JP2004077287A - Fuel assembly for nuclear reactor - Google Patents

Fuel assembly for nuclear reactor Download PDF

Info

Publication number
JP2004077287A
JP2004077287A JP2002238080A JP2002238080A JP2004077287A JP 2004077287 A JP2004077287 A JP 2004077287A JP 2002238080 A JP2002238080 A JP 2002238080A JP 2002238080 A JP2002238080 A JP 2002238080A JP 2004077287 A JP2004077287 A JP 2004077287A
Authority
JP
Japan
Prior art keywords
fuel
enrichment
end node
fuel assembly
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238080A
Other languages
Japanese (ja)
Other versions
JP2004077287A5 (en
Inventor
Kazunari Oguchi
小口 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2002238080A priority Critical patent/JP2004077287A/en
Publication of JP2004077287A publication Critical patent/JP2004077287A/en
Publication of JP2004077287A5 publication Critical patent/JP2004077287A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel assembly realizing high-burnup and improving fuel economy taking the end plug regions into consideration for decreasing fuel cycle costs. <P>SOLUTION: In this fuel assembly for a nuclear reactor with the average enrichment of 4 wt% or higher, a plurality of bar-shaped elements including fuel rods arranged in parallel are loaded in a bundle shape with intervals between each other, and fuel pellets are divided into a predetermined number of nodes in the fuel rod axial direction. Maximum enrichment of the pellets in the fuel assembly is 4.9-5wt%, and at least a plurality of fuel rods contain burnable poison along the axial region including upper end node including the top fuel pellet and/or the lower end node including the bottom fuel pellet. The average enrichment at the cross section in the upper end node and/or the lower end node is larger than 3.0wt% and less than 5.0wt%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は原子炉用燃料集合体、特に、高燃焼度化を目的とした沸騰水型原子炉用燃料集合体に関する。
【0002】
【従来の技術】
まず燃料サイクルコストについて説明する。燃料サイクルコスト(FCC)は、集合体1体当たりとして(1)式で定義する。
FCC(円/kWhe)=Ctotal/Qtotal   … (1)
但し、
total:集合体1体の全コスト(円)
total:集合体1体の総発電量(kWhe)
【0003】
一方、総発電量は下式で算出される。
total=Eout・WU・f             … (2)
但し、
out:平均取出燃焼度(GWd/t)
WU :集合体ウラン重量(kg)
f  :単位換算を含む熱効率
である。
【0004】
また、全コストCtotalは、主に以下のコスト成分の総和である。
(a) 天然ウラン購入、(b) 転換、(c) 濃縮、(d) 成型加工、
(e) 新燃料輸送、(f) 再処理、(g) 使用済み燃料輸送、
(h) Pu、Uクレジット、(i) 廃棄物処分
【0005】
一般に燃料集合体の平均濃縮度の増加は、反応度の増大を伴うため平均取出燃焼度の増大に寄与する。濃縮度を増加させた場合、(a) 〜(c) 、特に(c) 濃縮コストが大きくなるが、他のコストはほとんど変わらない。典型的には、濃縮コストの上昇が総コストに及ぼす影響は20%程度に留まる。一方、(1) 式及び(2) 式より、燃料サイクルコストは平均取出燃焼度に反比例することが判る。
【0006】
これより、平均濃縮度の増加に伴うコスト上昇以上に平均取出燃焼度を高めることができれば、燃料サイクルコストを低減させることができる。
【0007】
このように、原子炉における燃料集合体の設計分野においては、燃料経済性を高めるために、ウラン235で代表される核分裂性物質の平均濃縮度を増加させることで、平均取出燃焼度の増大を実現する方策が採られている(高濃縮度化による高燃焼度化)。
【0008】
ところで、例えば沸騰水型原子炉においては、燃料集合体の発熱有効部の上端及び/又は下端に天然ウランなどを配して低濃縮度化し、中性子の漏れを減らすことでウラン資源を節約する技術があり、広く用いられている。ここでは、この技術をブランケット技術とよぶこととする。
【0009】
しかし、ブランケットは濃縮度が低いため、ブランケットの採用は集合体平均燃焼度を下げる方向となる。特に、取り扱える濃縮度に上限(現行5wt%)がある場合には、ブランケット技術を用いた場合、平均濃縮度の増大は容易ではない。
【0010】
これを解決するための従来技術としては以下がある。この様子を図4を用いて説明するが、説明に先立ち図5について示す。
【0011】
図5は従来の沸騰水型原子炉用燃料集合体の例(従来例1)である。本例は、9×9格子配列の燃料棒に、燃料棒9本分の領域を置換した水ロッドが備えられた、典型的な高燃焼度化向け燃料集合体である。本例では、典型的なブランケットとして、上下端に1/24ずつの長さの天然ウランブランケットを有している。ここでは、上下端を端部領域、上下端を除く領域を中央部領域と呼ぶことにする。図において、各燃料棒内に記載した数値は各燃料棒の各領域での濃縮度(wt%)を示す。斜線を施した領域は可燃性毒物であるガドリニアが添加された領域を示し、「G」を付した数値はガドリニア濃度(wt%)を示す。従来例1の濃縮度は、端部領域でそれぞれ0.71wt%、中央部領域で4.28wt%、また、集合体平均では3.98wt%である。この濃縮度にて、13ヶ月連続運転を想定した場合、平均取出燃焼度はおよそ50GWd/tを達成することができる。
【0012】
尚、従来例1のガドリニア分布は、以下の観点より従来技術に従って設計したものである。先ず、下部側の一部で高濃度のガドリニアを使用するのは、運転サイクル中期で出力分布が過度に下部歪みとなり線出力密度が増大するのを抑制するためである。また、上部側については、運転サイクルを通じて充分な停止余裕を確保することを前提に、サイクル末期でのガドリニアの残留に伴う経済性の低下を最小限にするためガドリニア濃度を低減している。
【0013】
この設計に対して、集合体平均濃縮度を高め平均取出燃焼度を上げることで、更に燃料サイクルコストを低減することを考える。図4は従来例1を基準(図中点(a) )としたときの平均濃縮度の増加量と燃料サイクルコストの関係を評価した結果を示している。図中の各線(1)〜(3)は下記従来方法(1)〜(3)にそれぞれ対応する。ここでは、それぞれの方法が、最大線出力密度や最小限界出力比などについて熱的運転余裕を確保できるかについても検討している(熱的設計基準ということにする)。図4の線に対し、この熱的設計基準を満たす場合は実線で、熱的設計基準を満たすことができない場合には破線で表している。
【0014】
(1) 天然ウランブランケットの採用による中央部領域の濃縮度を高める方法
中央部領域の濃縮度を十分に高めた高濃縮度の燃料集合体においては、取り扱える濃縮度に5wt%の上限がある場合、特別な対策を講じない限り中央部領域の濃縮度の増加は半径方向での燃料棒の出力分布の増大を伴うため、熱的運転余裕を維持したまま、中央部領域の濃縮度の増加を行うことは難しい。今、従来例1は、熱的運転余裕を減じることなく中央部領域の濃縮度を高めることができないほど高濃縮度燃料集合体であると考える。この場合、中央部の濃縮度を高めた場合、図4の線(1) 上をたどることになるが、線(1) は、集合体の平均濃縮度を増加する場合、破線となってしまう。つまり、熱的設計基準を維持して高濃縮度化することができない。
【0015】
(2) 天然ウランブランケットを用いない方法
天然ウランブランケットを用いない場合、端部領域の出力分担が大きくなる分だけ軸方向出力分布は平坦化し、熱的運転余裕が厳しくなることはない。ブランケットを用いない燃料集合体の燃料サイクルコストは図4の線(2) の傾向を示す。ブランケットのない燃料集合体は端部領域での中性子の漏れが多く反応度ロスが出る分、平均取出燃焼度が低下し経済性上不利となる。例えば、ブランケットを用いない燃料が、点aと同じ燃料サイクルコストになるには、平均取出燃焼度を高めるために平均濃縮度を更に0.15wt%程度増加させる必要がある。点bがこれに相当する。但し、この場合、中央部断面の濃縮度は、従来例1の4.28wt%よりも低濃縮度(3.98+0.15=4.13wt%)で済むため、半径方向での燃料棒の出力分布の増大は起こらないため、熱的設計基準に問題が生じることはない。また、従来例1の燃料集合体から上下端のブランケットを取り去った場合は、図4中の点cとなり、点aよりも燃料サイクルコストは低くなる。
【0016】
このように、点b、cのケースは何れも、従来例1に比べて熱的に厳しくなることなく、燃料サイクルコストを低減させることができる。しかしながら、ブランケットを用いない点では、省ウラン資源の観点からは無駄を招いていることは明らかである。また、熱的設計基準内での高濃縮度化は、点cが限界である。
【0017】
(3) 端部領域に濃縮ブランケットを用いる方法
可燃性毒物を含有させることなく端部領域の平均濃縮度を1.4〜3.0wt%まで高める方法が提案されている(特許第3262022号参照)。本方法の場合、端部領域は可燃性毒物を含まないので、天然ウランブランケットを用いた場合よりも端部領域の反応度が大きくなり、軸方向出力分布が平坦化し、線出力密度などの熱的余裕を増大させることができる。一方、端部領域は可燃性毒物を含まないので、貯蔵プールでの未臨界性を確実に保証するためには端部領域の平均濃縮度は3wt%以下とする必要があり、十分な高濃縮度化を図れない場合がある。従来例1に適用した場合、集合体の平均濃縮度は4.04〜4.17wt%までしか高められない。この様子を図4の線(3) で示すが、本方法の場合、燃料サイクルコストは点dが限界となる。
【0018】
【発明が解決しようとする課題】
このように、上記(1) 〜(3) の従来技術を用いた場合、熱的設計基準内で段階的に高濃縮度化を行うとすると、図4の点a−点d−点e−点cの経路をたどることになる。特に、点d−点e間は、濃縮度増加に共なう燃料サイクルコストの低減が全く期待できず、経済性上問題がある領域が存在することが分かる。また、従来技術では、点cより経済性の良い燃料集合体を提供することができない。
【0019】
本発明は、高濃縮度化を目指すことで高燃焼度化を達成し、燃料経済性の向上、すなわち燃料サイクルコストの低減を行うに当たり、端部領域に着目してこれを実現する燃料集合体を提供することを目的とする。
【0020】
【課題を解決するための手段】
請求項1に記載された発明に係る原子炉燃料集合体は、平行配列された燃料棒を含む複数の棒状要素を、相互に間隔を開けてバンドル状に装荷し、前記燃料棒は、燃料棒軸方向に予め定められたノード数に分けられて燃料ペレットが装荷された全体の平均濃縮度が4wt%以上の原子炉用燃料集合体において、
前記燃料集合体中のペレットの最高濃縮度が4.9wt%以上、5wt%以下であり、
燃料棒のうち少なくとも複数本が、最上部の燃料ペレットを含む上端ノード及び/又は最下部の燃料ペレットを含む下端ノードを含む軸方向領域に亘って可燃性毒物を含有すると共に、上端ノード及び/又は下端ノードにおける横断面の平均濃縮度が3.0wt%よりも大きく、5.0wt%よりも小さいものである。
【0021】
請求項2に記載された発明に係る原子炉燃料集合体は、請求項1に記載された上端ノード及び/又は下端ノードにおける横断面は、集合体断面の中で最も平均濃縮度が高い断面領域が含まれているものである。
【0022】
請求項3に記載された発明に係る原子炉燃料集合体は、請求項1又は2に記載された原子炉用燃料集合体が、複数本の燃料棒領域を占める太径水ロッドを有する9×9格子以上の燃料棒配列を備えたものである。
【0023】
【発明の実施の形態】
本発明においては、平行配列された燃料棒を含む複数の棒状要素を、相互に間隔を開けてバンドル状に装荷し、前記燃料棒は、燃料棒軸方向に予め定められたノード数に分けられて燃料ペレットが装荷された全体の平均濃縮度が4wt%以上の原子炉用燃料集合体において、前記燃料集合体中のペレットの最高濃縮度が 4.9wt%以上、5wt%以下であり、燃料棒のうち少なくとも複数本が、最上部の燃料ペレットを含む上端ノード及び/又は最下部の燃料ペレットを含む下端ノードを含む軸方向領域に亘って可燃性毒物を含有すると共に、上端ノード及び/又は下端ノードにおける横断面の平均濃縮度が3.0wt%よりも大きく、5.0wt%よりも小さいものである。このため、図4中点d−点e間に相当する濃縮度領域が持つ不経済性を緩和することができる。高濃縮度化を目指すことで高燃焼度化を達成し、燃料経済性の向上、すなわち燃料サイクルコストの低減を行うことができる。
【0024】
また、本発明によれば端部領域にも可燃性毒物を含有させることで、貯蔵中の未臨界度を確保するために端部領域での濃縮度を 3.0wt%以下にする必要がなくなり、端部領域で更なる高濃縮度化が可能となる。この結果、平均取出燃焼度は向上し燃料サイクルコストはさらに低減する。この場合、図4の線(4)に示す特性が得られる。
【0025】
また、この濃縮度範囲(端部領域の濃縮度で 3.0wt%よりも大)であれば、可燃性毒物を混入させても端部領域の無限増倍率は、天然ウランの場合よりも大きくできることから、軸方向出力分布が厳しくなることはないため、熱的設計基準を満たす燃料集合体を提供できる。
【0026】
また、上端部での可燃性毒物の存在は、例えば方法(3)において懸念される、停止余裕の悪化を回避することもできる。さらに本発明では、端部領域に可燃性毒物を添加する燃料棒は中央部領域にも可燃性毒物を含む燃料棒であるため、可燃性毒物を含む燃料棒の本数は最小限に留めることができる。よって、可燃性毒物としてガドリニアを用いた場合でも、成型加工の際のペレットを被覆管に充填する作業などに対し、作業効率の低下をまねくことはない。
【0027】
また、本発明では上端ノード及び/又は下端ノードにおける横断面は、集合体断面の中で最も平均濃縮度が高い断面領域としても良い。即ち、本発明では、上端ノード及び下端ノードの端部領域はもともと最大線出力密度や最小限界出力比などの熱的運転余裕が厳しくなる領域ではないため、更に濃縮度を高め、この領域の燃料棒出力を高めることが可能である。本発明では、端部領域の濃縮度は中央領域よりも高く、従って、反応度が大きくなるので軸方向出力分布の平坦化に寄与する。つまり、熱的設計基準を損なうことがない。本発明の場合、平均濃縮度の増加量と燃料サイクルコストの関係は図4の線(4)の点Cよりも右の範囲となり、熱的設計基準を維持して極めて燃料サイクルコストが低い燃料集合体を提供することができる。
【0028】
本発明は、特に原子炉用燃料集合体が、複数本の燃料棒領域を占める太径水ロッドを有する9×9格子以上の燃料棒配列を備えた高燃焼度化に好適な沸騰水型原子炉に用いるのが好適である。
【0029】
【実施例】
以下に示す実施例は、図5の沸騰水型原子炉用の従来燃料集合体1を基に本発明を適用したものである。
【0030】
(実施例1)
実施例1を図1に示す。図に示す通り、上下端に1/24ずつの長さの天然ウランブランケットを有している。ここでは、上下端を端部領域、上下端を除く領域を中央部領域と呼ぶことにする。図において、各燃料棒内に記載した数値は各燃料棒の各領域での濃縮度(wt%)を示す。斜線を施した領域は可燃性毒物であるガドリニアが添加された領域を示し、「G」を付した数値はガドリニア濃度(wt%)を示す。これらは以下の他の実施例の図においても同様である。本実施例はガドリニアを含む燃料棒とガドリニアを含まない一部の燃料棒において、上下端のブランケットを設けない設計としている。つまり、燃料棒タイプ2、G1、G2及びG3は、上下端の濃縮度は、中央領域の濃縮度と同じである。これにより、上下端部の断面平均濃縮度は3.14wt%となり 3.0wt%よりも大きいにも拘わらず、ガドリニアを含ませることにより燃焼初期段階の反応度を抑制しているので、貯蔵プールでの燃料の未臨界性を確保することができる。
【0031】
また、集合体の平均濃縮度は4.18wt%となり、従来例1と比べて約 0.2wt%大きくなる。この燃料集合体の燃料サイクルコストは図4に示すとおりである。従来方法(3)で達成できる点dに比べて燃料サイクルコストは若干不利となるが、特に、毒性が強いため成型加工時のペレット充填作業効率の悪化が懸念されるガドリニア入り燃料棒の設計が簡素化している点が、燃料成型加工コストの低減に寄与するため、実際には図4の評価値ほどのサイクルコスト差は生じない。
【0032】
さらに、本発明では上下端にガドリニアを含む。このため、反応度分担が大きく原子炉停止余裕特性に対し影響を与えやすい上部断面においては、本発明の燃料集合体の場合燃焼初期で反応度を小さくできる。よって、停止余裕の観点からは、従来方法(3)で構成される集合体よりも本発明の燃料集合体の方が停止余裕を大きくできる点は安全上有利である。
【0033】
(実施例2)
実施例2を図2に示す。実施例1に対し天然ウラン部を 2.4wt%の濃縮ペレットとした。これにより、集合体の平均濃縮度は、従来例1よりも0.25wt%大きい4.23wt%まで高めることができる。この燃料集合体の燃料サイクルコストは図4に示すとおりである。従来方法(3)で達成できる点dに比べて燃料サイクルコストは更に 0.4%低減できる。
【0034】
(実施例3)
実施例2よりも更に高濃縮度をねらった実施例3を図3に示す。出力が最も大きくなりやすいコーナ部を除いて、ガドリニアを含まない燃料棒の上下端には、全て最高濃縮度である 4.9wt%のペレットを配した。これにより、上下端での断面平均濃縮度は4.61wt%となり、集合体中最大である。集合体の平均濃縮度は、従来例1よりも0.33wt%大きい4.31wt%まで高めることができる。この燃料集合体の燃料サイクルコストは図4に示すとおりである。実施例2に比べて燃料サイクルコストは更に 0.5%低減できる。
【0035】
また、平衡炉心特性を解析した結果、何れの実施例も最大線出力密度及び最小限界出力比は、従来例1と比べて大差ないか、僅かに運転余裕が増すことを確認した。
【0036】
【発明の効果】
本発明は以上説明した通り、高濃縮度化を目指すことで高燃焼度化を達成し、燃料経済性の向上、すなわち燃料サイクルコストの低減を行うに当たり、端部領域に着目してこれを実現する燃料集合体を提供することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の燃料集合体の一実施例の構成を示す説明図である。
【図2】本発明の燃料集合体の別の実施例の構成を示す説明図である。
【図3】本発明の燃料集合体の更に別の実施例の構成を示す説明図である。
【図4】平均濃縮度の増加量と燃料サイクルコストの関係とを評価した結果を示す説明図である。
【図5】沸騰水型原子炉用燃料集合体の従来例の構成を示す説明図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel assembly for a nuclear reactor, and more particularly to a fuel assembly for a boiling water reactor intended to increase the burnup.
[0002]
[Prior art]
First, the fuel cycle cost will be described. The fuel cycle cost (FCC) is defined by equation (1) as one per assembly.
FCC (yen / kWhe) = C total / Q total (1)
However,
C total : Total cost of one aggregate (yen)
Q total : Total power generation of one aggregate (kWhe)
[0003]
On the other hand, the total power generation is calculated by the following equation.
Q total = E out · WU · f (2)
However,
E out : average removal burnup (GWd / t)
WU: Aggregate uranium weight (kg)
f: Thermal efficiency including unit conversion.
[0004]
The total cost C total is mainly a sum of the following cost components.
(A) natural uranium purchase, (b) conversion, (c) enrichment, (d) molding,
(E) new fuel transportation, (f) reprocessing, (g) spent fuel transportation,
(H) Pu, U credit, (i) Waste disposal
In general, an increase in the average enrichment of the fuel assembly is accompanied by an increase in the reactivity, thereby contributing to an increase in the average withdrawal burnup. When the enrichment is increased, (a) to (c), particularly (c), the enrichment cost increases, but other costs hardly change. Typically, the effect of increasing enrichment costs on the total cost is only around 20%. On the other hand, from the equations (1) and (2), it can be seen that the fuel cycle cost is inversely proportional to the average removal burnup.
[0006]
As a result, if the average removal burnup can be increased more than the cost increase accompanying the increase in the average enrichment, the fuel cycle cost can be reduced.
[0007]
Thus, in the field of fuel assembly design in a nuclear reactor, increasing the average enrichment of fissile material typified by uranium 235 in order to increase the fuel economy reduces the average removal burnup. Measures have been taken to achieve this (higher burnup due to higher enrichment).
[0008]
By the way, in a boiling water reactor, for example, natural uranium or the like is disposed at the upper end and / or lower end of the heat generating effective portion of the fuel assembly to reduce the enrichment and reduce neutron leakage, thereby saving uranium resources. And is widely used. Here, this technology is referred to as blanket technology.
[0009]
However, since the blanket has low enrichment, the use of the blanket tends to lower the average burnup of the aggregate. In particular, when there is an upper limit (at present 5 wt%) in the concentration that can be handled, it is not easy to increase the average concentration when the blanket technology is used.
[0010]
Conventional techniques for solving this are as follows. This situation will be described with reference to FIG. 4, but prior to the description, FIG. 5 is shown.
[0011]
FIG. 5 shows an example of a conventional fuel assembly for a boiling water reactor (conventional example 1). This example is a typical fuel assembly for high burnup in which fuel rods in a 9 × 9 grid arrangement are provided with water rods in which nine fuel rods are replaced. In this example, as a typical blanket, a natural uranium blanket having a length of 1/24 at each of the upper and lower ends is provided. Here, the upper and lower ends are referred to as an end region, and the region excluding the upper and lower ends is referred to as a central region. In the figure, the numerical value described in each fuel rod indicates the enrichment (wt%) in each region of each fuel rod. The shaded area indicates the area to which gadolinia, which is a burnable poison, is added, and the numerical value with “G” indicates the gadolinia concentration (wt%). The enrichment of Conventional Example 1 is 0.71 wt% in the end region, 4.28 wt% in the central region, and 3.98 wt% in the aggregate average. Assuming 13 months of continuous operation at this concentration, the average removal burnup can achieve about 50 GWd / t.
[0012]
The gadolinia distribution of Conventional Example 1 was designed according to the conventional technology from the following viewpoints. First, the reason why gadolinia having a high concentration is used in a part of the lower side is to suppress the output distribution from being excessively distorted in the middle part of the operation cycle and the linear output density from increasing. On the upper side, the gadolinia concentration is reduced in order to minimize the reduction in economic efficiency due to gadolinia remaining at the end of the cycle, assuming that a sufficient stop margin is secured throughout the operation cycle.
[0013]
For this design, consider reducing the fuel cycle cost by increasing the aggregate average enrichment and increasing the average removal burnup. FIG. 4 shows the result of evaluating the relationship between the increase amount of the average enrichment and the fuel cycle cost when Conventional Example 1 is used as a reference (point (a) in the figure). Lines (1) to (3) in the figure correspond to the following conventional methods (1) to (3), respectively. Here, it is also examined whether each method can secure a thermal operation margin with respect to the maximum linear power density, the minimum critical power ratio, and the like (referred to as thermal design criteria). The line in FIG. 4 is indicated by a solid line when the thermal design standard is satisfied, and is indicated by a broken line when the thermal design standard cannot be satisfied.
[0014]
(1) Method of increasing the enrichment in the central region by using a natural uranium blanket In a high-enrichment fuel assembly in which the enrichment in the central region is sufficiently increased, when the enrichment that can be handled has an upper limit of 5 wt%. Unless special measures are taken, the increase in enrichment in the central region will be accompanied by an increase in the fuel rod power distribution in the radial direction. Difficult to do. Now, it is considered that Conventional Example 1 is a fuel assembly with a high enrichment such that the enrichment in the central region cannot be increased without reducing the thermal operation margin. In this case, when the enrichment in the central part is increased, it follows the line (1) in FIG. 4, but the line (1) becomes a broken line when the average enrichment of the aggregate is increased. . That is, it is not possible to maintain the thermal design standard and increase the concentration.
[0015]
(2) Method without using a natural uranium blanket When a natural uranium blanket is not used, the axial output distribution is flattened by an increase in the output sharing in the end region, and the thermal operation margin does not become strict. The fuel cycle cost of a fuel assembly without a blanket shows the trend shown by line (2) in FIG. A fuel assembly without a blanket has a large loss of neutrons in the end region and a loss of reactivity, resulting in a decrease in average withdrawal burnup and a disadvantage in economy. For example, in order for a fuel without a blanket to have the same fuel cycle cost as at point a, it is necessary to further increase the average enrichment by about 0.15 wt% in order to increase the average withdrawal burnup. Point b corresponds to this. However, in this case, since the enrichment of the central section is lower than that of 4.28 wt% of the conventional example 1 (3.98 + 0.15 = 4.13 wt%), the output of the fuel rod in the radial direction is sufficient. Since the distribution does not increase, there is no problem with the thermal design criteria. Further, when the upper and lower blankets are removed from the fuel assembly of Conventional Example 1, point c in FIG. 4 is obtained, and the fuel cycle cost is lower than point a.
[0016]
As described above, in each of the cases at points b and c, the fuel cycle cost can be reduced without being thermally strict as compared with the conventional example 1. However, it is clear that the use of blankets is wasteful from the viewpoint of uranium resource saving. Further, the point c is the limit for the high enrichment within the thermal design standard.
[0017]
(3) A method of using a concentrated blanket in the end region A method has been proposed in which the average concentration of the end region is increased to 1.4 to 3.0 wt% without containing a burnable poison (see Japanese Patent No. 3262022). ). In the case of this method, since the end region does not contain burnable poisons, the reactivity of the end region is larger than that when a natural uranium blanket is used, the axial power distribution is flattened, and the heat such as the linear power density is reduced. The target margin can be increased. On the other hand, since the end area does not contain burnable poisons, the average enrichment of the end area needs to be 3 wt% or less to ensure the subcriticality in the storage pool, and a sufficiently high enrichment In some cases, it may not be possible to improve the accuracy. When applied to Conventional Example 1, the average concentration of the aggregate can be increased only to 4.04 to 4.17 wt%. This is shown by the line (3) in FIG. 4. In this method, the fuel cycle cost is limited at the point d.
[0018]
[Problems to be solved by the invention]
As described above, when the prior arts (1) to (3) are used, if the enrichment is performed stepwise within the thermal design criteria, the points a to d e to e in FIG. The path of the point c will be followed. In particular, between the point d and the point e, no reduction in the fuel cycle cost accompanying the increase in the enrichment can be expected at all, and it can be seen that there is an area having a problem in terms of economy. Further, the conventional technology cannot provide a fuel assembly more economical than point c.
[0019]
The present invention aims at achieving high burnup by aiming for high enrichment, and improving fuel economy, that is, reducing fuel cycle costs, a fuel assembly that realizes this by focusing on the end region The purpose is to provide.
[0020]
[Means for Solving the Problems]
A nuclear reactor fuel assembly according to the invention described in claim 1 includes a plurality of rod-shaped elements including fuel rods arranged in parallel and loaded in a bundle at intervals from each other, wherein the fuel rods are fuel rods. In a fuel assembly for a nuclear reactor having an overall average enrichment of 4 wt% or more loaded with fuel pellets divided into a predetermined number of nodes in the axial direction,
The maximum enrichment of the pellets in the fuel assembly is 4.9 wt% or more and 5 wt% or less;
At least some of the fuel rods contain burnable poison over an axial region including an upper end node including the uppermost fuel pellet and / or a lower end node including the lowermost fuel pellet, and the upper end node and / or Alternatively, the average enrichment of the cross section at the lower end node is larger than 3.0 wt% and smaller than 5.0 wt%.
[0021]
In the reactor fuel assembly according to the second aspect of the present invention, the cross section at the upper end node and / or the lower end node according to the first aspect has a cross-sectional area having the highest average enrichment in the cross section of the assembly. Is included.
[0022]
According to a third aspect of the present invention, there is provided a nuclear reactor fuel assembly, wherein the reactor fuel assembly according to the first or second aspect has a large water rod occupying a plurality of fuel rod regions. It has a fuel rod arrangement of 9 grids or more.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a plurality of rod-shaped elements including fuel rods arranged in parallel are loaded in a bundle at intervals from each other, and the fuel rods are divided into a predetermined number of nodes in the fuel rod axial direction. In a fuel assembly for a nuclear reactor having an overall enrichment of 4 wt% or more loaded with fuel pellets, the maximum enrichment of the pellets in the fuel assembly is 4.9 wt% or more and 5 wt% or less, At least some of the rods contain burnable poison over an axial region including an upper end node including a top fuel pellet and / or a lower end node including a bottom fuel pellet, and the top node and / or The average enrichment of the cross section at the lower end node is larger than 3.0 wt% and smaller than 5.0 wt%. For this reason, the uneconomical property of the enrichment area corresponding to the point d-point e in FIG. 4 can be reduced. By aiming for high enrichment, high burnup can be achieved, and fuel economy can be improved, that is, fuel cycle cost can be reduced.
[0024]
In addition, according to the present invention, by including the burnable poison in the end region, it is not necessary to reduce the concentration in the end region to 3.0 wt% or less in order to secure the subcriticality during storage. Further, it is possible to further increase the concentration in the end region. As a result, the average withdrawal burnup is improved and the fuel cycle cost is further reduced. In this case, the characteristic shown by the line (4) in FIG. 4 is obtained.
[0025]
In addition, in this enrichment range (enrichment of the end region is greater than 3.0 wt%), the infinite multiplication factor of the end region is larger than that of natural uranium even when a burnable poison is mixed. As a result, the axial power distribution does not become severe, so that a fuel assembly satisfying the thermal design criteria can be provided.
[0026]
Further, the presence of the burnable poison at the upper end portion can also avoid the deterioration of the stop margin, which is a concern in the method (3), for example. Furthermore, in the present invention, the number of fuel rods containing burnable poisons can be minimized because the fuel rods to which burnable poisons are added to the end regions are also fuel rods containing burnable poisons also in the central region. it can. Therefore, even when gadolinia is used as the burnable poison, the work efficiency does not decrease for the work of filling the cladding tube with pellets at the time of molding.
[0027]
In the present invention, the cross section at the upper end node and / or the lower end node may be a cross-sectional area having the highest average enrichment in the cross section of the aggregate. That is, in the present invention, since the end regions of the upper end node and the lower end node are not originally regions in which the thermal operation margin such as the maximum linear power density and the minimum limit power ratio becomes severe, the enrichment is further increased, and the fuel in this region is further increased. It is possible to increase the bar output. In the present invention, the enrichment in the end region is higher than in the central region, and therefore the reactivity is increased, which contributes to the flattening of the axial power distribution. That is, the thermal design standard is not impaired. In the case of the present invention, the relationship between the increase amount of the average enrichment and the fuel cycle cost is in a range to the right of the point C of the line (4) in FIG. Aggregates can be provided.
[0028]
The present invention is particularly directed to a boiling water atom suitable for high burnup, in which a fuel assembly for a reactor is provided with a fuel rod array of 9 × 9 grid or more having a large diameter water rod occupying a plurality of fuel rod regions. It is suitable for use in furnaces.
[0029]
【Example】
In the embodiment described below, the present invention is applied based on the conventional fuel assembly 1 for a boiling water reactor shown in FIG.
[0030]
(Example 1)
Example 1 is shown in FIG. As shown in the figure, a natural uranium blanket having a length of 1/24 at each of upper and lower ends is provided. Here, the upper and lower ends are referred to as an end region, and the region excluding the upper and lower ends is referred to as a central region. In the figure, the numerical value described in each fuel rod indicates the enrichment (wt%) in each region of each fuel rod. The shaded area indicates the area to which gadolinia, which is a burnable poison, is added, and the numerical value with “G” indicates the gadolinia concentration (wt%). The same applies to the figures of the other embodiments described below. In the present embodiment, the fuel rods including gadolinia and some fuel rods not including gadolinia are designed so that the upper and lower blankets are not provided. That is, the fuel rod types 2, G1, G2, and G3 have the same enrichment at the upper and lower ends as the enrichment in the central region. As a result, although the cross-sectional average enrichment at the upper and lower ends is 3.14 wt%, which is larger than 3.0 wt%, the reactivity in the initial stage of combustion is suppressed by including gadolinia. Subcriticality of the fuel in the fuel cell.
[0031]
Further, the average enrichment of the aggregate is 4.18 wt%, which is about 0.2 wt% larger than that of Conventional Example 1. The fuel cycle cost of this fuel assembly is as shown in FIG. Although the fuel cycle cost is slightly disadvantageous as compared with the point d which can be achieved by the conventional method (3), the design of a fuel rod containing gadolinia, which is particularly toxic and may deteriorate the pellet filling work efficiency during molding, is required. The simplification contributes to a reduction in the cost of processing the fuel, so that there is not actually a cycle cost difference as large as the evaluation value in FIG.
[0032]
Further, the present invention includes gadolinia at the upper and lower ends. For this reason, in the upper cross section where the reactivity sharing is large and the reactor shutdown margin characteristic is likely to be affected, the reactivity can be reduced in the early stage of combustion in the case of the fuel assembly of the present invention. Therefore, from the viewpoint of the stop margin, the fact that the fuel assembly of the present invention can increase the stop margin is more advantageous in terms of safety than the assembly constituted by the conventional method (3).
[0033]
(Example 2)
Example 2 is shown in FIG. Concentrated pellets of 2.4 wt% in natural uranium were used in Example 1. As a result, the average concentration of the aggregate can be increased to 4.23 wt%, which is 0.25 wt% larger than that of Conventional Example 1. The fuel cycle cost of this fuel assembly is as shown in FIG. The fuel cycle cost can be further reduced by 0.4% as compared with the point d which can be achieved by the conventional method (3).
[0034]
(Example 3)
FIG. 3 shows Example 3 in which a higher concentration than Example 2 was aimed. Except for the corner part where the output is most likely to be largest, pellets of 4.9 wt%, which is the highest enrichment, were all arranged on the upper and lower ends of the fuel rods not containing gadolinia. As a result, the cross-sectional average enrichment at the upper and lower ends is 4.61 wt%, which is the highest in the aggregate. The average concentration of the aggregate can be increased to 4.31 wt%, which is 0.33 wt% larger than that of Conventional Example 1. The fuel cycle cost of this fuel assembly is as shown in FIG. The fuel cycle cost can be further reduced by 0.5% compared to the second embodiment.
[0035]
Further, as a result of analyzing the equilibrium core characteristics, it was confirmed that the maximum linear power density and the minimum critical power ratio were not much different from those of the conventional example 1 or that the operation margin was slightly increased in each of the examples.
[0036]
【The invention's effect】
As described above, the present invention achieves high burnup by aiming for high enrichment, and realizes this by focusing on the end region when improving fuel economy, that is, reducing fuel cycle cost. There is an effect that a fuel assembly can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of an embodiment of a fuel assembly of the present invention.
FIG. 2 is an explanatory view showing the configuration of another embodiment of the fuel assembly of the present invention.
FIG. 3 is an explanatory view showing a configuration of still another embodiment of the fuel assembly of the present invention.
FIG. 4 is an explanatory diagram showing the results of evaluating the relationship between the increase amount of the average enrichment and the fuel cycle cost.
FIG. 5 is an explanatory diagram showing a configuration of a conventional example of a fuel assembly for a boiling water reactor.

Claims (3)

平行配列された燃料棒を含む複数の棒状要素を、相互に間隔を開けてバンドル状に装荷し、前記燃料棒は、燃料棒軸方向に予め定められたノード数に分けられて燃料ペレットが装荷された全体の平均濃縮度が4wt%以上の原子炉用燃料集合体において、
前記燃料集合体中のペレットの最高濃縮度が 4.9wt%以上、5wt%以下であり、
燃料棒のうち少なくとも複数本が、最上部の燃料ペレットを含む上端ノード及び/又は最下部の燃料ペレットを含む下端ノードを含む軸方向領域に亘って可燃性毒物を含有すると共に、上端ノード及び/又は下端ノードにおける横断面の平均濃縮度が3.0wt%よりも大きく、5.0wt%よりも小さいことを特徴とする原子炉用燃料集合体。
A plurality of rod-shaped elements including fuel rods arranged in parallel are loaded in a bundle at intervals from each other, and the fuel rods are divided into a predetermined number of nodes in the fuel rod axial direction and loaded with fuel pellets. In the reactor fuel assembly having a total average enrichment of 4 wt% or more,
The maximum enrichment of the pellets in the fuel assembly is 4.9 wt% or more and 5 wt% or less;
At least some of the fuel rods contain burnable poison over an axial region including an upper end node including the uppermost fuel pellet and / or a lower end node including the lowermost fuel pellet, and the upper end node and / or Alternatively, a fuel assembly for a nuclear reactor, wherein an average enrichment of a cross section at a lower end node is larger than 3.0 wt% and smaller than 5.0 wt%.
前記上端ノード及び/又は下端ノードにおける横断面中に、集合体断面の中で最も平均濃縮度が高い断面領域が含まれていることを特徴とする請求項1記載の原子炉用燃料集合体。2. The fuel assembly for a nuclear reactor according to claim 1, wherein a cross-sectional area having the highest average enrichment in the cross-section of the assembly is included in the cross-section at the upper end node and / or the lower end node. 3. 複数本の燃料棒領域を占める太径水ロッドを有する9×9格子以上の燃料棒配列を備えたことを特徴とする請求項1又は2記載の原子炉用燃料集合体。3. The fuel assembly for a nuclear reactor according to claim 1, further comprising a fuel rod array having a 9 × 9 grid or more having a large diameter water rod occupying a plurality of fuel rod regions.
JP2002238080A 2002-08-19 2002-08-19 Fuel assembly for nuclear reactor Pending JP2004077287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238080A JP2004077287A (en) 2002-08-19 2002-08-19 Fuel assembly for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238080A JP2004077287A (en) 2002-08-19 2002-08-19 Fuel assembly for nuclear reactor

Publications (2)

Publication Number Publication Date
JP2004077287A true JP2004077287A (en) 2004-03-11
JP2004077287A5 JP2004077287A5 (en) 2005-10-27

Family

ID=32021603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238080A Pending JP2004077287A (en) 2002-08-19 2002-08-19 Fuel assembly for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2004077287A (en)

Similar Documents

Publication Publication Date Title
JPS6337290A (en) Fuel aggregate and boiling water type reactor
EP1093129B1 (en) Fuel assembly and nuclear reactor
JP2510565B2 (en) Reactor fuel assembly
JP2004077287A (en) Fuel assembly for nuclear reactor
JP4280474B2 (en) Fuel assemblies for boiling water reactors
JP2001116875A (en) Fuel assembly and nuclear reactor
JPH08201555A (en) Mox fuel assembly for pwr
JPH10170674A (en) Fuel assembly
JPH04301591A (en) Fuel assembly
JP4351798B2 (en) Fuel assemblies and reactors
JP3916807B2 (en) MOX fuel assembly
JP2000193773A (en) Fuel assembly
JPH11287881A (en) Fuel assembly
JP4198397B2 (en) Nuclear reactor core
JP3943624B2 (en) Fuel assembly
JPH041593A (en) Fuel assembly
JPH08292281A (en) Fuel assembly for boiling water type reactor
JP2004144498A (en) Fuel assembly for boiling water nuclear reactor
JP2544249B2 (en) Fuel assembly and reactor core for boiling water reactors
JP3788170B2 (en) Fuel assemblies and reactor cores
JP4308940B2 (en) Fuel assembly
JPS6367870B2 (en)
JP3012687B2 (en) Fuel assembly
JP3314382B2 (en) Fuel assembly
JP2004333432A (en) Fuel loading method for nuclear reactor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091007