JP2004080665A - Displacement controller and imaging apparatus - Google Patents

Displacement controller and imaging apparatus Download PDF

Info

Publication number
JP2004080665A
JP2004080665A JP2002241465A JP2002241465A JP2004080665A JP 2004080665 A JP2004080665 A JP 2004080665A JP 2002241465 A JP2002241465 A JP 2002241465A JP 2002241465 A JP2002241465 A JP 2002241465A JP 2004080665 A JP2004080665 A JP 2004080665A
Authority
JP
Japan
Prior art keywords
plate
control device
imaging
displacement
displacement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002241465A
Other languages
Japanese (ja)
Other versions
JP4044809B2 (en
Inventor
Keiichiro Hirahara
平原 圭一郎
Kunihisa Yamaguchi
山口 邦久
Junichi Shinohara
篠原 純一
Naoki Koshida
越田 直紀
Hiroyuki Chiba
千葉 浩幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002241465A priority Critical patent/JP4044809B2/en
Publication of JP2004080665A publication Critical patent/JP2004080665A/en
Application granted granted Critical
Publication of JP4044809B2 publication Critical patent/JP4044809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus such as a digital camera having a high precision image stabilizer function. <P>SOLUTION: The imaging apparatus is constituted of an imaging optical system, an imaging means 12 for converting an object image into image signals by receiving the light of the object image passing through the imaging optical system, an image stabilizer, and a displacement controller 11-1, etc. constituting the image stabilizer. The displacement controller is structured of a rubber strip member 10 of which both ends are secured on a plate spring 5 of a piezoelectric actuator 11. This displacement controller 11-1 is disposed on a predetermined fixed position of the image apparatus. A stop piece 9b provided on the top of a coupling member 9a of the imaging means 12 is inserted and pinched in a gap between the strip member 10 and the plate spring 5. The displacement controller 11-1 functions as one-dimensional displacement controller. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、圧電アクチュエータなどの電気機械変換手段を用いた変位量制御装置および、この変位量制御装置を組み込んでなる手振れ補正機能付き撮像装置(例えばデジタルカメラ)に関するものである。
【0002】
【従来の技術】
近年、デジタルカメラがビジネスからパーソナルまで、分野を問わず幅広く普及し始め、またユーザから様々な要求もあり、多くの機能を備えた機種が増えてきた。
【0003】
しかし、これに伴い、撮影時の手振れによる画像のぼけが問題になっている。その原因としては、(1)デジタルカメラの小型軽量化が進み、コンパクトで持ち運びが便利になった反面、撮影時のカメラの把持性が低下したこと、(2)液晶ファインダを利用するため、光学ファインダを使用しなくなったことから、カメラを身体から離して行う片手撮影などのスタイルが生じて、撮影時の安定性が低下したこと、などが挙げられる。また、多くのカメラメーカでは、他社製品との差別化等の目的で、高倍率ズームを備えたものを開発しているが、このようなカメラにあっては、高倍率撮影を手持ち撮影で行う場合の手振れが回避しにくい状況になっている。
【0004】
この問題を解決するため、圧電素子等の電気機械変換素子により撮像素子のみを、手振れに応じて移動させることを骨子とする発明がいくつか提案されているが、これらの発明に係る特許出願明細書または図面には、撮像素子を移動させるための移動手段についての詳細構造が明示されていない。また、この移動手段の寸法が、小型のデジタルカメラに搭載するにはかなり大きく、カメラ構造が相当複雑になるため、コスト高になるという問題もあった。
【0005】
特開2000−307937号公報には、簡単かつ小型の機構で撮像素子の平行移動を実現することにより、デジタルカメラの手振れに起因する画像ぼけを防止するようにした、画像振れ防止機能付きの撮像装置が開示されている。この撮像装置は、撮像素子を圧電アクチュエータに直結することにより、撮像素子を平行移動させるものであり、圧電アクチュエータを用い、手振れに応じて撮像素子を機械的に駆動させるようにしている。
【0006】
【発明が解決しようとする課題】
上記発明に係る撮像装置では、撮像素子と圧電素子(電気機械変換素子)との接続を、接着により行っている。すなわち、圧電素子単体あるいは変位拡大機構を有する圧電アクチュエータの一端を接合部材に接着した構造になっている。しかしながら、このような構造では、圧電素子が自由に伸縮することできない。また、上記撮像装置にあっては、撮像素子の駆動安定化のためにバネを用いているが、圧電素子の伸縮に伴いバネの力量(弾発力)が変化する結果、所望の性能を圧電アクチュエータが発揮するのが難しくなるという不具合がある。
【0007】
本発明は、従来技術の上記問題点に鑑みなされたもので、その第1の目的は、電気機械変換素子の伸縮機能を十分に発揮させることができで、高精度の変位量を得ることができる変位量制御装置を提供することにある。本発明の第2の目的は、この変位量制御装置を用いて構成した撮像装置を提供すること、すなわち、撮像素子と変位量制御装置(電気機械変換手段)を、「接着」によらない接続構造で接続することにより、高精度な手振れ補正機能を有する撮像装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、電気機械変換手段と、この電気機械変換手段に固着された伸縮性材料からなる帯状部材とを備えた変位量制御装置であって、前記電気機械変換手段では、電気機械変換素子の一側および、他側にそれぞれ押さえ板を設けてこれらの押さえ板同士を互いに対向させ、これらの押さえ板間に一対の板バネを湾曲状態で、かつ互いに対向させて架設するとともに、電気機械変換素子の伸縮により前記板バネの曲率増減に伴う変位を発生させるようにし、前記帯状部材は、前記板バネの一方または双方の、電気機械変換素子よりも外側に向く面に、当該帯状部材の長手方向両端部を固着したことを特徴とする変位量制御装置である。
【0009】
請求項2に係る発明は、前記帯状部材が、ゴムまたは熱可塑性エラストマーからなることを特徴とする請求項1に記載の変位量制御装置である。
【0010】
請求項3に係る発明は、前記押さえ板の一方を電気機械変換素子の一端面に固着し、他方の押さえ板の中央部に押さえネジを貫通状態で螺合するとともに、前記押さえネジの一端部を電気機械変換素子の他端面に当接させたことを特徴とする請求項1または2に記載の変位量制御装置である。
【0011】
請求項4に係る発明は、撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段を有する撮像装置であり、当該撮像装置の所定位置に固定配備された請求項1,2または3に係る変位量制御装置と、先端を係止片とした連結部材を有する撮像手段とを備えたものであって、前記変位量制御装置の帯状部材と板バネとの対向間隙に前記連結部材の係止片を挿入して該係止片を帯状部材と板バネとで挟持し、電源装置から所要の電圧を前記電気機械変換素子に印加するようにしたことを特徴とする撮像装置である。
