. Microspectrophotometric analysis of malarial pigment
Bushnell et al. Accumulation of potentiometric and other dyes in haustoria of Erysiphe graminis in living host cell
CN107340277B (en) DNA silver nanocluster and cell in-situ synthesis method and application thereof
WO2007148013A1 (en) Method for detecting and counting cells undergoing cytodieresis
Cowdry The supravital staining of vaccine bodies
Olesova et al. Effect of Implantation and Construction Dental Materials on Fibroblast Cell Culture
JP2535482B2 (en) Candida simple identification medium
JPH07265096A (en) Determination of algae cyst
RU2687061C2 (en) Method for identifying protective action of microorganisms on a hemoglobin molecule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4452458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees