JP2004080896A - Controller for permanent-magnet dynamo-electric machine for electric vehicle - Google Patents

Controller for permanent-magnet dynamo-electric machine for electric vehicle Download PDF

Info

Publication number
JP2004080896A
JP2004080896A JP2002237243A JP2002237243A JP2004080896A JP 2004080896 A JP2004080896 A JP 2004080896A JP 2002237243 A JP2002237243 A JP 2002237243A JP 2002237243 A JP2002237243 A JP 2002237243A JP 2004080896 A JP2004080896 A JP 2004080896A
Authority
JP
Japan
Prior art keywords
current
electric machine
rotating electric
inverter
current table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002237243A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和男
Takayuki Mizuno
水野 孝行
Masato Mori
森 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002237243A priority Critical patent/JP2004080896A/en
Publication of JP2004080896A publication Critical patent/JP2004080896A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To control a current, in correspondence with drop in the direct-current supply voltage of an inverter, the winding temperature of a dynamo-electric machine and temperature rise in the inverter, and driving/regenerative operation of the dynamo-electric machine. <P>SOLUTION: A torque current control portion 1 is provided with a first current table T<SB>co</SB>and a second current table T<SB>low</SB>as a current table for determining a current command, in correspondence with the rotational speed ω of the dynamo-electric machine 6 and with the desired torque T<SP>*</SP>. The first current table T<SB>co</SB>is used, when the direct-current supply voltage of the inverter 5 is at the lower limit value V<SB>co</SB>of its normal voltage range. The second current table T<SB>low</SB>is used, when the direct-current supply voltage of the inverter is at the lowest voltage value V<SB>low</SB>at which the dynamo-electric machine is controllable. If the direct-current supply voltage of the inverter is not larger than the lower limit value V<SB>co</SB>, the current command is determined from the first current table. If the direct-current supply voltage is at a voltage value V<SB>low</SB>, the current command is determined from the second current table. If the direct-current supply voltage is between the lower limit value V<SB>co</SB>and the voltage value V<SB>low</SB>, interpolation is carried out, with respect to the respective current values, to determine the current command. Also, a current table, corresponding to the temperature and driving/regeneration of the dynamo-electric machine or the like, is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車用永久磁石式回転電機(PMモータ)の制御装置に係り、特に、回転電機の速度と要求トルクに応じてインバータから回転電機に供給する電流を電流テーブルで決定する制御装置に関する。
【0002】
【従来の技術】
電気自動車用永久磁石式回転電機の制御装置は、その加速性能等の向上を図るため、図7に例を示すように、回転電機に供給する電流をトルク電流成分と励磁電流成分の2軸に分離した構成にされる。
【0003】
同図において、トルク制御部1は、電流テーブルとして構成され、電機自動車のアクセル操作に応じて与えられるトルク指令T*と回転電機の検出速度ωをパラメータとして、回転電機に流すd,q軸の励磁電流指令Id*とトルク電流指令Iq*を発生するIdテーブル1AとIqテーブル1Bとを有する。
【0004】
破線ブロックで示す電流制御系は、電流制御部2では、トルク電流指令Iq*及び励磁電流指令Id*と、回転座標変換部3から得る電流検出値Iq*,Id*との比較によりd軸,q軸の電圧指令Vd*,Vq*を得、これら電流指令から逆回転座標変換部4により座標変換した電圧制御信号Vu*,Vv*,Vw*でインバータ5の出力電圧制御を行い、永久磁石式回転電機6の電機子電流を制御する。
【0005】
回転座標変換部3は、永久磁石式回転電機6の2相電流Iu*,Iw*と回転電機6の磁極位相θを基にd,q軸の電流Iq*,Id*を検出する。また、逆回転座標変換部4は、磁極位相θを基に3相の電圧制御信号Vu*,Vv*,Vw*へ変換する。
【0006】
位置検出器7は、エンコーダに構成され、回転電機6のロータ位置信号を発生し、この信号から位置検出器8に磁極位相θを得、速度検出器9には回転電機6の速度ωを得る。なお、磁極位相θや速度ωは、回転電機6の電圧と電流から磁極位置をオブザーバ方式で推定する場合もある。
【0007】
【発明が解決しようとする課題】
従来の制御装置では、電気自動車用永久磁石式回転電機6に流す電流値は、トルク制御部1の電流テーブルにより、回転電機の速度ωとトルク指令T*のみによって決定される。
【0008】
ところで、電気自動車は、蓄電池や燃料電池を主たる電源とするため、工場等で受電する交流電源に比べて大きな電圧変動を伴う。また、電気自動車は、広範囲の速度制御およびトルク制御が要求され、これに加えて季節や地域によっては温度・湿度の厳しい環境に置かれるため、回転電機やインバータが高温になる場合がある。
【0009】
このような電源事情および運転環境になる電気自動車は、例えば、インバータ5の直流電源電圧が低下した場合や、回転電機6およびインバータ5が過熱した場合等の異常時に、正常時と同様に回転電機の速度ωとトルク指令T*のみによって決定した電流を回転電機6に流すと、回転電機6の端子電圧がインバータ5の発生し得る交流電圧より高くなることによって回転電機の制御ができなくなったり、回転電機やインバータを焼損する等、安全面に問題が生じるおそれがあった。
【0010】
また、電気自動車は、省エネルギーの要求から、制動エネルギーを回転電機6の回生運転で電源側に回生することになり、この回生運転時の電流制御を回転電機の駆動時に用いる電流テーブルを基にして行うと、効率の良い運転または制御が困難になる。
【0011】
本発明の目的は、上記の課題を解決した電気自動車用永久磁石式回転電機の制御装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、回転電機の電流テーブルとして、回転電機の回転速度および要求トルクに応じて決定する電流テーブルの他に、インバータの直流電源電圧、回転電機の巻線温度およびインバータの温度、さらに回転電機の運転状態(駆動・回生)に応じて決定する電流テーブルを設け、これら電流テーブルを基に回転電機に供給する電流を制御するようにたもので、以下の構成を特徴とする。
【0013】
(1)インバータから電気自動車用永久磁石式回転電機に供給する電流を、回転電機の回転速度および要求トルクに応じて電流指令を決定する電流テーブルを備えた電気自動車用永久磁石式回転電機の制御装置であって、
前記電流テーブルは、
インバータの直流電源電圧が正常な電圧範囲の下限値Vcoである場合に使用する第1の電流テーブルと、
インバータの直流電源電圧が回転電機の制御が可能な最低限の電圧値Vlowにある場合に使用する第2の電流テーブルとを備え、
インバータの直流電源電圧が前記下限値Vco以上である場合には前記第1の電流テーブルから電流指令を求め、前記電圧値Vlowである場合には前記第2の電流テーブルから電流指令を求め、前記下限値Vcoと電圧値Vlowの間にある場合にはそれぞれの電流値で補間して電流指令を求める演算手段を備えたことを特徴とする。
【0014】
(2)インバータから電気自動車用永久磁石式回転電機に供給する電流を、回転電機の回転速度および要求トルクに応じて電流指令を決定する電流テーブルを備えた電気自動車用永久磁石式回転電機の制御装置であって、
前記電流テーブルは、
回転電機の巻線温度およびインバータの回路素子温度が正常な範囲の最高値tcoである場合に使用する第1の電流テーブルと、
前記巻線温度または前記回路素子温度の高い方が、上限温度thotである場合に使用する第2の電流テーブルとを備え、
前記巻線温度または前記回路素子温度の高い方が前記最高値tco以下である場合には前記第1の電流テーブルから電流指令を求め、前記上限温度thotである場合には前記第2の電流テーブルから電流指令を求め、前記最高値tcoと上限温度thotの間にある場合にはそれぞれの電流値で補間して電流指令を求める演算手段を備えたことを特徴とする。
【0015】
(3)インバータから電気自動車用永久磁石式回転電機に供給する電流を、回転電機の回転速度および要求トルクに応じて電流指令を決定する電流テーブルを備えた電気自動車用永久磁石式回転電機の制御装置であって、
前記電流テーブルは、
回転電機を駆動する場合に使用する第1の電流テーブルと、
回転電機を回生運転する場合に使用する第2の電流テーブルとを備え、
回転電機が駆動側にある場合は前記第1の電流テーブルから電流指令を求め、回転電機が回生側にある場合は前記第2の電流テーブルから電流指令を求める切り替え手段を備えたことを特徴とする。
【0016】
(4)前記電流テーブルは、インバータの直流電源電圧、回転電機の巻線温度およびインバータの回路素子温度、回転電機の駆動・回生運転状態を組み合わせた電流テーブルを備え、その補間を行った電流指令を得ることを特徴とする。
【0017】
(5)前記補間は、直線補間またはインバータ電源電圧の中間値や中間温度を使用した折線補間することを特徴とする。
【0018】
【発明の実施の形態】
(実施形態1)
図1は、本発明の実施形態を示す電気自動車用回転電機の制御装置のブロック構成図であり、図7と異なる部分はトルク制御部1の電流テーブル構成にある。
【0019】
トルク制御部1は、電流指令Id*,Iq*をそれぞれ発生するための電流テーブルとして、インバータ5の直流電源電圧Vdetが正常な電圧範囲の下限値(最低値)Vco[V]にある場合に使用する電流テーブルTcoと、直流電圧がインバータ5による回転電機6の制御が可能な最低限の電圧値Vlow[V]にある場合に使用する電流テーブルTlowの2組を設けておく。
【0020】
電流テーブルTcoは、回転電機が要求されている出力を満足すると同時に、回転電機の制御効率が最大となるよう、トルク指令T*と回転速度ωをパラメータとした電流指令Id*,Iq*を決定するデータが設定される。電流テーブルTlowは、電流テーブルTcoと比較して効率は悪くなるが、回転電機の端子電圧がインバータの発生し得る交流電圧より小さくなるようにデータが設定される。
【0021】
以上の構成により、トルク制御部1は、インバータ5の直流電源の電圧値Vdetを取り込み、この電圧値に応じて電流テーブルTco、Tlowの切り替え手段を設け、電圧VdetがVco[V]以上である場合は、電流テーブルTcoを使用して、効率の高い状態で回転電機の駆動を行う。直流電圧値VdetがVlowになる場合は、電流テーブルTlowを使用して、回転電機の端子電圧がインバータの発生し得る交流電圧を超えない電流指令を発生して回転電機を駆動する。
【0022】
直流電圧値VdetがVlow[V]とVco[V]の間の電圧V[V]である場合、電流テーブルTlowおよびTcoのそれぞれから選定された電流データilow[A]およびico[A]の値を直線で補間し、直流電圧値によって電流指令Id*,Iq*を発生するための電流データi[A]を決定する補間演算手段を備える。この電流データiは、図2に示す関数特性になり、演算式は以下のようにして実現される。
【0023】
【数1】
i=ilow+(ico−ilow)/(Vco−Vlow)×(V−Vlow) [A]
このように2組の電流テーブルを用いて、インバータに供給している直流電圧値も考慮して回転電機に流す電流値を決定することによって、インバータに供給されている直流電圧が低下した場合でも、回転電機の制御を安定して行えるようになる。
【0024】
(実施形態2)
本実施形態は、実施形態1のトルク制御部1のテーブル構成として、電流テーブルTcoおよびTlowに加えて、インバータ5に供給している直流電圧がVlow[V]より大きく、Vco[V]より小さい電圧値である場合の電流テーブルTmidvを1組以上設ける。
【0025】
例えば、図3に折線補間の例を示すように、直流電圧Vlow[V]とVco[V]の中間に、電圧Vmidv1とVmidv2を設定し、これら電圧における電流値を設定した電流テーブルを設ける。そして、これら電圧Vlow、電圧Vmidv1、Vmidv2、Vcoでの電流ilow、imidv1、imidv2、icoを使って、その間を例えば直線補間を行って電流指令を得る。
【0026】
本実施形態によれば、電流テーブルTcoおよび電流テーブルTlowによって選定される電流値ico[A]およびilow[A]の間の補間を、直線だけでなく任意の関数特性に設定することができ、インバータに供給している直流電圧の変化に、より綿密に対応した制御を行うことができる。
【0027】
(実施形態3)
図4は、本発明の実施形態を示す電気自動車用回転電機を制御する制御装置のブロック構成図であり、図1と異なる部分はトルク制御部1の電流テーブル構成にある。
【0028】
トルク制御部1の電流テーブルには、回転電機6の巻線温度(以下、巻線温度と略記する)tdet1およびインバータ5内部にある回路素子の冷却フィン温度(以下、回路素子温度と略記する)tdet2が、正常な範囲の最高値tco[℃]である場合に使用する電流指令Id*,Iq*をそれぞれ発生するための電流テーブルTcoと、巻線温度または回路素子温度の高い方が、ある上限thot[℃]である場合に使用する電流テーブルThotの2組を用意しておく。
【0029】
電流テーブルTcoは、回転電機6が要求されている出力を満足すると同時に、回転電機の効率が最大となるようにデータが設定されている。電流テーブルThotは、電流テーブルTcoを使用した場合のように要求出力は満足できないが、巻線温度または回路素子温度が現在の温度以上に上昇しないようにデータが設定されている。
【0030】
以上の構成において、巻線温度tdet1および回路素子温度tdet2がtco[℃]以下である場合は、電流テーブルTcoを使用して、効率の高い状態で回転電機の駆動を行う。巻線温度または回路素子温度の高い方がthot[℃]以上である場合は、電流テーブルThotを使用して、回転電機およびインバータの温度が現在の温度以上に過熱しないように回転電機の駆動を行う。
【0031】
巻線温度または回路素子温度の高い方がtco[℃]とthot[℃]の間のt[℃]である場合、電流テーブルThotおよび電流テーブルTcoのそれぞれから選定された電流データihot[A]およびico[A]の値を直線で補間し、回転電機およびインバータの温度によって電流データi[A]を決定する。この電流データiは、図5に示す関数特性になり、演算は以下のようにして実現される。
【0032】
【数2】
i=ico+(ihot−ico)/(thot−tco)×(t−tco) [A]
このように2組の電流テーブルを用いて、巻線温度および回路素子温度も考慮して回転電機に流す電流値を決定することによって、回転電機およびインバータが過熱することなく、回転電機の制御を行えるようになる。
【0033】
(実施形態4)
本実施形態は、実施形態3のトルク制御部1のテーブル構成として、電流テーブルTcoおよび電流テーブルThotに加えて、巻線温度または回路素子温度がtco[℃]より高く、thot[℃]より低い温度である場合の電流テーブルTmidtを1組以上設ける。
【0034】
例えば、図6に示すように、温度tco[℃]とthot[℃]の間に、温度tmidt1とtmidt2を設定し、これら温度における電流値を設定した電流テーブルを設ける。そして、これら温度thot、tmidt1、tmidt2、tcoでの電流ilow、imi dt1、imidt2、icoを使って、その間を例えば直線補間を行って電流指令を得る。
【0035】
本実施形態によれば、電流テーブルTcoおよび電流テーブルThotによって選定される電流値ico[A]およびihot[A]の間の補間を、直線だけでなく任意の関数特性に設定することができ、巻線温度および回路素子温度の変化に、より綿密に対応した制御を行うことができる。
【0036】
(実施形態5)
本実施形態は、図1または図4のトルク制御部1の電流テーブル構成として、回転電機6を駆動する場合の電流テーブルTdrおよび回生運転する場合の電流テーブルTregの2種類を設け、回転電機6が駆動側または回生側にあるかによって電流テーブルを切換えて電流指令Id*,Iq*を決定する。
【0037】
本実施形態によれば、駆動用と回生用の電流テーブルを独立させるため、回転電機の駆動パターンおよび回生パターンをそれぞれ自由に変更することができる。このように2種類の電流テーブルを用いて回転電機を制御することによって、効率の良い運転または制御が可能となるし、回転電機の運転パターンの自由度を増すことができる。
【0038】
なお、以上までの各実施形態は、インバータの電流指令を決定する要素として、回転速度および要求トルクに加えて、インバータの直流電源電圧、回転電機の巻線温度およびインバータの回路温度、さらに回転電機の運転状態(駆動・回生)に応じた個別の電流テーブルを用意する場合を示すが、これら要素を組み合わせた電流テーブルとし、その補間を行った電流指令を得る構成にできる。
【0039】
また、実施形態では、トルク電流指令と励磁電流指令に分離した制御装置の場合を示すが、これらを分離することなく1つのトルク電流指令として制御する装置に適用して同等の作用効果を得ることができる。
【0040】
【発明の効果】
以上のとおり、本発明によれば、以下の効果がある。
【0041】
(1)複数組の電流テーブルをインバータ内に用意して、回転速度および要求トルクだけでなく、インバータに供給している直流電圧値も考慮して回転電機に流す電流値を決定することによって、インバータに供給されている直流電圧が低下した場合でも、回転電機の制御を安全に行えるようになる。
【0042】
(2)複数組の電流テーブルをインバータ内に用意して、回転速度および要求トルクだけでなく、回転電機の巻線温度およびインバータ内部にある回路素子温度も考慮して回転電機に流す電流値を決定することによって、回転電機およびインバータが過熱することなく、回転電機の制御を行えるようになる。
【0043】
(3)駆動用および回生用の2種類の電流テーブルをインバータ内に用意することによって、回転電機の運転パターンの自由度を増すことができる。
【図面の簡単な説明】
【図1】本発明の実施形態1を示す電機自動車用PMモータの制御ブロック図。
【図2】実施形態1における電圧補間の電流特性図。
【図3】実施形態2における電圧補間の電流特性図。
【図4】本発明の実施形態3を示す電機自動車用PMモータの制御ブロック図。
【図5】実施形態3における温度補間の電流特性図。
【図6】実施形態4における温度補間の電流特性図。
【図7】従来の電機自動車用PMモータの制御ブロック図。
【符号の説明】
1…トルク制御部
2…電流制御部
3…座標変換部
4…座標変換部
5…インバータ
6…PMモータ
co,Tlow,Thot…電流テーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a permanent magnet type rotating electric machine (PM motor) for an electric vehicle, and more particularly to a control device for determining a current supplied from an inverter to the rotating electric machine in accordance with a speed and a required torque of the rotating electric machine using a current table. About.
[0002]
[Prior art]
In order to improve the acceleration performance and the like, the control device of the permanent magnet type rotating electric machine for electric vehicles, as shown in the example of FIG. 7, converts the current supplied to the rotating electric machine into two axes of a torque current component and an exciting current component. It has a separate configuration.
[0003]
In FIG. 1, a torque control unit 1 is configured as a current table, and uses a torque command T * given in response to an accelerator operation of an electric vehicle and a detected speed ω of the rotating electric machine as parameters, and outputs d and q axes to the rotating electric machine. It has an Id table 1A and an Iq table 1B for generating an excitation current command Id * and a torque current command Iq *.
[0004]
The current control system indicated by the dashed-line block indicates that the current control unit 2 compares the torque current command Iq * and the excitation current command Id * with the current detection values Iq * and Id * obtained from the rotation coordinate conversion unit 3 to obtain the d-axis, The q-axis voltage commands Vd *, Vq * are obtained, and the output voltage of the inverter 5 is controlled by voltage control signals Vu *, Vv *, Vw *, which are coordinate-converted from the current commands by the reverse rotation coordinate conversion unit 4, and the permanent magnet The armature current of the rotary electric machine 6 is controlled.
[0005]
The rotating coordinate converter 3 detects d- and q-axis currents Iq * and Id * based on the two-phase currents Iu * and Iw * of the permanent magnet type rotating electric machine 6 and the magnetic pole phase θ of the rotating electric machine 6. The reverse rotation coordinate converter 4 converts the three-phase voltage control signals Vu *, Vv *, Vw * based on the magnetic pole phase θ.
[0006]
The position detector 7 is configured as an encoder, generates a rotor position signal of the rotating electric machine 6, obtains the magnetic pole phase θ from the signal from the signal, and obtains the speed ω of the rotating electric machine 6 from the speed detector 9 from the signal. . Note that the magnetic pole phase θ and the speed ω may be estimated from the voltage and current of the rotating electrical machine 6 by using the observer method.
[0007]
[Problems to be solved by the invention]
In the conventional control device, the value of the current flowing through the permanent magnet type rotating electric machine 6 for the electric vehicle is determined only by the speed ω of the rotating electric machine and the torque command T * from the current table of the torque control unit 1.
[0008]
By the way, an electric vehicle uses a storage battery or a fuel cell as a main power source, and therefore has a larger voltage fluctuation than an AC power source received in a factory or the like. In addition, electric vehicles require a wide range of speed control and torque control. In addition, depending on the season and the region, the electric vehicle is placed in an environment where the temperature and humidity are severe.
[0009]
The electric vehicle having such a power supply situation and operating environment may be configured to operate in the same manner as in the normal state when the DC power supply voltage of the inverter 5 is reduced or when the rotary electric machine 6 and the inverter 5 are overheated. When the current determined only by the speed ω and the torque command T * flows through the rotating electric machine 6, the terminal voltage of the rotating electric machine 6 becomes higher than the AC voltage that can be generated by the inverter 5, so that the rotating electric machine cannot be controlled. There was a risk that a problem could occur in safety, such as burning of the rotating electric machine or the inverter.
[0010]
In addition, the electric vehicle regenerates braking energy to the power supply side in the regenerative operation of the rotary electric machine 6 due to a demand for energy saving, and the current control during the regenerative operation is based on a current table used when driving the rotary electric machine. Doing so makes efficient operation or control difficult.
[0011]
An object of the present invention is to provide a control device for a permanent magnet type rotating electric machine for an electric vehicle that solves the above-mentioned problems.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides, as a current table for a rotating electric machine, a DC power supply voltage of an inverter, a winding temperature of the rotating electric machine, in addition to a current table determined according to a rotation speed and a required torque of the rotating electric machine. And a current table determined according to the temperature of the inverter and the operating state (driving / regeneration) of the rotating electric machine, and the current supplied to the rotating electric machine is controlled based on these current tables. It is characterized.
[0013]
(1) Control of a permanent magnet type rotating electric machine for electric vehicles provided with a current table for determining a current command to supply a current supplied from the inverter to the permanent magnet type rotating electric machine for electric vehicles according to the rotation speed and required torque of the rotating electric machine. A device,
The current table is:
A first current table used when the DC power supply voltage of the inverter is at a lower limit value Vco of a normal voltage range;
A second current table used when the DC power supply voltage of the inverter is at a minimum voltage value V low at which the rotating electric machine can be controlled,
When the DC power supply voltage of the inverter is equal to or higher than the lower limit value Vco , a current command is obtained from the first current table. When the DC power supply voltage is the voltage value Vlow , a current command is obtained from the second current table. When the current value is between the lower limit value Vco and the voltage value Vlow , the current value is interpolated to obtain a current command.
[0014]
(2) Control of a permanent magnet type rotating electric machine for electric vehicles provided with a current table for determining a current command to supply a current supplied from the inverter to the permanent magnet type rotating electric machine for electric vehicles according to the rotation speed and required torque of the rotating electric machine. A device,
The current table is:
A first current table used when the winding temperature of the rotating electric machine and the circuit element temperature of the inverter are the maximum value tco in a normal range;
A second current table used when the higher of the winding temperature or the circuit element temperature is the upper limit temperature t hot ,
If the higher of the winding temperature or the circuit element temperature is equal to or less than the maximum value tco , a current command is obtained from the first current table. If the upper limit temperature is thot , the second command is obtained. A current command is obtained from a current table, and when the current command is between the maximum value tco and the upper limit temperature thot , a calculation means for obtaining a current command by interpolating with each current value is provided.
[0015]
(3) Control of a permanent magnet type rotating electric machine for electric vehicles provided with a current table for determining a current command to supply a current supplied from the inverter to the permanent magnet type rotating electric machine for electric vehicles according to the rotation speed and required torque of the rotating electric machine. A device,
The current table is:
A first current table used when driving the rotating electric machine;
A second current table used for regenerative operation of the rotating electric machine,
When the rotating electric machine is on the drive side, a current command is obtained from the first current table, and when the rotating electric machine is on the regenerative side, switching means for obtaining a current command from the second current table is provided. I do.
[0016]
(4) The current table includes a current table in which the DC power supply voltage of the inverter, the winding temperature of the rotating electric machine, the circuit element temperature of the inverter, and the driving / regenerative operation state of the rotating electric machine are combined. It is characterized by obtaining.
[0017]
(5) The interpolation is characterized by linear interpolation or broken line interpolation using an intermediate value or an intermediate temperature of the inverter power supply voltage.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is a block diagram of a control device for a rotating electric machine for an electric vehicle according to an embodiment of the present invention. The difference from FIG. 7 is the current table configuration of the torque control unit 1.
[0019]
As a current table for generating the current commands Id * and Iq *, the torque control unit 1 has the DC power supply voltage V det of the inverter 5 at the lower limit value (minimum value) V co [V] of the normal voltage range. a current table T co to be used if the DC voltage is provided two sets of the current table T low to be used when in the minimum voltage value V low control is possible for the rotating electrical machine 6 by an inverter 5 [V] deep.
[0020]
The current table Tco stores the current commands Id * and Iq * using the torque command T * and the rotation speed ω as parameters so that the rotating electric machine satisfies the required output and maximizes the control efficiency of the rotating electric machine. The data to be determined is set. The efficiency of the current table T low is lower than that of the current table T co , but the data is set so that the terminal voltage of the rotating electric machine is lower than the AC voltage that can be generated by the inverter.
[0021]
With the above configuration, the torque control unit 1 takes in the voltage value V det of the DC power supply of the inverter 5 and provides switching means for the current tables T co and T low in accordance with this voltage value, so that the voltage V det becomes V co [ V] or more, the rotating electric machine is driven in a state of high efficiency using the current table Tco . When the DC voltage value V det becomes V low , the rotating electric machine is driven by using the current table T low to generate a current command in which the terminal voltage of the rotating electric machine does not exceed the AC voltage that can be generated by the inverter.
[0022]
When the DC voltage value V det is a voltage V [V] between V low [V] and V co [V], the current data i low [A] and the current data i low [A] selected from each of the current tables T low and T co Interpolation means for interpolating the value of ico [A] with a straight line and determining current data i [A] for generating current commands Id * and Iq * based on the DC voltage value is provided. The current data i has the function characteristic shown in FIG. 2, and the arithmetic expression is realized as follows.
[0023]
(Equation 1)
i = i low + ( ico −i low ) / (V co −V low ) × (V−V low ) [A]
By using the two sets of current tables to determine the value of the current flowing through the rotating electric machine in consideration of the value of the DC voltage supplied to the inverter, even when the DC voltage supplied to the inverter decreases, Thus, the control of the rotating electric machine can be stably performed.
[0024]
(Embodiment 2)
In the present embodiment, as a table configuration of the torque control unit 1 of the first embodiment, in addition to the current tables T co and T low , the DC voltage supplied to the inverter 5 is larger than V low [V], and V co [ V], one or more sets of current tables T middv are provided when the voltage value is smaller than V].
[0025]
For example, as shown in FIG. 3, an example of the linear interpolation is used to set the voltages V midv1 and V midv2 between the DC voltages V low [V] and V co [V], and set the current values at these voltages. Set up a table. Then, these voltages V low, with the voltage V midv1, V midv2, current i low in V co, i midv1, i midv2 , i co, to obtain a current command performed, for example, linear interpolation between them.
[0026]
According to the present embodiment, the interpolation between the current values i co [A] and i low [A] selected by the current table T co and the current table T low is set not only on a straight line but also on an arbitrary function characteristic. This makes it possible to perform control more precisely in response to a change in the DC voltage supplied to the inverter.
[0027]
(Embodiment 3)
FIG. 4 is a block diagram of a control device for controlling a rotating electric machine for an electric vehicle according to an embodiment of the present invention. The difference from FIG. 1 is the current table configuration of the torque control unit 1.
[0028]
The current table of the torque control unit 1 includes a winding temperature (hereinafter abbreviated as a winding temperature) t det1 of the rotating electric machine 6 and a cooling fin temperature of a circuit element inside the inverter 5 (hereinafter abbreviated as a circuit element temperature). ) A current table Tco for generating current commands Id * and Iq * to be used when t det 2 is the maximum value tco [° C.] in a normal range, and a winding temperature or circuit element temperature. Two sets of current tables T hot to be used when the higher one has a certain upper limit t hot [° C.] are prepared.
[0029]
In the current table Tco , data is set so that the rotating electrical machine 6 satisfies the required output and at the same time maximizes the efficiency of the rotating electrical machine. The required output cannot be satisfied in the current table T hot as in the case of using the current table Tco , but data is set so that the winding temperature or the circuit element temperature does not rise to the current temperature or higher.
[0030]
In the above configuration, when the winding temperature t det1 and the circuit element temperature t det2 are equal to or lower than t co [° C.], the rotating electric machine is driven with high efficiency using the current table T co . If the higher of the winding temperature or the circuit element temperature is not less than t hot [° C.], the current table T hot is used to prevent the rotating electric machine and the inverter from overheating to the current temperature or higher. Drive.
[0031]
If the higher of the winding temperature or the circuit element temperature is t [° C.] between t co [° C.] and t hot [° C.], the current data selected from each of the current table T hot and the current table T co The values of i hot [A] and i co [A] are interpolated with a straight line, and current data i [A] is determined based on the temperatures of the rotating electric machine and the inverter. The current data i has the function characteristic shown in FIG. 5, and the calculation is realized as follows.
[0032]
(Equation 2)
i = i co + (i hot -i co) / (t hot -t co) × (t-t co) [A]
By using the two sets of current tables to determine the value of the current flowing through the rotating electric machine in consideration of the winding temperature and the circuit element temperature, the rotating electric machine and the inverter can be controlled without overheating. Will be able to do it.
[0033]
(Embodiment 4)
In the present embodiment, as a table configuration of the torque control unit 1 of the third embodiment, in addition to the current table Tco and the current table Thot , the winding temperature or the circuit element temperature is higher than tco [° C], and thot [ [° C.], one or more sets of current tables T midt are provided.
[0034]
For example, as shown in FIG. 6, a temperature t midt1 and a temperature t midt2 are set between temperatures t co [° C.] and t hot [° C.], and a current table in which current values at these temperatures are set is provided. Then, these temperature t hot, with a t midt1, t midt2, current i low at t co, i mi dt1, i midt2, i co, to obtain a current command performed, for example, linear interpolation between them.
[0035]
According to the present embodiment, the interpolation between the current values ico [A] and ihot [A] selected by the current table Tco and the current table Thot is set not only to a straight line but also to an arbitrary function characteristic. This makes it possible to perform control that more precisely responds to changes in the winding temperature and the circuit element temperature.
[0036]
(Embodiment 5)
In the present embodiment, as the current table configuration of the torque control unit 1 of FIG. 1 or FIG. 4, two types of current tables T dr for driving the rotary electric machine 6 and current tables T reg for regenerative operation are provided. The current tables are switched depending on whether the electric machine 6 is on the drive side or the regenerative side, and the current commands Id * and Iq * are determined.
[0037]
According to the present embodiment, the drive pattern and the regenerative pattern of the rotating electric machine can be freely changed in order to make the drive current table and the regenerative current table independent. By controlling the rotating electric machine using the two types of current tables in this manner, efficient operation or control can be performed, and the degree of freedom in the operation pattern of the rotating electric machine can be increased.
[0038]
In the embodiments described above, in addition to the rotation speed and the required torque, the DC power supply voltage of the inverter, the winding temperature of the rotating electric machine, the circuit temperature of the inverter, and A case is shown in which individual current tables are prepared according to the operation state (driving / regeneration). However, it is possible to use a current table combining these elements and obtain a current command interpolated.
[0039]
Further, in the embodiment, a case where the control device is separated into a torque current command and an excitation current command is shown. However, the same operation and effect can be obtained by applying the present invention to a device that controls these as one torque current command without separating them. Can be.
[0040]
【The invention's effect】
As described above, the present invention has the following effects.
[0041]
(1) By preparing a plurality of sets of current tables in the inverter and determining a current value to be supplied to the rotating electric machine in consideration of not only the rotation speed and the required torque but also the DC voltage value supplied to the inverter, Even when the DC voltage supplied to the inverter decreases, the rotating electric machine can be safely controlled.
[0042]
(2) A plurality of sets of current tables are prepared in the inverter, and the current value flowing through the rotating electric machine is determined in consideration of not only the rotating speed and the required torque, but also the winding temperature of the rotating electric machine and the temperature of the circuit elements inside the inverter. By determining, the rotating electric machine and the inverter can be controlled without overheating.
[0043]
(3) By preparing two types of current tables for driving and regeneration in the inverter, the degree of freedom of the operation pattern of the rotating electric machine can be increased.
[Brief description of the drawings]
FIG. 1 is a control block diagram of a PM motor for an electric vehicle according to a first embodiment of the present invention.
FIG. 2 is a current characteristic diagram of voltage interpolation according to the first embodiment.
FIG. 3 is a current characteristic diagram of voltage interpolation according to a second embodiment.