【0012】
請求項5に係る発明は、上面に1本の直線状長溝が形成されているか、または上面に2本以上の直線状長溝が互いに平行に形成され、当該撮像装置の所定位置に固定配備された第1の板体および、下面側に突出する突起が前記長溝の対応位置に設けられた第2の板体を積層して構成された積層体と、変位量制御装置と、第2の板体の上面に固着された撮像手段とを備えてなる撮像装置であって、前記積層体では、第2の板体の突起が第1の板体の長溝に挿入され、これらの突起の移動が前記長溝で直線的に案内されるように、かつ第2の板体の下面が第1の板体の上面に対し摺動しうるように構成され、第2の板体または前記撮像手段は、前記連結部材を介して変位量制御装置に連結され、前記変位量制御装置が作動したときに、第2の板体および撮像手段が、前記長溝に案内されることにより一体的に、かつ直線的に所望距離だけ移動自在となっていることを特徴とする請求項4に記載の撮像装置である。
【0013】
請求項6に係る発明は、撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段とを有する撮像装置であって、当該撮像装置の所定位置に固定配備された請求項1,2または3に係る第1の変位量制御装置と、この第1の変位量制御装置に接続された接続部材と、この接続部材に接続された請求項1,2または3に係る第2の変位量制御装置と、この第2の変位量制御装置に接続された撮像手段とを備えてなり、第1の変位量制御装置の電気機械変換素子に電源装置から所要の電圧を印加することにより、前記撮像手段と第2の変位量制御装置とを、一体的にX方向に所望距離だけ移動自在とし、第2の変位量制御装置の電気機械変換素子に電源装置から所要の電圧を印加することにより、前記撮像手段をY方向に所望距離だけ移動自在としたことを特徴とする撮像装置である。
【0014】
請求項7に係る発明は、上面に1本の直線状長溝が形成されているか、または上面に2本以上の直線状長溝が互いに平行に形成され、当該撮像装置の所定位置に固定配備された第1板体、上面に1本の直線状長溝が形成されているか、または上面に2本以上の直線状長溝が互いに平行に形成され、下面側に突出する突起が前記第1板体の長溝の対応位置に設けられた第2板体および、下面側に突出する突起が前記第2板体の長溝の対応位置に設けられた第3板体を積層して構成された積層体と、第2板体に前記連結部材を介して連結された第1の変位量制御装置と、第3板体の上面に固着された撮像手段と、第3板体または前記撮像手段に前記連結部材を介して連結された第2の変位量制御装置とを備えてなる撮像装置であって、前記積層体では、第2板体の長溝が、第1板体の長溝に直交し、第3板体の突起が第2板体の長溝に挿入され、これらの突起の移動が前記長溝で直線的に案内されるように、かつ第3板体の下面が第2板体の上面に対し摺動しうるように構成され、第2板体の突起が第1板体の長溝に挿入され、これらの突起の移動が前記長溝で直線的に案内されるように、かつ第2板体の下面が第1板体の上面に対し摺動しうるように構成され、第1の変位量制御装置が作動したときに、第2板体、第3板体および撮像手段が、第1板体の長溝によって案内されることにより一体的にX方向に移動し、第2の変位量制御装置が作動したときに、第3板体および撮像手段が、第2板体の長溝に案内されることにより一体的にY方向に移動するように構成されていることを特徴とする請求項6に記載の撮像装置である。
【0015】
【発明の実施の形態】
本発明の実施の形態を、図面をもとに説明する。
第1の実施の形態(請求項1〜3に係るもの)
図1は変位量制御装置の構造を示す平面図である。この変位量制御装置11−1は、電気機械変換手段としての圧電アクチュエータ11と、これに固着された伸縮性材料からなる帯状部材10とからなる。この変位量制御装置11−1の全体構造は、図2の斜視図に示すとおりである。
【0016】
変位量制御装置11−1を以下のように構成する。圧電アクチュエータ11では、電気機械変換素子としての圧電素子1の一側、他側に長方形の押さえ板2,3を設けてこれらの押さえ板同士を互いに対向させる。この場合、押さえ板3を圧電素子1の一端面に固着する。押さえ板2の中央部に押さえネジ(ネジ軸)6を貫通状態で螺合するとともに、押さえネジ6の一端部を圧電素子1の他端面に当接させる。これらの押さえ板2,3間に一対の板バネ4,5を湾曲状態で、かつ互いに対向させて架設する。これらの板バネ4,5は、長手方向中央部が湾曲の頂部となっていて、この頂部が板バネ両端部よりも、圧電素子1に接近した形態になっている。しかし、これと逆に頂部が板バネ両端部よりも、圧電素子1から離れた形態に、板バネを設けても良い。また、圧電素子1に代えて他の電気機械変換素子を用いることもできる。
【0017】
ゴムまたは熱可塑性エラストマーからなる帯状部材10を、板バネ5両面のうち、圧電素子1よりも外側に向く面に、例えば接着により固着する。この場合、帯状部材10の長手方向両端部を固着する。なお、帯状部材10を板バネ4にも、板バネ5の場合と同じ形態で設けることができる。
【0018】
この変位量制御装置11−1では、押さえネジ6の回転により、押さえ板2が圧電素子1に対し接近または離反する。これによって(自由状態の)板バネ4,5の湾曲の曲率が増減し、湾曲頂部と圧電素子1の側面との間隔が調整される。電源装置(図略)から電圧を圧電素子1に印加すると、これが図1の矢印A1,A2の向きに伸びて押さえ板2,3間の間隔が増大する結果、板バネ4,5の湾曲曲率が低下するとともに、板バネ4,5が矢印B1,B2の向きに変位する。このように、前記印加電圧の調整により、前記板バネの変位量を制御することができる。したがって、板バネ5と帯状部材10との間隙に、適宜部材(または適宜部材の一部)を挿入し、これを板バネ5と帯状部材10とで挟持し(この部材は、帯状部材10の伸縮力によって板バネ5側に圧接される。)、この状態で電圧を圧電素子1に印加することにより、前記部材の変位量を制御することができる。
【0019】
本実施の形態では、前記適宜部材が板バネ5に接着されておらず(つまり係止片9bが固着されておらず)、しかも前記適宜部材が板バネ5に常時圧接されているため、該部材・板バネ5間に「ガタ」が生じるこなく、板バネ5の変位を該部材に高精度に伝えることができ、後者の変位量は常に前者の変位量に等しくなる。
【0020】
第2の実施の形態(請求項4に係るもの)
本実施の形態に係る撮像装置は、図1の変位量制御装置11−1を用いて構成したものである。図2はこの撮像装置の要部構造を示す概略斜視図であり、図3は、この撮像装置を構成する手振れ補正部の構造を示すブロック図である。この撮像装置は、撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段(図2)と、手振れ補正部(図3)と、この手振れ補正部を構成する変位量制御装置11−1等を備えて構成されている。
【0021】
本実施の形態の撮像装置は、図1の変位量制御装置11−1と、これに接続された、基板8および撮像素子7を有する撮像手段12とを備えている。図2の撮像装置をつぎように構成する。変位量制御装置11−1を、この撮像装置の所定位置に固定配備する。先端に係止片(円筒状の軸体)9bを設けた連結部材9aを、撮像手段12に固着する。係止片9bは、軸線を撮像素子7に垂直になるように設ける。変位量制御装置11−1の帯状部材10と板バネ5との対向間隙に係止片9bを挿入し、この係止片を帯状部材10と板バネ5とで挟持する。これにより常時、係止片9bの外周面の一部を板バネ5に圧接させる。この圧接力は、帯状部材10の伸縮力により生じる。
【0022】
電源装置(図略)から所要の電圧を圧電素子1に印加することで、撮像手段12が矢印Bの向きに所定量だけ変位する。電圧印加を解除すれば撮像手段12は、図2に示す元の位置に戻る。このように、変位量制御装置11−1は、1次元(1方向)変位量制御装置として機能する。
【0023】
本実施の形態では、係止片9bが板バネ5に接着されておらず、つまり係止片9bが固着されておらず、しかも係止片9bが板バネ5に常時圧接されているため、係止片9b・板バネ5間に「ガタ」が生じるこなく、板バネ5の変位を撮像手段12に高精度に伝えることができ、後者の変位量は常に前者の変位量に等しくなる。
【0024】
ここで図3をもとに、前記手振れ補正部の構造を作用とともに説明する。撮像手段12に取り付けられた1つの、画像センサからなる手振れ検出手段(手振れ検出センサ)51により、手振れ量を検出する。この手振れ検出手段51からの信号を、A/D変換手段52を介して、カメラ移動量計算手段53に入力する。カメラ移動量計算手段53は、撮像手段12の手振れによる姿勢変化量、並進変化量といった移動量の一部または全部を算出する。つぎに、アクチュエータ移動量計算手段54(撮像手段移動量計算手段)は、カメラ移動量計算手段53での算出結果をもとに、手振れによる像の移動をキャンセルする分の撮像手段12の移動量を計算する。この撮像手段移動量信号を、D/A変換を伴った昇圧回路55に送る。この昇圧回路55は、前記移動量に応じた変位が撮像手段に生じるように、圧電アクチュエータ11に駆動電圧を供給する。
【0025】
このように、図3の手振れ補正部は、カメラの手振れを検出し、これをキャンセルするように、撮像手段12を変位量制御装置11−1で移動させるものである。なお、図2のように、変位量制御装置11−1が1次元変位量制御装置として機能する場合には、この変位量制御装置11−1、したがって圧電アクチュエータ11は1個設けられる。
【0026】
第3の実施の形態(請求項5に係るもの)
図4は図2の改変例に係るもので、撮像装置の要部構造を示す分解斜視図である。この撮像装置は、撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段(図4)と、手振れ補正部(図3)と、この手振れ補正部を構成する変位量制御装置11−1等を備えており、図2の変位量制御装置11−1による1次元変位量制御を、ガイド機構を用いることで、より高精度に行うように構成したものである。
【0027】
この撮像装置の要部を所定の積層体と、変位量制御装置11−1とで構成する。前記積層体は、上面に2本の直線状長溝(ガイド溝)16,17を互いに平行に形成した第1の板体15と、下面側に突出する突起19,20を長溝16,17の対応位置に形成し、かつ連結部材9aを設けた第2の板体18とを積層して構成する。第1の板体15は、この撮像装置の所定位置に固定配備する。第2の板体18の上面に撮像手段(図略)を固着するとともに、この板体18を連結部材9aを介して変位量制御装置11−1に連結する。この場合、板体18の突起19,20を板体15の長溝16,17に挿入し、これらの突起の移動が長溝16,17で直線的に案内されるように、かつ板体18の下面が板体15の上面に対し摺動するように構成する。
【0028】
この撮像装置では、変位量制御装置11−1が作動したときに、板体18および撮像手段が、長溝16,17で案内されながら一体的に、かつ直線的に所望距離だけ、板体15に対しスライド(同一平面上を摺動)しながら一次元移動するため、撮像手段変位の直線性が更に向上する。前記ガイド溝および突起の配備数は、変位の直線性が向上するのであれば、1つでも良いし、3つ以上でも良く、図4に示すような2つの場合に限定されるものではない。
【0029】
第4の実施の形態(請求項6,7に係るもの)
図5は図4の改変例に係るもので、撮像装置の要部構造を示す分解斜視図である。この撮像装置は、撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段と、手振れ補正部(図3)と、この手振れ補正部を構成する2つの変位量制御装置等を備えている。すなわちこの撮像装置は、撮像手段を光軸に垂直な平面内の所望位置に移動させることにより手振れを補正するようにしたものであって、第1の変位量制御装置および第2の変位量制御装置による2次元変位量制御を、ガイド機構を用いることで、より高精度に行うように構成したものである。
【0030】
この撮像装置の要部を所定の積層体と、前記2つの変位量制御装置とで構成する。前記積層体は、(1)2本の直線状長溝26,27を互いに平行に形成して、この撮像装置の所定位置に固定配備した第1板体21、(2)上面に2本の直線状長溝31,32を互いに平行を形成し、下面側に突出する突起24,25を長溝26,27の対応位置に設けた第2板体22および、(3)下面側に突出する突起29,30を第2板体22の長溝31,32の対応位置に設けた第3板体23を積層して構成する。
【0031】
前記積層体では、第2板体22の長溝31,32を、第1板体21の長溝26,27に直交させ、第3板体23の突起29,30を第2板体22の長溝31,32に挿入し、これらの突起の移動を前記長溝で直線的に案内するように、かつ第3板体23の下面が第2板体22の上面に対し摺動自在に構成する。また、第2板体22の突起24,25を第1板体21の長溝26,27に挿入し、これらの突起の移動を前記長溝で直線的に案内するように、かつ第2板体22の下面が第1板体21の上面に対し摺動しうるように構成する。
【0032】
さらに、第2板体22に第1の変位量制御装置(図略)を、図4に示す連結部材9aと同様の連結部材を介して連結する。第3板体23の上面に撮像手段(図略)を固着し、撮像手段または第3板体23に第2の変位量制御装置を、前記連結部材9aと同様の連結部材を介して連結する。
【0033】
この撮像装置では、第1の変位量制御装置を構成する圧電素子に所定電圧を印加して、この変位量制御装置を作動させると、第2板体22、第3板体23撮像手段および第2の変位量制御装置が、第1板体21の長溝26,27によって案内されることにより、一体的に図5のXの向きに所望距離だけ、第1板体21に対し摺動移動する。また、第2の変位量制御装置が作動すると、撮像手段および第3板体23が図5のYの向きに所望距離だけ、第2板体22に対し摺動移動する。
【0034】
【発明の効果】
以上の説明で明らかなように、本発明によれば以下の効果が得られる。
(1)請求項1〜3の発明による効果
本発明に係る、圧電素子等の電気機械変換素子からなる変位量制御装置では、変位させるべき部材(等)が板バネに接着されておらず(つまり、前記部材が固着されておらず)、しかも前記部材が、伸縮性材料からなる帯状部材によって常時板バネに圧接されているため、該部材・板バネ間に「ガタ」が生じることなく、板バネの変位を該部材に高精度に伝えることができ、後者の変位量は常に前者の変位量に等しくなる。
【0035】
特に、請求項2に係る変位量制御装置では、前記帯状部材がゴムまたは熱可塑性エラストマーからなるため、変位量制御の精度が更に高まる。また、請求項3の変位量制御装置では、押さえネジにより、自由状態の板バネの湾曲曲率を増減するようにしたため、帯状部材・板バネ間の対向間隙を調整することができるので直径、太さ、または厚さが異なる種々の部材に対応することが可能となる。
【0036】
(2)請求項4の発明による効果
本発明では、請求項1,2または3に係る変位量制御装置を用いて撮像手段を変位させるように構成したので、撮像手段の変位量制御を高精度に行うことができる。特に、所定構成の手振れ補正部を付加することにより、「画像ぼけ」のない画像を安定して得ることができる。したがって、簡単かつ小型な機構で、安定した画像振れ防止機能を備えたデジタルカメラ等の撮像装置を提供することができる。
【0037】
(3)請求項5の発明による効果
撮像手段を、ガイド機構により案内しながら変位させるようにしたので、撮像手段変位の直線性がより向上し、画像振れ防止精度の高いデジタルカメラ等の撮像装置を提供することができる。
【0038】
(4)請求項6,7の発明による効果
撮像手段をX方向およびY方向に変位自在としたので、撮像手段を光軸に垂直な平面内の所望位置に移動させることにより手振れを補正することができ、画像振れ防止精度の高いデジタルカメラ等の撮像装置を提供することができる。特に請求項7の発明では、第1の変位量制御装置および第2の変位量制御装置による2次元変位量制御を、ガイド機構を用いて行うように構成したので、X方向およびY方向の変位の直線性が更に向上し、画像振れ防止精度が極めて高いデジタルカメラ等の撮像装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るもので、変位量制御装置の構造を示す平面図である。
【図2】本発明の第2の実施の形態に係るもので、図1の変位量制御装置を用いて構成した撮像装置の要部構造を示す概略斜視図である。
【図3】図2の撮像装置を構成する手振れ補正部の構造を示すブロック図である。
【図4】本発明の第3の実施の形態に係るもので、図1の変位量制御装置を用いて構成した撮像装置の要部構造を示す分解斜視図である。
【図5】本発明の第4の実施の形態に係るもので、図1の変位量制御装置を用いて構成した撮像装置の要部構造を示す分解斜視図である。
【符号の説明】
1:圧電素子
2:押さえ板
3:押さえ板
4:板バネ
5:板バネ
6:押さえネジ(ネジ軸)
7:撮像素子
8:基板
9a:連結部材
9b:係止片
10:帯状部材
11:圧電アクチュエータ
11−1:変位量制御装置
12:撮像手段
15:第1の板体
16,17:長溝
18:第2の板体
19,20:突起
21:第1板体
22:第2板体
23:第3板体
24,25:突起
26,27:長溝
29,30:突起
31,32:長溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a displacement control device using an electromechanical conversion unit such as a piezoelectric actuator, and an imaging device (for example, a digital camera) with a camera shake correction function incorporating the displacement control device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, digital cameras have begun to be widely used in all fields, from business to personal use, and there have been various demands from users, and models with many functions have been increasing.
[0003]
However, with this, image blurring due to camera shake at the time of shooting has become a problem. The reasons for this are (1) digital cameras have become smaller and lighter, making them more compact and easier to carry, but the grip of the cameras has deteriorated during shooting, and (2) the use of liquid crystal viewfinders has made optical The fact that the viewfinder is no longer used causes a style such as one-handed shooting in which the camera is moved away from the body, resulting in reduced stability during shooting. In addition, many camera manufacturers have developed high-power zoom cameras for the purpose of differentiation from other companies' products. In such a case, it is difficult to avoid camera shake.
[0004]
In order to solve this problem, some inventions have been proposed in which the main point is to move only the imaging element by an electromechanical transducer such as a piezoelectric element in response to camera shake, but patent applications relating to these inventions have been proposed. The detailed structure of the moving means for moving the image sensor is not specified in the book or the drawing. Further, the size of the moving means is considerably large to be mounted on a small digital camera, and the structure of the camera becomes considerably complicated.
[0005]
Japanese Patent Application Laid-Open No. 2000-307937 discloses an image pickup apparatus with an image shake prevention function that realizes parallel movement of an image pickup element with a simple and small mechanism to prevent image blur caused by camera shake of a digital camera. An apparatus is disclosed. In this imaging apparatus, the imaging element is moved in parallel by directly connecting the imaging element to a piezoelectric actuator. The piezoelectric actuator is used to mechanically drive the imaging element in response to camera shake.
[0006]
[Problems to be solved by the invention]
In the imaging device according to the above invention, the connection between the imaging element and the piezoelectric element (electromechanical conversion element) is performed by bonding. That is, the piezoelectric element has a structure in which one end of a piezoelectric element alone or a piezoelectric actuator having a displacement enlarging mechanism is bonded to a joining member. However, with such a structure, the piezoelectric element cannot freely expand and contract. In the above-described imaging apparatus, a spring is used to stabilize the driving of the imaging element. However, as the amount of force (elastic force) of the spring changes as the piezoelectric element expands and contracts, the desired performance is reduced. There is a problem that it is difficult for the actuator to exert its power.
[0007]
The present invention has been made in view of the above problems of the related art, and a first object of the present invention is to make it possible to sufficiently exert the expansion and contraction function of the electromechanical transducer and obtain a highly accurate displacement amount. An object of the present invention is to provide a displacement amount control device that can perform the control. A second object of the present invention is to provide an imaging device configured using this displacement amount control device, that is, to connect an image pickup device and a displacement amount control device (electromechanical conversion means) without using “adhesion”. An object of the present invention is to provide an imaging device having a high-precision camera shake correction function by connecting with a structure.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a displacement amount control device including an electromechanical conversion unit and a band-shaped member made of a stretchable material fixed to the electromechanical conversion unit. A press plate is provided on one side of the mechanical conversion element and on the other side, and these press plates are opposed to each other, and a pair of leaf springs are arranged between these press plates in a curved state and opposed to each other. The displacement caused by the increase and decrease of the curvature of the leaf spring is caused by expansion and contraction of the electromechanical transducer, and the band-shaped member is provided on one or both of the leaf springs, on a surface facing outward from the electromechanical transducer. A displacement amount control device characterized by fixing both ends of a belt-shaped member in the longitudinal direction.
[0009]
The invention according to claim 2 is the displacement amount control device according to claim 1, wherein the band-shaped member is made of rubber or thermoplastic elastomer.
[0010]
According to a third aspect of the present invention, one of the holding plates is fixed to one end surface of the electromechanical transducer, and a holding screw is screwed into a center portion of the other holding plate in a penetrating state, and one end of the holding screw is provided. The displacement control device according to claim 1, wherein the control unit contacts the other end surface of the electromechanical conversion element.
[0011]
According to a fourth aspect of the present invention, there is provided an image pickup apparatus having an image pickup optical system and image pickup means for receiving a subject image passing therethrough and converting the image into an image signal, and is fixedly provided at a predetermined position of the image pickup apparatus. A displacement amount control device according to 1, 2, or 3, and an imaging means having a connecting member having a tip as a locking piece, wherein an opposing gap between the band-shaped member of the displacement amount control device and a leaf spring is provided. The locking piece of the connecting member is inserted between the belt-like member and the leaf spring, and the required voltage is applied to the electromechanical conversion element from a power supply device. An imaging device.
[0012]
In the invention according to claim 5, one linear long groove is formed on the upper surface, or two or more linear long grooves are formed on the upper surface in parallel with each other, and fixedly disposed at a predetermined position of the imaging device. A first plate body, a stacked body formed by stacking a second plate body having projections projecting to the lower surface side provided at positions corresponding to the long grooves, a displacement control device, and a second plate body An image pickup device fixed to an upper surface of the stack, wherein in the laminate, projections of the second plate are inserted into long grooves of the first plate, and movement of these projections is controlled by the movement of the projection. The second plate or the imaging means is configured so as to be linearly guided by the long groove and so that the lower surface of the second plate can slide with respect to the upper surface of the first plate. The second plate is connected to the displacement control device via a connecting member, and when the displacement control device operates, And imaging means, said integrally by being guided by the long groove, and an image pickup apparatus according to claim 4, characterized in that has a linearly movable by a desired distance.
[0013]
The invention according to claim 6 is an imaging apparatus having an imaging optical system and imaging means for receiving a subject image passing through the imaging optical system and converting it into an image signal, which is fixedly disposed at a predetermined position of the imaging apparatus. A first displacement control device according to claim 1, 2, or 3, a connection member connected to the first displacement control device, and a connection member connected to the connection member. A second displacement amount control device; and an imaging unit connected to the second displacement amount control device. The power supply device applies a required voltage to the electromechanical conversion element of the first displacement amount control device. By doing so, the imaging means and the second displacement amount control device can be integrally moved freely by a desired distance in the X direction, and a required voltage is supplied from the power supply device to the electromechanical conversion element of the second displacement amount control device. Is applied, the imaging means is moved in the Y direction. Distance is an imaging apparatus which is characterized in that a freely by the movement.
[0014]
In the invention according to claim 7, one linear long groove is formed on the upper surface, or two or more linear long grooves are formed on the upper surface in parallel with each other, and fixedly disposed at a predetermined position of the imaging device. The first plate body, one linear long groove is formed on the upper surface, or two or more linear long grooves are formed on the upper surface in parallel with each other, and the protrusion protruding to the lower surface side is the long groove of the first plate body. A second plate body provided at a corresponding position of the second plate body and a third plate body formed by laminating a third plate body provided at a position corresponding to the long groove of the second plate body, and A first displacement amount control device connected to the two plate members via the connecting member, an image pickup unit fixed to an upper surface of the third plate member, and a third plate member or the image pickup unit connected via the connection member; An imaging apparatus comprising: a second displacement amount control device connected to the first member; The long groove of the second plate is orthogonal to the long groove of the first plate, the protrusion of the third plate is inserted into the long groove of the second plate, and the movement of these protrusions is linearly guided by the long groove. And the lower surface of the third plate member is slidable with respect to the upper surface of the second plate member. The protrusions of the second plate member are inserted into the long grooves of the first plate member. Of the second plate is slidable with respect to the upper surface of the first plate, and the first displacement control device is operated. At the time, when the second plate, the third plate and the imaging means are integrally moved in the X direction by being guided by the long groove of the first plate, and the second displacement control device is operated. , The third plate and the imaging means are configured to move integrally in the Y direction by being guided by the long groove of the second plate. An image pickup apparatus according to claim 6, symptoms.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
First Embodiment (according to claims 1 to 3)
FIG. 1 is a plan view showing the structure of the displacement control device. This displacement amount control device 11-1 includes a piezoelectric actuator 11 as an electromechanical conversion means and a band-like member 10 fixed to the piezoelectric actuator 11 and made of a stretchable material. The overall structure of the displacement control device 11-1 is as shown in the perspective view of FIG.
[0016]
The displacement control device 11-1 is configured as follows. In the piezoelectric actuator 11, rectangular pressing plates 2 and 3 are provided on one side and the other side of the piezoelectric element 1 as an electromechanical conversion element, and these pressing plates are opposed to each other. In this case, the holding plate 3 is fixed to one end surface of the piezoelectric element 1. A holding screw (screw shaft) 6 is screwed into the center of the holding plate 2 in a penetrating state, and one end of the holding screw 6 is brought into contact with the other end surface of the piezoelectric element 1. A pair of leaf springs 4 and 5 are installed between these pressing plates 2 and 3 in a curved state and opposed to each other. These leaf springs 4 and 5 have a curved top at the center in the longitudinal direction, and the top is closer to the piezoelectric element 1 than both ends of the leaf spring. However, on the contrary, the leaf spring may be provided in a form in which the top is farther from the piezoelectric element 1 than both ends of the leaf spring. Further, instead of the piezoelectric element 1, another electromechanical conversion element can be used.
[0017]
A band-shaped member 10 made of rubber or a thermoplastic elastomer is fixed to, for example, an adhesive on a surface facing the outside of the piezoelectric element 1 on both surfaces of the leaf spring 5. In this case, both ends in the longitudinal direction of the band-shaped member 10 are fixed. The band member 10 can be provided on the leaf spring 4 in the same manner as the leaf spring 5.
[0018]
In the displacement control device 11-1, the press plate 2 approaches or separates from the piezoelectric element 1 by the rotation of the press screw 6. As a result, the curvature of the curvature of the leaf springs 4 and 5 (in a free state) is increased or decreased, and the distance between the curved top and the side surface of the piezoelectric element 1 is adjusted. When a voltage is applied to the piezoelectric element 1 from a power supply device (not shown), the voltage is extended in the directions of arrows A1 and A2 in FIG. And the leaf springs 4 and 5 are displaced in the directions of arrows B1 and B2. As described above, the displacement of the leaf spring can be controlled by adjusting the applied voltage. Therefore, an appropriate member (or a part of the appropriate member) is inserted into the gap between the leaf spring 5 and the band-shaped member 10 and is sandwiched between the leaf spring 5 and the band-shaped member 10 (this member is It is pressed against the leaf spring 5 by the expansion and contraction force.) In this state, by applying a voltage to the piezoelectric element 1, the amount of displacement of the member can be controlled.
[0019]
In the present embodiment, the appropriate member is not adhered to the leaf spring 5 (that is, the locking piece 9b is not fixed), and the appropriate member is constantly pressed against the leaf spring 5. Displacement of the leaf spring 5 can be transmitted to the member with high precision without "play" between the member and the leaf spring 5, and the latter displacement amount is always equal to the former displacement amount.
[0020]
Second embodiment (according to claim 4)
The imaging device according to the present embodiment is configured using the displacement control device 11-1 in FIG. FIG. 2 is a schematic perspective view showing a main structure of the image pickup apparatus, and FIG. 3 is a block diagram showing a structure of a camera shake correction section constituting the image pickup apparatus. This image pickup apparatus includes an image pickup optical system, image pickup means (FIG. 2) for receiving a subject image passing therethrough and converting the image into an image signal, a camera shake correction unit (FIG. 3), and a displacement constituting the camera shake correction unit. It is configured to include a quantity control device 11-1 and the like.
[0021]
The imaging device according to the present embodiment includes the displacement control device 11-1 shown in FIG. 1 and an imaging unit 12 having a substrate 8 and an imaging element 7 connected thereto. The imaging device of FIG. 2 is configured as follows. The displacement control device 11-1 is fixedly provided at a predetermined position of the imaging device. A connecting member 9 a provided with a locking piece (cylindrical shaft) 9 b at the tip is fixed to the imaging means 12. The locking piece 9 b is provided so that the axis is perpendicular to the image sensor 7. The locking piece 9b is inserted into the gap between the belt-shaped member 10 and the leaf spring 5 of the displacement amount control device 11-1, and the locking piece is sandwiched between the belt-shaped member 10 and the leaf spring 5. Thereby, a part of the outer peripheral surface of the locking piece 9b is constantly pressed against the leaf spring 5. This pressing force is generated by the stretching force of the belt-shaped member 10.
[0022]
When a required voltage is applied to the piezoelectric element 1 from a power supply device (not shown), the imaging unit 12 is displaced by a predetermined amount in the direction of arrow B. When the voltage application is released, the imaging unit 12 returns to the original position shown in FIG. Thus, the displacement control device 11-1 functions as a one-dimensional (one direction) displacement control device.
[0023]
In the present embodiment, the locking piece 9b is not bonded to the leaf spring 5, that is, the locking piece 9b is not fixed, and the locking piece 9b is constantly pressed against the leaf spring 5. The “displacement” of the leaf spring 5 can be transmitted to the image pickup means 12 with high precision without occurrence of “play” between the locking piece 9 b and the leaf spring 5, and the latter displacement amount is always equal to the former displacement amount.
[0024]
Here, based on FIG. 3, the structure of the camera shake correction unit will be described together with its operation. A camera shake detection unit (camera shake detection sensor) 51 including an image sensor attached to the imaging unit 12 detects the camera shake amount. The signal from the camera shake detection means 51 is input to the camera movement amount calculation means 53 via the A / D conversion means 52. The camera movement amount calculation unit 53 calculates a part or all of the movement amount such as the amount of change in posture and the amount of translation change due to camera shake of the imaging unit 12. Next, based on the calculation result by the camera movement amount calculation means 53, the actuator movement amount calculation means 54 (the imaging means movement amount calculation means) calculates the movement amount of the imaging means 12 for canceling the movement of the image due to camera shake. Is calculated. This imaging means movement amount signal is sent to the booster circuit 55 with D / A conversion. The booster circuit 55 supplies a drive voltage to the piezoelectric actuator 11 so that a displacement corresponding to the movement amount occurs in the imaging unit.
[0025]
As described above, the camera shake correction unit of FIG. 3 detects the camera shake of the camera, and moves the imaging unit 12 by the displacement amount control device 11-1 so as to cancel the camera shake. When the displacement control device 11-1 functions as a one-dimensional displacement control device as shown in FIG. 2, the displacement control device 11-1 and therefore one piezoelectric actuator 11 are provided.
[0026]
Third Embodiment (Claim 5)
FIG. 4 is an exploded perspective view showing a main structure of an imaging device according to a modification of FIG. 2. This image pickup apparatus includes an image pickup optical system, image pickup means (FIG. 4) for receiving a subject image passing therethrough and converting the image into an image signal, a camera shake correction unit (FIG. 3), and a displacement constituting the camera shake correction unit. A displacement control device 11-1 and the like are provided, and one-dimensional displacement control by the displacement control device 11-1 in FIG. 2 is performed with higher accuracy by using a guide mechanism.
[0027]
The main part of this imaging device is composed of a predetermined laminated body and a displacement control device 11-1. The laminated body has a first plate body 15 having two linear long grooves (guide grooves) 16 and 17 formed on the upper surface in parallel with each other, and projections 19 and 20 projecting on the lower surface side corresponding to the long grooves 16 and 17. It is formed by laminating the second plate 18 formed at the position and provided with the connecting member 9a. The first plate 15 is fixedly provided at a predetermined position of the imaging device. The imaging means (not shown) is fixed to the upper surface of the second plate 18 and this plate 18 is connected to the displacement control device 11-1 via the connecting member 9a. In this case, the projections 19 and 20 of the plate body 18 are inserted into the long grooves 16 and 17 of the plate body 15 so that the movement of these projections is linearly guided by the long grooves 16 and 17 and the lower surface of the plate body 18 Is configured to slide on the upper surface of the plate body 15.
[0028]
In this imaging device, when the displacement amount control device 11-1 operates, the plate 18 and the imaging means are integrally and linearly moved to the plate 15 by a desired distance while being guided by the long grooves 16 and 17. On the other hand, since one-dimensional movement is performed while sliding (sliding on the same plane), the linearity of the displacement of the imaging means is further improved. The number of the guide grooves and the projections may be one, three or more as long as the linearity of the displacement is improved, and is not limited to two as shown in FIG.
[0029]
Fourth embodiment (according to claims 6 and 7)
FIG. 5 is an exploded perspective view showing a main structure of an imaging apparatus according to a modification of FIG. This image pickup apparatus includes an image pickup optical system, image pickup means for receiving a subject image passing therethrough and converting the image into an image signal, a camera shake correction unit (FIG. 3), and two displacement amount control units constituting the camera shake correction unit. It is equipped with devices and the like. In other words, this imaging apparatus corrects camera shake by moving the imaging means to a desired position in a plane perpendicular to the optical axis. The first displacement control apparatus and the second displacement control The two-dimensional displacement control by the device is performed with higher accuracy by using a guide mechanism.
[0030]
The main part of this imaging device is constituted by a predetermined laminated body and the two displacement amount control devices. The laminated body includes (1) a first plate body 21 having two linear long grooves 26 and 27 formed in parallel with each other and fixedly arranged at a predetermined position of the imaging apparatus, and (2) two straight lines on the upper surface. The second plate body 22 in which the elongated grooves 31 and 32 are formed in parallel with each other, and the projections 24 and 25 projecting to the lower surface side are provided at positions corresponding to the elongated grooves 26 and 27, and (3) the projection 29 projecting to the lower surface side. 30 is formed by laminating a third plate 23 provided at a position corresponding to the long grooves 31 and 32 of the second plate 22.
[0031]
In the laminated body, the long grooves 31 and 32 of the second plate 22 are orthogonal to the long grooves 26 and 27 of the first plate 21, and the projections 29 and 30 of the third plate 23 are aligned with the long grooves 31 of the second plate 22. , 32 so that the movement of these projections is guided linearly by the long grooves, and the lower surface of the third plate 23 is slidable with respect to the upper surface of the second plate 22. Further, the projections 24, 25 of the second plate 22 are inserted into the long grooves 26, 27 of the first plate 21, and the movement of these protrusions is linearly guided by the long grooves. Is configured to be slidable with respect to the upper surface of the first plate 21.
[0032]
Further, a first displacement control device (not shown) is connected to the second plate 22 via a connecting member similar to the connecting member 9a shown in FIG. An image pickup unit (not shown) is fixed to the upper surface of the third plate 23, and the second displacement control device is connected to the image pickup unit or the third plate 23 via a connection member similar to the connection member 9a. .
[0033]
In this imaging device, when a predetermined voltage is applied to the piezoelectric element constituting the first displacement amount control device and the displacement amount control device is operated, the second plate body 22, the third plate body 23, the imaging means, The second displacement amount control device is guided by the long grooves 26 and 27 of the first plate member 21, and thus slides integrally with the first plate member 21 in the direction of X in FIG. 5 by a desired distance. . When the second displacement amount control device operates, the imaging means and the third plate 23 slide with respect to the second plate 22 by a desired distance in the direction of Y in FIG.
[0034]
【The invention's effect】
As apparent from the above description, the following effects can be obtained according to the present invention.
(1) Effects of the Inventions of Claims 1 to 3 In the displacement amount control device including an electromechanical transducer such as a piezoelectric element according to the present invention, a member (or the like) to be displaced is not bonded to a leaf spring ( That is, the member is not fixed), and since the member is constantly pressed against the leaf spring by the band-shaped member made of an elastic material, there is no "play" between the member and the leaf spring. The displacement of the leaf spring can be transmitted to the member with high accuracy, and the displacement of the latter is always equal to the displacement of the former.
[0035]
In particular, in the displacement amount control device according to claim 2, since the belt-shaped member is made of rubber or thermoplastic elastomer, the accuracy of displacement amount control is further enhanced. In the displacement amount control device according to the third aspect, the curvature of the leaf spring in the free state is increased or decreased by the set screw, so that the facing gap between the belt-shaped member and the leaf spring can be adjusted. It is possible to cope with various members having different thicknesses or thicknesses.
[0036]
(2) Effect of the invention of claim 4 In the present invention, the image pickup means is displaced by using the displacement amount control device according to claim 1, 2, or 3, so that the displacement amount control of the image pickup means is performed with high accuracy. Can be done. In particular, an image without "image blur" can be stably obtained by adding a camera shake correction unit having a predetermined configuration. Therefore, it is possible to provide an imaging device such as a digital camera having a stable image blur prevention function with a simple and small mechanism.
[0037]
(3) Since the effect imaging means according to the fifth aspect of the present invention is displaced while being guided by the guide mechanism, the linearity of the displacement of the imaging means is further improved, and an imaging apparatus such as a digital camera having high image blur prevention accuracy is provided. Can be provided.
[0038]
(4) Since the effect imaging means according to the sixth and seventh aspects can be displaced in the X direction and the Y direction, the camera shake is corrected by moving the imaging means to a desired position in a plane perpendicular to the optical axis. Accordingly, it is possible to provide an imaging device such as a digital camera having high image blur prevention accuracy. In particular, since the two-dimensional displacement amount control by the first displacement amount control device and the second displacement amount control device is performed using the guide mechanism, the displacement in the X direction and the Y direction can be achieved. Can further provide an image pickup device such as a digital camera having extremely high image blur prevention accuracy.
[Brief description of the drawings]
FIG. 1 is a plan view showing a structure of a displacement control device according to a first embodiment of the present invention.
FIG. 2 is a schematic perspective view showing a main structure of an imaging device according to a second embodiment of the present invention, which is configured using the displacement control device of FIG. 1;
FIG. 3 is a block diagram illustrating a structure of a camera shake correction unit included in the imaging apparatus in FIG. 2;
FIG. 4 is an exploded perspective view showing a main structure of an imaging device according to a third embodiment of the present invention, which is configured using the displacement control device of FIG. 1;
FIG. 5 is an exploded perspective view showing a main structure of an imaging device according to a fourth embodiment of the present invention, which is configured using the displacement control device of FIG. 1;
[Explanation of symbols]
1: piezoelectric element 2: holding plate 3: holding plate 4: leaf spring 5: leaf spring 6: holding screw (screw shaft)
7: Imaging element 8: Substrate 9a: Connecting member 9b: Locking piece 10: Strip-shaped member 11: Piezoelectric actuator 11-1: Displacement amount control device 12: Imaging means 15: First plate 16, 17: Long groove 18: Second plate members 19, 20: protrusion 21: first plate member 22: second plate member 23: third plate members 24, 25: protrusions 26, 27: long grooves 29, 30: protrusions 31, 32: long grooves

Claims (7)

電気機械変換手段と、この電気機械変換手段に固着された伸縮性材料からなる帯状部材とを備えた変位量制御装置であって、
前記電気機械変換手段では、電気機械変換素子の一側および、他側にそれぞれ押さえ板を設けてこれらの押さえ板同士を互いに対向させ、これらの押さえ板間に一対の板バネを湾曲状態で、かつ互いに対向させて架設するとともに、電気機械変換素子の伸縮により前記板バネの曲率増減に伴う変位を発生させるようにし、前記帯状部材は、前記板バネの一方または双方の、電気機械変換素子よりも外側に向く面に、当該帯状部材の長手方向両端部を固着したことを特徴とする変位量制御装置。
An electromechanical converter, a displacement amount control device including a band-shaped member made of a stretchable material fixed to the electromechanical converter,
In the electromechanical conversion means, one side of the electromechanical conversion element, and a press plate provided on the other side, these press plates are opposed to each other, a pair of leaf springs between these press plates in a curved state, And while being installed facing each other, the expansion and contraction of the electromechanical transducer causes a displacement accompanying the increase and decrease of the curvature of the leaf spring, and the band-shaped member is one or both of the leaf springs, A displacement control device characterized in that both ends in the longitudinal direction of the belt-shaped member are fixed to a surface facing outward.
前記帯状部材が、ゴムまたは熱可塑性エラストマーからなることを特徴とする請求項1に記載の変位量制御装置。The displacement amount control device according to claim 1, wherein the band-shaped member is made of rubber or thermoplastic elastomer. 前記押さえ板の一方を電気機械変換素子の一端面に固着し、他方の押さえ板の中央部に押さえネジを貫通状態で螺合するとともに、前記押さえネジの一端部を電気機械変換素子の他端面に当接させたことを特徴とする請求項1または2に記載の変位量制御装置。One of the holding plates is fixed to one end surface of the electromechanical transducer, and a holding screw is screwed into the center of the other holding plate in a penetrating state. The displacement amount control device according to claim 1, wherein the displacement amount control device is in contact with the displacement amount control device. 撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段を有する撮像装置であり、当該撮像装置の所定位置に固定配備された請求項1,2または3に係る変位量制御装置と、先端を係止片とした連結部材を有する撮像手段とを備えたものであって、前記変位量制御装置の帯状部材と板バネとの対向間隙に前記連結部材の係止片を挿入して該係止片を帯状部材と板バネとで挟持し、電源装置から所要の電圧を前記電気機械変換素子に印加するようにしたことを特徴とする撮像装置。4. An image pickup apparatus comprising: an image pickup optical system; and image pickup means for receiving a subject image passing therethrough and converting the image into an image signal, wherein the displacement is fixedly arranged at a predetermined position of the image pickup apparatus. A displacement control device, and imaging means having a connecting member having a leading end as a locking piece, wherein the locking piece of the connecting member is provided in an opposing gap between the band-shaped member and the leaf spring of the displacement amount controlling device. Wherein the locking piece is sandwiched between the belt-shaped member and the leaf spring, and a required voltage is applied to the electromechanical conversion element from a power supply device. 上面に1本の直線状長溝が形成されているか、または上面に2本以上の直線状長溝が互いに平行に形成され、当該撮像装置の所定位置に固定配備された第1の板体および、下面側に突出する突起が前記長溝の対応位置に設けられた第2の板体を積層して構成された積層体と、変位量制御装置と、第2の板体の上面に固着された撮像手段とを備えてなる撮像装置であって、
前記積層体では、第2の板体の突起が第1の板体の長溝に挿入され、これらの突起の移動が前記長溝で直線的に案内されるように、かつ第2の板体の下面が第1の板体の上面に対し摺動しうるように構成され、
第2の板体または前記撮像手段は、前記連結部材を介して変位量制御装置に連結され、
前記変位量制御装置が作動したときに、第2の板体および撮像手段が、前記長溝に案内されることにより一体的に、かつ直線的に所望距離だけ移動自在となっていることを特徴とする請求項4に記載の撮像装置。
A first plate body having one linear long groove formed on the upper surface or two or more linear long grooves formed on the upper surface in parallel with each other, and a first plate fixedly disposed at a predetermined position of the imaging device; A laminated body formed by laminating a second plate body provided with a protrusion protruding to the side at a position corresponding to the long groove, a displacement control device, and an imaging unit fixed to an upper surface of the second plate body An imaging device comprising:
In the laminated body, the projections of the second plate are inserted into the long grooves of the first plate, and the movements of these protrusions are linearly guided by the long grooves, and the lower surface of the second plate is provided. Is configured to be slidable with respect to the upper surface of the first plate body,
The second plate or the imaging unit is connected to the displacement amount control device via the connection member,
When the displacement amount control device is operated, the second plate and the imaging means are movable integrally and linearly by a desired distance by being guided by the long groove. The imaging device according to claim 4, wherein
撮像光学系と、これを通過した被写体像を受光して画像信号に変換する撮像手段とを有する撮像装置であって、
当該撮像装置の所定位置に固定配備された請求項1,2または3に係る第1の変位量制御装置と、この第1の変位量制御装置に接続された接続部材と、この接続部材に接続された請求項1,2または3に係る第2の変位量制御装置と、この第2の変位量制御装置に接続された撮像手段とを備えてなり、
第1の変位量制御装置の電気機械変換素子に電源装置から所要の電圧を印加することにより、前記撮像手段と第2の変位量制御装置とを、一体的にX方向に所望距離だけ移動自在とし、
第2の変位量制御装置の電気機械変換素子に電源装置から所要の電圧を印加することにより、前記撮像手段をY方向に所望距離だけ移動自在としたことを特徴とする撮像装置。
An imaging apparatus having an imaging optical system and imaging means for receiving a subject image passing therethrough and converting the received image into an image signal,
4. The first displacement control device according to claim 1, which is fixedly provided at a predetermined position of the imaging device, a connection member connected to the first displacement control device, and a connection to the connection member. A second displacement amount control device according to claim 1, 2, or 3, and imaging means connected to the second displacement amount control device.
