JP2004077896A - Hologram recording medium and hologram recording medium reproducing device - Google Patents

Hologram recording medium and hologram recording medium reproducing device Download PDF

Info

Publication number
JP2004077896A
JP2004077896A JP2002239382A JP2002239382A JP2004077896A JP 2004077896 A JP2004077896 A JP 2004077896A JP 2002239382 A JP2002239382 A JP 2002239382A JP 2002239382 A JP2002239382 A JP 2002239382A JP 2004077896 A JP2004077896 A JP 2004077896A
Authority
JP
Japan
Prior art keywords
optical waveguide
recording medium
hologram recording
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002239382A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kurokawa
黒川 義昭
Ikutake Yagi
八木 生剛
Kaneyuki Imai
今井 欽之
Katsuhiro Endo
遠藤 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002239382A priority Critical patent/JP2004077896A/en
Publication of JP2004077896A publication Critical patent/JP2004077896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hologram recording medium of inexpensive and simple construction capable of easily and speedily performing alignment of incident light. <P>SOLUTION: The hologram recording medium 3 which has a structure of laminating a plurality of slab optical waveguides where diffraction factors or scattering factors are recorded, and forms an image of guided light generated by making read light incident to the waveguide by diffracting or scattering the guided light by the diffraction factors or scattering factors on a predetermined image-forming plane as a hologram image, and an azimuth of the read light to the optical waveguide α of one of the layers adjacent to each other in the plurality of slab optical waveguides and an azimuth of the read light to the optical waveguide β of the other layer have an angle difference, and when the read light to the optical waveguide α of one of the layers is made incident to the optical waveguides α, β of both of the adjacent layers, this angle difference is an angle at which a ratio of the brightness of an image formed from the optical waveguide α of the one of the layers to that of an image formed from the optical waveguide β of the other layer takes a predetermined value or larger. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、大量の情報を記録し、その情報を簡便に読み出し可能とするスラブ型光導波路を積層した構造を有するホログラム記録媒体、及びホログラム記録媒体再生装置に関する。
【0002】
【従来の技術】
近年、モバイルコンピューティングをはじめとして各種分野において、コンパクトで持ち運び容易でかつ大容量の、メモリの需要が急増している。
大容量のメモリを低コストで実現する方法の一つとして、図5に示すような記録情報をスラブ型光導波路に埋め込み、この光導波路を積層した平面光導波路型多重光メモリが提案されている。
【0003】
この方式では、ホログラム記録媒体(多重光メモリ)3はコア層とクラッド層を交互に積層することにより多層化した光導波路を形成し、情報は各々の光導波路に散乱因子として記録しておく。
情報の再生は、光源1より出射した入射光2を、再生の対象とする光導波路の入射位置31のみに精密に入射結合させ、生じた再生像4Aを撮像素子5で撮像することにより行う。
【0004】
【発明が解決しようとする課題】
このように、積層導波路を用いた光メモリは大容量化が可能であり、将来記憶として有望であるが、図5に示したようにホログラム記録媒体3における入射光の位置合わせが不完全で、目的とする光導波路の入射位置31のみならず隣接する光導波路の入射位置32にも一部結合してしまった場合、その隣接層に記録されている情報もクロストーク4Bとして同時に再生してしまうという問題があった。
【0005】
したがって、エラー無く情報を読み出すために、ホログラム再生光学系における入射光の精密な位置合わせや焦点合わせが必要である一方、高速かつ簡便な焦点合わせの方法は考案されておらず、装置化するうえで妨げとなっていた。
また、ホログラム記録された情報を再生するに際し、ホログラム記録媒体に対する入射光の精密な位置制御を不要とするためには隣接する導波路の間隔を広げる必要があり、このため積層可能な導波路数が制限され、記憶容量の大容量化の妨げとなっていた。
【0006】
本発明はこのような事情に鑑みてなされたものであり、簡便かつ高速に入射光の位置合わせを行うことができ、安価かつ構成容易なホログラム記録媒体及びホログラム記録媒体再生装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、前記角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度であることを特徴とする。
【0008】
また、請求項2に記載の発明は、請求項1に記載のホログラム記録媒体において、前記角度差が90度であることを特徴とする。
【0009】
また、請求項3に記載の発明は、回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、 前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、前記角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度であるホログラム記録媒体に記録された情報を再生するホログラム記録媒体再生装置であって、方位角が前記角度差を有する複数の読み出し光を前記ホログラム記録媒体に入射可能な機構を有することを特徴とする。
【0010】
また、請求項4に記載の発明は、請求項3に記載のホログラム記録媒体再生装置において、前記角度差が90度であることを特徴とする。
【0011】
また、請求項5に記載の発明は、請求項3または4のいずれかに記載のホログラム記録媒体再生装置において、前記複数の読み出し光の入射位置のホログラム記録媒体積層方向の間隔が、前記ホログラム記録媒体の光導波路積層間隔の奇数倍であることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して詳細に説明する。
図1に、本発明の実施形態に係るホログラム記録媒体の構成を示す。本発明の実施形態に係るホログラム記録媒体は3、回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるようにしたホログラム記録媒体である。
【0013】
本実施形態に係るホログラム記録媒体3は、前記複数のスラブ型光導波路において隣接する一方の層の光導波路αに対する読み出し光の方位角(入射方向)と他方の層の光導波路βに対する読み出し光の方位角とが角度差を有している。
この角度差は、前記一方の層の光導波路αに対する読み出し光を前記隣接する両方の層の光導波路α,βに同時に入射したときに、前記一方の層の光導波路αから生じる像の明るさと前記他方の層の光導波路βから生じる像の明るさとの比が所定値以上となる角度であり、例えば、90度である。
【0014】
図5に示した従来のホログラム記録媒体では、すべての光導波路について、同一方向の読み出し光に対して再生像を結像するようにホログラム記録がなされている。
これに対して、本発明の実施形態に係るホログラム記録媒体3では、隣接する光導波路αおよび光導波路βにおいて、再生に必要な読み出し光の方位角が互いに直交またはそれに準ずる角度になるように、情報がホログラム記録されている。
ホログラム記録では、記録された、あるいは計算された方向以外の読み出し光に対しては再生像が歪むと共にその再生光の強度が低下し、設計方向と読み出し光の方向が直交状態に近づくにつれて再生光が生じなくなるという特徴を有している。
【0015】
したがって、ある光導波路αから情報を読み出すことができる方向の入射光2αが隣接する光導波路βに入射結合したとしても、この導波光では光導波路βに記録されている情報は再生されないか、または再生されても、その出力はほぼ無視することができる程度となる。
【0016】
図2は、本発明に係るホログラム記録媒体から情報を再生する原理を示している。同図において、光源1から出射された入射光2が再生しようとしているホログラム記録媒体3における光導波路Aの入射端31に位置決めされ、入射光が光導波路Aに結合している状態にある。この入射光2はある程度の広がりを持っているために隣接する光導波路Bにも入射光の一部が結合し導波している。
従来のホログラム記録媒体では図5に示したように光導波路Bに記録されている情報を同時に再生してしまい、目的とする光導波路Aの情報を正確に読み出すことができない。
【0017】
これに対して、本発明によるホログラム記録媒体では、図2で説明したように,入射光が、たとえ目的とする光導波路に隣接する光導波路に結合したとしても、この隣接する光導波路の情報は再生されないので、目的とする光導波路Aに記録された情報のみをクロストークなく正確に読み出すことができる。
図3及び図4に、本発明の実施形態に係るホログラム記録媒体及びホログラム記録媒体再生装置の概略構成を示す。
【0018】
本実施形態に係るホログラム記録媒体再生装置は、回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、前記角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度であるホログラム記録媒体に記録された情報を再生するホログラム記録媒体再生装置であって、方位角が前記角度差を有する複数の読み出し光を前記ホログラム記録媒体に入射可能な機構を有する。
上記角度差は、例えば、90度である。
【0019】
これらの図において、ホログラム記録媒体3に対してお互いに直交する方向から読み出し光を入射できるように構成されている。図3は、奇数層目の光導波路αのデータを読み出している例を示し、図4は、偶数層目の光導波路βのデータを読み出している例を示している。
【0020】
奇数層目の光導波路α群からデータを読み出す場合には光源1αを用い、偶数層目の光導波路β群からデータを読み出す場合には光源1βを用いて、それぞれから生じた再生像4α、あるいは再生像4βを撮像素子5で撮像し、データを得る。
既に述べたように、本発明の実施形態に係るホログラム記録媒体及びホログラム記録媒体再生装置では、ある層からデータを読み出すとき、その隣接層の情報を読み出すことはないため、従来技術に比して、入射光位置決めの精度は低くてよく、装置の簡素化を図ることができる。
【0021】
また、従来と同様の位置決め精度が実現できる場合には、隣接する光導波路間の間隔を狭くすることができ、光導波路の積層数を増やすことができるから、ホログラム記録媒体の記録容量を容易に増加させることが可能となる。
本実施形態では読み出し光源が2つある例を示したが、光源を1つとしてミラーやプリズムや導波路などからなる光学系により光をガイドし、互いに直交する方向に読み出し光をホログラム記録媒体における隣接する光導波路に入射可能とするように構成してもよい。
【0022】
また、これらの直交する光の間隔を光導波路間隔の奇数倍とすることにより、1度入射光の位置決めを行えば、読み出し光の方向を切り替えるだけで隣接する両層に記録されたデータを別個に読み出すことができ、データアクセス速度の向上が図れる。
本実施形態では、2つの読み出し光のなす角度は直交するとしたが、データ復号上、支障のない程度のクロストークが生じても問題ないことはいうまでもない。
したがって、上記2つの読み出し光の方位角の角度差は90度である必要はなく、90度に近い角度をなしていればよい。
また、入射する読み出し光の数は必ずしも2つである必要は無いことは言うまでもない。
【0023】
【発明の効果】
以上に説明したように、本発明に係るホログラム記録媒体によれば、回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、該角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度としたので、再生時に隣接層によるクロストークを排除することができ、それ故、簡易かつ高速データ読み出し可能な大容量記録媒体が得られる。
【0024】
また、本発明に係るホログラム記録媒体再生装置によれば、回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、前記角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度であるホログラム記録媒体に記録された情報を再生するホログラム記録媒体再生装置であって、方位角が前記角度差を有する複数の読み出し光を前記ホログラム記録媒体に入射可能な機構を有するので、再生時に隣接層によるクロストークを排除することができ、それ故、簡易かつ高速データ読み出しが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るホログラム記録媒体の読み出し時における原理を示す説明図。
【図2】本発明の実施形態に係るホログラム記録媒体から情報を再生する際の原理を示すホログラム記録媒体及び再生装置の説明図。
【図3】本発明の実施形態に係るホログラム記録媒体及び再生装置の実施模式図。
【図4】本発明の実施形態に係るホログラム記録媒体及び再生装置の実施模式図。
【図5】従来の導波路型光メモリ媒体および再生装置の構成を示す模式図。
【符号の説明】
A:目的とする導波路、B:隣接する導波路、α:奇数層目の導波路群、β:偶数層目の導波路群、1:レーザ光源、1α:奇数層読み出し用光源、1β:偶数層読み出し用光源、2:入射光、2α:導波路群αを読み出す方向の入射光、3:ホログラム記録媒体,31:目的とする入射位置、32:隣接層の入射位置、4A:目的とする再生光、4B:隣接層からのクロストーク、4α:奇数層からの再生光、4β:偶数層からの再生光、5:撮像素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hologram recording medium having a structure in which a large amount of information is recorded and a slab-type optical waveguide that enables the information to be easily read is stacked, and a hologram recording medium reproducing apparatus.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in various fields including mobile computing, a demand for a memory that is compact, easy to carry, and has a large capacity has rapidly increased.
As one method for realizing a large-capacity memory at low cost, a planar optical waveguide type multiplex optical memory in which recording information as shown in FIG. 5 is embedded in a slab optical waveguide and the optical waveguides are stacked has been proposed.
[0003]
In this method, a hologram recording medium (multiple optical memory) 3 forms a multilayer optical waveguide by alternately laminating a core layer and a cladding layer, and information is recorded in each optical waveguide as a scattering factor.
Reproduction of information is performed by precisely entering the incident light 2 emitted from the light source 1 only at the incident position 31 of the optical waveguide to be reproduced, and capturing the reproduced image 4A generated by the image sensor 5.
[0004]
[Problems to be solved by the invention]
As described above, the optical memory using the laminated waveguide can increase the capacity and is promising as a memory in the future. However, as shown in FIG. 5, the alignment of the incident light on the hologram recording medium 3 is incomplete, If the light is partially coupled not only to the incident position 31 of the target optical waveguide but also to the incident position 32 of the adjacent optical waveguide, information recorded in the adjacent layer is simultaneously reproduced as crosstalk 4B. There was a problem.
[0005]
Therefore, in order to read out information without error, precise positioning and focusing of incident light in the hologram reproducing optical system are required. On the other hand, a fast and simple focusing method has not been devised, and it is difficult to design a device. In the way.
Also, when reproducing hologram-recorded information, it is necessary to increase the distance between adjacent waveguides in order to eliminate the need for precise position control of incident light with respect to the hologram recording medium. Has been limited, which has hindered the increase in storage capacity.
[0006]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an inexpensive and easy-to-configure hologram recording medium and a hologram recording medium reproducing apparatus that can easily and quickly align incident light. Aim.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 has a structure in which a plurality of slab type optical waveguides on which a diffraction factor or a scattering factor is recorded are stacked, and a readout light is incident on the optical waveguide. A hologram recording medium for diffracting or scattering the generated guided light by the diffraction factor or the scattering factor to form a hologram image on a predetermined image plane, wherein one of the plurality of slab-type optical waveguides is adjacent to one another. And the azimuth of the read light with respect to the optical waveguide of the other layer and the azimuth of the read light with respect to the optical waveguide of the other layer have an angle difference, the angle difference, the read light with respect to the optical waveguide of the one layer both the adjacent When simultaneously incident on the optical waveguides of the other layer, the ratio between the brightness of the image generated from the optical waveguide of the one layer and the brightness of the image generated from the optical waveguide of the other layer is a predetermined value. Characterized in that an angle becomes greater.
[0008]
According to a second aspect of the present invention, in the hologram recording medium according to the first aspect, the angle difference is 90 degrees.
[0009]
Further, the invention according to claim 3 has a structure in which a plurality of slab-type optical waveguides on which a diffraction factor or a scattering factor is recorded are laminated, and a guided light generated by irradiating readout light to the optical waveguide is generated. A hologram recording medium that forms a hologram image on a predetermined image plane by being diffracted or scattered by the diffraction factor or the scattering factor, wherein read light for an optical waveguide of one of adjacent layers in the plurality of slab-type optical waveguides is provided. The azimuth angle and the azimuth angle of the read light with respect to the optical waveguide of the other layer have an angle difference, the angle difference, the read light with respect to the optical waveguide of the one layer to the optical waveguide of both adjacent layers. The angle at which the ratio of the brightness of the image generated from the optical waveguide of the one layer to the brightness of the image generated from the optical waveguide of the other layer is equal to or greater than a predetermined value when the light is simultaneously incident. A hologram recording medium reproducing apparatus for reproducing information recorded on a hologram recording medium, comprising: a mechanism capable of making a plurality of reading lights having azimuth angles having the angle difference incident on the hologram recording medium. .
[0010]
According to a fourth aspect of the present invention, in the hologram recording medium reproducing apparatus according to the third aspect, the angle difference is 90 degrees.
[0011]
According to a fifth aspect of the present invention, in the hologram recording medium reproducing apparatus according to any one of the third and fourth aspects, the interval between the incident positions of the plurality of reading lights in the hologram recording medium stacking direction is the same as that of the hologram recording medium. It is characterized by being an odd multiple of the optical waveguide lamination interval of the medium.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration of a hologram recording medium according to an embodiment of the present invention. The hologram recording medium according to the embodiment of the present invention has a structure in which a plurality of slab-type optical waveguides on which a diffraction factor or a scattering factor is recorded are stacked, and a readout light is generated by being incident on the optical waveguide. A hologram recording medium in which wave light is diffracted or scattered by the diffraction factor or the scattering factor to form a hologram image on a predetermined image plane.
[0013]
In the hologram recording medium 3 according to the present embodiment, the azimuth angle (incident direction) of the read light with respect to the optical waveguide α of one adjacent layer in the plurality of slab-type optical waveguides and the read light with respect to the optical waveguide β of the other layer are different. The azimuth has an angle difference.
This difference in angle is caused by the brightness of an image generated from the optical waveguide α of the one layer when the reading light for the optical waveguide α of the one layer is simultaneously incident on the optical waveguides α and β of the two adjacent layers. The angle at which the ratio with the brightness of the image generated from the optical waveguide β of the other layer becomes a predetermined value or more, for example, 90 degrees.
[0014]
In the conventional hologram recording medium shown in FIG. 5, hologram recording is performed on all optical waveguides so that a reproduced image is formed with respect to readout light in the same direction.
On the other hand, in the hologram recording medium 3 according to the embodiment of the present invention, in the adjacent optical waveguides α and β, the azimuths of the readout light necessary for reproduction are orthogonal to each other or similar thereto. Information is recorded on the hologram.
In hologram recording, the readout light is distorted and the intensity of the readout light is reduced with respect to the readout light other than the recorded or calculated direction, and the readout light is reduced as the design direction and the readout light direction approach the orthogonal state. Is no longer generated.
[0015]
Therefore, even if the incident light 2α in the direction from which information can be read from a certain optical waveguide α is incident and coupled to the adjacent optical waveguide β, the information recorded in the optical waveguide β is not reproduced by this guided light, or Even if reproduced, the output is almost negligible.
[0016]
FIG. 2 shows the principle of reproducing information from the hologram recording medium according to the present invention. In the figure, the incident light 2 emitted from the light source 1 is positioned at the incident end 31 of the optical waveguide A in the hologram recording medium 3 to be reproduced, and the incident light is coupled to the optical waveguide A. Since the incident light 2 has a certain degree of spread, a part of the incident light is also coupled to the adjacent optical waveguide B and guided.
In the conventional hologram recording medium, as shown in FIG. 5, the information recorded in the optical waveguide B is reproduced at the same time, and the target information in the optical waveguide A cannot be read accurately.
[0017]
On the other hand, in the hologram recording medium according to the present invention, as described with reference to FIG. 2, even if the incident light is coupled to the optical waveguide adjacent to the target optical waveguide, the information of the adjacent optical waveguide is not changed. Since the information is not reproduced, only the information recorded in the target optical waveguide A can be accurately read without crosstalk.
3 and 4 show a schematic configuration of a hologram recording medium and a hologram recording medium reproducing device according to an embodiment of the present invention.
[0018]
The hologram recording medium reproducing apparatus according to the present embodiment has a structure in which a plurality of slab-type optical waveguides on which a diffraction factor or a scattering factor is recorded are stacked, and guided light generated by irradiating readout light to the optical waveguide. A hologram recording medium that forms a hologram image on a predetermined image plane by diffracting or scattering the light by the diffraction factor or the scattering factor, and reading out one of the adjacent slab type optical waveguides from the optical waveguide. The azimuth angle of the light and the azimuth angle of the read light with respect to the optical waveguide of the other layer have an angle difference, and the angular difference is the optical waveguide of the two adjacent layers that outputs the read light with respect to the optical waveguide of the one layer. At the same time, the ratio of the brightness of the image generated from the optical waveguide of the one layer to the brightness of the image generated from the optical waveguide of the other layer is equal to or less than a predetermined value. A hologram recording medium reproducing apparatus for reproducing information recorded on the hologram recording medium is an angle the azimuth has a plurality of read-out light for a possible incident on the hologram recording medium mechanism having the angular difference.
The angle difference is, for example, 90 degrees.
[0019]
In these drawings, the hologram recording medium 3 is configured so that reading light can be incident on the hologram recording medium 3 from directions orthogonal to each other. FIG. 3 shows an example of reading data of the optical waveguide α of the odd-numbered layer, and FIG. 4 shows an example of reading data of the optical waveguide β of the even-numbered layer.
[0020]
The light source 1α is used to read data from the optical waveguide α group of the odd-numbered layer, and the light source 1β is used to read data from the optical waveguide β group of the even-numbered layer. The reproduced image 4β is captured by the image sensor 5 to obtain data.
As described above, in the hologram recording medium and the hologram recording medium reproducing apparatus according to the embodiment of the present invention, when data is read from a certain layer, information in an adjacent layer is not read. The accuracy of the incident light positioning may be low, and the apparatus can be simplified.
[0021]
Further, when the same positioning accuracy as that of the related art can be realized, the interval between adjacent optical waveguides can be reduced, and the number of stacked optical waveguides can be increased, so that the recording capacity of the hologram recording medium can be easily increased. It is possible to increase.
In this embodiment, an example in which there are two reading light sources is shown. However, one light source is used to guide light by an optical system including a mirror, a prism, a waveguide, and the like, and the reading light is applied to the hologram recording medium in directions orthogonal to each other. You may comprise so that it may be made incident on an adjacent optical waveguide.
[0022]
Also, by setting the interval between these orthogonal lights to be an odd multiple of the interval between the optical waveguides, once the incident light is positioned, the data recorded on both adjacent layers can be separated by simply switching the direction of the read light. And the data access speed can be improved.
In the present embodiment, the angles formed by the two readout lights are orthogonal, but it goes without saying that there is no problem even if crosstalk occurs without any problem in data decoding.
Therefore, the angle difference between the azimuths of the two readout lights does not need to be 90 degrees, but may be any angle close to 90 degrees.
Needless to say, the number of incident read lights does not necessarily need to be two.
[0023]
【The invention's effect】
As described above, according to the hologram recording medium according to the present invention, the hologram recording medium has a structure in which a plurality of slab-type optical waveguides on which a diffraction factor or a scattering factor is recorded are stacked, and a readout light is incident on the optical waveguide. A hologram recording medium that forms a hologram image on a predetermined imaging surface by diffracting or scattering the generated guided light by the diffraction factor or the scattering factor, and one of the slab type optical waveguides adjacent to the hologram recording medium. The azimuth angle of the read light with respect to the optical waveguide of the layer and the azimuth angle of the read light with respect to the optical waveguide of the other layer have an angle difference, and the angle difference causes the read light with respect to the optical waveguide of the one layer to be adjacent to the optical waveguide of the one layer. When simultaneously incident on the optical waveguides of both layers, the brightness of the image generated from the optical waveguide of the one layer and the brightness of the image generated from the optical waveguide of the other layer are reduced. Since the ratio is set to an angle equal to or greater than a predetermined value, it is possible to eliminate the crosstalk due to the adjacent layers at the time of reproduction, therefore, simple and high-speed data read can be large-capacity recording medium is obtained.
[0024]
Further, according to the hologram recording medium reproducing apparatus according to the present invention, the hologram recording medium reproducing apparatus has a structure in which a plurality of slab type optical waveguides in which a diffraction factor or a scattering factor is recorded are stacked, and a readout light is caused to enter the optical waveguide. A hologram recording medium that diffracts or scatters the guided light by the diffraction factor or the scattering factor to form an image on a predetermined image plane as a hologram image, wherein the optical waveguide of one of the adjacent layers in the plurality of slab-type optical waveguides is provided. The azimuth of the read light with respect to the optical waveguide and the azimuth of the read light with respect to the optical waveguide of the other layer have an angle difference, and the angular difference causes the read light with respect to the optical waveguide of the one layer to be reflected by the two adjacent layers. The ratio of the brightness of the image generated from the optical waveguide of the one layer to the brightness of the image generated from the optical waveguide of the other layer when simultaneously entering the optical waveguide of A hologram recording medium reproducing apparatus that reproduces information recorded on a hologram recording medium having an angle equal to or greater than a predetermined value, wherein a mechanism capable of causing a plurality of readout lights having azimuth angles having the angle difference to be incident on the hologram recording medium. As a result, it is possible to eliminate crosstalk caused by an adjacent layer during reproduction, and therefore, simple and high-speed data reading becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the principle of reading a hologram recording medium according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a hologram recording medium and a reproducing apparatus showing a principle of reproducing information from the hologram recording medium according to the embodiment of the present invention.
FIG. 3 is a schematic diagram illustrating an embodiment of a hologram recording medium and a reproducing apparatus according to the embodiment of the present invention.
FIG. 4 is a schematic diagram illustrating a hologram recording medium and a reproducing apparatus according to an embodiment of the present invention.
FIG. 5 is a schematic diagram showing a configuration of a conventional waveguide type optical memory medium and a reproducing apparatus.
[Explanation of symbols]
A: target waveguide, B: adjacent waveguide, α: waveguide group of odd layer, β: waveguide group of even layer, 1: laser light source, 1α: light source for reading odd layer, 1β: Light source for reading even-numbered layers, 2: incident light, 2α: incident light in the direction of reading waveguide group α, 3: hologram recording medium, 31: target incident position, 32: incident position of adjacent layer, 4A: target Reproduction light, 4B: crosstalk from an adjacent layer, 4α: reproduction light from an odd layer, 4β: reproduction light from an even layer, 5: image sensor

Claims (5)

回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、
前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、
前記角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度であることを特徴とするホログラム記録媒体。
It has a structure in which a plurality of slab-type optical waveguides in which a diffraction factor or a scattering factor is recorded are laminated, and a guided light generated by irradiating readout light to the optical waveguide is diffracted or scattered by the diffraction factor or the scattering factor. A hologram recording medium for forming an image as a hologram image on a predetermined image plane,
In the plurality of slab-type optical waveguides, the azimuth of read light with respect to the optical waveguide of one adjacent layer and the azimuth of read light with respect to the optical waveguide of the other layer have an angle difference,
The angle difference is such that, when reading light for the optical waveguide of the one layer is simultaneously incident on the optical waveguides of the two adjacent layers, the brightness of an image generated from the optical waveguide of the one layer and the brightness of the other layer are reduced. A hologram recording medium, wherein the angle is such that the ratio of the brightness of an image generated from the optical waveguide to a predetermined value or more.
前記角度差が90度であることを特徴とする請求項1に記載のホログラム記録媒体。The hologram recording medium according to claim 1, wherein the angle difference is 90 degrees. 回折因子あるいは散乱因子が記録された複数のスラブ型光導波路を積層した構造を有し、読み出し光を該光導波路に入射して生じさせた導波光を前記回折因子あるいは散乱因子によって回折あるいは散乱させて所定の結像面にホログラム像として結像させるホログラム記録媒体であって、
前記複数のスラブ型光導波路において隣接する一方の層の光導波路に対する読み出し光の方位角と他方の層の光導波路に対する読み出し光の方位角とが角度差を有し、
前記角度差が、前記一方の層の光導波路に対する読み出し光を前記隣接する両方の層の光導波路に同時に入射したときに、前記一方の層の光導波路から生じる像の明るさと前記他方の層の光導波路から生じる像の明るさとの比が所定値以上となる角度であるホログラム記録媒体に記録された情報を再生するホログラム記録媒体再生装置であって、
方位角が前記角度差を有する複数の読み出し光を前記ホログラム記録媒体に入射可能な機構を有することを特徴とするホログラム記録媒体再生装置。
It has a structure in which a plurality of slab-type optical waveguides in which a diffraction factor or a scattering factor is recorded are laminated, and a guided light generated by irradiating readout light to the optical waveguide is diffracted or scattered by the diffraction factor or the scattering factor. A hologram recording medium for forming an image as a hologram image on a predetermined image plane,
In the plurality of slab-type optical waveguides, the azimuth of read light with respect to the optical waveguide of one adjacent layer and the azimuth of read light with respect to the optical waveguide of the other layer have an angle difference,
The angle difference is such that, when reading light for the optical waveguide of the one layer is simultaneously incident on the optical waveguides of the two adjacent layers, the brightness of an image generated from the optical waveguide of the one layer and the brightness of the other layer are reduced. A hologram recording medium reproducing device that reproduces information recorded on a hologram recording medium at an angle at which a ratio with the brightness of an image generated from the optical waveguide is equal to or more than a predetermined value,
An apparatus for reproducing a hologram recording medium, comprising: a mechanism capable of causing a plurality of readout lights having azimuths having the angle difference to enter the hologram recording medium.
前記角度差が90度であることを特徴とする請求項3に記載のホログラム記録媒体再生装置。The hologram recording medium reproducing device according to claim 3, wherein the angle difference is 90 degrees. 前記複数の読み出し光の入射位置のホログラム記録媒体積層方向の間隔が、前記ホログラム記録媒体の光導波路積層間隔の奇数倍であることを特徴とする請求項3または4のいずれかに記載のホログラム記録媒体再生装置。5. The hologram recording according to claim 3, wherein an interval between the incident positions of the plurality of reading lights in the hologram recording medium lamination direction is an odd multiple of an optical waveguide lamination interval of the hologram recording medium. Media playback device.
JP2002239382A 2002-08-20 2002-08-20 Hologram recording medium and hologram recording medium reproducing device Pending JP2004077896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239382A JP2004077896A (en) 2002-08-20 2002-08-20 Hologram recording medium and hologram recording medium reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239382A JP2004077896A (en) 2002-08-20 2002-08-20 Hologram recording medium and hologram recording medium reproducing device

Publications (1)

Publication Number Publication Date
JP2004077896A true JP2004077896A (en) 2004-03-11

Family

ID=32022505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239382A Pending JP2004077896A (en) 2002-08-20 2002-08-20 Hologram recording medium and hologram recording medium reproducing device

Country Status (1)

Country Link
JP (1) JP2004077896A (en)

Similar Documents

Publication Publication Date Title
JPS63146244A (en) Wavelength multiplex light recording device
JP2010020892A (en) Apparatus and method for recording/reproducing holographic information
US20050195722A1 (en) Reproducing apparatus, recording and reproducing apparatus and reproducing method
JPH0721569A (en) Optical disk, optical disk reproducing device and recording and reproducing method for optical disk
TW201230023A (en) Method of parallel bit-wise holographic data storage using a parallel light source
US7236442B2 (en) Holographic recording/reproducing apparatus and reproducing apparatus for holographically recorded information
KR100789860B1 (en) Optical head and information recording/reproducing apparatus
JP2004139672A (en) Optical pickup device, and optical disk player equipped with the same
JP2004077896A (en) Hologram recording medium and hologram recording medium reproducing device
WO2000049604A1 (en) Method of writing servo signal on magnetic tape
JP2010135054A (en) Holographic information recording method and holographic information recording/reproducing apparatus
JP2006251355A (en) Information reproducing apparatus and information reproducing method
JP2000155297A (en) Spatial modulator, hologram recording/reproducing device and optical information processor
US20090046559A1 (en) Holographic information storage medium, and method and apparatus for recording/reproducing holographic information using the same
JP3530108B2 (en) Optical recording medium and reproducing apparatus therefor
JP2001167453A (en) Multi-layer recording/reproducing disk device
JP4094373B2 (en) Incident angle control method and apparatus
JP4105005B2 (en) Two-dimensional optical information reproducing device
JP4386853B2 (en) Recording medium and information reproducing apparatus
JP4430639B2 (en) OPTICAL MEMORY REPRODUCING DEVICE, OPTICAL MEMORY REPRODUCING METHOD, OPTICAL MEMORY REPRODUCING PROGRAM, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP2006119332A (en) Hologram recording medium and reproducing device
JPWO2009048032A1 (en) Optical information recording / reproducing apparatus and optical head apparatus
JPH01124123A (en) Information reproducing device
JP2006267841A (en) Information reproducing device
JP2006162661A (en) Hologram device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226