JP2004081041A - Method and apparatus for producing heat-treated egg with eggshell - Google Patents

Method and apparatus for producing heat-treated egg with eggshell Download PDF

Info

Publication number
JP2004081041A
JP2004081041A JP2002244037A JP2002244037A JP2004081041A JP 2004081041 A JP2004081041 A JP 2004081041A JP 2002244037 A JP2002244037 A JP 2002244037A JP 2002244037 A JP2002244037 A JP 2002244037A JP 2004081041 A JP2004081041 A JP 2004081041A
Authority
JP
Japan
Prior art keywords
egg
heat
steam
shell
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002244037A
Other languages
Japanese (ja)
Other versions
JP3745323B2 (en
Inventor
Shuntaro Ise
伊勢 俊太郎
Hirokazu Kawagishi
河岸 宏和
Kazuhiro Onishi
大西 和弘
Masahiko Noguchi
野口 雅彦
Akira Fukai
深井 晃
Yoshishige Nitta
新田 寿重
Seiichi Sakuma
佐久間 誠一
Toshikazu Inaba
稲葉 稔和
Hideki Miyanishi
宮西 秀樹
Toshihiro Hirabayashi
平林 稔啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Ise Delica Co ltd
Original Assignee
Mayekawa Manufacturing Co
Ise Delica Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Ise Delica Co ltd filed Critical Mayekawa Manufacturing Co
Priority to JP2002244037A priority Critical patent/JP3745323B2/en
Publication of JP2004081041A publication Critical patent/JP2004081041A/en
Application granted granted Critical
Publication of JP3745323B2 publication Critical patent/JP3745323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Commercial Cooking Devices (AREA)
  • Cookers (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce heat-treated eggs with eggshell excellently heat-treated in a short time. <P>SOLUTION: A plurality of raw eggs placed on a heat-resistant tray are transported in a fixed direction by a carrying belt 21. The raw eggs transported in the fixed direction are heat-treated by condensation latent heat of high-temperature water vapor in a heat treatment part 11 to give heated eggs. A carrying belt body 31 is arranged at the subsequent stage of the carrying belt 21 and transports the heat-resistant tray on which the heated eggs are placed in the fixed direction. In a cooling part 12, the heated eggs transported in the fixed direction are sprayed with a cold air jet stream and cooled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、殻付加熱処理卵(つまり、ゆで卵様)の製造方法及びその製造装置に関し、特に、短時間にしかも良好に加熱処理された殻付加熱処理卵を製造するための製造方法及びその製造装置に関するものである。
【0002】
【従来の技術】
一般に、殻付加熱処理卵を製造する際に、加熱処理に当たっては、温水(加熱水)が用いられ、冷却処理に当たっては、井戸水等の冷却水を用いて、冷却水をシャワーとして加熱処理後卵に浴びせるか、又は冷却水水槽に加熱処理後卵を浸して冷却を行っている。
【0003】
例えば、特開平11−290029号公報に記載された殻付加熱処理卵の製造方法では、卵トレーに複数の生卵を配列して、卵トレーを互いに接触しない状態で積み重ねて、コンテナに収納し、加圧及び温水シャワー可能なレトルト内に充填する。その後、レトルト内に圧力気体を送入し、温水噴霧管から温水を供給するとともに、温水シャワー管からも温水を供給する。そして、加熱処理した卵を常温に戻している。
【0004】
【発明が解決しようとする課題】
ところが、従来のように、生卵を温水シャワー等を用いて加熱処理すると、卵内に水分が吸収されてしまい、食する際、水っぽくなってしまうということが多い。さらに、冷却に当たっては、卵殻を剥きやすくするために、前述のように、冷却水シャワー又は冷却水水槽を用いて急速冷却を行っている関係上、冷却の際においても、水分が卵内に侵入してしまい、食味が低下してしまうという課題がある。
【0005】
さらに、従来例では、卵トレーに卵を配列した後、卵トレイを積み重ねてコンテナに収納して、加熱処理を行っている関係上、つまり、卵トレイを積み重ねているため、全ての卵を均等に加熱処理することが難しいこともある。また、加熱処理後においては、卵トレイをコンテナから取り出して冷却処理を行う必要があり、作業工程に時間がかかってしまうという課題もある。
【0006】
本発明の目的は、短時間にしかも良好に加熱処理された殻付加熱処理卵、つまり、殻付加熱処理卵の加熱及び冷却の際、卵内に水分が侵入することなく、しかも短時間で加熱及び冷却処理を行うことのできる殻付加熱処理卵の製造方法及びその製造装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、生卵を加熱処理した後冷却して殻付加熱処理卵を製造する製造方法において、所定の方向に前記生卵を搬送しつつ、前記生卵を高温蒸気の凝縮潜熱によって加熱・殺菌処理して加熱済み卵とする加熱処理ステップと、前記所定の方向に前記加熱済み卵を搬送しつつ前記加熱済み卵に冷気噴流を吹きつけて冷却して前記殻付加熱処理卵とする冷却処理ステップとを有することを特徴とする殻付加熱処理卵の製造方法が得られる。
【0008】
このようにして、所定の方向に、生卵を搬送しつつ、生卵を高温蒸気の凝縮潜熱によって加熱・殺菌処理した後、所定の方向に加熱済み卵を搬送しつつ、加熱済み卵に冷気噴流を吹きつけて冷却して、殻付加熱処理卵とするようにしたから、大量の卵を短時間にしかも良好に加熱・殺菌処理して冷却することができることになる。
【0009】
例えば、前記加熱処理ステップにおいて、前記生卵は予め規定された時間60℃〜99℃で加熱・殺菌処理され、前記冷却処理ステップでは、前記冷気噴流の温度を12.0℃〜0.1℃に設定する。
【0010】
本発明によれば、生卵を加熱処理した後冷却して殻付加熱処理卵を製造する製造装置において、所定の方向に前記生卵を搬送する第1の搬送手段と、該第1の搬送手段によって搬送される前記生卵を高温蒸気の凝縮潜熱によって加熱・殺菌処理して加熱済み卵とする加熱処理手段と、前記第1の搬送手段の後段に配置され前記加熱済み卵を前記所定の方向に搬送する第2の搬送手段と、該第2の搬送手段によって搬送される前記加熱済み卵に冷気噴流を吹きつけて冷却して前記殻付加熱処理卵とする冷却処理手段とを有することを特徴とする殻付加熱処理卵の製造装置が得られる。
【0011】
前記加熱処理手段は、例えば、前記第1の搬送手段に沿って該第1の搬送手段を収納するように配置され前記生卵が搬入される第1の入口部と前記加熱済み卵が搬出される第1の出口部とが形成された加熱処理筐体と、前記第1の搬送手段の下側に配置され高温蒸気を発生する蒸気発生手段とを有し、前記第1の搬送手段は、前記所定の方向に駆動されるベルト状体であり、該ベルト状体の一部は前記第1の入口部及び前記第1の出口部が形成された位置よりも鉛直方向上方に位置付けられており、前記蒸気発生手段で発生した蒸気で前記ベルト状体上の生卵を包み込む。このようにして、加熱・殺菌処理を行えば、均一に生卵を加熱・殺菌処理することができる。
【0012】
また、前記蒸気発生手段は、前記ベルト状体の下側に配置されるとともに前記所定の方向に予め定められた間隔をおいて配置され前記高温蒸気を前記鉛直方向下向きに噴出するスチーム手段と、該スチーム手段の下側に配置された遮蔽部材とを有し、前記スチーム手段から噴出した前記蒸気を前記遮蔽部材に当てた結果立ちのぼる蒸気によって前記加熱処理筐体の上面と前記ベルト状体との間に蒸気淀みを形成して前記生卵を前記蒸気淀みで包み込む。このようにして、蒸気を立ちのぼらせるようにすれば、生卵を簡単に蒸気淀みで包み込むことができることになる。
【0013】
なお、前記加熱処理筐体には前記所定の方向に沿って複数の加熱ゾーンを規定して、前記複数の加熱ゾーンを、該加熱ゾーン毎に温度コントロールするようにしてもよい。このようにすれば、加熱ゾーン毎に温度コントロールができる結果、例えば、所定の方向に沿って卵の加熱温度を徐々に下げることができることになって、冷却した後の離水率を良好にすることができ、殻付卵の中身の卵白、卵黄の固さをコントロールすることができる。ここで、離水率とは、離水率(%)=(離水水分量÷殻付卵全体重量)×100で表されるが、本発明に係る製造方法により、バッチ式に比べ離水率が1〜3%減少することが確認された。
【0014】
本発明では、前記冷却処理手段は、前記第2の搬送手段に沿って該第2の搬送手段を収納するように配置され前記加熱済み卵が搬入される第2の入口部と前記殻付加熱処理卵が搬出される第2の出口部とが形成された搬送経路筐体と、前記第2の搬送手段上の前記加熱済み卵に向けて前記冷気噴流を噴射する噴射手段とを有しており、前記噴射手段は、例えば、前記搬送経路筐体に形成されたスリットであり、該スリットから前記加熱済み卵に前記冷気噴流を吹きつける。このようにして、加熱済み卵に向けて冷気噴流を噴射して、加熱済み卵を冷却するようにすれば、効率的に加熱済み卵を冷却することができ、搬送経路筐体にスリットを形成して、スリットによって冷気噴流を形成し、加熱済み卵に冷気噴流を吹きつけるようにすれば、容易に冷気噴流を形成することができることになる。
【0015】
前記噴射手段を、前記第2の搬送手段を挟んで互いに対向して配置された一対のスリットとして、該一対のスリットから前記加熱済み卵に向けて前記冷気噴流を吹きつけるようにしてもよい。
【0016】
なお、前記生卵は、例えば、複数個が耐熱性トレイに載置されて前記第1の搬送手段で前記所定の方向に搬送される。このように、生卵を複数個、耐熱性トレイに載置して、耐熱トレイを所定の方向に搬送し、加熱・殺菌・冷却処理するようにすれば、簡単に多量の卵を一度に処理することができる。
【0017】
【発明の実施の形態】
以下本発明について図面を参照して説明する。なお、図示の例における構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限りは、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0018】
まず、図1を参照して、本発明による殻付加熱処理卵の製造方法に用いられる製造装置について説明する。図示の殻付加熱処理卵製造装置は、加熱処理部11及び冷却処理部12を有しており、加熱処理部11は冷却処理部12の前段に位置付けられている。加熱処理部11は、図中左右に延びる加熱処理筐体11aを有しており、加熱処理筐体11aの左端には入口部11bが形成され、右端には出口部11cが形成されている。加熱処理筐体11a内には、図中実線矢印で示す方向に搬送される搬送ベルト体21が配置されており、この搬送ベルト体21には複数の孔部が形成されている。そして、後述するように、この搬送ベルト体21上を卵(図示せず)が積載されたトレイ(図示せず)が搬送される。
【0019】
図示の例では、加熱処理筐体11aの中間には通路穴11dが形成された仕切板(仕切壁)11eが形成されており、これによって、加熱処理筐体11aの内部は左側に位置する第1の加熱ゾーン11fと右側に位置する第2の加熱ゾーン11gとに分かれている。なお、必ずしも図示のように、第1及び第2の加熱ゾーン11f及び11g、つまり、複数の加熱ゾーンに分ける必要はなく、加熱ゾーンを単一としてもよいが、複数の加熱ゾーンに分けて、その加熱温度を異ならせて、加熱ゾーン毎に温度コントロールするようにしてもよい。例えば、第2の加熱ゾーン11gにおける加熱温度を、第1の加熱ゾーン11fにおける加熱温度よりも低くすると、加熱の際、卵の温度が徐々に低下するから、離水率が良好となって、殻付卵の中身の卵白、卵黄の固さをコントロールすることができるばかりでなく、殻離れが良好となる。
【0020】
図1において、搬送ベルト体21は入口部11bを起点として、徐々に上方へ傾斜するように配置され、その後、平坦とされており(平坦部)、さらに、第1の加熱ゾーン11fが終了する直前で徐々に下方に傾斜して、通過穴11dを通過している。同様にして、搬送ベルト体21は通過穴11dを通過すると、徐々に上方へ傾斜するように配置され、その後、平坦とされており、さらに、第2の加熱ゾーン11gが終了する直前で徐々に下方に傾斜して、出口部11cを通過している。つまり、搬送ベルト21の一部は入口部11b及び出口部11cが形成された位置よりも鉛直方向上方に位置付けられている。
【0021】
なお、図1には示されていないが、搬送ベルト体21の表面には所定の間隔(例えば、トレイの長さ)で突起部11h(図3参照)が形成されており、この突起部11hによってトレイのずれを防止するようにしている。
【0022】
さらに、図1に示すように、加熱処理筐体11aにおいて、第1及び第2の加熱ゾーン11f及び11gには、搬送ベルト体21の搬送方向に予め規定された間隔で、搬送ベルト体21の平坦部(平坦に配置された部分)に対応して、図中紙面の裏側から表側に延びるスチームパイプ22が配設されており、このスチームパイプ22には下方に臨むスチーム(蒸気)噴出口(図示せず)が形成されている。そして、スチームパイプ22の下側には山型の遮蔽板(その頂点から斜め下方に延在する一対の部材)23が配設され、この遮蔽板23はスチームパイプの延在方向に延びている。
【0023】
前述のように、加熱処理部11の後段には冷却処理部12が配置され、この冷却処理部12は、図中左右に延びる冷却処理筐体12aを有しており、冷却処理筐体12aの左端には入口部12bが形成され、右端には出口部12cが形成されている。冷却処理筐体12a内には、図中実線矢印で示す方向に搬送される搬送ベルト体31が配置されており、この搬送ベルト体31には、加熱処理部11を通過したトレイが入口部12bを介して受け渡される。そして、トレイ上の卵は冷却されつつ、出口部12cの方向へ搬送される。なお、図示されていないが、出口部11cと入口部12bとはダクト等で連結されている。
【0024】
いま、前述の搬送ベルト体21及び31はそれぞれ一対ずつ配置されているものとする。つまり、一対の搬送ベルト体21はその搬送方向に互いに平行に配置され、搬送ベルト体21に対応してそれぞれ一対の搬送ベルト体31が配置されているものとする。言い換えると、トレイを搬送する経路が2レーン設けられていることになる。
【0025】
図2を参照して、ここでは、一対の搬送ベルト体はそれぞれ符号31a及び31bで示されている。冷却処理筐体12a内には、搬送ベルト体31a及び31bに対応して、それぞれ冷却装置41a及び41bが配設されており、冷却装置41a及び41bの下側には送風機(ファン)42a及び42bが配置されている。