By applying a required voltage from a power supply device to the electromechanical transducer of the first displacement control device, the imaging means and the second displacement control device can be freely moved in the X direction by a desired distance. age,
An imaging apparatus characterized in that the imaging means is movable by a desired distance in the Y direction by applying a required voltage from a power supply to the electromechanical transducer of the second displacement control device.
上面に1本の直線状長溝が形成されているか、または上面に2本以上の直線状長溝が互いに平行に形成され、当該撮像装置の所定位置に固定配備された第1板体、上面に1本の直線状長溝が形成されているか、または上面に2本以上の直線状長溝が互いに平行に形成され、下面側に突出する突起が前記第1板体の長溝の対応位置に設けられた第2板体および、下面側に突出する突起が前記第2板体の長溝の対応位置に設けられた第3板体を積層して構成された積層体と、
第2板体に前記連結部材を介して連結された第1の変位量制御装置と、第3板体の上面に固着された撮像手段と、第3板体または前記撮像手段に前記連結部材を介して連結された第2の変位量制御装置とを備えてなる撮像装置であって、
前記積層体では、
第2板体の長溝が、第1板体の長溝に直交し、第3板体の突起が第2板体の長溝に挿入され、これらの突起の移動が前記長溝で直線的に案内されるように、かつ第3板体の下面が第2板体の上面に対し摺動しうるように構成され、第2板体の突起が第1板体の長溝に挿入され、これらの突起の移動が前記長溝で直線的に案内されるように、かつ第2板体の下面が第1板体の上面に対し摺動しうるように構成され、
第1の変位量制御装置が作動したときに、第2板体、第3板体および撮像手段が、第1板体の長溝によって案内されることにより一体的にX方向に移動し、
第2の変位量制御装置が作動したときに、第3板体および撮像手段が、第2板体の長溝に案内されることにより一体的にY方向に移動するように構成されていることを特徴とする請求項6に記載の撮像装置。
One linear long groove is formed on the upper surface, or two or more linear long grooves are formed on the upper surface in parallel with each other, and the first plate body fixedly arranged at a predetermined position of the imaging device, The first plate body is provided with a plurality of linear long grooves, or two or more linear long grooves are formed on the upper surface in parallel with each other, and a projection protruding on the lower surface side is provided at a position corresponding to the long groove of the first plate body. A laminated body formed by laminating two plate bodies and a third plate body in which projections projecting to the lower surface side are provided at positions corresponding to the long grooves of the second plate body;
A first displacement amount control device connected to the second plate via the connection member, an imaging unit fixed to the upper surface of the third plate, and the connection member connected to the third plate or the imaging unit. An imaging device comprising: a second displacement amount control device connected via
In the laminate,
The long groove of the second plate is orthogonal to the long groove of the first plate, the protrusions of the third plate are inserted into the long grooves of the second plate, and the movements of these protrusions are linearly guided by the long grooves. And the lower surface of the third plate is slidable with respect to the upper surface of the second plate. The protrusions of the second plate are inserted into the long grooves of the first plate, and the protrusions move. Is configured to be linearly guided by the long groove, and that the lower surface of the second plate member can slide with respect to the upper surface of the first plate member,
When the first displacement control device is operated, the second plate, the third plate, and the imaging unit are integrally moved in the X direction by being guided by the long groove of the first plate,
When the second displacement amount control device is operated, the third plate and the imaging means are configured to be integrally moved in the Y direction by being guided by the long groove of the second plate. The imaging device according to claim 6, wherein:
JP2002241465A 2002-08-22 2002-08-22 Displacement amount control device and imaging device Expired - Fee Related JP4044809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241465A JP4044809B2 (en) 2002-08-22 2002-08-22 Displacement amount control device and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241465A JP4044809B2 (en) 2002-08-22 2002-08-22 Displacement amount control device and imaging device

Publications (2)

Publication Number Publication Date
JP2004080665A true JP2004080665A (en) 2004-03-11
JP4044809B2 JP4044809B2 (en) 2008-02-06

Family

ID=32023936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241465A Expired - Fee Related JP4044809B2 (en) 2002-08-22 2002-08-22 Displacement amount control device and imaging device

Country Status (1)

Country Link
JP (1) JP4044809B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243170A (en) * 2005-03-01 2006-09-14 Pentax Corp Imaging device
US7428376B2 (en) 2005-03-23 2008-09-23 Sony Corporation Lens driving mechanism, lens unit and image pickup apparatus
KR101197085B1 (en) * 2004-12-01 2012-11-09 호야 가부시키가이샤 Imaging device having an optical image stabilizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197085B1 (en) * 2004-12-01 2012-11-09 호야 가부시키가이샤 Imaging device having an optical image stabilizer
JP2006243170A (en) * 2005-03-01 2006-09-14 Pentax Corp Imaging device
JP4704071B2 (en) * 2005-03-01 2011-06-15 Hoya株式会社 Imaging device
US7428376B2 (en) 2005-03-23 2008-09-23 Sony Corporation Lens driving mechanism, lens unit and image pickup apparatus

Also Published As

Publication number Publication date
JP4044809B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
US7508117B2 (en) Piezoelectric actuator, imaging element moving device using the same, and imaging device using the same
US8019210B2 (en) Image stabilizing unit, lens unit, and imaging apparatus, having two drive units at an inclined angle to one another for driving an imaging device a direction perpendicular to the optical axis
US7362522B2 (en) Lens barrel
US7262926B2 (en) Lens barrel
US7498729B2 (en) Optical device
CN110112953B (en) Motor and electronic apparatus including the same
TWI299094B (en) Driving mechanism, imaging mechanism and cellular phone
US7956515B2 (en) Method of driving a driving apparatus capable of smoothly moving a moving member
JP4044809B2 (en) Displacement amount control device and imaging device
US8520329B2 (en) Piezoelectric actuator, lens barrel and optical device
JP2009050142A (en) Drive unit
US20080205868A1 (en) Driving apparatus, image capturing unit, and image capturing apparatus
JP2008278727A (en) Drive unit
JP2007274790A (en) Driving device
JP2010158143A (en) Ultrasonic motor
US7633209B2 (en) Driving device capable of obtaining a stable frequency characteristic
JP2015089183A (en) Drive device, lens unit, and imaging device
JP7313909B2 (en) vibration wave motors and electronics.
JP2006333571A (en) Vibration actuator and lens barrel
JP4910589B2 (en) Imaging unit and imaging apparatus
CN107342705B (en) Motor and electronic apparatus including the same
JP5230133B2 (en) Drive device using piezoelectric actuator and electronic device equipped with the same
JP5151995B2 (en) Drive device
JP2009038888A (en) Drive apparatus, image-pickup device, image-pickup apparatus, and assembly method of drive apparatus
WO2009096205A1 (en) Actuator mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees