JP2004078027A - Absolute single mode optical fiber and its designing method - Google Patents

Absolute single mode optical fiber and its designing method Download PDF

Info

Publication number
JP2004078027A
JP2004078027A JP2002241070A JP2002241070A JP2004078027A JP 2004078027 A JP2004078027 A JP 2004078027A JP 2002241070 A JP2002241070 A JP 2002241070A JP 2002241070 A JP2002241070 A JP 2002241070A JP 2004078027 A JP2004078027 A JP 2004078027A
Authority
JP
Japan
Prior art keywords
refractive index
optical fiber
effective refractive
mode
core portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002241070A
Other languages
Japanese (ja)
Other versions
JP3954929B2 (en
Inventor
Hirokazu Kubota
久保田 寛和
Satoki Kawanishi
川西 悟基
Kazunobu Suzuki
鈴木 和宣
Shigeki Koyanagi
小柳 繁樹
Masatoshi Tanaka
田中 正俊
Moriyuki Fujita
藤田 盛行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Cable Industries Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002241070A priority Critical patent/JP3954929B2/en
Publication of JP2004078027A publication Critical patent/JP2004078027A/en
Application granted granted Critical
Publication of JP3954929B2 publication Critical patent/JP3954929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01217Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absolute single mode optical fiber which is easily manufactured and has a high degree of freedom of design and its designing method. <P>SOLUTION: A cladding part 12 constituting the optical fiber is configured in a photonic crystal structure provided with voids which extend in the extension direction of the cladding part 12 and arranged cyclically in a lattice spacing Λ, and the voids are arranged so as to make an axisymmetric property around the central axis of a core part 11 to be less than three times. The lattice spacing Λ of the voids is set so that an effective refractive index of a first mode can be larger than an effective refractive index of the cladding part and also that an effective refractive index of a second mode can be smaller than the effective refractive index of the cladding part in the first mode where the effective refractive index to the wavelength of light propagating through the core part 11 becomes maximum and in the second mode where the effective refractive index becomes the second maximum among a plurality of modes that can exist in an area where the core part 11 and voids adjacently surrounding the core part 11 exist. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、絶対単一モード光ファイバおよびその設計方法に関し、より詳細には、製造が容易で、かつ、設計自由度の高い絶対単一モード光ファイバおよびその設計方法に関する。
【0002】
【従来の技術】
絶対単一モード光ファイバは、一般に、光ファイバ中に金属などの光吸収媒質を埋め込むことにより偏光に依存した光吸収を起こさせている。従って、絶対単一モード光ファイバを作製するに際しては、ガラス、プラスチック、各種結晶などの母材中にこれらの母材とは異質の材料を埋め込み、これをファイバ化する必要がある。
【0003】
【発明が解決しようとする課題】
しかしながら、ファイバ化のためには、埋め込まれるべき材料は光ファイバの母材と同程度の融点をもつ必要があり、さらに、母材との親和性も高いことが求められる。このような条件を全て満足する埋め込み材の選択は容易ではなく、これまでは、実用的な特性を示す絶対単一モード光ファイバは作製されていなかった。
【0004】