【0026】
搬送ベルト体31a及び31bはそれぞれ搬送経路筐体部43a及び43b内に収納されており、これら搬送経路筐体部43a及び43bの上面及び下面には、図2において紙面の裏側から表側、つまり、搬送ベルト体31a及び31bの搬送方向に沿って、それぞれ複数の上スリット44a及び下スリット44bが形成されている。さらに、搬送経路筐体部43a及び43bの側面にはそれぞれ排気口45a及び45bが形成されている。
【0027】
いま、ファン42a及び42bを駆動すると、図2に太線矢印で示すように、冷却装置41a及び41bで冷却された空気がファン42a及び42bによって循環して、後述するようにして、上スリット44a及び下スリット44bから搬送経路筐体部43a及び43b内に冷気が噴出されて、トレイ上の卵を冷却し、排気口45a及び45bから排気されて、冷却装置41a及び41bに戻る。
【0028】
ここで、再び図1を参照して、生卵を加熱処理して殻付加熱処理卵とする際には、耐熱性トレイ(例えば、ポリエチレン、ポリプロピレン、又は100℃で耐熱性を有する材料)に生卵を配列して、加熱処理部11の入口部11bから耐熱性トレイを送入して搬送ベルト体21で実線矢印方向に耐熱性トレイを搬送する。なお、耐熱性トレイには複数の孔部を形成しておくことが望ましい。
【0029】
第1の加熱ゾーン11fにおいて、スチームパイプ22に微圧で蒸気(水蒸気)を送り、スチーム噴出口から下側に向けて、蒸気を噴出させる。この際、加熱温度は60〜99℃に設定される。前述のように、スチームパイプ22の下側には山型の遮蔽板23が配設されているから、スチーム噴出口から噴出した水蒸気は遮蔽板23に当たって、図3に示すように、上方に立ちのぼって行くことになる。そして、搬送ベルト体21の近傍には蒸気淀み62が生じる。
【0030】
前述のように、搬送ベルト体21の一部は入口部11b及び出口部11cが形成された位置よりも鉛直方向上方に位置付けられているから、この部分(平坦部)は加熱処理筐体11aの上面(天井)との間隔が狭いことになる。この結果、遮蔽板23から立ちのぼった水蒸気は、搬送ベルト体21と加熱処理筐体11aの天井との間に溜まり、蒸気淀み62となる(図3には耐熱性トレイは示されていない)。
【0031】
つまり、図3に示すように、スチームパイプ22が配置された位置に対応する搬送ベルト体21の平坦部は、入口部11b及び出口部11cよりも高い位置にあるから、遮蔽板23に当たって立ちのぼった蒸気は、平坦部近傍で淀み、蒸気淀み62が生じることになる。耐熱性トレイ上の生卵61はこの蒸気淀み62によって、つまり、蒸気の凝縮潜熱によって、加熱・殺菌(以下単に加熱という)されることになる。第1の加熱ゾーン11fを通過した耐熱性トレイは第2の加熱ゾーン11gに進む。この際、一旦、搬送ベルト体21は入口部11bの高さまで下がり、温度帯を切り替えるゾーンを通過する。
【0032】
第2の加熱ゾーン11gにおいても、スチームパイプ22に常圧で蒸気(水蒸気)を送り、スチーム噴出口から下側に向けて、蒸気を噴出させる。第1の加熱ゾーン11fと同様にして、蒸気淀みを発生させて、卵を加熱処理する。なお、第2の加熱ゾーン11gにおいては、加熱温度を個別にコントロールできる。
【0033】
上述のようにして、加熱処理された卵は加熱処理部11から冷却処理部12に渡される。前述したように、冷却処理部12では、冷却装置41a及び41bを駆動するとともに、ファン42a及び42bを駆動して、冷気を上スリット44a及び下スリット44bから搬送経路筐体部43a及び43bに送り込む。この際、冷気は12℃以下に設定される(好ましくは、冷気の温度を12.0℃〜0.1℃に設定する)。
【0034】
ここで、図4を参照して、ここでは、搬送経路筐体部43aのみが示されている。上スリット44a及び下スリット44bから冷気を送り込むと、結果的に冷気の通路が狭められることになって、冷気は噴流として、上スリット44a及び下スリット44bから搬送経路筐体部43aに冷気が送り込まれることになる。上スリット44aから送り込まれた噴流は卵61に衝突した位置から左右に分かれ、卵61の上側面に沿って流れることになる。
【0035】
同様にして、下スリット44bから送り込まれた噴流は卵61に衝突した位置から左右に分かれ、卵61の下側面に沿って流れることになる。そして、これら噴流は排出口45a及び45b(図2参照)から排出される。
【0036】
つまり、図4に示すように、卵61は噴流で包み込まれることになって、卵61を効果的に冷却することができることになる(以下このような冷却効果をコアンダ効果と呼ぶことにする)。そして、冷却処理部12で冷却された卵61は出口部11cから搬出される。例えば、冷却処理部12内は+5℃とされ、加熱処理部11から冷却処理部12に卵が渡される際の卵表面温度が80℃である際、例えば、25分間の冷却を行うと、冷却処理部12から搬出された卵は、10℃以下となる。
【0037】
ここで、図1に示すに殻付加熱処理卵製造装置を用いて殻付加熱処理卵の製造を実際に行ってみた。ここでは、トレイを搬送する経路が2レーン(ライン)設けられているとし、一方のラインをAライン、他方のラインをBラインとする。その結果を図5に示す。測定1(Aライン)では、加熱処理部11における加熱温度を前半75〜80℃、後半65〜70℃に設定して、加熱時間を21分とした。また、冷却処理部12における庫内温度を5〜7℃、冷却時間を24分とした。測定2(Bライン)では、加熱処理部11における加熱温度を前半75〜80℃、後半65〜70℃に設定して、加熱時間を21分とした。また、冷却処理部12における庫内温度を5〜7℃、冷却時間を24分とした。測定3(Aライン)では、加熱処理部11における加熱温度を前半75〜80℃、後半65〜70℃に設定して、加熱時間を17分とした。また、冷却処理部12における庫内温度を5〜7℃、冷却時間を24分とした。測定4(Bライン)では、加熱処理部11における加熱温度を前半75〜80℃、後半65〜70℃に設定して、加熱時間を17分とした。また、冷却処理部12における庫内温度を5〜7℃、冷却時間を24分とした。
【0038】
測定1(Aライン)においては、加熱前の芯温が22℃の卵を用いてテストを行った。加熱処理によって、製品(卵)の芯温が22℃から68℃に上昇し、芯温が60℃に到達するまで、7分かかった。芯温が60℃に到達した後殺菌が行われるとすると、殺菌時間は14分ということになる。
【0039】
このようにして、加熱処理された製品を冷却処理部12で冷却したところ、加熱処理部12に搬入する前の卵の芯温は68℃であり、冷却処理によって、芯温は68℃から8℃に低下した。芯温が10℃に低下するまでに要した時間は23分であった。そして、測定1(Aライン)で得られた殻付加熱処理卵を割って観察してみたところ、殻を容易に剥離することができ、しかも見た目にも異常はなく、食味にも水っぽさがなかった。
【0040】
同様にして、測定2(Bライン)においては、加熱前の芯温が22℃の卵を用いてテストを行った。加熱処理によって、製品(卵)の芯温が22℃から67℃に上昇し、芯温が60℃に到達するまで、7分かかり、殺菌時間は14分であった。加熱処理部12に搬入する前の卵の芯温は67℃であり、冷却処理によって、芯温は67℃から9℃に低下した。芯温が10℃に低下するまでに要した時間は23分であった。そして、測定2(Bライン)で得られた殻付加熱処理卵を割って観察してみたところ、殻を容易に剥離することができ、しかも見た目にも異常はなく、食味にも水っぽさがなかった。
【0041】
また、測定3(Aライン)においては、加熱前の芯温が21℃の卵を用いてテストを行った。加熱処理によって、製品(卵)の芯温が21℃から67℃に上昇し、芯温が60℃に到達するまで、8分かかり、殺菌時間は9分であった。加熱処理部12に搬入する前の卵の芯温は67℃であり、冷却処理によって、芯温は67℃から9℃に低下した。芯温が10℃に低下するまでに要した時間は23分であった。そして、測定3(Aライン)で得られた殻付加熱処理卵を割って観察してみたところ、殻を容易に剥離することができ、しかも見た目にも異常はなく、食味にも水っぽさがなかった。さらに、測定4(Bライン)においては、加熱前の芯温が21℃の卵を用いてテストを行った。加熱処理によって、製品(卵)の芯温が21℃から67℃に上昇し、芯温が60℃に到達するまで、8分かかり、殺菌時間は9分であった。加熱処理部12に搬入する前の卵の芯温は67℃であり、冷却処理によって、芯温は67℃から9℃に低下した。芯温が10℃に低下するまでに要した時間は23分であった。そして、測定4(Bライン)で得られた殻付加熱処理卵を割って観察してみたところ、殻を容易に剥離することができ、しかも見た目にも異常はなく、食味にも水っぽさがなかった。
【0042】
そして、発明者らの実験によれば、加熱温度を60℃〜99℃、冷気噴流の温度を12.0℃〜0.1℃とすれば、良好に殻付加熱処理卵を製造できることが分かった。そして、好ましくは、加熱時間を30分〜10分、加熱温度を70℃〜80℃、冷却時間を30分〜20分、冷気噴流の温度を5℃〜10℃とするとよいことが分かった。
【0043】
次に、温水による加熱、遠赤外線による加熱、図1に示す加熱処理部による加熱を比較したところ、温水による加熱では、温水槽内及び卵表面の温水流速が不均一となり、加熱にむらが発生しやすいことがわかった。また、遠赤外線による加熱では、遠赤外線が当たる箇所のみが他の箇所よりも高温となって、つまり、遠赤外線を卵に均一に照射することが難しく、この結果、遠赤外線が多く当たる箇所では卵殻にこげが発生することがある(このような状態を防止する際には、卵を回転させる必要がある)。
【0044】
一方、図1に示す加熱処理部を用いた際には、蒸気淀みによって卵全体が均一に加熱される結果、殻付加熱処理卵の品質を均質とすることができ、加熱不良による歩留り低下が生じることがなかった。そして、卵への水分の混入もほとんどなかった。
【0045】
上述のように、図1に示す製造装置では、スチーム(水蒸気)を用いて生卵を加熱処理しているから、加熱後の卵は「乾いた感じ」の仕上がりとなって、水っぽさがなくなる。さらに、加熱時間を大幅に短縮することができる。
【0046】
さらに、蒸気淀みによって生卵を加熱処理しているから、蒸気使用量が削減でき、しかも加熱・殺菌を同時を行うことができる。また、冷却の際には、冷気噴流によって加熱済み卵を冷却しているから、極めて衛生的であり、前述のように、スリットを用いて冷気噴流を卵に吹きつけると、コアンダ効果によって効率的に加熱済み卵を冷却することができ、冷却処理時間を短縮することができることになる。
【0047】
ところで、図4に示す例では、上スリット44a及び下スリット44bから冷噴流を卵に吹きつける例について説明したが、図6に示すように、上スリット44aのみを設けて、上スリット44aと反対側の位置に排気口45aを設けるようにしてもよい。
【0048】
この際においても、上スリット44aから搬送経路筐体部43aに噴出された冷噴流は製品(卵)61の表面に沿って移動し、上スリット44aの反対側に位置する排気口45aから排出されることになって、図4で説明したコアンダ効果が得られることになり、効果的に卵61を冷却することができる。
【0049】
【発明の効果】
以上説明したように、本発明では、所定の方向に、生卵を搬送しつつ、生卵を高温蒸気の凝縮潜熱によって加熱・殺菌処理した後、所定の方向に加熱済み卵を搬送しつつ、加熱済み卵に冷気噴流を吹きつけて冷却して殻付加熱処理卵とするようにしたから、大量の卵を短時間にしかも良好に加熱・殺菌処理して冷却することができるという効果がある。
【0050】
本発明では、第1の搬送手段を所定の方向に駆動されるベルト状体として、ベルト状体が、加熱処理筐体の入口部及び出口部が形成された位置よりも鉛直方向上方に位置する平坦部を備えて、平坦部において生卵を蒸気淀みで包み込むようにしたから、均一に生卵を加熱・殺菌処理することができるという効果がある。
【0051】
本発明では、ベルト状体の平坦部に対応してベルト状体の下側で高温蒸気を鉛直方向下向きに噴出して、この噴出蒸気を遮蔽部材に当てて、立ちのぼる蒸気によって蒸気淀みを形成して生卵を蒸気淀みで包み込むようにしたから、容易に生卵を蒸気で包み込むことができるという効果がある。
【0052】
本発明では、所定の方向に沿って複数の加熱ゾーンを規定して、複数の加熱ゾーンを、加熱ゾーン毎に温度コントロールするようにしたので、卵の加熱温度を複数の加熱ゾーンで個別にコントロールできることになって、冷却した後の離水率を良好にでき、しかも、殻付卵の殻離れを良好にすることができるという効果がある。
【0053】
本発明では、加熱済み卵に向けて冷気噴流を噴射して、加熱済み卵を冷却するようにしたから、効率的に加熱済み卵を冷却することができるという効果がある。
【0054】
本発明では、搬送経路筐体にスリットを形成して、スリットによって冷気噴流を形成し、加熱済み卵に冷気噴流を吹きつけるようにしたから、容易に冷気噴流を形成することができるという効果がある。
【0055】
本発明では、生卵を複数個、耐熱性トレイに載置して、耐熱トレイを所定の方向に搬送し、加熱・殺菌・冷却処理するようにしたから、多量の卵を一度に簡単に処理することができるという効果がある。
【図面の簡単な説明】
【図1】本発明による殻付加熱処理卵製造装置の一例を示す図である。
【図2】図1に示す冷却処理部の構成を詳細に示す図である。
【図3】図1に示す加熱処理部における加熱処理を説明するための図である。
【図4】図2に示す冷却処理部における冷却処理の一例を説明するための図である。
【図5】図1に示す製造装置を用いて卵を加熱・冷却処理した結果を示す図である。
【図6】図2に示す冷却処理部における冷却処理の他の例を説明するための図である。
【符号の説明】
11 加熱処理部
12 冷却処理部
11a 加熱処理筐体
11b,12b 入口部
11c,12c 出口部
11d 通路穴
11e 仕切板(仕切壁)
11f 第1の加熱ゾーン
11g 第2の加熱ゾーン
12a 冷却処理筐体
21,31 搬送ベルト体
22 スチームパイプ
23 遮蔽板
62 蒸気(水蒸気)淀み
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a shell-added heat-treated egg (that is, boiled egg-like) and a manufacturing apparatus therefor, and in particular, a manufacturing method for manufacturing a shell-added heat-treated egg that has been heat-treated in a short time and well, It relates to the device.
[0002]
[Prior art]
In general, when manufacturing a shell-added heat-treated egg, hot water (heated water) is used for the heat treatment, and cooling water is used as cooling water, such as well water, in the cooling treatment, and the cooling water is used as a shower for the eggs after heat treatment. Cooled by bathing or immersing eggs after heat treatment in a cooling water tank.
[0003]
For example, in the method for producing a shell-added heat-treated egg described in JP-A-11-290029, a plurality of raw eggs are arranged on an egg tray, the egg trays are stacked without contacting each other, and stored in a container. Fill in a retort that can be pressurized and hot showered. Thereafter, pressure gas is fed into the retort, hot water is supplied from the hot water spray tube, and hot water is also supplied from the hot water shower tube. And the heat-treated egg is returned to normal temperature.
[0004]
[Problems to be solved by the invention]
However, when a raw egg is heat-treated using a warm water shower or the like as in the prior art, moisture is absorbed into the egg and often becomes watery when eaten. Furthermore, when cooling, in order to make it easy to peel off the eggshell, as described above, due to the rapid cooling using a cooling water shower or a cooling water tank, moisture enters the egg even during cooling. Therefore, there is a problem that the taste is lowered.
[0005]
Furthermore, in the conventional example, after arranging the eggs in the egg tray, the egg trays are stacked and stored in the container, and the heat treatment is performed. In other words, since the egg trays are stacked, all the eggs are evenly distributed. It may be difficult to heat-treat. In addition, after the heat treatment, it is necessary to take out the egg tray from the container and perform the cooling treatment, and there is a problem that the work process takes time.
[0006]
An object of the present invention is to heat and cool a shell-added heat-treated egg that has been heat-treated in a short time and well, that is, when the shell-added heat-treated egg is heated and cooled, it can be heated and It is an object of the present invention to provide a method for manufacturing a shell-added heat-treated egg that can be cooled and a manufacturing apparatus therefor.
[0007]
[Means for Solving the Problems]
According to the present invention, in the manufacturing method for producing a shell-added heat-treated egg by heat-treating the raw egg and then cooling it, the raw egg is heated by the condensation latent heat of high-temperature steam while transporting the raw egg in a predetermined direction. -Heat treatment step for sterilization to make a heated egg; and cooling to make the shell-added heat-treated egg by blowing a cool air jet to the heated egg while transporting the heated egg in the predetermined direction A method for producing a shell-added heat-treated egg.
[0008]
In this way, after transporting the raw egg in a predetermined direction and heating / sterilizing the raw egg with the latent heat of condensation of high-temperature steam, the heated egg is transported in the predetermined direction while cooling the heated egg Since a jet is blown and cooled to obtain a shell-added heat-treated egg, a large amount of eggs can be cooled by heating and sterilizing well in a short time.
[0009]
For example, in the heat treatment step, the raw eggs are heated and sterilized at a predetermined time of 60 ° C. to 99 ° C., and in the cooling treatment step, the temperature of the cold air jet is set to 12.0 ° C. to 0.1 ° C. Set to.
[0010]
According to the present invention, in a manufacturing apparatus for manufacturing a shell-added heat-treated egg by heat-treating a raw egg and then cooling it, the first transport means for transporting the raw egg in a predetermined direction, and the first transport means Heat treatment means for heating and sterilizing the raw egg conveyed by the latent heat of condensation of high-temperature steam to form a heated egg, and the heated egg disposed at a stage subsequent to the first conveyance means in the predetermined direction And a cooling means for cooling the heated egg conveyed by the second conveying means by blowing a cold air jet onto the heated egg to form the shell-added heat-treated egg. A device for producing a shell-added heat-treated egg is obtained.
[0011]
For example, the heat treatment means is arranged so as to store the first conveying means along the first conveying means, and the first inlet portion into which the raw eggs are carried and the heated eggs are carried out. A heat treatment housing formed with a first outlet portion, and a steam generation means that is disposed below the first transport means and generates high-temperature steam, the first transport means includes: The belt-shaped body is driven in the predetermined direction, and a part of the belt-shaped body is positioned vertically above the position where the first inlet portion and the first outlet portion are formed. The raw eggs on the belt-like body are wrapped with the steam generated by the steam generating means. Thus, if a heating and sterilization process is performed, a raw egg can be heated and sterilized uniformly.
[0012]
The steam generating means is disposed below the belt-like body and is disposed at a predetermined interval in the predetermined direction, and steam means for ejecting the high-temperature steam downward in the vertical direction; A shielding member disposed on the lower side of the steam means, and the upper surface of the heat treatment casing and the belt-like body are formed by steam rising as a result of applying the steam ejected from the steam means to the shielding member. A steam stagnation is formed therebetween, and the raw egg is wrapped with the steam stagnation. In this way, if the steam rises, the raw eggs can be easily wrapped in steam.
[0013]
Note that a plurality of heating zones may be defined in the heat treatment casing along the predetermined direction, and the temperature of the plurality of heating zones may be controlled for each heating zone. In this way, the temperature can be controlled for each heating zone. As a result, for example, the egg heating temperature can be gradually lowered along a predetermined direction, and the water separation rate after cooling can be improved. Can control the hardness of egg whites and yolks inside shelled eggs. Here, the water separation rate is represented by water separation rate (%) = (water separation water amount / total weight of eggs with shells) × 100, but the water separation rate is 1 to 2 compared to the batch type by the manufacturing method according to the present invention. A 3% decrease was confirmed.
[0014]
In the present invention, the cooling processing means is arranged so as to accommodate the second transport means along the second transport means, and the second inlet portion into which the heated egg is carried and the shell additional heat treatment A transport path housing formed with a second outlet portion from which the egg is transported, and an injection means for injecting the cold air jet toward the heated egg on the second transport means The spraying means is, for example, a slit formed in the transport path housing, and sprays the cold air jet onto the heated egg from the slit. In this way, if a jet of cold air is jetted toward the heated egg to cool the heated egg, the heated egg can be cooled efficiently and a slit is formed in the transport path housing Then, if the cold air jet is formed by the slit and the cold air jet is sprayed on the heated egg, the cold air jet can be easily formed.
[0015]
The jetting unit may be a pair of slits arranged opposite to each other with the second transport unit interposed therebetween, and the cold air jet may be blown from the pair of slits toward the heated egg.
[0016]
Note that, for example, a plurality of the raw eggs are placed on a heat-resistant tray and conveyed in the predetermined direction by the first conveying means. In this way, if you place multiple raw eggs on a heat-resistant tray, transport the heat-resistant tray in a predetermined direction, and heat, sterilize, and cool it, you can easily process a large amount of eggs at once. can do.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative arrangements, and the like of the components in the illustrated example are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified.
[0018]
First, with reference to FIG. 1, the manufacturing apparatus used for the manufacturing method of the shell addition heat treatment egg by this invention is demonstrated. The illustrated shell-added heat-treated egg production apparatus includes a heat treatment unit 11 and a cooling treatment unit 12, and the heat treatment unit 11 is positioned in front of the cooling treatment unit 12. The heat treatment unit 11 has a heat treatment housing 11a extending in the left and right directions in the figure, and an inlet portion 11b is formed at the left end of the heat treatment housing 11a, and an outlet portion 11c is formed at the right end. A conveyor belt body 21 that is conveyed in the direction indicated by the solid line arrow in the drawing is disposed in the heat treatment casing 11a, and the conveyor belt body 21 has a plurality of holes. As will be described later, a tray (not shown) on which eggs (not shown) are loaded is conveyed on the conveying belt body 21.
[0019]
In the illustrated example, a partition plate (partition wall) 11e having a passage hole 11d is formed in the middle of the heat treatment casing 11a, whereby the inside of the heat treatment casing 11a is located on the left side. It is divided into one heating zone 11f and a second heating zone 11g located on the right side. It is not always necessary to divide the first and second heating zones 11f and 11g, that is, a plurality of heating zones, as shown in the figure. The heating temperature may be varied to control the temperature for each heating zone. For example, if the heating temperature in the second heating zone 11g is lower than the heating temperature in the first heating zone 11f, the egg temperature gradually decreases during the heating, so that the water separation rate becomes good and the shell Not only can the egg white and egg yolk hardness in the attached egg be controlled, but also the shell separation is improved.
[0020]
In FIG. 1, the conveyor belt body 21 is arranged so as to be gradually inclined upward from the inlet portion 11 b, and then flattened (flat portion), and the first heating zone 11 f ends. Immediately before, it is gradually inclined downward and passes through the passage hole 11d. Similarly, when the transport belt body 21 passes through the passage hole 11d, the transport belt body 21 is disposed so as to be gradually inclined upward, and thereafter, is flattened, and further gradually just before the end of the second heating zone 11g. It is inclined downward and passes through the outlet portion 11c. That is, a part of the conveyor belt 21 is positioned vertically above the position where the inlet portion 11b and the outlet portion 11c are formed.
[0021]
Although not shown in FIG. 1, protrusions 11h (see FIG. 3) are formed on the surface of the conveyor belt body 21 at a predetermined interval (for example, the length of the tray). The protrusions 11h Prevents the tray from shifting.
[0022]
Further, as shown in FIG. 1, in the heat treatment casing 11 a, the first and second heating zones 11 f and 11 g have a predetermined interval in the transport direction of the transport belt body 21 at intervals of the transport belt body 21. Corresponding to the flat part (part arranged flat), a steam pipe 22 extending from the back side of the paper surface in the drawing to the front side is disposed, and a steam (steam) outlet (downward) facing this steam pipe 22 ( (Not shown) is formed. A mountain-shaped shielding plate (a pair of members extending obliquely downward from the apex) 23 is disposed below the steam pipe 22, and the shielding plate 23 extends in the direction in which the steam pipe extends. .
[0023]
As described above, the cooling processing unit 12 is arranged at the subsequent stage of the heating processing unit 11, and this cooling processing unit 12 has the cooling processing case 12a extending in the left and right direction in the figure. An inlet portion 12b is formed at the left end, and an outlet portion 12c is formed at the right end. A conveyor belt body 31 that is transported in the direction indicated by the solid line arrow in the figure is disposed in the cooling processing casing 12a, and a tray that has passed through the heat treatment section 11 is disposed on the conveyor belt body 31 at the inlet section 12b. Passed through. And the egg on a tray is conveyed in the direction of the exit part 12c, cooling. Although not shown, the outlet portion 11c and the inlet portion 12b are connected by a duct or the like.
[0024]
Now, it is assumed that a pair of the conveyor belt bodies 21 and 31 is disposed. That is, it is assumed that the pair of transport belt bodies 21 are arranged in parallel to each other in the transport direction, and the pair of transport belt bodies 31 are disposed corresponding to the transport belt bodies 21. In other words, two lanes are provided for conveying the tray.
[0025]
Referring to FIG. 2, here, the pair of transport belt bodies are indicated by reference numerals 31a and 31b, respectively. In the cooling processing casing 12a, cooling devices 41a and 41b are arranged corresponding to the conveyor belt bodies 31a and 31b, respectively, and blowers (fans) 42a and 42b are provided below the cooling devices 41a and 41b. Is arranged.
[0026]
The conveyor belt bodies 31a and 31b are respectively housed in the conveyance path housing portions 43a and 43b, and the upper and lower surfaces of the conveyance path housing portions 43a and 43b are respectively shown in FIG. A plurality of upper slits 44a and lower slits 44b are formed along the conveying direction of the conveying belt bodies 31a and 31b, respectively. Further, exhaust ports 45a and 45b are formed on the side surfaces of the transport path housing portions 43a and 43b, respectively.
[0027]
Now, when the fans 42a and 42b are driven, the air cooled by the cooling devices 41a and 41b is circulated by the fans 42a and 42b as shown by thick arrows in FIG. Cold air is ejected from the lower slit 44b into the transport path housing portions 43a and 43b, the eggs on the tray are cooled, exhausted from the exhaust ports 45a and 45b, and returned to the cooling devices 41a and 41b.
[0028]
Here, referring to FIG. 1 again, when a raw egg is heat-treated to form a shell-added heat-treated egg, the raw egg is raw on a heat-resistant tray (for example, polyethylene, polypropylene, or a material having heat resistance at 100 ° C.). Eggs are arranged, the heat-resistant tray is fed from the inlet 11b of the heat treatment unit 11, and the heat-resistant tray is conveyed by the conveying belt body 21 in the direction of the solid line arrow. It is desirable to form a plurality of holes in the heat resistant tray.
[0029]
In the first heating zone 11f, steam (water vapor) is sent to the steam pipe 22 at a slight pressure, and the steam is ejected downward from the steam ejection port. At this time, the heating temperature is set to 60 to 99 ° C. As described above, since the mountain-shaped shielding plate 23 is disposed on the lower side of the steam pipe 22, the water vapor ejected from the steam outlet hits the shielding plate 23 and rises upward as shown in FIG. I will go up. A steam stagnation 62 is generated in the vicinity of the conveyor belt body 21.
[0030]
As described above, a part of the conveyor belt body 21 is positioned vertically above the position where the inlet portion 11b and the outlet portion 11c are formed, so this portion (flat portion) is formed on the heat treatment casing 11a. The distance from the upper surface (ceiling) is narrow. As a result, the water vapor rising from the shielding plate 23 is accumulated between the conveying belt body 21 and the ceiling of the heat treatment casing 11a, and becomes a steam stagnation 62 (a heat-resistant tray is not shown in FIG. 3). .
[0031]
That is, as shown in FIG. 3, the flat portion of the conveyor belt body 21 corresponding to the position where the steam pipe 22 is disposed is higher than the inlet portion 11b and the outlet portion 11c. The steam stagnate near the flat portion, and steam stagnation 62 is generated. The raw eggs 61 on the heat-resistant tray are heated and sterilized (hereinafter simply referred to as “heating”) by the steam stagnation 62, that is, by the latent heat of condensation of the steam. The heat-resistant tray that has passed through the first heating zone 11f proceeds to the second heating zone 11g. At this time, the transport belt body 21 once falls to the height of the inlet 11b and passes through a zone for switching the temperature zone.
[0032]
Also in the 2nd heating zone 11g, a vapor | steam (water vapor | steam) is sent to the steam pipe 22 at a normal pressure, and a vapor | steam is ejected toward a lower side from a steam jet nozzle. In the same manner as the first heating zone 11f, steam stagnation is generated and the eggs are heated. In the second heating zone 11g, the heating temperature can be individually controlled.
[0033]
As described above, the heat-treated egg is transferred from the heat processing unit 11 to the cooling processing unit 12. As described above, in the cooling processing unit 12, the cooling devices 41a and 41b are driven, and the fans 42a and 42b are driven to feed the cold air from the upper slit 44a and the lower slit 44b to the transport path housing units 43a and 43b. . At this time, the cool air is set to 12 ° C. or less (preferably, the cool air temperature is set to 12.0 ° C. to 0.1 ° C.).
[0034]
Here, referring to FIG. 4, only the transport path housing portion 43 a is shown here. When cold air is sent from the upper slit 44a and the lower slit 44b, the cold air passage is narrowed as a result, and the cold air is sent as a jet from the upper slit 44a and the lower slit 44b to the conveyance path housing portion 43a. Will be. The jet flow sent from the upper slit 44 a is divided into left and right from the position where it hits the egg 61, and flows along the upper side surface of the egg 61.
[0035]
Similarly, the jet flow sent from the lower slit 44 b is divided into left and right from the position where it hits the egg 61, and flows along the lower surface of the egg 61. These jets are discharged from the discharge ports 45a and 45b (see FIG. 2).
[0036]
That is, as shown in FIG. 4, the egg 61 is encased in a jet, and the egg 61 can be effectively cooled (hereinafter, such a cooling effect will be referred to as the Coanda effect). . And the egg 61 cooled by the cooling process part 12 is carried out from the exit part 11c. For example, when the inside of the cooling processing unit 12 is + 5 ° C. and the egg surface temperature when the egg is transferred from the heating processing unit 11 to the cooling processing unit 12 is 80 ° C., for example, when cooling is performed for 25 minutes, The egg carried out from the processing unit 12 is 10 ° C. or lower.
[0037]
Here, the shell-added heat-treated eggs were actually manufactured using the shell-added heat-treated egg manufacturing apparatus shown in FIG. Here, it is assumed that a path for transporting the tray is provided with two lanes (lines), one line being an A line and the other line being a B line. The result is shown in FIG. In measurement 1 (A line), the heating temperature in the heat treatment unit 11 was set to 75 to 80 ° C. in the first half and 65 to 70 ° C. in the second half, and the heating time was set to 21 minutes. Moreover, the internal temperature in the cooling process part 12 was 5-7 degreeC, and cooling time was 24 minutes. In measurement 2 (B line), the heating temperature in the heat treatment unit 11 was set to 75 to 80 ° C. in the first half and 65 to 70 ° C. in the second half, and the heating time was set to 21 minutes. Moreover, the internal temperature in the cooling process part 12 was 5-7 degreeC, and cooling time was 24 minutes. In measurement 3 (A line), the heating temperature in the heat treatment unit 11 was set to 75 to 80 ° C. in the first half and 65 to 70 ° C. in the second half, and the heating time was set to 17 minutes. Moreover, the internal temperature in the cooling process part 12 was 5-7 degreeC, and cooling time was 24 minutes. In measurement 4 (B line), the heating temperature in the heat treatment unit 11 was set to 75 to 80 ° C. in the first half and 65 to 70 ° C. in the second half, and the heating time was set to 17 minutes. Moreover, the internal temperature in the cooling process part 12 was 5-7 degreeC, and cooling time was 24 minutes.
[0038]
In measurement 1 (A line), a test was performed using eggs having a core temperature of 22 ° C. before heating. The heat treatment increased the core temperature of the product (egg) from 22 ° C. to 68 ° C., and it took 7 minutes until the core temperature reached 60 ° C. If sterilization is performed after the core temperature reaches 60 ° C., the sterilization time is 14 minutes.
[0039]
Thus, when the heat-treated product was cooled by the cooling processing unit 12, the core temperature of the egg before being carried into the heat processing unit 12 was 68 ° C, and the core temperature was changed from 68 ° C to 8 ° C by the cooling processing. It decreased to ° C. The time required for the core temperature to drop to 10 ° C. was 23 minutes. Then, when the shell-added heat-treated egg obtained in measurement 1 (A line) was broken and observed, the shell could be easily peeled off, and there was no abnormality in appearance, and the taste was also watery. There was no.
[0040]
Similarly, in the measurement 2 (B line), the test was performed using eggs having a core temperature of 22 ° C. before heating. By the heat treatment, the core temperature of the product (egg) rose from 22 ° C. to 67 ° C., and it took 7 minutes until the core temperature reached 60 ° C., and the sterilization time was 14 minutes. The core temperature of the egg before carrying in to the heat processing part 12 was 67 degreeC, and the core temperature fell from 67 degreeC to 9 degreeC by the cooling process. The time required for the core temperature to drop to 10 ° C. was 23 minutes. Then, when the shell-added heat-treated egg obtained in Measurement 2 (B line) was broken and observed, the shell could be easily peeled off, and there was no abnormality in appearance, and the taste was also watery. There was no.
[0041]
Moreover, in the measurement 3 (A line), it tested using the egg whose core temperature before a heating is 21 degreeC. By the heat treatment, the core temperature of the product (egg) rose from 21 ° C. to 67 ° C., and it took 8 minutes until the core temperature reached 60 ° C., and the sterilization time was 9 minutes. The core temperature of the egg before carrying in to the heat processing part 12 was 67 degreeC, and the core temperature fell from 67 degreeC to 9 degreeC by the cooling process. The time required for the core temperature to drop to 10 ° C. was 23 minutes. Then, when the shell-added heat-treated egg obtained in Measurement 3 (A line) was broken and observed, the shell could be easily peeled off, and there was no abnormality in appearance, and the taste was also watery. There was no. Furthermore, in the measurement 4 (B line), it tested using the egg whose core temperature before a heating is 21 degreeC. By the heat treatment, the core temperature of the product (egg) rose from 21 ° C. to 67 ° C., and it took 8 minutes until the core temperature reached 60 ° C., and the sterilization time was 9 minutes. The core temperature of the egg before carrying in to the heat processing part 12 was 67 degreeC, and the core temperature fell from 67 degreeC to 9 degreeC by the cooling process. The time required for the core temperature to drop to 10 ° C. was 23 minutes. Then, when the shell-added heat-treated egg obtained in measurement 4 (B line) was broken and observed, the shell could be easily peeled off, and there was no abnormality in appearance, and the taste was also watery. There was no.
[0042]
According to the experiments by the inventors, it has been found that if the heating temperature is 60 ° C. to 99 ° C. and the temperature of the cold air jet is 12.0 ° C. to 0.1 ° C., a shell-added heat-treated egg can be produced satisfactorily. . And it turned out that it is good to make heating time 30 minutes-10 minutes, heating temperature 70 degreeC-80 degreeC, cooling time 30 minutes-20 minutes, and preferably the temperature of a cold-air jet 5 degreeC-10 degreeC.
[0043]
Next, when heating with warm water, heating with far infrared rays, and heating with the heat treatment unit shown in FIG. 1 are compared, heating with warm water makes the warm water flow rate in the warm water tank and the egg surface non-uniform, resulting in uneven heating. I found it easy to do. In addition, in the heating by far infrared rays, only the location where the far infrared rays hit is higher than the other locations, that is, it is difficult to irradiate the far infrared rays uniformly on the egg. The eggshell may become bald (the egg needs to be rotated to prevent this condition).
[0044]
On the other hand, when the heat treatment unit shown in FIG. 1 is used, the whole egg is uniformly heated by steam stagnation, so that the quality of the shell-added heat-treated egg can be made uniform, resulting in a decrease in yield due to defective heating. It never happened. And there was almost no moisture mixing into the egg.
[0045]
As described above, since the raw egg is heated using steam (water vapor) in the manufacturing apparatus shown in FIG. 1, the heated egg has a “dry feeling” finish and is watery. Disappears. Furthermore, the heating time can be greatly shortened.
[0046]
Furthermore, since the raw eggs are heat-treated by steam massaging, the amount of steam used can be reduced, and heating and sterilization can be performed simultaneously. Also, since the heated egg is cooled by a cold air jet during cooling, it is extremely hygienic. As described above, when a cold air jet is blown onto the egg using a slit, the Coanda effect is effective. Thus, the heated egg can be cooled, and the cooling processing time can be shortened.
[0047]
By the way, in the example shown in FIG. 4, although the example which sprays a cold jet from the upper slit 44a and the lower slit 44b was demonstrated, as shown in FIG. 6, only the upper slit 44a is provided and it is opposite to the upper slit 44a You may make it provide the exhaust port 45a in the position of the side.
[0048]
Also in this case, the cold jet flow ejected from the upper slit 44a to the transport path housing portion 43a moves along the surface of the product (egg) 61 and is discharged from the exhaust port 45a located on the opposite side of the upper slit 44a. Thus, the Coanda effect described with reference to FIG. 4 is obtained, and the egg 61 can be effectively cooled.
[0049]
【The invention's effect】
As described above, in the present invention, while transporting raw eggs in a predetermined direction, while heating and sterilizing raw eggs by condensation latent heat of high-temperature steam, while transporting heated eggs in a predetermined direction, Since a cold air jet is blown onto the heated egg to cool it to form a shell-added heat-treated egg, there is an effect that a large amount of eggs can be cooled by heating and sterilizing well in a short time.
[0050]
In the present invention, the first conveying means is a belt-like body that is driven in a predetermined direction, and the belt-like body is positioned vertically above the position where the inlet and outlet portions of the heat treatment casing are formed. Since the flat part is provided and the raw egg is wrapped in the flat part by steam massaging, there is an effect that the raw egg can be uniformly heated and sterilized.
[0051]
In the present invention, high-temperature steam is jetted vertically downward on the lower side of the belt-like body corresponding to the flat portion of the belt-like body, and the jetted steam is applied to the shielding member to form steam stagnation by the rising steam. Since the raw eggs are encased with steam stagnation, there is an effect that the raw eggs can be easily encased with steam.
[0052]
In the present invention, a plurality of heating zones are defined along a predetermined direction, and the temperature of the plurality of heating zones is controlled for each heating zone, so the egg heating temperature is individually controlled by the plurality of heating zones. As a result, it is possible to improve the water separation rate after cooling, and to improve the shell separation of the shelled eggs.
[0053]
In the present invention, since the cold air jet is jetted toward the heated egg to cool the heated egg, there is an effect that the heated egg can be efficiently cooled.
[0054]
In the present invention, a slit is formed in the transport path housing, a cold air jet is formed by the slit, and the cold air jet is sprayed on the heated egg, so that the effect of easily forming the cold air jet can be achieved. is there.
[0055]
In the present invention, a plurality of raw eggs are placed on a heat-resistant tray, and the heat-resistant tray is transported in a predetermined direction to be heated, sterilized, and cooled. There is an effect that can be done.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a shell-added heat-treated egg manufacturing apparatus according to the present invention.
FIG. 2 is a diagram showing in detail a configuration of a cooling processing unit shown in FIG.
FIG. 3 is a diagram for explaining a heat treatment in a heat treatment unit shown in FIG. 1;
4 is a diagram for explaining an example of a cooling process in a cooling processing unit shown in FIG. 2; FIG.
FIG. 5 is a diagram showing the results of heating / cooling the eggs using the manufacturing apparatus shown in FIG. 1;
6 is a diagram for explaining another example of the cooling process in the cooling processing unit shown in FIG. 2; FIG.
[Explanation of symbols]
11 Heat processing section
12 Cooling processing section
11a Heat treatment case
11b, 12b entrance
11c, 12c outlet
11d passage hole
11e Partition plate (partition wall)
11f 1st heating zone
11g Second heating zone
12a Cooling case
21, 31 Conveyor belt body
22 Steam pipe
23 Shield plate
62 Steam (steam)

Claims (10)

生卵を加熱処理した後冷却して殻付加熱処理卵を製造する製造方法において、
所定の方向に前記生卵を搬送しつつ前記生卵を高温蒸気の凝縮潜熱によって加熱・殺菌処理して加熱済み卵とする加熱処理ステップと、
前記所定の方向に前記加熱済み卵を搬送しつつ前記加熱済み卵に冷気噴流を吹きつけて冷却して前記殻付加熱処理卵とする冷却処理ステップとを有することを特徴とする殻付加熱処理卵の製造方法。
In the production method of producing a shell-added heat-treated egg by heating and then cooling the raw egg,
A heat treatment step of heating and sterilizing the raw egg by condensing latent heat of high-temperature steam to convey the raw egg in a predetermined direction to a heated egg;
And a cooling step of cooling the heated egg by blowing a cold air jet onto the heated egg while transporting the heated egg in the predetermined direction. Production method.
前記加熱処理ステップにおいて前記生卵は予め規定された時間60℃〜99℃で加熱・殺菌処理され、前記冷却処理ステップでは前記冷気噴流の温度を12.0℃〜0.1℃に設定するようにしたことを特徴とする請求項1に記載の殻付加熱処理卵の製造方法。In the heat treatment step, the raw eggs are heated and sterilized at a predetermined time of 60 ° C. to 99 ° C., and in the cooling treatment step, the temperature of the cold air jet is set to 12.0 ° C. to 0.1 ° C. The method for producing a shell-added heat-treated egg according to claim 1, wherein: 生卵を加熱処理した後冷却して殻付加熱処理卵を製造する製造装置において、
所定の方向に前記生卵を搬送する第1の搬送手段と、
該第1の搬送手段によって搬送される前記生卵を高温蒸気の凝縮潜熱によって加熱・殺菌処理して加熱済み卵とする加熱処理手段と、
前記第1の搬送手段の後段に配置され前記加熱済み卵を前記所定の方向に搬送する第2の搬送手段と、
該第2の搬送手段によって搬送される前記加熱済み卵に冷気噴流を吹きつけて冷却して前記殻付加熱処理卵とする冷却処理手段とを有することを特徴とする殻付加熱処理卵の製造装置。
In a production apparatus for producing a shell-added heat-treated egg by heat-treating a raw egg and then cooling it,
First conveying means for conveying the raw egg in a predetermined direction;
Heat treatment means for heating and sterilizing the raw egg conveyed by the first conveying means by condensation latent heat of high-temperature steam to form a heated egg;
A second conveying means disposed downstream of the first conveying means for conveying the heated egg in the predetermined direction;
An apparatus for producing a shell-added heat-treated egg, comprising: a cooling processing unit that blows and cools the heated egg conveyed by the second conveying unit by blowing a cold air jet into the shell-added heat-treated egg.
前記加熱処理手段は、前記第1の搬送手段に沿って該第1の搬送手段を収納するように配置され前記生卵が搬入される第1の入口部と前記加熱済み卵が搬出される第1の出口部とが形成された加熱処理筐体と、
前記第1の搬送手段の下側に配置され高温蒸気を発生する蒸気発生手段とを有し、
前記第1の搬送手段は、前記所定の方向に駆動されるベルト状体であり、
該ベルト状体の一部は前記第1の入口部及び前記第1の出口部が形成された位置よりも鉛直方向上方に位置付けられており、前記蒸気発生手段で発生した蒸気で前記ベルト状体上の前記生卵を包み込むようにしたことを特徴とする請求項3に記載の殻付加熱処理卵の製造装置。
The heat treatment means is disposed so as to store the first conveyance means along the first conveyance means, and a first inlet portion into which the raw eggs are carried in and a first egg from which the heated eggs are carried out. A heat treatment housing formed with one outlet portion;
Steam generating means disposed below the first conveying means for generating high temperature steam;
The first conveying means is a belt-like body driven in the predetermined direction,
A part of the belt-like body is positioned vertically above the position where the first inlet portion and the first outlet portion are formed, and the belt-like body is formed by the steam generated by the steam generating means. 4. The apparatus for producing a shell-added heat-treated egg according to claim 3, wherein the raw egg is wrapped up.
前記蒸気発生手段は、前記ベルト状体の下側に配置されるとともに前記所定の方向に予め定められた間隔をおいて配置され前記高温蒸気を前記鉛直方向下向きに噴出するスチーム手段と、
該スチーム手段の下側に配置された遮蔽部材とを有し、
前記スチーム手段から噴出した前記蒸気を前記遮蔽部材に当てた結果立ちのぼる蒸気によって前記加熱処理筐体の上面と前記ベルト状体との間に蒸気淀みを形成して、前記生卵を前記蒸気淀みで包み込むようにしたことを特徴とする請求項4に記載の殻付加熱処理卵の製造装置。
The steam generating means is disposed on the lower side of the belt-like body and is disposed at a predetermined interval in the predetermined direction, and steam means for ejecting the high temperature steam downward in the vertical direction;
A shielding member disposed below the steam means;
A steam stagnation is formed between the upper surface of the heat treatment casing and the belt-like body by the steam rising as a result of applying the steam ejected from the steam means to the shielding member, and The apparatus for producing a shell-added heat-treated egg according to claim 4, wherein the apparatus is wrapped.
前記加熱処理筐体には、前記所定の方向に沿って複数の加熱ゾーンが規定されており、前記複数の加熱ゾーンは、該加熱ゾーン毎に温度コントロールされることを特徴とする請求項4又は5に記載の殻付加熱処理卵の製造装置。The heating processing casing has a plurality of heating zones defined along the predetermined direction, and the plurality of heating zones are temperature-controlled for each heating zone. 5. The apparatus for producing a shell-added heat-treated egg according to 5. 前記冷却処理手段は、前記第2の搬送手段に沿って該第2の搬送手段を収納するように配置され前記加熱済み卵が搬入される第2の入口部と前記殻付加熱処理卵が搬出される第2の出口部とが形成された搬送経路筐体と、
前記第2の搬送手段上の前記加熱済み卵に向けて前記冷気噴流を噴射する噴射手段とを有することを特徴とする請求項3に記載の殻付加熱処理卵の製造装置。
The cooling processing means is disposed so as to accommodate the second transport means along the second transport means, and the second inlet portion into which the heated egg is carried and the shell-added heat-treated egg are carried out. A transport path housing formed with a second outlet portion,
The apparatus for producing a shell-added heat-treated egg according to claim 3, further comprising: an injection unit that injects the cold air jet toward the heated egg on the second conveying unit.
前記噴射手段は、前記搬送経路筐体に形成されたスリットであり、該スリットから前記加熱済み卵に前記冷気噴流を吹きつけるようにしたことを特徴とする請求項7に記載の殻付加熱処理卵の製造装置。The shell-added heat-treated egg according to claim 7, wherein the spraying means is a slit formed in the transport path housing, and the cold air jet is blown from the slit to the heated egg. Manufacturing equipment. 前記噴射手段は、前記第2の搬送手段を挟んで互いに対向して配置された一対のスリットであり、該一対のスリットから前記加熱済み卵に向けて前記冷気噴流を吹きつけるようにしたことを特徴とする請求項7に記載の殻付加熱処理卵の製造装置。The jetting means is a pair of slits arranged opposite to each other across the second transport means, and the cold air jet is blown from the pair of slits toward the heated egg. The apparatus for producing a shell-added heat-treated egg according to claim 7, 前記生卵は複数個が耐熱性トレイに載置されて前記第1の搬送手段で前記所定の方向に搬送されるようにしたことを特徴とする請求項3に記載の殻付加熱処理卵の製造装置。4. The shell-added heat-treated egg according to claim 3, wherein a plurality of the raw eggs are placed on a heat-resistant tray and conveyed in the predetermined direction by the first conveying means. apparatus.
JP2002244037A 2002-08-23 2002-08-23 Manufacturing method and manufacturing apparatus of shell-added heat-treated egg Expired - Lifetime JP3745323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244037A JP3745323B2 (en) 2002-08-23 2002-08-23 Manufacturing method and manufacturing apparatus of shell-added heat-treated egg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244037A JP3745323B2 (en) 2002-08-23 2002-08-23 Manufacturing method and manufacturing apparatus of shell-added heat-treated egg

Publications (2)

Publication Number Publication Date
JP2004081041A true JP2004081041A (en) 2004-03-18
JP3745323B2 JP3745323B2 (en) 2006-02-15

Family

ID=32052645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244037A Expired - Lifetime JP3745323B2 (en) 2002-08-23 2002-08-23 Manufacturing method and manufacturing apparatus of shell-added heat-treated egg

Country Status (1)

Country Link
JP (1) JP3745323B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022622A (en) * 2005-07-20 2007-02-01 Toyo Glass Co Ltd Glass bottle
JP2008011713A (en) * 2006-07-03 2008-01-24 Econos Japan Co Ltd Method for producing boiled egg, device for producing boiled egg, and use of the device
KR101661692B1 (en) * 2015-11-30 2016-09-30 주식회사 오션디 Manufacturing method of baked egg
JP6010240B1 (en) * 2015-03-13 2016-10-19 ケレス株式会社 Heating / cooling integrated food processing system
KR20170138212A (en) * 2016-06-07 2017-12-15 전화수 Steamed egg device
EP3491933A1 (en) * 2017-12-01 2019-06-05 Mauro Fontana A method of microbiological sanitisation of the surface of whole eggs in shell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022622A (en) * 2005-07-20 2007-02-01 Toyo Glass Co Ltd Glass bottle
JP4732047B2 (en) * 2005-07-20 2011-07-27 東洋ガラス株式会社 Glass bottle
JP2008011713A (en) * 2006-07-03 2008-01-24 Econos Japan Co Ltd Method for producing boiled egg, device for producing boiled egg, and use of the device
JP4526519B2 (en) * 2006-07-03 2010-08-18 株式会社エコノス・ジャパン Boiled egg production method, production apparatus thereof, and use method thereof
JP6010240B1 (en) * 2015-03-13 2016-10-19 ケレス株式会社 Heating / cooling integrated food processing system
JP2017055762A (en) * 2015-03-13 2017-03-23 ケレス株式会社 Integrated heating and cooling type food processing system
US10561154B2 (en) 2015-03-13 2020-02-18 Cerecs Co., Ltd. Integrated heating and cooling food processing system
US11432558B2 (en) 2015-03-13 2022-09-06 Hakubai Co., Ltd. Integrated heating and cooling food processing system
KR101661692B1 (en) * 2015-11-30 2016-09-30 주식회사 오션디 Manufacturing method of baked egg
KR20170138212A (en) * 2016-06-07 2017-12-15 전화수 Steamed egg device
KR101876932B1 (en) 2016-06-07 2018-08-07 전화수 Steamed egg device
EP3491933A1 (en) * 2017-12-01 2019-06-05 Mauro Fontana A method of microbiological sanitisation of the surface of whole eggs in shell

Also Published As

Publication number Publication date
JP3745323B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
CN102264234B (en) Method and apparatus for steam-cooking
EP3573477B1 (en) Spiral conveyor thermal processing system
CN107613788B (en) The manufacturing method of roasting sea sedge
JPS58180120A (en) Apparatus for heat treatment of food
US20170071246A1 (en) Low-temperature, forced-convection, steam-heating of nuts
JP2009201502A (en) Heat treatment apparatus using superheated steam
JP3745323B2 (en) Manufacturing method and manufacturing apparatus of shell-added heat-treated egg
JP2000152754A (en) Cooking and device therefor
JP2006204808A (en) Food heating method and apparatus
US10098375B2 (en) Forced-convection, steam-heating of nuts with preheating
US4961373A (en) Treatment system
JP2013063031A (en) Method of producing roasted nut by superheated steam
JP5064422B2 (en) Manufacturing apparatus and manufacturing method for processed fishery products
JP2023053984A (en) Drier for producing non-fried noodle
JP2018015047A (en) Rice cooking method
JP4257262B2 (en) Continuous normal pressure high temperature sterilizer
JP2016198255A (en) Heat treatment device
US11234444B1 (en) Steam pasteurization system and method
JP2004121431A (en) Method and apparatus for heating with superheated steam
JP2003310191A (en) Superheated steam drier for noodles
JP6812497B2 (en) Airflow supply unit
JPH0383547A (en) Roasting of food and device therefor
CN110167363B (en) Steam heating of nuts by forced convection with preheating
JP3859560B2 (en) Article processing equipment
JP6397448B2 (en) Vegetable cooking equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050520

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20050620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20050729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050926

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051116

R150 Certificate of patent or registration of utility model

Ref document number: 3745323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term