FIG. 4 is a control block diagram of a PM motor for an electric vehicle according to a third embodiment of the present invention.
FIG. 5 is a current characteristic diagram of temperature interpolation in a third embodiment.
FIG. 6 is a current characteristic diagram of temperature interpolation in a fourth embodiment.
FIG. 7 is a control block diagram of a conventional PM motor for an electric vehicle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Torque control part 2 ... Current control part 3 ... Coordinate conversion part 4 ... Coordinate conversion part 5 ... Inverter 6 ... PM motor Tco , Tlow , Thot ... Current table

Claims (5)

インバータから電気自動車用永久磁石式回転電機に供給する電流を、回転電機の回転速度および要求トルクに応じて電流指令を決定する電流テーブルを備えた電気自動車用永久磁石式回転電機の制御装置であって、
前記電流テーブルは、
インバータの直流電源電圧が正常な電圧範囲の下限値Vcoである場合に使用する第1の電流テーブルと、
インバータの直流電源電圧が回転電機の制御が可能な最低限の電圧値Vlowにある場合に使用する第2の電流テーブルとを備え、
インバータの直流電源電圧が前記下限値Vco以上である場合には前記第1の電流テーブルから電流指令を求め、前記電圧値Vlowである場合には前記第2の電流テーブルから電流指令を求め、前記下限値Vcoと電圧値Vlowの間にある場合にはそれぞれの電流値で補間して電流指令を求める演算手段を備えたことを特徴とする電気自動車用永久磁石式回転電機の制御装置。
A control device for a permanent magnet type rotating electric machine for an electric vehicle, comprising: a current table for determining a current command to supply a current supplied from the inverter to the permanent magnet type rotating electric machine for an electric vehicle according to a rotation speed and a required torque of the rotating electric machine. hand,
The current table is:
A first current table used when the DC power supply voltage of the inverter is at a lower limit value Vco of a normal voltage range;
A second current table used when the DC power supply voltage of the inverter is at a minimum voltage value V low at which the rotating electric machine can be controlled,
When the DC power supply voltage of the inverter is equal to or higher than the lower limit value Vco , a current command is obtained from the first current table. When the DC power supply voltage is the voltage value Vlow , a current command is obtained from the second current table. And a calculating means for obtaining a current command by interpolating with each current value when the voltage value is between the lower limit value Vco and the voltage value Vlow. apparatus.
インバータから電気自動車用永久磁石式回転電機に供給する電流を、回転電機の回転速度および要求トルクに応じて電流指令を決定する電流テーブルを備えた電気自動車用永久磁石式回転電機の制御装置であって、
前記電流テーブルは、
回転電機の巻線温度およびインバータの回路素子温度が正常な範囲の最高値tcoである場合に使用する第1の電流テーブルと、
前記巻線温度または前記回路素子温度の高い方が、上限温度thotである場合に使用する第2の電流テーブルとを備え、
前記巻線温度または前記回路素子温度の高い方が前記最高値tco以下である場合には前記第1の電流テーブルから電流指令を求め、前記上限温度thotである場合には前記第2の電流テーブルから電流指令を求め、前記最高値tcoと上限温度thotの間にある場合にはそれぞれの電流値で補間して電流指令を求める演算手段を備えたことを特徴とする電気自動車用永久磁石式回転電機の制御装置。
A control device for a permanent magnet type rotating electric machine for an electric vehicle, comprising: a current table for determining a current command to supply a current supplied from the inverter to the permanent magnet type rotating electric machine for an electric vehicle according to a rotation speed and a required torque of the rotating electric machine. hand,
The current table is:
A first current table used when the winding temperature of the rotating electric machine and the circuit element temperature of the inverter are the maximum value tco in a normal range;
A second current table used when the higher of the winding temperature or the circuit element temperature is the upper limit temperature t hot ,
If the higher of the winding temperature or the circuit element temperature is equal to or less than the maximum value tco , a current command is obtained from the first current table. If the upper limit temperature is thot , the second command is obtained. An electric vehicle for calculating an electric current command from an electric current table, and, when the electric current is between the maximum value tco and the upper limit temperature thot , interpolating with each electric current value to obtain the electric current command. Control device for permanent magnet type rotating electric machine.
インバータから電気自動車用永久磁石式回転電機に供給する電流を、回転電機の回転速度および要求トルクに応じて電流指令を決定する電流テーブルを備えた電気自動車用永久磁石式回転電機の制御装置であって、
前記電流テーブルは、
回転電機を駆動する場合に使用する第1の電流テーブルと、
回転電機を回生運転する場合に使用する第2の電流テーブルとを備え、
回転電機が駆動側にある場合は前記第1の電流テーブルから電流指令を求め、回転電機が回生側にある場合は前記第2の電流テーブルから電流指令を求める切り替え手段を備えたことを特徴とする電気自動車用永久磁石式回転電機の制御装置。
A control device for a permanent magnet type rotating electric machine for an electric vehicle, comprising: a current table for determining a current command to supply a current supplied from the inverter to the permanent magnet type rotating electric machine for an electric vehicle according to a rotation speed and a required torque of the rotating electric machine. hand,
The current table is:
A first current table used when driving the rotating electric machine;
A second current table used for regenerative operation of the rotating electric machine,
When the rotating electric machine is on the drive side, a current command is obtained from the first current table, and when the rotating electric machine is on the regenerative side, switching means for obtaining a current command from the second current table is provided. Of permanent magnet rotating electric machine for electric vehicles.
前記電流テーブルは、インバータの直流電源電圧、回転電機の巻線温度およびインバータの回路素子温度、回転電機の駆動・回生運転状態を組み合わせた電流テーブルを備え、その補間を行った電流指令を得ることを特徴とする請求項1〜3のいずれか1項に記載の電気自動車用永久磁石式回転電機の制御装置。The current table includes a current table in which the DC power supply voltage of the inverter, the winding temperature of the rotating electric machine, the circuit element temperature of the inverter, and the driving / regenerative operation state of the rotating electric machine are combined. The control device for a permanent magnet type rotating electric machine for an electric vehicle according to any one of claims 1 to 3, characterized in that: 前記補間は、直線補間またはインバータ電源電圧の中間値や中間温度を使用した折線補間することを特徴とする請求項1〜4のいずれか1項に記載の電気自動車用永久磁石式回転電機の制御装置。The control of the permanent magnet type rotary electric machine for an electric vehicle according to any one of claims 1 to 4, wherein the interpolation is performed by linear interpolation or linear interpolation using an intermediate value or an intermediate temperature of an inverter power supply voltage. apparatus.
JP2002237243A 2002-08-16 2002-08-16 Controller for permanent-magnet dynamo-electric machine for electric vehicle Pending JP2004080896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237243A JP2004080896A (en) 2002-08-16 2002-08-16 Controller for permanent-magnet dynamo-electric machine for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237243A JP2004080896A (en) 2002-08-16 2002-08-16 Controller for permanent-magnet dynamo-electric machine for electric vehicle

Publications (1)

Publication Number Publication Date
JP2004080896A true JP2004080896A (en) 2004-03-11

Family

ID=32021059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237243A Pending JP2004080896A (en) 2002-08-16 2002-08-16 Controller for permanent-magnet dynamo-electric machine for electric vehicle

Country Status (1)

Country Link
JP (1) JP2004080896A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772791B2 (en) 2007-12-13 2010-08-10 Hyundai Motor Company Method for controlling motor torque in hybrid electric vehicle
CN102332223A (en) * 2011-09-25 2012-01-25 北京理工大学 Teaching experiment system based on alternating-current motor driving control method
WO2014174186A1 (en) * 2013-04-24 2014-10-30 Renault S.A.S. Motor current mapping
DE102017208211A1 (en) 2016-06-15 2017-12-21 Mitsubishi Electric Corporation Method for controlling a rotary electric machine
WO2020174781A1 (en) 2019-02-25 2020-09-03 株式会社明電舎 Inverter control device and control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772791B2 (en) 2007-12-13 2010-08-10 Hyundai Motor Company Method for controlling motor torque in hybrid electric vehicle
CN102332223A (en) * 2011-09-25 2012-01-25 北京理工大学 Teaching experiment system based on alternating-current motor driving control method
CN102332223B (en) * 2011-09-25 2014-06-25 北京理工大学 Teaching experiment system based on alternating-current motor driving control method
WO2014174186A1 (en) * 2013-04-24 2014-10-30 Renault S.A.S. Motor current mapping
FR3005220A1 (en) * 2013-04-24 2014-10-31 Renault Sa CARTHOGRAPHY OF ENGINE CURRENTS
JP2016518100A (en) * 2013-04-24 2016-06-20 ルノー エス.ア.エス. Motor current mapping
US9634598B2 (en) 2013-04-24 2017-04-25 Renault S.A.S. Motor current mapping
DE102017208211A1 (en) 2016-06-15 2017-12-21 Mitsubishi Electric Corporation Method for controlling a rotary electric machine
US10027260B2 (en) 2016-06-15 2018-07-17 Mitsubishi Electric Corporation Method of controlling rotary electric machine
WO2020174781A1 (en) 2019-02-25 2020-09-03 株式会社明電舎 Inverter control device and control method
EP3920402A4 (en) * 2019-02-25 2022-03-09 Meidensha Corporation Inverter control device and control method

Similar Documents

Publication Publication Date Title
Jain et al. Modeling and field oriented control of salient pole wound field synchronous machine in stator flux coordinates
JP5035641B2 (en) Control device for motor drive device
JP2010057216A (en) Inverter device
JP2004187407A (en) Motor control equipment
JP2008167566A (en) High-response control device of permanent magnet motor
CN104767455B (en) A kind of hybrid exciting synchronous motor position-sensor-free direct torque control method
JP2007089248A (en) Driver of electric motor
US20160352269A1 (en) Apparatus for controlling rotary electric machine
KR101514391B1 (en) Vector controller and motor controller using the same, air-conditioner
JP2011050183A (en) Inverter device
JP2007228744A (en) Motor drive controlling device and motor drive controlling method
JP2017055552A (en) Motor controller
JPH08266099A (en) Controller for permanent-magnet synchronous motor
JP2004080896A (en) Controller for permanent-magnet dynamo-electric machine for electric vehicle
Han et al. Single external source control of doubly-fed induction machine using dual inverter
JP2020014266A (en) Control device for electric motor
Iwaji et al. All-speed-range drive for surface permanent magnet synchronous motors by combined use of two position sensorless methods
Ebadpour et al. A simple position sensorless control strategy for four-switch three-phase brushless DC motor drives using single current sensor
KR102278969B1 (en) Method for moving employing Axial Flux Permanent Magnet brushless DC motor for controlling to location sensorless
Morimoto et al. Position sensorless PMSM drive system including square-wave operation at high-speed
JP2014007847A (en) Control device for rotary machine
JPH10225014A (en) Motor control device
JP2010206945A (en) Driver for motor
Gao et al. Regenerative braking system of PM synchronous motor
Xiao et al. Sensorless direct torque and flux control for matrix converter-fed interior permanent magnet synchronous motor using adaptive sliding mode observer