本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、製造が容易で、かつ、設計自由度の高い絶対単一モード光ファイバおよびその設計方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、絶対単一モード光ファイバであって、光ファイバ母材の中心領域に設けられたコア部がクラッド部により取り囲まれており、前記クラッド部は、当該クラッド部の伸長方向に延在し、かつ、格子間隔Λで周期的に配置された空孔を備えることにより屈折率変調するフォトニック結晶構造を有し、前記空孔は、前記コア部の中心軸の周りの軸対称性が3回未満となるように配置され、前記コア部と当該コア部を近接して取り囲む空孔とが存在する領域に存在可能な複数のモードのうち、当該コア部を伝搬する光の波長に対する有効屈折率が最大となる第1モードと2番目に大きな第2モードにおいて、当該第1モードの有効屈折率が前記クラッド部の有効屈折率よりも大きく、かつ、当該第2モードの有効屈折率が前記クラッド部の有効屈折率よりも小さくなるように設定されていることを特徴とする。
【0006】
また、請求項2に記載の発明は、請求項1に記載の絶対単一モード光ファイバにおいて、前記コア部を近接して取り囲む空孔のうち少なくとも1つの空孔の径が、前記クラッド部に配置された空孔の径よりも大きいことを特徴とする。
【0007】
また、請求項3に記載の発明は、請求項2に記載の絶対単一モード光ファイバにおいて、前記コア部を近接して取り囲む空孔の径と前記クラッド部に配置された空孔の径とが異なることを特徴とする。
【0008】
また、請求項4に記載の発明は、請求項1乃至3の何れかに記載の絶対単一モード光ファイバにおいて、前記光ファイバ母材は、ガラスまたはプラスチックであることを特徴とする。
【0009】
さらに、請求項5に記載の発明は、請求項4に記載の絶対単一モード光ファイバにおいて、前記空孔の内部は、真空、もしくは、前記コア部を伝搬する光に対して透明なガスまたは液体もしくは固体が充填されていることを特徴とする。
【0010】
請求項6に記載の発明は、光ファイバのコア部を取り囲むクラッド部が、当該クラッド部の伸長方向に延在し、かつ、格子間隔Λで周期的に配置された空孔を備えることにより屈折率変調するフォトニック結晶構造を有する絶対単一モード光ファイバの設計方法であって、前記空孔を、前記コア部の中心軸の周りの軸対称性が3回未満となるように配置し、前記コア部と当該コア部を近接して取り囲む空孔とが存在する領域に存在可能な複数のモードのうち、当該コア部を伝搬する光の波長に対する有効屈折率が最大となる第1モードと2番目に大きな第2モードにおいて、当該第1モードの有効屈折率が前記クラッド部の有効屈折率よりも大きく、かつ、当該第2モードの有効屈折率が前記クラッド部の有効屈折率よりも小さくなるように前記格子間隔Λを設定することを特徴とする。
【0011】
【発明の実施の形態】
以下に、図面を参照して本発明の実施の形態について説明する。
【0012】
(実施例1)
図1は、本発明の絶対単一モード光ファイバの第1の構造例を説明するための断面図で、この絶対単一モード光ファイバは、光ファイバ材料13の中心領域に設けられたコア部11が、多数の空孔を有するクラッド部12で取り囲まれた構造を有している。
【0013】
図2は、図1に示した断面図のコア部11近傍を詳細に説明するための図で、クラッド部に存在する多数の空孔23は格子間隔Λで周期的に配置されてコア部21を取り囲み、コア部21とこのコア部21を最近接で取り囲む空孔とで「コアとコアを取り囲む空孔を合わせた領域」22が形成され、いわゆる「フォトニック結晶構造」を利用して光ファイバが形成されている。
【0014】
フォトニック結晶は、誘電体周期構造を有する結晶であり、図1および図2に示した本発明の絶対単一モード光ファイバでは、ファイバ材料中に空孔が蜂の巣状(六方最密構造)に周期的に配置されて屈折率変調構造を構成している。このようなフォトニック結晶構造を有する光ファイバは、その空孔の配置状態により光伝搬特性を自由に設計することが可能である。
【0015】
ここで、上述した「コアとコアを取り囲む空孔を合わせた領域」に存在可能な複数のモードのうち、光ファイバ中を伝搬する光の波長に対する伝搬定数(もしくは有効屈折率)の最も大きなモードを「第1モード」、その次に大きなモードを「第2モード」と定義する。
【0016】
なお、図2においては、後述する計算の便宜のために、コア部21とこのコア部21を最近接で取り囲む空孔23とで形成される六角形の内側の領域を「コアとコアを取り囲む空孔を合わせた領域」22として定義したが、この領域の定義の仕方はこれに限定されるものではない。
【0017】
また、空孔の配置の仕方も図2に示したものに限定されるものではなく、所望する光ファイバの特性に応じて自由に設計が可能であるが、図2に示すような六方最密構造のフォトニック結晶とする場合には、同一外径の円柱を隙間無く並べるだけで自然にその横断面が六方最密構造をとることからその製造は極めて容易となるという利点がある。
【0018】
さらに、クラッド部に存在する多数の空孔のうちの一部の空孔の位置や大きさを他の空孔とは異なるように設計することとすれば、光ファイバ中心軸の周りの対称性を低くして偏波の縮退を解くことも可能となり、偏波保持光ファイバが実現できる。
【0019】
図3は、図1および図2に示した構造の本発明の絶対単一モード光ファイバの設計方法を説明するための図で、横軸は伝搬光の波長λを空孔格子間隔Λで除した値、縦軸は有効屈折率であり、各波長に対して、第1モードおよび第2モードならびにクラッド部のモードの有効屈折率を計算して求めた結果を概念的に示したものである。なお、この図は、図2に示すように、コア部を取り囲む6つの空孔のうちの2つの空孔の径(d2)を他の空孔の径(d1)よりも大きくし、2回の軸対称性を有する場合について計算を実行した場合を仮定している。
【0020】
この構造のファイバは3回未満の軸対称性を有するため、第1モードには偏波による縮退はなく、このモードのみが伝搬する光ファイバは真の単一モード光ファイバ(絶対単一モード光ファイバ)となる。
【0021】
第1モードおよび第2モードの有効屈折率がクラッドのモードの有効屈折率より低くなると、これらのモードはコア部からクラッド部へと漏れ出してゆくようになり、その結果、光ファイバ中を伝搬することができなくなる。
【0022】
そこで、第1モードは伝搬可能とする一方、第2モードの伝搬が不可となるように設計すれば、上述した「第1モード」および「第2モード」の定義から明らかのように、これらのモード以外のモードは第2モードよりも有効屈折率が低いために光ファイバ中を伝搬することができず、第1モードのみを伝搬させるようにすることが可能となる。
【0023】
図3において、光ファイバが絶対単一モードで動作する波長領域は、図中に白抜きの矢印で示した領域であり、この領域は、第1モードの有効屈折率がクラッド部の有効屈折率よりも大きく、かつ、第2モードの有効屈折率がクラッド部の有効屈折率よりも小さい波長範囲に対応する。
【0024】
このように、特定の波長の光を絶対単一モード動作させる光ファイバを設計するためには、その波長λを図3で得られる「波長/空孔格子間隔(λ/Λ)」の値で除して得られた格子間隔Λとすればよい。
【0025】
図4は、図1および図2に示した構造の本発明の絶対単一モード光ファイバの設計方法を実際の計算により実行した結果を説明するための図で、横軸は伝搬光の波長λを空孔格子間隔Λで除した値、縦軸は有効屈折率(n/n0)であり、空孔格子間隔Λ、クラッド部の空孔径d1、他の空孔よりも径の大きな空孔の径をd2とし、d1/Λ=0.38、d2/Λ=1.04の条件下で求めている。なお、ここでは、ファイバの母材は石英ガラス、空孔の中は真空(もしくは空気)としているが、ファイバの母材は他のガラスやプラスチックであっても良く、また、空孔の内部は、コア中を伝搬する光に対して透明なガスまたは液体もしくは固体が充填されていてもよい。
【0026】
この図において、実線はクラッド部の有効屈折率、点線が第1モードの有効屈折率、そして、1点鎖線が第2モードの有効屈折率である。この図に示した結果から、この光ファイバの絶対単一動作する波長領域は、λ/Λ=0.4〜0.49であることが読み取れる。
【0027】
図5は、図2に示した構造を有する実際の光ファイバの損失の波長依存性を説明するための図で、この光ファイバの各パラメータは、Λ=2.6μm、d1=1μm、d2=2.7μmである。この図において、各モードの損失が増加し始める波長が各モードの有効屈折率がクラッド部のモードの有効屈折率と等しくなる波長に対応する。
【0028】
図5の結果より、この光ファイバの絶対単一動作する波長領域は1.1〜1.3μmであることが読み取れ、図4に示した計算結果で得られる絶対単一動作領域(1.04〜1.27μm)と良い一致を示し、ほぼ設計どうりの動作を行っていることが理解される。
【0029】
(実施例2)
本発明の絶対単一モード光ファイバでは、クラッド部の有効屈折率を変化させて絶対単一動作領域を所望の波長に設定するようにすることも可能である。
【0030】
図6は、本発明の絶対単一モード光ファイバの第2の構造例を説明するための断面図で、この絶対単一モード光ファイバも図2に示したのと同様に、クラッド部に存在する多数の空孔63は格子間隔Λで周期的に配置されてコア部61を取り囲み、コア部61とこのコア部61を最近接で取り囲む空孔とで「コアとコアを取り囲む空孔を合わせた領域」62が形成され、いわゆる「フォトニック結晶構造」を利用して光ファイバが形成されているが、「コアとコアを取り囲む空孔を合わせた領域」62内の空孔の径(d1´、d2´)を実施例1のように取る一方、クラッド部の空孔の径(d3´)をこれらの空孔の径とは異なる大きさとしている点において図2に示す構造と異なっている。
【0031】
図7は、d1´/Λ=0.5、d2´/Λ=1.25とし、クラッド部の空孔の径d3´をd3´/Λ=0.475、0.5、0.525、0.55と変化させた場合の絶対単一動作領域の計算結果を説明するための図である。なお、この計算を実行するに際しても、ファイバの母材は石英ガラス、空孔の中は真空(もしくは空気)としている。
【0032】
この図において、実線はクラッド部の有効屈折率、点線が第1モードの有効屈折率、そして、1点鎖線が第2モードの有効屈折率である。この図に示した結果から、この光ファイバの絶対単一動作する波長領域は、d3´/Λ=0.475の場合にλ/Λ=0.37〜0.53、d3´/Λ=0.5の場合にλ/Λ=0.58〜0.72、d3´/Λ=0.525の場合にλ/Λ=0.67〜0.86、そして、d3´/Λ=0.55の場合にλ/Λ=0.82〜1.03であることが読み取れる。
【0033】
ここで示した例では、クラッド部の空孔径d3´を僅か1割程度変化させただけであるが、絶対単一動作領域を倍の波長まで変化させることが可能であり、d3´/Λの値をパラメータとして変化させることで所望の絶対単一動作領域を容易に実現できる。
【0034】
【発明の効果】
以上説明したように、本発明によれば、光ファイバを構成するクラッド部を、このクラッド部の伸長方向に延在し、かつ、格子間隔Λで周期的に配置された空孔を備えるフォトニック結晶構造で構成し、この空孔を、コア部の中心軸の周りの軸対称性が3回未満となるように配置するとともに、コア部とコア部を近接して取り囲む空孔とが存在する領域に存在可能な複数のモードのうち、コア部を伝搬する光の波長に対する有効屈折率が最大となる第1モードと2番目に大きな第2モードにおいて、第1モードの有効屈折率がクラッド部の有効屈折率よりも大きく、かつ、第2モードの有効屈折率がクラッド部の有効屈折率よりも小さくなるように空孔の格子間隔Λを設定することとしたので、製造が容易で、かつ、設計自由度の高い絶対単一モード光ファイバおよびその設計方法を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の絶対単一モード光ファイバの第1の構造例を説明するための断面図である。
【図2】図1に示した本発明の絶対単一モード光ファイバのコア部近傍を詳細に説明するための図である。
【図3】図1および図2に示した構造の本発明の絶対単一モード光ファイバの設計方法を説明するための概念図である。
【図4】図1および図2に示した構造の本発明の絶対単一モード光ファイバの設計方法を実際の計算により実行した結果を説明するための図である。
【図5】実際の光ファイバの損失の波長依存性を説明するための図である。
【図6】本発明の絶対単一モード光ファイバの第2の構造例を説明するための断面図である。
【図7】図6に示す構造の本発明の絶対単一モード光ファイバにおいて、クラッド部の空孔の径を変化させた場合の絶対単一動作領域の計算結果を説明するための図である。
【符号の説明】
11 コア部
12 クラッド部
13 光ファイバ材料
21、61 コア部
22、62 コアとコアを取り囲む空孔を合わせた領域
23、63 空孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absolute single mode optical fiber and a design method thereof, and more particularly, to an absolute single mode optical fiber which is easy to manufacture and has a high degree of design freedom, and a design method thereof.
[0002]
[Prior art]
In general, an absolute single mode optical fiber causes light absorption depending on polarization by embedding a light absorbing medium such as a metal in the optical fiber. Therefore, when producing an absolute single mode optical fiber, it is necessary to embed a material different from these base materials into a base material such as glass, plastic, or various crystals, and to convert the material into a fiber.
[0003]
[Problems to be solved by the invention]
However, in order to form a fiber, the material to be embedded must have a melting point similar to that of the base material of the optical fiber, and further, it is required that the material has high affinity with the base material. It is not easy to select an embedding material that satisfies all of these conditions, and an absolute single-mode optical fiber exhibiting practical characteristics has not been manufactured so far.
[0004]
The present invention has been made in view of such a problem, and an object of the present invention is to provide an absolute single mode optical fiber which is easy to manufacture and has a high degree of design freedom, and a design method thereof. It is in.
[0005]
[Means for Solving the Problems]
In order to achieve such an object, the present invention is directed to an absolute single mode optical fiber, wherein a core provided in a central region of an optical fiber preform is formed by a clad. Being surrounded, the cladding has a photonic crystal structure that extends in the direction in which the cladding extends, and that has a refractive index modulation by providing holes periodically arranged at a lattice interval Λ. The holes are arranged such that the axial symmetry around the central axis of the core portion is less than three times, and are present in a region where the core portion and the holes surrounding the core portion in close proximity exist; Among the plurality of possible modes, in the first mode in which the effective refractive index with respect to the wavelength of light propagating through the core part is the maximum and in the second mode in which the effective refractive index is the second largest, the effective refractive index of the first mode is higher than that of the clad part. Greater than the effective refractive index of Ku, and wherein the effective refractive index of the second mode is set to be smaller than the effective refractive index of the cladding portion.
[0006]
According to a second aspect of the present invention, in the absolute single mode optical fiber according to the first aspect, a diameter of at least one hole among the holes surrounding the core portion in close proximity to the cladding portion. It is characterized in that it is larger than the diameter of the arranged holes.
[0007]
According to a third aspect of the present invention, in the absolute single mode optical fiber according to the second aspect, a diameter of a hole surrounding the core portion and a diameter of a hole arranged in the cladding portion are set to be close to each other. Are different from each other.
[0008]
According to a fourth aspect of the present invention, in the absolute single mode optical fiber according to any one of the first to third aspects, the optical fiber preform is glass or plastic.
[0009]
Further, the invention according to claim 5 is the absolute single mode optical fiber according to claim 4, wherein the inside of the hole is a vacuum or a gas transparent to light propagating through the core. It is characterized by being filled with liquid or solid.
[0010]
The invention according to claim 6 is characterized in that the clad surrounding the core of the optical fiber is extended by extending in the direction of extension of the clad, and is provided with holes periodically arranged at the lattice interval Λ. A method for designing an absolute single mode optical fiber having a photonic crystal structure that modulates the rate, wherein the holes are arranged such that the axial symmetry around a central axis of the core portion is less than three times, Among a plurality of modes that can be present in a region where the core portion and a hole surrounding the core portion in close proximity exist, a first mode in which an effective refractive index with respect to a wavelength of light propagating through the core portion is maximum. In a second largest second mode, the effective refractive index of the first mode is larger than the effective refractive index of the cladding portion, and the effective refractive index of the second mode is smaller than the effective refractive index of the cladding portion. To be And sets the serial lattice spacing lambda.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0012]
(Example 1)
FIG. 1 is a cross-sectional view for explaining a first structural example of an absolute single mode optical fiber according to the present invention. This absolute single mode optical fiber has a core portion provided in a central region of an optical fiber material 13. 11 has a structure surrounded by a cladding part 12 having a large number of holes.
[0013]
FIG. 2 is a view for explaining in detail the vicinity of the core portion 11 in the cross-sectional view shown in FIG. 1. A large number of holes 23 present in the cladding portion are periodically arranged at a lattice interval Λ, and And the core 21 and the hole surrounding the core 21 closest to each other form a “region combining the core and the hole surrounding the core” 22. A fiber is formed.
[0014]
The photonic crystal is a crystal having a dielectric periodic structure. In the absolute single mode optical fiber of the present invention shown in FIG. 1 and FIG. 2, holes are formed in a fiber material in a honeycomb shape (a hexagonal close-packed structure). They are periodically arranged to form a refractive index modulation structure. An optical fiber having such a photonic crystal structure can freely design light propagation characteristics depending on the arrangement of holes.
[0015]
Here, among the plurality of modes that can exist in the above-described “region in which the core and the hole surrounding the core are combined”, the mode having the largest propagation constant (or the effective refractive index) with respect to the wavelength of light propagating in the optical fiber. Is defined as a “first mode”, and the next largest mode is defined as a “second mode”.
[0016]
In FIG. 2, for convenience of calculation described later, a region inside the hexagon formed by the core portion 21 and the hole 23 surrounding the core portion 21 closest to the core portion is referred to as “a core and a core. Although the area is defined as the "area including holes" 22, the manner of defining this area is not limited to this.
[0017]
Also, the way of arranging the holes is not limited to that shown in FIG. 2, and it is possible to design freely according to the characteristics of the desired optical fiber. In the case of a photonic crystal having a structure, there is an advantage that the manufacture is extremely easy since the cross-section naturally takes a hexagonal close-packed structure simply by arranging columns having the same outer diameter without gaps.
[0018]
Furthermore, if the position and size of some of the many holes present in the cladding are designed to be different from those of other holes, the symmetry around the central axis of the optical fiber can be achieved. Can be reduced to solve the polarization degeneration, and a polarization maintaining optical fiber can be realized.
[0019]
FIG. 3 is a diagram for explaining a method of designing the absolute single mode optical fiber of the present invention having the structure shown in FIGS. 1 and 2. The horizontal axis represents the wavelength λ of the propagating light divided by the hole lattice spacing Λ. The vertical axis represents the effective refractive index, and the conceptual diagram shows a result obtained by calculating the effective refractive index of the first mode, the second mode, and the mode of the cladding portion for each wavelength. . In this figure, as shown in FIG. 2, the diameter (d2) of two of the six holes surrounding the core portion is made larger than the diameter (d1) of the other holes, and two times. It is assumed that the calculation has been performed for the case having the axial symmetry.
[0020]
Since the fiber of this structure has less than three axial symmetries, the first mode is not degenerated by polarization, and the optical fiber that propagates only this mode is a true single mode optical fiber (absolute single mode optical fiber). Fiber).
[0021]
When the effective refractive index of the first mode and the second mode becomes lower than the effective refractive index of the cladding mode, these modes leak from the core portion to the cladding portion, and as a result, propagate in the optical fiber. You can't do that.
[0022]
Therefore, if the first mode is designed to be able to propagate while the second mode is not allowed to propagate, as is clear from the definitions of the “first mode” and the “second mode”, these Since the modes other than the mode have a lower effective refractive index than the second mode, they cannot propagate in the optical fiber, and can propagate only the first mode.
[0023]
In FIG. 3, the wavelength region in which the optical fiber operates in the absolute single mode is a region indicated by a white arrow in the figure, and the effective refractive index of the first mode is the effective refractive index of the cladding. This corresponds to a wavelength range that is larger than the effective refractive index of the second mode and smaller than the effective refractive index of the cladding.
[0024]
As described above, in order to design an optical fiber for operating light of a specific wavelength in an absolute single mode, the wavelength λ is determined by the value of “wavelength / hole lattice spacing (λ / Λ)” obtained in FIG. What is necessary is just to obtain the lattice spacing Λ obtained by the division.
[0025]
FIG. 4 is a diagram for explaining the result of executing the design method of the absolute single mode optical fiber of the present invention having the structure shown in FIGS. 1 and 2 by actual calculation, and the horizontal axis indicates the wavelength λ of the propagating light. Is divided by the pore lattice spacing Λ, the vertical axis is the effective refractive index (n / n0), and the pore lattice spacing Λ, the pore diameter d1 of the cladding part, and the pore diameter larger than the other pores. The diameter is d2, and it is determined under the conditions of d1 / Λ = 0.38 and d2 / Λ = 1.04. Here, the base material of the fiber is quartz glass and the inside of the hole is vacuum (or air). However, the base material of the fiber may be other glass or plastic, and the inside of the hole is It may be filled with a gas or liquid or solid that is transparent to light propagating in the core.
[0026]
In this figure, the solid line is the effective refractive index of the cladding, the dotted line is the effective refractive index of the first mode, and the dashed line is the effective refractive index of the second mode. From the results shown in this figure, it can be seen that the wavelength region of the optical fiber in which the absolute single operation is performed is λ / Λ = 0.4 to 0.49.
[0027]
FIG. 5 is a diagram for explaining the wavelength dependence of the loss of the actual optical fiber having the structure shown in FIG. 2. The parameters of this optical fiber are as follows: Λ = 2.6 μm, d1 = 1 μm, d2 = 2.7 μm. In this figure, the wavelength at which the loss of each mode begins to increase corresponds to the wavelength at which the effective refractive index of each mode is equal to the effective refractive index of the mode of the cladding.
[0028]
From the results of FIG. 5, it can be seen that the wavelength region of the optical fiber in which the absolute single operation is performed is 1.1 to 1.3 μm, and the absolute single operation region (1.04 μm) obtained from the calculation result shown in FIG. 1.21.27 μm), indicating that the operation is almost as designed.
[0029]
(Example 2)
In the absolute single mode optical fiber of the present invention, it is possible to change the effective refractive index of the cladding to set the absolute single operation region to a desired wavelength.
[0030]
FIG. 6 is a cross-sectional view for explaining a second example of the structure of the absolute single mode optical fiber of the present invention. This absolute single mode optical fiber also exists in the clad portion as shown in FIG. A large number of holes 63 are periodically arranged at a lattice interval Λ to surround the core portion 61, and the core portion 61 and the hole that surrounds the core portion 61 closest to each other make “the core and the hole surrounding the core match. A region 62 is formed, and an optical fiber is formed using a so-called “photonic crystal structure”. The diameter (d1) of the hole in the “region combining the core and the hole surrounding the core” 62 ', D2') are taken as in the first embodiment, while the diameter (d3 ') of the holes in the cladding is different from the diameters of these holes, which is different from the structure shown in FIG. I have.
[0031]
FIG. 7 shows that d1 ′ / Λ = 0.5 and d2 ′ / Λ = 1.25, and the diameter d3 ′ of the holes in the cladding is d3 ′ / Λ = 0.475, 0.5, 0.525, It is a figure for explaining the calculation result of the absolute single operation area at the time of changing to 0.55. When performing this calculation, the base material of the fiber is quartz glass, and the inside of the holes is vacuum (or air).
[0032]
In this figure, the solid line is the effective refractive index of the cladding, the dotted line is the effective refractive index of the first mode, and the dashed line is the effective refractive index of the second mode. From the results shown in this figure, the wavelength region of this optical fiber in which absolute single operation is performed is λ / Λ = 0.37 to 0.53 and d3 ′ / Λ = 0 when d3 ′ / Λ = 0.475. .Lambda ./. Lambda. = 0.58 to 0.72 for 0.5, .lambda ./. Lambda. = 0.67 to 0.86 for d3 '/. Lambda. = 0.525, and d3' /. Lambda. = 0.55 In this case, it can be read that λ / Λ = 0.82 to 1.03.
[0033]
In the example shown here, the hole diameter d3 'of the cladding portion is changed by only about 10%, but the absolute single operation region can be changed up to twice the wavelength, and d3' / Λ By changing the value as a parameter, a desired absolute single operation area can be easily realized.
[0034]
【The invention's effect】
As described above, according to the present invention, a photonic comprising a cladding part constituting an optical fiber, the void extending in a direction in which the cladding part extends, and having holes periodically arranged at lattice intervals Λ. It is composed of a crystal structure, and the holes are arranged so that the axial symmetry around the central axis of the core portion is less than three times, and there are a core portion and a hole surrounding the core portion in close proximity. Among the plurality of modes that can exist in the region, in the first mode in which the effective refractive index with respect to the wavelength of light propagating through the core portion is the largest and in the second mode in which the effective refractive index is the second largest, the effective refractive index of the first mode is the And the lattice spacing 空 of the holes is set so that the effective refractive index of the second mode is smaller than the effective refractive index of the cladding part. Absolute single with high design freedom A mode optical fiber and a method for designing the same can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a first structural example of an absolute single mode optical fiber of the present invention.
FIG. 2 is a diagram for explaining in detail the vicinity of a core portion of the absolute single mode optical fiber of the present invention shown in FIG.
FIG. 3 is a conceptual diagram for explaining a method for designing an absolute single mode optical fiber of the present invention having the structure shown in FIGS. 1 and 2;
FIG. 4 is a diagram for explaining the result of executing the method of designing the absolute single mode optical fiber of the present invention having the structure shown in FIGS. 1 and 2 by actual calculation.
FIG. 5 is a diagram for explaining the wavelength dependence of the loss of an actual optical fiber.
FIG. 6 is a cross-sectional view for explaining a second structural example of the absolute single mode optical fiber of the present invention.
FIG. 7 is a diagram for explaining a calculation result of an absolute single operation region when the diameter of a hole in a cladding portion is changed in the absolute single mode optical fiber of the present invention having the structure shown in FIG. 6; .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Core part 12 Cladding part 13 Optical fiber material 21, 61 Core part 22, 62 Region 23, 63 where core and hole surrounding core are combined.

Claims (6)

光ファイバ母材の中心領域に設けられたコア部がクラッド部により取り囲まれており、
前記クラッド部は、当該クラッド部の伸長方向に延在し、かつ、格子間隔Λで周期的に配置された空孔を備えることにより屈折率変調するフォトニック結晶構造を有し、
前記空孔は、前記コア部の中心軸の周りの軸対称性が3回未満となるように配置され、
前記コア部と当該コア部を近接して取り囲む空孔とが存在する領域に存在可能な複数のモードのうち、当該コア部を伝搬する光の波長に対する有効屈折率が最大となる第1モードと2番目に大きな第2モードにおいて、当該第1モードの有効屈折率が前記クラッド部の有効屈折率よりも大きく、かつ、当該第2モードの有効屈折率が前記クラッド部の有効屈折率よりも小さくなるように設定されていることを特徴とする絶対単一モード光ファイバ。
The core provided in the central region of the optical fiber preform is surrounded by the clad,
The clad portion has a photonic crystal structure that extends in the direction in which the clad portion extends, and that modulates the refractive index by including holes periodically arranged at a lattice interval Λ,
The holes are arranged such that the axial symmetry around the central axis of the core portion is less than three times,
Among a plurality of modes that can be present in a region where the core portion and a hole surrounding the core portion in close proximity exist, a first mode in which an effective refractive index with respect to a wavelength of light propagating through the core portion is maximum. In a second largest second mode, the effective refractive index of the first mode is larger than the effective refractive index of the cladding portion, and the effective refractive index of the second mode is smaller than the effective refractive index of the cladding portion. An absolute single mode optical fiber, wherein the optical fiber is set to be:
前記コア部を近接して取り囲む空孔のうち少なくとも1つの空孔の径が、前記クラッド部に配置された空孔の径よりも大きいことを特徴とする請求項1に記載の絶対単一モード光ファイバ。2. The absolute single mode according to claim 1, wherein a diameter of at least one of the holes surrounding the core portion is larger than a diameter of the hole arranged in the clad portion. Optical fiber. 前記コア部を近接して取り囲む空孔の径と前記クラッド部に配置された空孔の径とが異なることを特徴とする請求項2に記載の絶対単一モード光ファイバ。3. The absolute single mode optical fiber according to claim 2, wherein a diameter of a hole surrounding the core portion and a diameter of a hole arranged in the cladding portion are different from each other. 前記光ファイバ母材は、ガラスまたはプラスチックであることを特徴とする請求項1乃至3の何れかに記載の絶対単一モード光ファイバ。The absolute single mode optical fiber according to any one of claims 1 to 3, wherein the optical fiber preform is glass or plastic. 前記空孔の内部は、真空、もしくは、前記コア部を伝搬する光に対して透明なガスまたは液体もしくは固体が充填されていることを特徴とする請求項4に記載の絶対単一モード光ファイバ。The absolute single mode optical fiber according to claim 4, wherein the inside of the hole is filled with a vacuum or a gas or a liquid or a solid that is transparent to light propagating through the core portion. . 光ファイバのコア部を取り囲むクラッド部が、当該クラッド部の伸長方向に延在し、かつ、格子間隔Λで周期的に配置された空孔を備えることにより屈折率変調するフォトニック結晶構造を有する絶対単一モード光ファイバの設計方法であって、
前記空孔を、前記コア部の中心軸の周りの軸対称性が3回未満となるように配置し、
前記コア部と当該コア部を近接して取り囲む空孔とが存在する領域に存在可能な複数のモードのうち、当該コア部を伝搬する光の波長に対する有効屈折率が最大となる第1モードと2番目に大きな第2モードにおいて、当該第1モードの有効屈折率が前記クラッド部の有効屈折率よりも大きく、かつ、当該第2モードの有効屈折率が前記クラッド部の有効屈折率よりも小さくなるように前記格子間隔Λを設定することを特徴とする絶対単一モード光ファイバの設計方法。
The clad part surrounding the core part of the optical fiber has a photonic crystal structure that extends in the direction in which the clad part extends, and that has a refractive index modulation by providing holes periodically arranged with a lattice spacing Λ. An absolute single mode optical fiber design method,
The holes are arranged such that the axial symmetry around the central axis of the core portion is less than three times,
Among a plurality of modes that can be present in a region where the core portion and a hole surrounding the core portion in close proximity exist, a first mode in which an effective refractive index with respect to a wavelength of light propagating through the core portion is maximum. In a second largest second mode, the effective refractive index of the first mode is larger than the effective refractive index of the cladding portion, and the effective refractive index of the second mode is smaller than the effective refractive index of the cladding portion. A method for designing an absolute single mode optical fiber, wherein the lattice spacing Λ is set so as to be as follows.
JP2002241070A 2002-08-21 2002-08-21 Absolute single-mode optical fiber and design method thereof Expired - Fee Related JP3954929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241070A JP3954929B2 (en) 2002-08-21 2002-08-21 Absolute single-mode optical fiber and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241070A JP3954929B2 (en) 2002-08-21 2002-08-21 Absolute single-mode optical fiber and design method thereof

Publications (2)

Publication Number Publication Date
JP2004078027A true JP2004078027A (en) 2004-03-11
JP3954929B2 JP3954929B2 (en) 2007-08-08

Family

ID=32023676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241070A Expired - Fee Related JP3954929B2 (en) 2002-08-21 2002-08-21 Absolute single-mode optical fiber and design method thereof

Country Status (1)

Country Link
JP (1) JP3954929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812771A (en) * 2020-06-15 2020-10-23 艾菲博(宁波)光电科技有限责任公司 Solid core polarization maintaining high nonlinear photonic crystal fiber and preparation process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812771A (en) * 2020-06-15 2020-10-23 艾菲博(宁波)光电科技有限责任公司 Solid core polarization maintaining high nonlinear photonic crystal fiber and preparation process thereof

Also Published As

Publication number Publication date
JP3954929B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP4904241B2 (en) Holey fiber
US7400806B2 (en) Photonic-bandgap fiber with a core ring
JP5888966B2 (en) Photonic band gap fiber manufacturing method
US9658393B2 (en) High-birefringence hollow-core fibers and techniques for making same
JP2010140045A (en) Waveguide having axially varying structure
US20180180875A1 (en) Microstructured fiber optic oscillator and waveguide for fiber scanner
US20100150507A1 (en) Holey fiber
KR20030093320A (en) Thin walled core band-gap waveguides
JP3842659B2 (en) Single mode photonic bandgap fiber and its glass matrix
CN108333669B (en) Single-polarization aperiodic large-pitch single-mode active microstructure optical fiber
CN107490820B (en) All-solid-state large-mode-area near-zero dispersion flat microstructure optical fiber
JP2006011328A (en) Photonic crystal fiber
JP3954929B2 (en) Absolute single-mode optical fiber and design method thereof
JP2003255153A (en) Single-mode optical fiber
JP2006162634A (en) Single mode photonic crystal optical fiber
JPWO2017150699A1 (en) Optical fiber, optical system, and optical fiber manufacturing method
JP2004352607A (en) Photonic crystal optical fiber preform, and photonic crystal optical fiber obtained by utilizing the same
JP3871053B2 (en) Dispersion flat fiber
JP3917613B2 (en) Photonic crystal optical fiber
US6775450B2 (en) Micro-structured optical fibers
JP4447531B2 (en) Photonic band gap fiber and manufacturing method thereof
JPWO2013031484A1 (en) Fiber and fiber manufacturing method
JP2005025056A (en) Photonic crystal fiber
JP2011170173A (en) Photonic band gap fiber
JP2007127930A (en) Photonic bandgap fiber and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees