JP2004077245A - Device for measuring temperature of winding conductor for ac rotary electric machine, and measuring method - Google Patents

Device for measuring temperature of winding conductor for ac rotary electric machine, and measuring method Download PDF

Info

Publication number
JP2004077245A
JP2004077245A JP2002236651A JP2002236651A JP2004077245A JP 2004077245 A JP2004077245 A JP 2004077245A JP 2002236651 A JP2002236651 A JP 2002236651A JP 2002236651 A JP2002236651 A JP 2002236651A JP 2004077245 A JP2004077245 A JP 2004077245A
Authority
JP
Japan
Prior art keywords
stator winding
circuit
voltage
winding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002236651A
Other languages
Japanese (ja)
Other versions
JP4197602B2 (en
Inventor
Kaname Hirai
平井 要
Shinji Uemoto
上元 慎二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002236651A priority Critical patent/JP4197602B2/en
Publication of JP2004077245A publication Critical patent/JP2004077245A/en
Application granted granted Critical
Publication of JP4197602B2 publication Critical patent/JP4197602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring the temperature of a winding conductor for AC rotary electric machine, and a measuring method capable of accurately measuring resistance value to the order of 10<SP>-7</SP>Ω at the minimum when measuring the temperature of a stator winding having a low resistance value to the order of 0.0001 Ω to 0.001 Ω. <P>SOLUTION: The device 30 for measuring the temperature of stator winding conductor is equipped with a measuring basic circuit 36 provided with a variable DC voltage supply means which can supply DC voltage equivalent to or more than AC voltage generated in a three-phase short circuit 33 during three-phase short circuit energizing operation, a limiting resistor 34 limiting the AC voltage generated in the three-phase short circuit 33 and a shunt 35; and a voltage and current measuring means 38 provided with a measuring channel 43 drastically attenuating an AC component superposed on a measurement signal with respect to a DC component, a digital recorder 45 with high resolution and a data processing device 46 processing the measurement signal. Accordingly, since the resistance value of the stator winding 32 can be accurately measured to the order of 10<SP>-7</SP>Ω at the minimum, temperature change of the stator winding 32 can be accurately measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、交流回転電機の固定子巻線導体温度を測定する装置およびその方法に係り、特に、交流回転電機の固定子巻線の出力端子を短絡して定格または定格近傍の回転速度で通電運転中の固定子巻線導体温度を測定する装置およびその方法に関する。
【0002】
【従来の技術】
図11に、従来の交流回転電機に使用される固定子1の一部を拡大して構造を示した説明図を示す。
【0003】
図11に示される固定子1は、固定子鉄心2に設けられるスロット3に固定子巻線4が巻かれ、楔5で固定子巻線4をスロット3内に押えている。固定子巻線4は、固定子鉄心2の外周側に巻かれる固定子巻線(以下、下コイルとする)4jと、内周側に巻かれる固定子巻線(以下、上コイルとする)4kとが巻かれている。
【0004】
また、大容量・高電圧回転電機においては、下コイル4jと上コイル4kの間に温度を温度測定素子である抵抗温度デバイス(以下、RTDとする)6を温度測定要求のある箇所に分散させて挿入する。RTD6が挿入されず、下コイル4jと上コイル4kとの間に隙間が発生している箇所には、隙間を埋めるスペーサ7が挿入される。
【0005】
交流回転電機運転中、すなわち、通電中の固定子巻線4の温度測定について説明する。
【0006】
通電中の固定子巻線4の温度測定は、固定子巻線4における導体部8の温度を測定することが望ましい。従って、交流回転電機が小容量機の場合には、固定子巻線4の抵抗値を測定して、測定した抵抗値から固定子巻線4の温度を算出して、通電運転中の固定子巻線4の温度を求める方法が一般的に使用され、JEC、IEEEおよびIEC規格においても容認されている。以下に、測定した抵抗値から固定子巻線4の温度を算出する換算式を数式1に示す。
【0007】
【数1】

Figure 2004077245
【0008】
固定子巻線4の抵抗値から通電運転中の固定子巻線4の温度を求める方法は、幾つかあるが、例えば、交流回転電機を急速に停止させて停止中の固定子巻線4の抵抗値を無通電状態にして測定した後、測定時刻(無通電状態にしてからの経過時間)および測定した抵抗値から直接通電運転中の温度を推定し評価する方法、または、ある一定間隔で固定子巻線4の抵抗値を連続測定し、測定した固定子巻線4の抵抗値から固定子巻線4の温度を換算して、通電運転中の温度を外挿による推定を行い評価する方法がある。
【0009】
図12に、交流回転電機を急速に無通電状態とした後、停止中に固定子巻線4の抵抗値を測定する測定概略を表した説明図を示す。
【0010】
図12によれば、固定子巻線4の抵抗値測定は、固定子巻線4の両端、すなわち、中性点側および出力(ライン端子)側に4端子抵抗計11の抵抗計電流通電線10と抵抗計電圧通電線11とを接続して、固定子巻線4の抵抗値を測定する。測定した固定子巻線4の抵抗値から固定子巻線4の温度を算出する場合は数式1を用いる。数式1において、基準巻線抵抗値、基準温度および測定抵抗値を予め測定等により調べておけば、測定巻線抵抗温度が算出できる。
【0011】
一方、大容量・高電圧回転電機では、急速に回転子を停止することは事実上不可能であり、通電中において固定子巻線4の抵抗値を直接測定するのは困難であるため、通電中の交流回転電機の固定子巻線4の温度を測定する際には、下コイル4jと上コイル4kとの間にRTD6を事前に挿入しておき、このRTD6を使用して固定子巻線4表面の温度、すなわち、導体部8の温度を絶縁部12を介して測定している。
【0012】
従来の大容量・高電圧回転電機における通電中の固定子巻線4の温度測定の概略を説明する説明図を図13に示し、この図13を参照して、従来の大容量・高電圧回転電機における通電中の固定子巻線4の温度測定方法について説明する。
【0013】
図13によれば、従来の通電中の巻線温度測定方法は、絶縁部12で覆われた下コイル4jと上コイル4kとの間に事前挿入されるRTD6に温度測定装置13を接続して、通電中の固定子巻線4表面の温度の温度を測定する。しかし、大容量・高電圧回転電機では固定子巻線4の絶縁部12が厚く、導体部8と固定子巻線4表面との温度差が大きくなる。
【0014】
従って、回転電機運転中において、固定子巻線4の導体部8の温度を測定する場合、できるだけ精度良く測定するために、固定子巻線4の導体部8の温度を直接測定することは重要であり、特に、製造者としては、回転電機運転中における固定子巻線4の導体部8の温度を直接把握するニーズは非常に高い。
【0015】
そこで、IEC規格60279では、幾つかの負荷運転中および三相短絡通電運転中における導体温度測定方法を規定している。IEC規格60279で規定されている導体温度測定方法の1つに運転中の交流回転電機の固定子巻線4に外部から直流電圧を印加し、固定子巻線4の直流電圧および電流を測定して固定子巻線4の抵抗値を算出して温度評価する電圧・電流法がある。
【0016】
図14にIEC規格60279で提案されている交流回転電機の三相短絡通電中における固定子巻線4の抵抗値を測定する測定方法のうち、電圧・電流法による固定子巻線抵抗測定回路14の回路構成図を示す。
【0017】
図14に示される固定子巻線抵抗測定回路14は、直流電圧を供給する直流電圧源15と、固定子巻線4を三相短絡した三相短絡回路16と、シャント17とが電気的に直列接続される。直流電圧源15は、IEC規格60279で推奨している制限抵抗18を介して直流電源(バッテリー)19を接続した回路構成としている。
【0018】
固定子巻線抵抗測定回路14を構成する三相短絡回路16の両端、すなわち、中性点20側および出力側のライン端子21間にかかる電圧Vを測定する電圧測定回路22が電気的に並列接続される。固定子巻線抵抗測定回路14を構成するシャント17の両端には、三相短絡回路16を流れる電流(三相並列一括)Iを測定する電流測定回路23が電気的に並列接続される。
【0019】
電圧測定回路22は、三相平衡したリアクトル24と第1のフィルタ25とμAオーダの電流を計測するμA計26とを電気的に接続して構成し、第1のフィルタ25を通過する電流をμA計26で測定する。電圧測定回路22を構成するリアクトル24および第1のフィルタ25の抵抗値は事前に測定されており、リアクトル24の抵抗値はra、第1のフィルタ25の抵抗値はrである。
【0020】
電圧測定回路22による三相短絡回路16の両端にかかる電圧Vの測定は、第1のフィルタ25を通過する電流をμA計26で計測することによりなされ、μA計26における電流値の読みをiとすれば、
【数2】
V=(ra/3+r)i
となる。
【0021】
電流測定回路23は、トランス27と第2のフィルタ28とmVオーダの電圧を測定するmV計29とを電気的に接続して構成される。電流測定回路23による三相短絡回路16を流れる電流(三相並列一括)Iの測定は、シャント17両端にかかる電圧値をmV計29で測定し、既知のシャント17の抵抗値からシャント17を流れる電流値を算出することで、三相短絡回路16を流れる電流(三相並列一括)Iを測定する。
【0022】
電圧測定回路19および電流測定回路20から測定された三相短絡回路16の両端にかかる電圧Vおよび三相短絡回路16を流れる電流Iと、三相短絡回路16を流れる電流Iおよび各相の固定子巻線4を通電する電流Iとの関係(I=I/3)から固定子巻線4の抵抗値Rは、
【数3】
R=i(3r+ra)/I
となる。
【0023】
【発明が解決しようとする課題】
しかしながら、固定子巻線の導体部の温度を直接測定する従来の三相短絡通電中の交流回転電機の固定子巻線導体温度測定装置およびその方法では、固定子巻線導体温度を固定子巻線の抵抗から換算して測定する場合、例えば、タービン発電機や水車発電機のような大容量・高電圧交流回転電機の固定子巻線では、各相の固定子巻線抵抗の大きさが、0.0001Ω〜0.001Ωのオーダと非常に小さいため、固定子巻線抵抗を精度良く測定しないと、温度に対する測定精度が低下する問題がある。
【0024】
具体的に例を挙げて説明すると、例えば、0.0005Ωの固定子巻線の温度について1℃単位の温度変化を評価するためには、通常の銅製巻線の温度係数は1/235(JEC2100等の規格指定値)であるから、0.0005×1/235×1=2.13×10−6Ωオーダで固定子巻線抵抗を測定することが要求される。
【0025】
また、交流回転電機を急速に無通電状態とした後、停止中に固定子巻線の抵抗値を測定し、外挿による推定で三相短絡通電運転中の交流回転電機の固定子巻線導体温度を求める従来の交流回転電機の巻線導体温度測定装置および測定方法では、交流回転電機の回転子が停止してからでないと測定が行えないため、例えば、タービン発電機や水車発電機のような大容量・高電圧交流回転電機の場合、停止するまでにかなりの時間を要する。
【0026】
従って、無通電状態になってから測定を開始する時間までかなりの時間を要し、外挿により固定子巻線導体温度を推定する際に推定した固定子巻線導体温度が精度の良いものであるとは言い難いという問題点がある。
【0027】
本発明は、上述した事情を考慮してなされたもので、0.0001Ω〜0.001Ωのオーダの低抵抗値を有する固定子巻線の温度を測定した抵抗値から算出する際に、固定子巻線導体の抵抗値を精度良く測定可能に構成することで、固定子巻線の温度を精度良く求めることが可能な交流回転電機の巻線導体温度測定装置および測定方法を提供することを目的とする。
【0028】
また、本発明の他の目的は、交流回転電機の回転子の動作状態に関わらず、無通電状態にあれば、固定子巻線導体温度を測定開始でき、三相短絡通電運転中の固定子巻線導体温度を精度良く推定可能な交流回転電機の巻線導体温度測定装置および測定方法を提供するにある。
【0029】
【課題を解決するための手段】
本発明に係る交流回転電機の巻線導体温度測定装置は、上述した課題を解決するため、請求項1に記載したように、回転電機の固定子巻線を三相短絡する三相短絡手段と、前記三相短絡手段によって得られた三相短絡回路に直流電圧を可変可能に供給する可変直流電圧供給手段と、前記三相短絡回路と、電流計測用抵抗とを電気的に接続することにより構成される測定基本回路と、前記三相短絡回路に印加された直流電圧値および前記三相短絡回路に通電された電流値を取得する測定チャンネルと、この測定チャンネルからのアナログ出力をデジタル変換し記録するデジタル記録手段と、このデジタル記録手段からの出力をデータ処理して入力結果を出力するデータ処理手段とを備える電圧電流測定手段とを具備したことを特徴とする。
【0030】
上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定装置は、請求項2に記載したように、前記測定基本回路を前記三相短絡回路に生じる交流電圧に匹敵する直流電圧を印加できるように構成し、前記電圧電流測定手段を測定時に取得されるアナログ測定信号から交流成分を減衰させるフィルタと、このフィルタから出力されるアナログ測定信号を増幅する増幅器とを備える前記測定チャンネルと、14bit〜16bitの分解能を有する前記デジタル記録手段と、データ処理して処理結果を表示する前記データ処理手段とを電気的に接続して構成し、前記フィルタを商用周波数50Hzおよび60Hzでフィルタ利得が−40〜−80dB、入力耐電圧が100〜600Vで構成し、前記増幅器を増幅率が50〜1000倍でドリフトの発生が少なく、前記増幅率で線形性を有する低ドリフトアンプで構成することで、前記固定子巻線の抵抗値を10−7Ωオーダまでの精度で測定可能に構成したことを特徴とする。
【0031】
請求項2記載の交流回転電機の巻線導体温度測定装置において、前記測定基本回路を前記三相短絡回路に生じる交流電圧に匹敵する直流電圧を印加でき、印加可能な直流電圧は5〜200Vである。印加する直流電圧は、測定時に前記三相短絡回路に生じる交流電圧がどのくらいあるのかを見ながら適宜調整して決定する。
【0032】
本発明に係る交流回転電機の巻線導体温度測定方法は、上述した課題を解決するため、請求項3に記載したように、前記固定子巻線への通電がない無通電状態にて、前記固定子巻線の抵抗値を求め、基準温度における巻線抵抗値に換算する基準抵抗値算出ステップと、スター接続された交流回転電機の固定子巻線を三相短絡し三相短絡回路を形成する三相短絡ステップと、前記交流回転電機が運転され、前記固定子巻線への通電がある状態にて、可変直流電圧供給手段により前記三相短絡回路に印加される直流電圧値および通電される直流電流値を測定することで前記固定子巻線の抵抗値を算出する巻線抵抗値算出ステップと、前記固定子巻線の抵抗値と前記基準抵抗値とを用いて前記交流回転電機の運転中における固定子巻線導体温度を前記電圧電流測定手段で算出する巻線導体温度算出ステップとを含むことを特徴とする。
【0033】
また、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項4に記載したように、前記回転電機が運転された状態にて測定された前記三相短絡回路の直流電圧値および電流値を平均化処理手段で高速サンプリングして、平均化処理する第1の平均化処理ステップを備え、前記巻線抵抗値算出ステップで巻線抵抗を算出する際に、前記第1の平均化処理ステップで平均化処理された前記三相短絡回路の直流電圧値および電流値を用いて前記交流回転電機の固定子巻線導体温度を測定することを特徴とする。
【0034】
さらに、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項5に記載したように、前記回転電機が運転された状態にて測定された前記三相短絡回路の直流電圧値および電流値を平均化処理手段で高速サンプリングして、平均化処理して得られた平均値に対して、一定偏差を超える範囲のサンプリングデータを除外する統計的処理を施した後、残りのサンプリングデータを平均化処理する第2の平均化処理ステップを備え、前記巻線抵抗値算出ステップで巻線抵抗を算出する際に、前記第2の平均化処理ステップで平均化処理された前記三相短絡回路の直流電圧値および電流値を用いて前記交流回転電機の固定子巻線導体温度を測定することを特徴とする。
【0035】
さらにまた、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項6に記載したように、前記交流回転電機を三相短絡通電運転している間、前記巻線短絡導体を冷却し、前記巻線短絡導体の温度変化を抑制する導体冷却ステップを備え、前記巻線抵抗値算出ステップで算出される前記固定子巻線の抵抗値を測定する際の測定誤差の低減を図ったことを特徴とする。
【0036】
一方、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項7に記載したように、前記交流回転電機を三相短絡通電運転している間、前記巻線短絡導体を冷却し、前記巻線短絡導体の温度変化を抑制する導体冷却ステップと、前記巻線短絡導体の抵抗値を換算式から算出する巻線短絡導体抵抗算出ステップとを備えたことを特徴とする。
【0037】
また、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項8に記載したように、前記可変直流電圧供給手段に、単相交流可変電圧商用周波電源と、対地から絶縁された変圧器と、単相全波整流装置とを電気的に接続して直流電圧の可変供給を可能に構成した可変直流電圧供給回路を使用して行うことを特徴とする。
【0038】
さらに、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項9に記載したように、前記交流回転電機を三相短絡通電運転中における前記交流回転電機の固定子巻線の外表面温度を測定する固定子巻線外表面温度測定ステップを備え、前記基準抵抗値算出ステップで基準抵抗値およびデータ処理に必要な数式とともに前記固定子巻線の絶縁部の厚さを入力した後に、前記三相短絡回路の電圧値および電流値を測定することを特徴とする。
【0039】
さらにまた、上述した課題を解決するため、本発明に係る交流回転電機の巻線導体温度測定方法では、請求項10に記載したように、前記交流回転電機を三相短絡通電運転中において、前記三相短絡回路の電圧が50〜600Vと高い場合には、通電を遮断して無通電状態とした後、前記電圧電流測定ステップ、巻線抵抗値算出ステップおよび巻線導体温度算出ステップを例えば、1分間等の任意の一定間隔で前記固定子巻線導体温度を算出し、冷媒温度とほぼ等しくなるまで前記電圧電流測定ステップ、巻線抵抗値算出ステップおよび巻線導体温度算出ステップをくりかえし行って算出した前記固定子巻線導体温度の推移から前記固定子巻線導体温度の推移を関数近似して通電遮断時の固定子巻線導体温度を推定することを特徴とする。
【0040】
請求項10記載の交流回転電機の巻線導体温度測定方法において、冷媒温度とほぼ等しくなるまでとは、前記固定子巻線導体温度が冷媒温度との差が0〜5℃の範囲で飽和している状態および冷媒温度との差が0〜2℃の範囲にある状態の少なくとも一方の状態にあることをいう。
【0041】
【発明の実施の形態】
以下、本発明に係る交流回転電機の巻線導体温度測定装置および測定方法について、図面を参照して説明する。
【0042】
[第1の実施形態]
図1に本発明の第1の実施形態に係る交流回転電機の巻線導体温度測定装置30の一例を示す。
【0043】
図1に示される交流回転電機の巻線導体温度測定装置30は、大地から絶縁され直流電圧を可変して印加できる可変直流電圧源31と、回転電機内の固定子巻線32を三相短絡した三相短絡回路33の交流成分を制限する制限抵抗34と、温度変化に対して抵抗値の変化の少ない抵抗素子であるシャント35とを電気的に直列接続して構成される固定子巻線抵抗測定基本回路(以下、測定基本回路とする)36と、固定子巻線32の電圧および電流を測定する電圧電流測定手段38とを具備する。
【0044】
固定子巻線導体温度測定装置30が具備する三相短絡回路33は、三相の固定子巻線32を三相短絡手段としての巻線短絡導体39で中性点40側および出力側、いわゆるライン端子41側を三相短絡して形成される。
【0045】
固定子巻線導体温度測定装置30が具備する電圧電流測定手段38は、2つの測定チャンネル(以下、測定chとする)43と、測定ch43からのアナログ測定信号をアナログ/デジタル変換(以下、A/D変換とする)して、デジタル測定信号をメモリした後に出力するデジタル記録手段としての多チャンネルデジタル記録装置(以下、デジタル記録装置とする)45と、デジタル記録装置45からのデジタル測定信号を処理して測定値や測定値を代入して入力式を演算した演算結果を表示するデータ処理手段としてのデータ処理装置46とを備える。
【0046】
電圧電流測定手段38が備える2つの測定ch43である第1チャンネル(以下、1chとする)および第2チャンネル(以下、2chとする)は、両方とも同じ構成をしている。測定ch43の1つのチャンネル構成は、測定により得られた測定信号の交流成分を減衰させるフィルタ49と、フィルタ49から出力される測定信号を増幅する増幅器50とを備える。
【0047】
図2に固定子巻線導体温度測定装置30に用いられるフィルタ49の回路構成を示す。
【0048】
図2によれば、フィルタ49は、抵抗素子52と、コンデンサ53とで形成されるいわゆるRCフィルタを複数段、例えば6段接続等の多段接続にして構成される。
【0049】
フィルタ49は、三相短絡回路33の電圧に対しても有効に機能させるために通常フィルタで使用される電圧よりも使用可能な電圧を高く設定し、入力される電圧の上限値(以下、入力耐電圧とする)を少なくとも100V、つまり、100Vの電圧では有効に機能し得るように構成される。
【0050】
フィルタ49の入力耐電圧は、できるだけ高い方が好ましい。しかし、入力耐電圧を向上させると、フィルタ49の製作コストが増加するため、必要以上に入力耐電圧を向上させるのは不要な製作コスト増加につながる。そこで、フィルタ49の入力耐電圧は、好ましくは5〜600V、より好ましくは、40〜300V、さらに好ましくは、80〜230Vにする。例えば、図2に示されるフィルタ49は、250Vまでの電圧に対して有効に機能し得る。
【0051】
また、フィルタ49は、フィルタ49のゲイン特性として、商用周波数である50Hzまたは60Hzで少なくとも−50dBのゲインを得る高減衰特性を有し、例えば、図2に示されるフィルタ49は、−60dBのゲインを得るゲイン特性を有する。
【0052】
フィルタ49のゲイン特性は、商用周波数である50Hzまたは60Hzにおいて、測定精度の観点から言えばできるだけフィルタ減衰率が高い方が好ましい。しかし、フィルタ製作の容易性およびコストと必要とされる測定精度とを考慮してフィルタ減衰率を設定すれば、好ましくは−45dB〜−80dBであり、より好ましくは−50dB〜−70dBであり、さらに好ましくは−50dB〜−60dBである。
【0053】
測定ch43が備える増幅器50は、増幅率が少なくとも50倍以上でリニアリティーを示し、かつ、低ドリフト特性を有する低ドリフトアンプである。図1に示される固定子巻線導体温度測定装置30に用いられる増幅器50の増幅率は、好ましくは50倍〜1000倍であり、より好ましくは、70倍〜500倍であり、さらに好ましくは90倍〜250倍である。
【0054】
電圧電流測定手段38が備えるデジタル記録装置45は、少なくとも14bit(2−14=1/16384)の分解能を有する。図1に示される固定子巻線導体温度測定装置30に用いられるデジタル記録装置45の分解能は、出来るだけ良い方が測定上は望ましいが、装置のコストと必要とされる分解能を考慮すれば、14〜16bitで十分である。例えば、図1に示される固定子巻線導体温度測定装置30に用いられるデジタル記録装置45の分解能は、14bitであり、10V入力の場合、10×1/16384=0.61mVの分解能となる。
【0055】
電圧電流測定手段38が備えるデータ処理装置46は、平均化処理を行うアベレージング機能および入力された式に平均化処理を行った平均値を代入して演算処理する演算処理機能を有する。データ処理装置46には、電圧電流測定手段38で測定される直流電圧値および電流値から算出される固定子巻線抵抗値Ra’と事前測定した固定子巻線抵抗値を95℃での抵抗値に換算した基準抵抗値R95および固定子巻線導体温度Tとの関係を表す数式4を
【数4】
Figure 2004077245
固定子巻線導体温度の測定開始前に事前に入力しておく。
【0056】
そして、固定子巻線導体温度測定を行い、測定した直流電圧および電流からデータ処理装置46が演算して得たから数式4を計算し、固定子巻線導体温度Tをデータ処理装置46が換算し、必要に応じてその出力をディスプレイに表示する。
【0057】
図1に示される固定子巻線導体温度測定装置30を用いた三相短絡通電運転中における固定子巻線導体温度測定方法について説明する。
【0058】
まず、三相短絡通電運転中における固定子巻線導体温度測定を実施する前に事前に各相の固定子巻線32の抵抗値を測定し、測定した抵抗値と抵抗測定時の温度から所定温度の基準抵抗値を算出する基準抵抗値算出ステップを行う。基準抵抗値算出ステップでは、各相の固定子巻線32の抵抗値を測定し、測定した固定子巻線32の抵抗値および抵抗測定時の温度を数式1に代入して、数式4に示される基準抵抗値R95を算出する。そして、算出した基準抵抗値R95をデータ処理装置46に入力する。
【0059】
次に、各相の固定子巻線32を三相短絡導体39で三相短絡して三相短絡回路33を形成する三相短絡回路ステップを行う。そして、三相短絡回路ステップで三相短絡回路33を形成した後、固定子巻線導体温度測定装置30が具備する測定基本回路36および電圧電流測定手段38と三相短絡回路33とを電気的に接続する測定装置接続ステップを行う。
【0060】
測定装置接続ステップは、まず、測定対象である固定子巻線32を三相短絡した三相短絡回路33を測定基本回路36を構成する可変直流電圧源31とシャント35との間に電気的に直列接続する。そして、電圧電流測定手段38が備える測定ch43の一方のチャンネルを三相短絡回路33に電気的に並列接続し、測定ch43の他方のチャンネルをシャント35に電気的に並列接続することでなされる。
【0061】
次に、測定者が交流回転電機を三相短絡通電運転状態にして、三相短絡回路33の直流電圧値および電流値を電圧電流測定手段38で測定する電圧電流測定ステップを行う。三相短絡回路33の両端にかかる電圧Vsの測定は、測定ch43の一方、例えば1chが三相短絡回路33の両端に接続されているので、直接、三相短絡回路33の両端にかかる電圧Vs値を測定することでなされる。一方、三相短絡回路33に流入する電流Isの測定は、シャント35を流れる電流値と三相短絡回路33に流入する電流値とが等しいことを利用して測定される。
【0062】
三相短絡回路33に流入する電流Isの測定についてもう少し具体的に説明すると、三相短絡回路33に流入する電流Isの測定は、まず、測定ch43の他方、例えば、2chがシャント35の両端に接続されて、シャント35の両端にかかる電圧値が測定される。次に、測定されたシャント35の両端にかかる電圧値から既知のシャント35の抵抗値を利用してシャント35を流れる電流値を算出する。シャント35を流れる電流値と三相短絡回路33に流入する電流値とは等しいので、シャント35を流れる電流値がわかれば三相短絡回路33に流入する電流値を求めることができる。
【0063】
次に、電圧電流測定ステップで測定された直流電圧値および電流値からデータ処理装置46が固定子巻線32の抵抗値を算出する巻線抵抗値算出ステップを行う。巻線抵抗値算出ステップは、まず、データ処理装置46で測定された直流電圧値および電流値から三相短絡回路33の抵抗値Raを算出する。そして、算出した三相短絡回路33の抵抗値Raから固定子巻線抵抗値Ra’を算出する。
【0064】
三相短絡回路33の抵抗値Raは、巻線短絡導体39Aの抵抗値Rexを含むため、事前に測定した巻線短絡導体39Aの抵抗値Rex分を補正する必要がある。
固定子巻線抵抗値Ra’と、三相短絡回路33の抵抗値Raと、巻線短絡導体39Aの抵抗値Rexとの関係は、以下の数式5で表される。
【0065】
【数5】
Ra’=3(Ra−Rex)
【0066】
次に、データ処理装置46が巻線抵抗値算出ステップで算出された固定子巻線抵抗値Ra’と、事前入力される基準抵抗値R95および数式4とから固定子巻線導体温度Tを演算する巻線導体温度算出ステップを行い、演算結果、すなわち、固定子巻線導体温度Tをディスプレイに表示する。
【0067】
本実施形態によれば、固定子巻線導体温度測定装置30が、三相短絡通電運転中に三相短絡回路33に生じる交流電圧に対して同等以上の直流電圧を供給可能な可変直流電圧供給手段と三相短絡回路33に生じる交流電圧を制限する制限抵抗34とシャント35とを備えた測定基本回路36と、測定信号に重畳した交流成分を直流成分に対して大幅に減衰させる測定ch43と分解能の高いデジタル記録装置45と測定信号を処理するデータ処理装置46とを備えた電圧電流測定手段38とを具備することにより、固定子巻線32の抵抗値を最小10−7Ωオーダまで精度良く抵抗値を測定することが可能となるので、固定子巻線32の温度変化を1℃程度の精度で測定することが可能となる。
【0068】
尚、電圧電流測定手段38が備える2つの測定ch43の1chと2chとは、同じ構成のため、逆に接続しても測定上支障はない。また、測定ch43のチャンネル数は必ずしも2である必要はなく、少なくとも2以上のチャンネル数を有していれば良い。
【0069】
また、フィルタ49は、RCフィルタの多段接続となっているが、有効に機能する入力耐電圧範囲(100V〜600V)およびフィルタ利得特性が同程度(−50dB〜−60dB)であれば、例えば、デジタルフィルタ等の他のフィルタで実現しても良い。
【0070】
[第2の実施形態]
図3に本発明の第2の実施形態に係る交流回転電機の巻線導体温度測定装置30Aの一例を示す。
【0071】
固定子巻線導体温度測定装置30Aは、第1の実施形態に係る固定子巻線導体温度測定装置30に対して、電圧電流測定手段38に代わり、第1の平均化処理装置55を付加した電圧電流測定手段38Aを具備したものであり、その他の箇所は異ならない。従って、第1の実施形態に係る固定子巻線導体温度測定装置30と異ならない箇所については同じ符号を付して説明を省略する。
【0072】
図3に示される固定子巻線導体温度測定装置30Aは、図1に示される固定子巻線導体温度測定装置30と同様に、測定基本回路36と、電圧電流測定手段38Aとを具備する。測定基本回路36には、三相短絡回路33の両端に電圧電流測定手段38Aが電気的に接続され、測定ch43の一方のチャンネルで三相短絡回路33の両端にかかる電圧Vsが、他方のチャンネルで三相短絡回路33に流入する電流Isが測定される。
【0073】
固定子巻線導体温度測定装置30が具備する電圧電流測定手段38Aは、図1に示される電圧電流測定手段38に高速サンプリングを行い、サンプリングしたデータを平均化処理して平均値を算出する平均化処理手段としての第1の平均化処理装置55を付加したものであり、第1の平均化処理装置55は、デジタル記録装置45とデータ処理装置46との間に設けられ電気的に接続される。
【0074】
電圧電流測定手段38Aが備える第1の平均化処理装置55は、0.1秒間で1000点程度、すなわち、約100μ秒のサンプリング周期で高速サンプリングを行うことが可能であり、図3に示される第1の平均化処理装置55では、0・1秒間に1000点のサンプリングを行い平均化処理することで、安定した精度の良いデータを得ることを可能にしている。
【0075】
図3に示される固定子巻線導体温度測定装置30Aを用いた三相短絡通電運転中の固定子巻線導体温度測定方法は、第1の実施形態に係る三相短絡通電運転中の固定子巻線導体温度測定方法に対して、第1の平均化処理ステップを備える点のみが異なっている。従って、第1の実施形態に係る三相短絡通電運転中における固定子巻線導体温度測定方法と同一内容の箇所については説明を簡略または省略する。
【0076】
図3に示される固定子巻線導体温度測定装置30Aを用いた固定子巻線導体温度測定方法は、まず、測定者は、基準抵抗値算出ステップで基準抵抗値R95を求め、求めた基準抵抗値R95の値および数式4をデータ処理装置46に入力する。そして、三相短絡回路33を形成する三相回路短絡ステップと、測定基本回路36および電圧電流測定手段38Aを三相短絡回路33に電気的に接続する測定装置接続ステップとを行う。
【0077】
次に、測定者が交流回転電機を三相短絡通電運転状態にして、電圧電流測定ステップを行う。そして、データ処理装置46は、電圧電流測定ステップで測定された直流電圧値および電流値を0・1秒間に1000点サンプリングする高速サンプリングを行い、高速サンプリングした直流電圧値および電流値を平均して平均値を算出する平均化処理ステップを行う。
【0078】
次に、データ処理装置46は、平均化処理ステップで平均化処理された直流電圧値および電流値、すなわち、直流電圧平均値および電流平均値から固定子巻線抵抗値Ra’を算出する巻線抵抗値算出ステップを行い、巻線導体温度算出ステップを行う。
【0079】
本実施形態によれば、固定子巻線導体温度測定装置30Aが具備する電圧電流測定手段38Aは第1の平均化処理装置55を備え、高速サンプリングを行い、サンプリングしたデータの平均値を算出し出力するので、第1の実施形態に係る固定子巻線導体温度測定装置30と比較して、安定した精度の良いデータを収集することが可能となる。
【0080】
従って、本実施形態に係る交流回転電機の巻線導体温度測定方法の方が、第1の実施形態に係る交流回転電機の巻線導体温度測定方法よりも固定子巻線導体温度を測定する測定精度が向上する。
【0081】
尚、電圧電流測定手段38Aが備える第1の平均化処理装置55のサンプリング能力は、必ずしも0.1秒間で1000点でなくても良く、500点〜2000点の範囲でサンプリングを行うことが可能であれば良い。
【0082】
[第3の実施形態]
図4に本発明の第3の実施形態に係る交流回転電機の巻線導体温度測定装置30Bの一例を示す。
【0083】
固定子巻線導体温度測定装置30Bは、第2の実施形態に係る固定子巻線導体温度測定装置30Aに対して、電圧電流測定手段38Aに代わり、電圧電流測定手段38Bを具備したものであり、その他の箇所は異ならない。従って、第2の実施形態に係る固定子巻線導体温度測定装置30Aと異ならない箇所については同じ符号を付して説明を省略する。
【0084】
図4に示される固定子巻線導体温度測定装置30Bは、測定基本回路36および電圧電流測定手段38Bを具備する。測定基本回路36には、電圧電流測定手段38Bが電気的に接続され、測定ch43の一方のチャンネルで三相短絡回路33の両端にかかる電圧Vsが、他方のチャンネルで三相短絡回路33に流入する電流Isが測定される。
【0085】
固定子巻線導体温度測定装置30が具備する電圧電流測定手段38Bは、図2に示される電圧電流測定手段38Aが備える第1の平均化処理装置55に代わり、高速サンプリングを行いサンプリングしたデータの平均値を算出後、統計処理を施す平均化処理手段としての第2の平均化処理装置57を付加したものであり、第2の平均化処理装置57は、デジタル記録装置45とデータ処理装置46との間に設けられ電気的に接続される。
【0086】
電圧電流測定手段38Bが備える第2の平均化処理装置57は、0・1秒間に1000点のサンプリングを行い平均化処理した後、平均化処理して得られた平均値に対して、例えば、平均値から±3σ(σ:標準偏差)の範囲内のデータを残し、その他のデータ、すなわち、平均値から±3σの範囲外のデータを除外する等の統計的な処理を実行し、残りのデータのみを平均化処理してより安定した、精度の良いデータを得ることができる。
【0087】
図4に示される固定子巻線導体温度測定装置30Bを用いた三相短絡通電運転中の固定子巻線導体温度測定方法は、第2の実施形態に係る三相短絡通電運転中の固定子巻線導体温度測定方法に対して、平均化処理ステップの処理内容のみが異なっている。従って、第2の実施形態に係る三相短絡通電運転中の固定子巻線導体温度測定方法と同一内容の箇所については説明を簡略または省略する。
【0088】
図4に示される固定子巻線導体温度測定装置30Bを用いた固定子巻線導体温度測定方法は、まず、測定者は、基準抵抗値算出ステップで基準抵抗値R95を求め、求めた基準抵抗値R95の値および数式4をデータ処理装置46に入力する。そして、三相短絡回路33を形成する三相回路短絡ステップと、測定基本回路36および電圧電流測定手段38Bを三相短絡回路33に電気的に接続する測定装置接続ステップとを行う。
【0089】
次に、測定者が交流回転電機を三相短絡通電運転状態にして、電圧電流測定ステップを行う。そして、データ処理装置46は、電圧電流測定ステップで測定された直流電圧値および電流値を0・1秒間に1000点サンプリングする高速サンプリングを行い、高速サンプリングした直流電圧値および電流値を平均して平均値を算出し、さらに、算出した平均値に対して、例えば、平均値±3σの範囲外のデータを除外する統計的な処理を実行する平均化処理ステップを行う。
【0090】
次に、データ処理装置46は、平均化処理ステップで平均化処理された直流電圧値および電流値、すなわち、直流電圧平均値および電流平均値から固定子巻線抵抗値Ra’を算出する巻線抵抗値算出ステップを行い、巻線導体温度算出ステップを行う。
【0091】
本実施形態によれば、固定子巻線導体温度測定装置30Bが具備する電圧電流測定手段38Bは第2の平均化処理装置57を備え、高速サンプリングしたデータの平均値を算出した後、算出した平均値を例えば、平均値から±3σの範囲外にある平均値を除外する等の統計的な処理を施して出力するので、第2の実施形態に係る交流回転電機の巻線導体温度測定装置30Aと比較して、さらに安定した精度の良いデータを収集することが可能となる。
【0092】
従って、本実施形態に係る交流回転電機の巻線導体温度測定方法の方が、第2の実施形態に係る交流回転電機の巻線導体温度測定方法よりも固定子巻線導体温度を測定する測定精度が向上する。
【0093】
尚、電圧電流測定手段38Bが備える第2の平均化処理装置57のサンプリング能力は、必ずしも0.1秒間で1000点でなくても良く、500点〜2000点の範囲でサンプリングを行うことが可能であれば良い。
【0094】
[第4の実施形態]
図5に本発明の第4の実施形態に係る交流回転電機の巻線導体温度測定装置30Cの一例を示す。
【0095】
固定子巻線導体温度測定装置30Cは、第1の実施形態に係る固定子巻線導体温度測定装置30に対して、三相短絡回路33が備える三相の固定子巻線32を三相短絡する巻線短絡導体39Aを冷却する冷却手段59を具備したものであり、その他の箇所は異ならない。従って、第1の実施形態に係る固定子巻線導体温度測定装置30と異ならない箇所については同じ符号を付して説明を省略する。
【0096】
図5に示される固定子巻線導体温度測定装置30Cは、図1に示される固定子巻線導体温度測定装置30と同様に、測定基本回路36および電圧電流測定手段38と、三相短絡回路33が備える巻線短絡導体39Aを冷却する冷却手段59とを具備する。冷却手段59は、三相短絡回路33が備える巻線短絡導体39Aに冷却水を通水する冷却水通水路60と冷却水を循環させる循環ポンプ61とを備える。
【0097】
固定子巻線導体温度測定装置30Cが具備する測定基本回路36には、電圧電流測定手段38Bが電気的に接続され、測定ch43の一方のチャンネルで三相短絡回路33の両端にかかる電圧Vsが、他方のチャンネルで三相短絡回路33に流入する電流Isが測定される。冷却手段59は、巻線短絡導体39Aに冷却水を循環ポンプ61で循環させて通水することで、巻線短絡導体39Aを冷却し、巻線短絡導体39Aの温度上昇を抑えて巻線短絡導体39Aの温度をほぼ一定に保っている。
【0098】
図5に示される固定子巻線導体温度測定装置30Cを用いた三相短絡通電運転中における交流回転電機の固定子巻線導体温度測定について説明する。
【0099】
図5に示される固定子巻線導体温度測定装置30Cを用いた固定子巻線導体温度測定方法は、第1の実施形態に係る固定子巻線導体温度測定装置30を用いた固定子巻線導体温度測定方法に対して、巻線短絡導体39Aを冷却する巻線短絡導体冷却ステップを備える点のみが異なっている。従って、第1の実施形態に係る固定子巻線導体温度測定装置30を用いた固定子巻線導体温度測定方法と同一内容の箇所については説明を簡略または省略する。
【0100】
まず、測定者は、基準抵抗値算出ステップで基準抵抗値R95を求め、求めた基準抵抗値R95の値および数式4をデータ処理装置46に入力する。そして、三相短絡回路33を形成する三相回路短絡ステップと、測定基本回路36および電圧電流測定手段38Aを三相短絡回路33に電気的に接続する測定装置接続ステップとを行う。測定装置接続ステップが完了したら、次に、巻線短絡導体冷却ステップを行う。
【0101】
巻線短絡導体冷却ステップは、冷却手段59が備える循環ポンプ61の運転を開始して固定子巻線32を三相短絡する巻線短絡導体39Aに冷却水を循環させて冷却して、三相短絡通電運転中の巻線短絡導体39Aの温度変動を抑えることで、巻線短絡導体39Aの抵抗値Rexの温度変動を抑制するために行う。
【0102】
巻線短絡導体39Aの抵抗値Rexは、交流回転電機を固定子巻線32を三相短絡して定格電流値近傍(定格電流値を含む)の電流(以下、約定格電流とする)を連続して通電することにより生じる巻線短絡導体39Aの温度上昇に伴って高くなる。従って、巻線短絡導体39Aの抵抗値Rexを一定とみなして、三相短絡回路33から固定子巻線抵抗値Ra’を数式5で算出して評価すると誤差を生じることになる。
【0103】
そこで、巻線短絡導体冷却ステップで巻線短絡導体39Aの抵抗値Rexの温度変動を抑制することで、巻線短絡導体39Aの抵抗値Rexを三相短絡通電運中を通じて一定とみなすことができ、固定子巻線抵抗値Ra’を数式5で算出して評価する際に生じ得る測定誤差を低減させている。以降の測定ステップは、第1の実施形態と同様に、電圧電流測定ステップ、巻線抵抗値算出ステップおよび巻線導体温度算出ステップを行う。
【0104】
本実施形態によれば、固定子巻線導体温度測定装置30Cが冷却手段59を具備することで、三相短絡し連続して定格電流を通電することにより、固定子巻線32で発生した熱の伝導による巻線短絡導体39Aの温度変動を抑え、固定子巻線32の抵抗値測定の際に生じる測定誤差を低減することができる。従って、本実施形態に係る固定子巻線導体温度測定装置30Cは、第1の実施形態に係る固定子巻線導体温度測定装置30と比べて固定子巻線32の抵抗値測定の際に生じる測定誤差をより低減して精度の良い抵抗値測定を可能とし、より精度の高い固定子巻線導体の温度測定を可能とする。
【0105】
[第5の実施形態]
図6に本発明の第5の実施形態に係る交流回転電機の巻線導体温度測定装置30Dの一例を示す。
【0106】
固定子巻線導体温度測定装置30Dは、第4の実施形態に係る固定子巻線導体温度測定装置30Cに対して、巻線短絡導体温度測定手段63をさらに具備したものであり、その他の箇所は異ならない。従って、第4の実施形態に係る固定子巻線導体温度測定装置30Cと異ならない箇所については同じ符号を付して説明を省略する。
【0107】
図6に示される固定子巻線導体温度測定装置30Dは、図5に示される固定子巻線導体温度測定装置30Cと同様に、測定基本回路36、電圧電流測定手段38および冷却手段59と、巻線短絡導体39Aの温度を測定する巻線短絡導体温度測定手段63とを具備する。
【0108】
巻線短絡導体温度測定手段63は、巻線短絡導体39Aの温度を測定する温度測定器64と、温度測定器64から出力されるアナログ信号をデジタル信号に変換して出力するA/D変換器65とを備える。巻線短絡導体温度測定手段63は、入力側が三相短絡回路33と電気的に接続され、出力側がデータ処理装置46と電気的に接続される。
【0109】
図6に示される固定子巻線導体温度測定装置30Dを用いた三相短絡通電運転中における交流回転電機の固定子巻線導体温度測定について説明する。
【0110】
図6に示される固定子巻線導体温度測定装置30Dを用いた固定子巻線導体温度測定方法は、第4の実施形態に係る固定子巻線導体温度測定装置30Cを用いた固定子巻線導体温度測定方法に対して、巻線短絡導体39Aの抵抗値Rexを換算式から算出する巻線短絡導体抵抗算出ステップを備える点のみが異なっている。従って、第4の実施形態に係る固定子巻線導体温度測定装置30Dを用いた固定子巻線導体温度測定方法と同一内容の箇所については説明を簡略または省略する。
【0111】
まず、測定者は、基準抵抗値算出ステップを行う。基準抵抗値算出ステップでは、運転中と同じ接続状態、すなわち、三相短絡してから十分に長時間放置して温度が安定した状態になったら、運転前に基準巻線抵抗値Ra’b、基準温度Tab、および巻線短絡導体39Aの基準抵抗値(以下、基準外部抵抗とする)Rexb36、基準温度Texbを測定し、測定したこれらの値および換算に必要な数式をデータ処理装置46へ事前に入力しておく。
【0112】
次に、三相短絡回路33を形成する三相回路短絡ステップと、測定対象である固定子巻線32を三相短絡した三相短絡回路33、測定基本回路36および電圧電流測定手段38を電気的に接続する測定装置接続ステップとを行う。そして、測定装置接続ステップが完了したら、巻線短絡導体冷却ステップで巻線短絡導体39Aの冷却を行う。
【0113】
次に、測定者は、電圧電流測定ステップを行う。電圧電流測定ステップでは、三相短絡回路33の電圧および電流を測定するとともに、固定子巻線導体温度測定装置30Dが具備する巻線短絡導体温度測定手段63で巻線短絡導体39Aの温度を測定する。
【0114】
次に、巻線短絡導体39Aの抵抗値Rexを数式1に示される換算式から算出する巻線短絡導体抵抗算出ステップを行う。三相巻線短絡導体39Aの抵抗値Rexの算出は、測定された巻線短絡導体39Aの温度Tから数式6で巻線短絡導体39Aの抵抗値Rexを換算して求める。
【0115】
【数6】
Figure 2004077245
【0116】
巻線短絡導体抵抗算出ステップが完了したら、第4の実施形態と同様に巻線抵抗値算出ステップを行う。巻線抵抗値算出ステップにおける交流回転電機の固定子巻線抵抗値Ra’は、巻線短絡導体抵抗算出ステップで算出された巻線短絡導体39Aの抵抗値Rexを数式5に代入して演算することにより求める。次に、巻線導体温度算出ステップを行い、データ処理装置46が固定子巻線導体温度Tをデータ処理装置46のディスプレイに表示する。
【0117】
本実施形態によれば、固定子巻線導体温度測定装置30Dが巻線短絡導体温度測定手段63を具備することで、交流回転電機の三相短絡通電運転中における巻線短絡導体39Aの温度を測定可能にし、測定した温度Tにおける巻線短絡導体39Aの抵抗値Rexを考慮した精度のよい測定をすることが可能となる。従って、本実施形態に係る固定子巻線導体温度測定装置30Dは、第4の実施形態に係る固定子巻線導体温度測定装置30Cと比べて固定子巻線32の抵抗値測定の際に生じる測定誤差をより低減して精度の良い抵抗値測定を可能とし、より精度の高い固定子巻線導体の温度測定を可能とする。
【0118】
[第6の実施形態]
図7に本発明の第6の実施形態に係る交流回転電機の巻線導体温度測定装置30Eの一例を示す。
【0119】
固定子巻線導体温度測定装置30Eは、第1の実施形態に係る固定子巻線導体温度測定装置30に対して、測定基本回路36に代わり、測定基本回路36Aを具備したものであり、その他の箇所は異ならない。従って、第1の実施形態に係る固定子巻線導体温度測定装置30と異ならない箇所については同じ符号を付して説明を省略する。
【0120】
図7に示される固定子巻線導体温度測定装置30Eは、測定基本回路36Aと、電圧電流測定手段38とを具備する。測定基本回路36Aは、測定基本回路36に対して、可変直流電圧供給手段としての可変直流電圧源31と可変直流電圧供給回路68とを置換した回路構成である。
【0121】
図8に可変直流電圧供給回路68の回路構成を表す回路構成図を示す。
【0122】
図8に示される可変直流電圧供給回路68は、可変直流電圧供給手段の一形態であり、単相交流可変電圧商用周波電源(被試験交流回転電機と同一周波数:50Hzまたは60Hz)69、対地絶縁変圧器70、およびダイオード71で構成される単相全波整流装置72を電気的に接続して構成する。可変直流電圧供給回路68は、測定基本回路36Aにおいて可変直流電圧源31と同様に機能し、100A程度までの大電流を通電することが可能である。
【0123】
図7に示される固定子巻線導体温度測定装置30Eを用いた三相短絡通電運転中における交流回転電機の固定子巻線導体温度測定について説明する。
【0124】
図7に示される固定子巻線導体温度測定装置30Eを用いた固定子巻線導体温度測定方法は、第1の実施形態に係る固定子巻線導体温度測定装置30を用いた固定子巻線導体温度測定方法に対して、直流電圧を供給する可変直流電圧供給手段が異なるのみで、測定ステップは基本的に同一である。
【0125】
すなわち、第1の実施形態に係る交流回転電機の巻線導体温度測定方法と同様にして、測定者は、基準抵抗値算出ステップ、三相回路短絡ステップ、測定装置接続ステップ、電圧電流測定ステップ、巻線抵抗値算出ステップおよび巻線導体温度算出ステップを行い、固定子巻線導体温度Tをデータ処理装置46のディスプレイに表示する。
【0126】
本実施形態によれば、固定子巻線導体温度測定装置30Eは、直流可変電圧供給手段としての可変直流電圧供給回路68を備えた測定基本回路36Aを具備することにより、直流電源供給の際に交流回転電機を三相短絡して約定格電流を通電して運転することにより発生する3倍高調波に起因したビート振動等の影響を受けることなく、安定した直流電圧を交流回転電機の三相短絡回路33に供給することが可能となる。
【0127】
従って、固定子巻線導体温度測定装置30Eは第1の実施形態に係る固定子巻線導体温度測定装置30と比較して、より精度の良い固定子巻線導体の抵抗値測定を可能とし、より精度の高い固定子巻線導体の温度測定を可能とする。
【0128】
尚、図8に示される可変直流電圧供給回路68を構成する単相全波整流装置72は、整流素子にダイオード71を使用した状態で示されているが、必ずしも単相全波整流装置72で使用される整流素子をダイオード71に限定するものではない。例えば、単相全波整流装置72で使用される整流素子をダイオード71に代わりサイリスタを用いて単相全波整流装置72を構成しても良い。
【0129】
[第7の実施形態]
図9に本発明の第7の実施形態に係る交流回転電機の巻線導体温度測定装置30Fの一例を示す。
【0130】
固定子巻線導体温度測定装置30Fは、RTD74を挿入した交流回転電機の固定子巻線32の温度を導体部と外表面とで測定するもので、第1の実施形態に係る固定子巻線導体温度測定装置30に対して、固定子巻線外表面温度測定手段75をさらに具備することで、固定子巻線32の導体部および絶縁部76のそれぞれの温度測定を可能にしている。
【0131】
固定子巻線導体温度測定装置30Fは、固定子巻線32の導体部および絶縁部76のそれぞれの温度測定を可能とすることで、絶縁部76の径方向長さに対する温度特性(以下、温度勾配とする)を得ることができ、固定子巻線32の絶縁部76の温度特性を評価できる。固定子巻線32の絶縁部76の温度特性を評価することは、材料開発の観点等から重要であり、有意義なものである。
【0132】
固定子巻線導体温度測定装置30Fは、固定子巻線導体温度測定装置30に対して、固定子巻線外表面温度測定手段75をさらに具備する点以外は固定子巻線導体温度測定装置30と異ならないので、第1の実施形態に係る固定子巻線導体温度測定装置30と異ならない箇所については同じ符号を付して説明を省略する。
【0133】
固定子巻線導体温度測定装置30Fは、図1に示される固定子巻線導体温度測定装置30と同様に、測定基本回路36および電圧電流測定手段38と、固定子巻線32間に挿入されたRTD74から温度測定信号を取得して固定子巻線32の外表面温度を測定する固定子巻線外表面温度測定手段75とを具備する。固定子巻線外表面温度測定手段75は、図6に示される固定子巻線導体温度測定装置30Dが具備する巻線短絡導体温度測定手段63と基本的に同じ構成であり、温度測定対象が異なるだけである。
【0134】
すなわち、固定子巻線外表面温度測定手段75は、RTD74で固定子巻線32の外表面温度を測定する温度測定器64と、温度測定器64から出力されるアナログ信号をデジタル信号に変換して出力するA/D変換器65とを備える。また、固定子巻線外表面温度測定手段75の入力側は、RTD74に電気的に接続され、出力側はデータ処理装置46に電気的に接続される。
【0135】
図9に示される固定子巻線導体温度測定装置30Fを用いた三相短絡通電運転中における交流回転電機の固定子巻線導体温度測定について説明する。
【0136】
図9に示される固定子巻線導体温度測定装置30Fを用いた固定子巻線導体温度測定方法は、第1の実施形態に係る固定子巻線導体温度測定装置30を用いた固定子巻線導体温度測定方法に対して、固定子巻線32の外表面温度を測定する固定子巻線外表面温度測定ステップをさらに行う点が異なる。従って、第7の実施形態に係る固定子巻線導体温度測定装置30Fを用いた固定子巻線導体温度測定方法と同一内容の箇所については説明を簡略または省略する。
【0137】
固定子巻線導体温度測定装置30Fを用いた固定子巻線導体温度測定方法は、まず、基準抵抗値算出ステップで基準抵抗値を算出し、データ処理に必要な数式とともに本実施形態では固定子巻線32の絶縁部77の厚さをデータ処理装置46に入力する。次に、測定者は、三相回路短絡ステップ、測定装置接続ステップおよび電圧電流測定ステップを行い、電圧電流測定ステップで三相短絡回路33の直流電圧値および電流値を測定する時と同時に固定子巻線外表面温度測定ステップを行う。
【0138】
固定子巻線外表面温度測定ステップは、固定子巻線外表面温度測定手段75でRTD74で取得される温度情報をA/D変換してデータ処理装置46でデータ処理することで固定子巻線32の外表面温度を測定する。電圧電流測定ステップおよび固定子巻線外表面温度測定ステップ以降の測定ステップは、第1の実施形態に係ると同様に巻線抵抗値算出ステップおよび巻線導体温度算出ステップを行う。
【0139】
本実施形態によれば、固定子巻線導体温度測定装置30Fが固定子巻線外表面温度測定手段75をさらに具備することで、測定された固定子巻線32の導体部および外表面のそれぞれの温度から、固定子巻線32の絶縁部76の温度勾配を得ることができ、絶縁部76の温度特性を評価することができる。
【0140】
[第8の実施形態]
本発明の第8の実施形態に係る交流回転電機の巻線導体温度測定方法を説明する。
【0141】
本実施形態に係る交流回転電機の巻線導体温度測定方法は、測定対象の固定子巻線32を三相短絡した三相短絡回路33の両端にかかる電圧Vsが三相短絡通電運転中において50V以上と高い電圧が発生している場合に行うものである。
【0142】
三相短絡回路33の両端にかかる電圧Vsが三相短絡通電運転中において50V以上と高い電圧が発生している場合は、電圧・電流法では、測定する直流電圧および直流電流に対して大きな交流成分が重畳する。従って、要求に合う温度精度を得るために必要とされる固定子巻線32の抵抗値測定精度を維持することが困難となる。そこで、本実施形態に係る交流回転電機の巻線導体温度測定方法では、固定子の固定子巻線32間に挿入されたRTD74を用いて外挿により三相短絡通電運転中の交流回転電機の固定子巻線導体温度を推定するものである。
【0143】
本実施形態に係る交流回転電機の巻線導体温度測定装置は、RTD74で固定子巻線32の外表面温度を測定可能な固定子巻線導体温度測定装置が用いられ、例えば、図9に示される固定子巻線導体温度測定装置30Fが用いられる。
【0144】
図10に本実施形態に係る交流回転電機の巻線導体温度測定方法を説明する説明図(グラフ)を示す。
【0145】
図10に示される説明図では、グラフの横軸に固定子巻線電流が0となった時刻からの経過時間t(min)をとり、縦軸に温度(℃)または電流(A)をとって、固定子巻線電流が0となった時刻からの経過時間tに対する温度(℃)推移を表している。
【0146】
本実施形態に係る三相短絡通電運転中の交流回転電機の固定子巻線導体温度測定は、まず、交流回転電機の固定子巻線32を三相短絡した三相短絡回路33に約定格電流を連続通電する。そして、RTD74で取得された固定子巻線32の外表面温度T、固定子巻線電流Iaおよび冷媒温度Tcを連続測定する。
【0147】
次に、固定子巻線32の温度が完全に飽和したことをRTD74から取得される固定子巻線32の外表面温度Tの指示値で確認する。そして、固定子巻線32の温度が完全に飽和したら、交流回転電機を無通電状態にする。交流回転電機を無通電状態にすると、固定子巻線電流Iaは減少を開始し、やがて、Ia=0となる。
【0148】
Ia=0となったら、例えば、無通電状態とした時点(t=0)から1分後に、固定子巻線導体温度測定装置30Fが具備する電圧電流測定手段38で固定子巻線抵抗Ra’を測定し、測定した固定子巻線抵抗Ra’から固定子巻線導体温度Tを求める。そして、例えば、1分毎等のある一定間隔毎に測定を行い、固定子巻線導体温度Tと冷媒温度Tcとがほぼ等しくなるまで測定を続ける。
【0149】
測定によって得られた固定子巻線導体温度Tを例えば、指数関数等で近似することによって、固定子巻線導体温度Tは、経過時間tの関数で表され、近似により得られた固定子巻線導体温度Tの関数式にt=0を代入すれば、固定子巻線電流Iaが減少開始した時点(t=0)、すなわち、定格電流通電時の固定子巻線導体温度Tを推定することができる。
【0150】
本実施形態では、測定対象の固定子巻線32を三相短絡した三相短絡回路33の両端にかかる電圧Vsが三相短絡通電運転中において50V以上と高い電圧が発生している場合においても、無通電状態にして、素早く温度測定を行うことができるので、外挿により三相短絡通電運転中の固定子巻線32の導体部の温度を推定することができる。
【0151】
また、外挿により三相短絡通電運転中の固定子巻線32の導体部の温度を推定する際に、固定子巻線導体温度測定装置30Fが測定基本回路36と電圧電流測定手段38とを具備することで交流成分を大幅除去が可能となることから、固定子巻線電流IaがIa=0となれば、回転子が停止する前から固定子巻線導体温度Tの温度測定を開始することができるので、より正確に三相短絡通電運転中の固定子巻線32の導体部の温度を推定することができる。
【0152】
尚、本実施形態に係る交流回転電機の巻線導体温度測定装置は、図9に示される固定子巻線導体温度測定装置30Fに限らず、RTD74から固定子巻線の外表面温度を測定する固定子巻線外表面温度測定手段を外付けにより付加すれば、他の実施形態で用いた固定子巻線導体温度測定装置30〜30Eを適用しても良い。
【0153】
また、RTD74から固定子巻線の外表面温度を測定する固定子巻線外表面温度測定手段を外付けしなくても、三相短絡通電運転開始から固定子巻線導体温度が安定するまで十分な時間が経過した後に行う場合には、他の実施形態で用いた固定子巻線導体温度測定装置30〜30Eを適用しても良い。
【0154】
以上に説明したように、本発明に係る交流回転電機の巻線導体温度測定装置および測定方法によれば、固定子巻線導体温度測定装置30が、三相短絡通電運転中に三相短絡回路33に生じる交流電圧に対して同等以上の直流電圧を供給可能な可変直流電圧供給手段としての可変直流電圧源31と三相短絡回路33に生じる交流電圧を制限する制限抵抗34とシャント35とを備えた測定基本回路36と、測定信号に重畳した交流成分を直流成分に対して大幅に減衰させる測定ch43と分解能の高いデジタル記録装置45と測定信号を処理するデータ処理装置46とを備えた電圧電流測定手段38とを具備することにより、固定子巻線32の抵抗値を最小で10−7Ωオーダで抵抗値を精度良く測定することが可能となる。従って、固定子巻線32の温度変化を1℃程度の精度で精度良く測定することが可能な交流回転電機の巻線導体温度測定装置および測定方法を提供することができる。
【0155】
また、高速サンプリングを行い、サンプリングしたデータの平均値を算出し出力する第1の平均化処理装置55を備えた電圧電流測定手段38Aを具備する固定子巻線導体温度測定装置30Aまたは高速サンプリングしたデータの平均値を算出した後、算出した平均値を統計的な処理を施して出力する第2の平均化処理装置57を備えた電圧電流測定手段38Bを巻線導体温度測定に使用することで、より安定した精度の良いデータを収集することができる。
【0156】
さらに、測定対象の固定子巻線32を三相短絡し連続して約定格電流を通電することにより、固定子巻線32で発生した熱の伝導による巻線短絡導体39Aの温度変動を抑える冷却手段59を具備する固定子巻線導体温度測定装置30Cを交流回転電機の巻線導体温度測定に使用することで、巻線短絡導体39Aの抵抗値Rexの測定誤差を抑えて固定子巻線32の抵抗値測定の際に生じる測定誤差を低減することができる。
【0157】
さらにまた、冷却手段59および巻線短絡導体温度測定手段63を具備する固定子巻線導体温度測定装置30Dを交流回転電機の巻線導体温度測定に使用することで、交流回転電機の三相短絡通電運転中における巻線短絡導体39Aの温度を測定可能にし、測定した温度Tにおける巻線短絡導体39Aの抵抗値Rexを考慮した精度のよい測定をすることができる。
【0158】
一方、直流可変電圧供給手段としての可変直流電圧供給回路68を備えた測定基本回路36Aを具備する固定子巻線導体温度測定装置30Eを交流回転電機の巻線導体温度測定に使用することにより、直流電源供給の際に交流回転電機を三相短絡して約定格電流を通電して運転することにより発生する3倍高調波に起因したビート振動等の影響を受けることなく、安定した直流電圧を交流回転電機の三相短絡回路33に供給することができ、より精度の良い固定子巻線導体の抵抗値測定を可能とし、より精度の高い固定子巻線導体の温度測定が可能となる。
【0159】
また、固定子巻線外表面温度測定手段75を具備する固定子巻線導体温度測定装置30Fを交流回転電機の巻線導体温度測定に使用することで、測定された固定子巻線32の導体部および外表面のそれぞれの温度から、固定子巻線32の絶縁部76の温度勾配を得ることができ、絶縁部76の温度特性を評価することができる。
【0160】
さらに、本発明に係る固定子巻線導体温度測定装置30〜30Fは、測定対象の固定子巻線32を三相短絡して形成される三相短絡回路33の両端にかかる電圧Vsが三相短絡通電運転中において50V以上と高い電圧が発生している場合においても、無通電状態にして、素早く温度測定を行うことができるので、外挿により三相短絡通電運転中の固定子巻線32の導体部の温度を推定することができる。
【0161】
さらにまた、外挿により三相短絡通電運転中の固定子巻線32の導体部の温度を推定する際に、本発明に係る固定子巻線導体温度測定装置30〜30Fが測定基本回路36と電圧電流測定手段38〜38Bとを具備することにより交流成分の大幅な除去が可能となることから、固定子巻線電流IaがIa=0となれば、回転子が停止する前から固定子巻線導体温度Tの温度測定を開始することができるので、より正確に三相短絡通電運転中の固定子巻線32の導体部の温度を推定することができる。
【0162】
尚、本発明に係る交流回転電機の巻線導体温度測定方法では、基準抵抗値測定ステップで、各相の固定子巻線32の抵抗値を測定し、測定した固定子巻線32の抵抗値および抵抗測定時の温度を数式1に代入して、数式4に示される基準抵抗値R95を算出した後、算出した基準抵抗値R95をデータ処理装置46に入力しているが、データ処理装置46に数式1を入力しておき、測定した固定子巻線32の抵抗値および抵抗測定時の温度データをデータ処理装置46に入力できるような固定子巻線導体温度測定装置を構成して基準抵抗値R95を算出をさせても良い。
【0163】
【発明の効果】
本発明に係る交流回転電機の巻線導体温度測定装置および測定方法によれば、交流回転電機を約定格速度で三相短絡通電運転中に固定子巻線抵抗を精度良く測定することが可能となるので、被試験交流回転電機の固定子巻線導体温度を精度良く安定して測定可能な交流回転電機の巻線導体温度測定装置および測定方法を提供することができる。
【0164】
また、本発明に係る交流回転電機の巻線導体温度測定装置および測定方法によれば、三相短絡通電運転中において固定子巻線を三相短絡した際に生じる固定子巻線間の電圧が高く電圧・電流法が適用できない場合においても、無通電状態にして、回転子が停止する前から固定子巻線導体温度Tの温度測定を開始することができるので、外挿によって推定する固定子巻線導体温度をより精度良く測定可能な交流回転電機の巻線導体温度測定装置および測定方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図2】本発明の第1の実施形態に係る交流回転電機の巻線導体温度測定装置に備えられる測定chが有するフィルタの回路構成を示す回路構成図。
【図3】本発明の第2の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図4】本発明の第3の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図5】本発明の第4の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図6】本発明の第5の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図7】本発明の第6の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図8】本発明の第6の実施形態に係る交流回転電機の巻線導体温度測定装置に可変直流電圧供給手段として用いられる可変直流電圧供給回路の回路構成を示す構成概略図。
【図9】本発明の第7の実施形態に係る交流回転電機の巻線導体温度測定装置の構成を示す構成概略図。
【図10】本発明に係る交流回転電機の巻線導体温度測定方法であり、通電停止後の経過時間と固定子巻線導体温度との関係を示した説明図。
【図11】交流回転電機に用いられる固定子の構成を示す構成概略図。
【図12】従来の通電中の固定子巻線導体温度測定方法であり、交流回転電機を停止して固定子巻線の抵抗測定を行う固定子巻線抵抗測定回路の回路構成を説明する説明図。
【図13】従来の通電中の固定子巻線導体温度測定方法であり、RTDを使用して固定子巻線導体温度測定を行う固定子巻線導体温度測定回路の回路構成を説明する説明図。
【図14】IEC規格60279にて規定される三相短絡通電運転中の交流回転電機の固定子巻線導体温度測定する固定子巻線抵抗測定回路の回路構成を説明する説明図。
【符号の説明】
30,30A,30B,30C,30D,30E,30F…固定子巻線導体温度測定装置、31…可変直流電圧源(可変直流電圧供給手段)、32…固定子巻線、33…三相短絡回路、34…制限抵抗、35…シャント(電流計測用抵抗)、36,36A…測定基本回路、38,38A、38B…電圧電流測定手段、39,39A…巻線短絡導体(三相短絡手段)、40…中性点、41…ライン端子、43…測定ch、45…デジタル記録装置、46…データ処理装置、49…フィルタ、50…増幅器、52…抵抗素子、53…コンデンサ、55…第1の平均化処理装置、57…第2の平均化処理装置、59…冷却手段、60…冷却水通水路、61…循環ポンプ、63…巻線短絡導体温度測定手段、64…温度測定器、65…A/D変換器、68…可変直流電圧供給回路(可変直流電圧供給手段)、69…単相交流可変電圧商用周波電源、70…対地絶縁変圧器、71…ダイオード、72…単相全波整流装置、74…RTD(抵抗温度デバイス)、75…固定子巻線外表面温度測定手段、76…絶縁部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for measuring a stator winding conductor temperature of an AC rotating electric machine, and in particular, to short-circuit an output terminal of a stator winding of the AC rotating electric machine to energize at a rated or near-rated rotational speed. The present invention relates to an apparatus and a method for measuring a stator winding conductor temperature during operation.
[0002]
[Prior art]
FIG. 11 is an explanatory view showing an enlarged structure of a part of a stator 1 used in a conventional AC rotating electric machine.
[0003]
In a stator 1 shown in FIG. 11, a stator winding 4 is wound around a slot 3 provided in a stator core 2, and the stator winding 4 is pressed into the slot 3 by a wedge 5. The stator winding 4 includes a stator winding (hereinafter, referred to as a lower coil) 4j wound around the outer periphery of the stator core 2 and a stator winding (hereinafter, referred to as an upper coil) wound around the inner periphery. 4k is wound.
[0004]
Further, in a large-capacity, high-voltage rotating electric machine, a resistance temperature device (hereinafter, referred to as an RTD) 6 as a temperature measuring element is dispersed between a lower coil 4j and an upper coil 4k at a place where a temperature measurement is required. Insert. A spacer 7 that fills the gap is inserted in a place where the RTD 6 is not inserted and a gap is generated between the lower coil 4j and the upper coil 4k.
[0005]
The temperature measurement of the stator winding 4 during operation of the AC rotating electric machine, that is, during energization will be described.
[0006]
In measuring the temperature of the stator winding 4 during energization, it is desirable to measure the temperature of the conductor 8 in the stator winding 4. Therefore, when the AC rotating electric machine is a small-capacity machine, the resistance value of the stator winding 4 is measured, the temperature of the stator winding 4 is calculated from the measured resistance value, and the A method for determining the temperature of the winding 4 is generally used, and is also accepted in JEC, IEEE and IEC standards. Equation 1 below shows a conversion formula for calculating the temperature of the stator winding 4 from the measured resistance value.
[0007]
(Equation 1)
Figure 2004077245
[0008]
There are several methods for obtaining the temperature of the stator winding 4 during the energizing operation from the resistance value of the stator winding 4. For example, the AC rotating electric machine is rapidly stopped to stop the stopped stator winding 4. After measuring the resistance value in the non-energized state, a method of directly estimating and evaluating the temperature during energizing operation from the measurement time (elapsed time since the non-energized state) and the measured resistance value, or at a certain interval. The resistance value of the stator winding 4 is continuously measured, the temperature of the stator winding 4 is converted from the measured resistance value of the stator winding 4, and the temperature during the energization operation is extrapolated and evaluated. There is a way.
[0009]
FIG. 12 is an explanatory diagram showing an outline of measurement for measuring the resistance value of the stator winding 4 during stoppage after the AC rotating electric machine is rapidly turned off.
[0010]
According to FIG. 12, the resistance value of the stator winding 4 is measured at both ends of the stator winding 4, that is, at the neutral point side and the output (line terminal) side, with a resistance meter current conducting wire of a four-terminal resistance meter 11. The resistance value of the stator winding 4 is measured by connecting the resistance winding 10 to the resistance meter voltage conducting wire 11. Formula 1 is used to calculate the temperature of the stator winding 4 from the measured resistance value of the stator winding 4. In Expression 1, if the reference winding resistance, the reference temperature, and the measured resistance are checked in advance by measurement or the like, the measured winding resistance temperature can be calculated.
[0011]
On the other hand, in a large-capacity, high-voltage rotating electric machine, it is practically impossible to stop the rotor quickly, and it is difficult to directly measure the resistance value of the stator winding 4 during energization. When measuring the temperature of the stator winding 4 of the middle AC rotating electric machine, an RTD 6 is inserted between the lower coil 4j and the upper coil 4k in advance, and the stator winding is used by using the RTD 6. The temperature of the four surfaces, that is, the temperature of the conductor portion 8 is measured via the insulating portion 12.
[0012]
FIG. 13 is an explanatory diagram for explaining the outline of the temperature measurement of the stator winding 4 during energization in the conventional large-capacity, high-voltage rotating electric machine. Referring to FIG. A method for measuring the temperature of the stator winding 4 during energization in the electric machine will be described.
[0013]
According to FIG. 13, the conventional method of measuring the temperature of the winding during energization is to connect the temperature measuring device 13 to the RTD 6 that is inserted beforehand between the lower coil 4j and the upper coil 4k covered with the insulating part 12. The temperature of the surface of the stator winding 4 during energization is measured. However, in a large-capacity, high-voltage rotating electric machine, the insulating portion 12 of the stator winding 4 is thick, and the temperature difference between the conductor 8 and the surface of the stator winding 4 becomes large.
[0014]
Therefore, when measuring the temperature of the conductor 8 of the stator winding 4 during operation of the rotating electric machine, it is important to directly measure the temperature of the conductor 8 of the stator winding 4 in order to measure as accurately as possible. In particular, there is a very high need for the manufacturer to directly grasp the temperature of the conductor 8 of the stator winding 4 during operation of the rotating electric machine.
[0015]
Therefore, the IEC standard 60279 defines a method of measuring the conductor temperature during some load operations and during the three-phase short-circuit energizing operation. One of the conductor temperature measuring methods defined in IEC standard 60279 is to apply a DC voltage to the stator winding 4 of an AC rotating electric machine in operation from outside and measure the DC voltage and current of the stator winding 4. Voltage / current method for calculating the resistance value of the stator winding 4 and evaluating the temperature.
[0016]
Among the measurement methods for measuring the resistance value of the stator winding 4 during the three-phase short-circuiting of an AC rotating electric machine proposed in IEC standard 60279 in FIG. FIG.
[0017]
The stator winding resistance measuring circuit 14 shown in FIG. 14 includes a DC voltage source 15 for supplying a DC voltage, a three-phase short circuit 16 in which the stator winding 4 is short-circuited in three phases, and a shunt 17 electrically. They are connected in series. The DC voltage source 15 has a circuit configuration in which a DC power source (battery) 19 is connected via a limiting resistor 18 recommended by IEC standard 60279.
[0018]
A voltage measuring circuit 22 for measuring a voltage V applied to both ends of the three-phase short circuit 16 constituting the stator winding resistance measuring circuit 14, that is, between the neutral point 20 side and the line terminal 21 on the output side is electrically connected in parallel. Connected. The current (three-phase parallel collective) I flowing through the three-phase short circuit 16 is provided at both ends of the shunt 17 constituting the stator winding resistance measuring circuit 14.0Is electrically connected in parallel.
[0019]
The voltage measurement circuit 22 is configured by electrically connecting a three-phase balanced reactor 24, a first filter 25, and a μA meter 26 for measuring a current on the order of μA, and detects a current passing through the first filter 25. It measures with the μA meter 26. The resistance values of the reactor 24 and the first filter 25 constituting the voltage measurement circuit 22 are measured in advance, and the resistance value of the reactor 24 is ra and the resistance value of the first filter 25 is r.
[0020]
The voltage V applied across the three-phase short circuit 16 by the voltage measurement circuit 22 is measured by measuring the current passing through the first filter 25 with a μA meter 26, and reading the current value in the μA meter 26 with i given that,
(Equation 2)
V = (ra / 3 + r) i
It becomes.
[0021]
The current measurement circuit 23 is configured by electrically connecting a transformer 27, a second filter 28, and an mV meter 29 for measuring a voltage on the order of mV. Current flowing through the three-phase short circuit 16 by the current measuring circuit 23 (three-phase parallel batch) I0Is measured by measuring the voltage value applied to both ends of the shunt 17 with the mV meter 29 and calculating the current value flowing through the shunt 17 from the known resistance value of the shunt 17 to obtain the current flowing through the three-phase short circuit 16 (three-phase Parallel batch) I0Is measured.
[0022]
The voltage V across the three-phase short circuit 16 measured from the voltage measurement circuit 19 and the current measurement circuit 20 and the current I flowing through the three-phase short circuit 160And the current I flowing through the three-phase short circuit 160And the current I flowing through the stator winding 4 of each phase1(I1= I0/ 3), the resistance value R of the stator winding 4 becomes
(Equation 3)
R = i (3r + ra) / I0
It becomes.
[0023]
[Problems to be solved by the invention]
However, in a conventional stator winding conductor temperature measuring apparatus and method for an AC rotating electrical machine during three-phase short circuit energization in which the temperature of the conductor portion of the stator winding is directly measured, the stator winding conductor temperature is measured by the stator winding. When measuring by converting from the resistance of the wire, for example, in the stator winding of a large-capacity, high-voltage AC rotating electric machine such as a turbine generator or a water turbine generator, the magnitude of the stator winding resistance of each phase is , In the order of 0.0001Ω to 0.001Ω, there is a problem that unless the stator winding resistance is accurately measured, the measurement accuracy with respect to temperature is reduced.
[0024]
Specifically, for example, in order to evaluate the temperature change of the stator winding of 0.0005Ω in the unit of 1 ° C., the temperature coefficient of the normal copper winding is 1/235 (JEC2100 Etc.), 0.0005 × 1/235 × 1 = 2.13 × 10-6It is required to measure the stator winding resistance on the order of Ω.
[0025]
In addition, after the AC rotating electric machine is rapidly de-energized, the resistance value of the stator winding is measured during the stop, and the stator winding conductor of the AC rotating electric machine during the three-phase short-circuit energizing operation is estimated by extrapolation. In the conventional winding conductor temperature measuring device and measuring method for an AC rotating electric machine that determines the temperature, measurement cannot be performed until the rotor of the AC rotating electric machine is stopped. In the case of a large-capacity, high-voltage AC rotating electric machine, it takes a considerable amount of time to stop.
[0026]
Therefore, it takes a considerable amount of time from the non-energized state to the time to start measurement, and the stator winding conductor temperature estimated when extrapolating the stator winding conductor temperature is accurate. There is a problem that it is hard to say.
[0027]
The present invention has been made in view of the above-described circumstances, and when calculating the temperature of a stator winding having a low resistance value on the order of 0.0001 Ω to 0.001 Ω from the measured resistance value, An object of the present invention is to provide a winding conductor temperature measuring device and a measuring method for an AC rotating electric machine capable of accurately determining the temperature of a stator winding by configuring the resistance value of a winding conductor to be able to measure accurately. And
[0028]
Another object of the present invention is to measure the stator winding conductor temperature in a non-energized state, regardless of the operating state of the rotor of the AC rotating electric machine, and start the stator during the three-phase short-circuit energized operation. It is an object of the present invention to provide a winding conductor temperature measuring device and a measuring method of an AC rotating electric machine which can accurately estimate a winding conductor temperature.
[0029]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a winding conductor temperature measuring device for an AC rotating electric machine according to the present invention includes three-phase short-circuit means for three-phase short-circuiting the stator winding of the rotating electric machine, as described in claim 1. By electrically connecting the variable DC voltage supply means for variably supplying a DC voltage to the three-phase short circuit obtained by the three-phase short circuit, the three-phase short circuit, and a current measuring resistor. A configured measurement basic circuit, a measurement channel for acquiring a DC voltage value applied to the three-phase short circuit and a current value supplied to the three-phase short circuit, and converting an analog output from the measurement channel into a digital signal. It is characterized by comprising a digital current recording means for recording, and a voltage / current measuring means comprising data processing means for performing data processing on an output from the digital recording means and outputting an input result.
[0030]
In order to solve the above-described problem, a winding conductor temperature measuring device for an AC rotating electric machine according to the present invention, as described in claim 2, converts the measurement basic circuit to an AC voltage generated in the three-phase short circuit. A filter configured to be capable of applying a DC voltage, a filter that attenuates an AC component from an analog measurement signal obtained at the time of measuring the voltage / current measurement unit, and an amplifier that amplifies the analog measurement signal output from the filter. A measurement channel, the digital recording means having a resolution of 14 bits to 16 bits, and the data processing means for processing data and displaying a processing result are electrically connected to each other, and the filter is operated at commercial frequencies of 50 Hz and 60 Hz. The filter gain is -40 to -80 dB, the input withstand voltage is 100 to 600 V, and the amplifier has an amplification factor of 50 to Generates less drift 000 times, by configuring it low drift amplifier having linearity in the amplification factor, the resistance value of the stator winding 10-7It is characterized in that it can be measured with accuracy up to the order of Ω.
[0031]
3. The winding conductor temperature measuring apparatus for an AC rotating electric machine according to claim 2, wherein the measurement basic circuit can apply a DC voltage comparable to an AC voltage generated in the three-phase short circuit, and the applicable DC voltage is 5 to 200 V. is there. The DC voltage to be applied is determined by appropriately adjusting while observing the AC voltage generated in the three-phase short circuit during measurement.
[0032]
The method for measuring the winding conductor temperature of the AC rotating electric machine according to the present invention, in order to solve the above-described problem, as described in claim 3, in a non-energized state where there is no energization to the stator winding. A step of calculating a resistance value of the stator winding and converting it into a winding resistance value at a reference temperature, and forming a three-phase short circuit by three-phase short-circuiting the stator windings of the star-connected AC rotating electric machine. The three-phase short-circuiting step, the AC rotating electric machine is operated, and in a state where the stator winding is energized, the DC voltage value applied to the three-phase short-circuit by the variable DC voltage supply means and energized. A winding resistance value calculating step of calculating a resistance value of the stator winding by measuring a DC current value of the AC rotating electric machine using the resistance value of the stator winding and the reference resistance value. Preset stator winding conductor temperature during operation Characterized in that it comprises a winding conductor temperature calculating step of calculating by the voltage current measuring means.
[0033]
According to a fourth aspect of the present invention, there is provided a method for measuring the temperature of a winding conductor of an AC rotating electric machine according to the present invention. A first averaging process step of high-speed sampling of a DC voltage value and a current value of the phase short-circuit by the averaging processing means and averaging the same, and calculating the winding resistance in the winding resistance value calculating step. And measuring a stator winding conductor temperature of the AC rotating electric machine using the DC voltage value and the current value of the three-phase short circuit averaged in the first averaging process step. .
[0034]
Further, in order to solve the above-mentioned problem, in the method for measuring the winding conductor temperature of an AC rotating electric machine according to the present invention, as described in claim 5, the three-dimensional measurement is performed while the rotating electric machine is operated. Statistical processing for sampling the DC voltage value and current value of the phase short circuit at high speed by the averaging processing means and excluding sampling data in a range exceeding a certain deviation from the average value obtained by the averaging processing. After performing the second averaging process step, the second averaging process step includes averaging the remaining sampling data, and calculating the winding resistance in the winding resistance value calculating step. The stator winding conductor temperature of the AC rotating electric machine is measured by using the DC voltage value and the current value of the three-phase short circuit that has been subjected to the conversion processing.
[0035]
Still further, in order to solve the above-mentioned problem, in the method of measuring the winding conductor temperature of the AC rotating electric machine according to the present invention, as described in claim 6, during the three-phase short-circuit energizing operation of the AC rotating electric machine, A cooling step of cooling the winding short-circuit conductor and suppressing a temperature change of the winding short-circuit conductor, and measuring a resistance value of the stator winding calculated in the winding resistance value calculating step. Is characterized by reducing the measurement error.
[0036]
On the other hand, in order to solve the above-described problem, in the method of measuring the winding conductor temperature of the AC rotating electric machine according to the present invention, as described in claim 7, during the three-phase short-circuit energizing operation of the AC rotating electric machine, A conductor cooling step of cooling the winding short-circuit conductor and suppressing a temperature change of the winding short-circuit conductor; and a winding short-circuit conductor resistance calculating step of calculating a resistance value of the winding short-circuit conductor from a conversion formula. It is characterized by the following.
[0037]
According to another aspect of the present invention, there is provided a method for measuring a winding conductor temperature of an AC rotating electric machine, wherein the variable DC voltage supply means includes a single-phase AC variable voltage commercial frequency. Power supply, a transformer insulated from the ground, and a single-phase full-wave rectifier are electrically connected to each other using a variable DC voltage supply circuit configured to enable variable supply of DC voltage. I do.
[0038]
Further, in order to solve the above-mentioned problem, in the method for measuring the winding conductor temperature of an AC rotating electric machine according to the present invention, as described in claim 9, the AC rotating electric machine is configured to rotate the AC rotating electric machine during a three-phase short-circuit energizing operation. A stator winding outer surface temperature measuring step for measuring an outer surface temperature of the stator winding of the electric machine, wherein the reference resistance value calculating step includes a reference resistance value and an insulation required for the stator winding together with a mathematical expression required for data processing. After inputting the thickness of the part, the voltage value and the current value of the three-phase short circuit are measured.
[0039]
Still further, in order to solve the above-described problem, in the method for measuring the winding conductor temperature of the AC rotating electric machine according to the present invention, as described in claim 10, the AC rotating electric machine performs the three-phase short-circuit energizing operation, When the voltage of the three-phase short circuit is as high as 50 to 600 V, after the current is cut off and the current is turned off, the voltage / current measurement step, the winding resistance value calculation step, and the winding conductor temperature calculation step are performed, for example. Calculate the stator winding conductor temperature at an arbitrary constant interval such as one minute, and repeat the voltage current measurement step, the winding resistance value calculation step, and the winding conductor temperature calculation step until the temperature becomes substantially equal to the refrigerant temperature. The transition of the stator winding conductor temperature is approximated by a function from the calculated transition of the stator winding conductor temperature to estimate the stator winding conductor temperature at the time of energization interruption.
[0040]
In the method for measuring a winding conductor temperature of an AC rotary electric machine according to claim 10, the difference between the stator winding conductor temperature and the refrigerant temperature is saturated in a range of 0 to 5 ° C. until the refrigerant temperature becomes substantially equal to the refrigerant temperature. The temperature is in at least one of a state where the temperature is different from a temperature of the refrigerant and a state where the difference from the refrigerant temperature is in the range of 0 to 2 ° C.
[0041]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a winding conductor temperature measuring device and a measuring method for an AC rotating electric machine according to the present invention will be described with reference to the drawings.
[0042]
[First Embodiment]
FIG. 1 shows an example of a winding conductor temperature measuring device 30 of an AC rotary electric machine according to a first embodiment of the present invention.
[0043]
The winding conductor temperature measuring device 30 of the AC rotating electric machine shown in FIG. 1 includes a three-phase short circuit between a variable DC voltage source 31 insulated from the ground and capable of applying a variable DC voltage and a stator winding 32 in the rotating electric machine. A stator winding configured by electrically connecting in series a limiting resistor 34 for limiting an AC component of the three-phase short circuit 33 and a shunt 35 which is a resistance element having a small resistance value change with temperature. It comprises a resistance measurement basic circuit (hereinafter referred to as a measurement basic circuit) 36 and a voltage / current measuring means 38 for measuring the voltage and current of the stator winding 32.
[0044]
The three-phase short-circuit circuit 33 included in the stator winding conductor temperature measuring device 30 includes a three-phase stator winding 32 and a winding short-circuit conductor 39 serving as a three-phase short-circuit means. It is formed by three-phase shorting the line terminal 41 side.
[0045]
The voltage / current measuring means 38 included in the stator winding conductor temperature measuring device 30 includes two measuring channels (hereinafter referred to as measuring channels) 43 and an analog / digital conversion (hereinafter referred to as A) of an analog measuring signal from the measuring channel 43. / D conversion), and stores a digital measurement signal in a memory. The digital measurement signal is output after the multi-channel digital recording device (hereinafter, referred to as a digital recording device) 45 as a digital recording device. A data processing device 46 is provided as data processing means for displaying a calculation result obtained by processing and substituting the measured value or the measured value to calculate the input expression.
[0046]
The first channel (hereinafter, referred to as 1ch) and the second channel (hereinafter, referred to as 2ch), which are the two measurement channels 43 included in the voltage / current measuring unit 38, have the same configuration. One channel configuration of the measurement channel 43 includes a filter 49 for attenuating the AC component of the measurement signal obtained by the measurement, and an amplifier 50 for amplifying the measurement signal output from the filter 49.
[0047]
FIG. 2 shows a circuit configuration of the filter 49 used in the stator winding conductor temperature measuring device 30.
[0048]
According to FIG. 2, the filter 49 is configured by connecting a so-called RC filter formed by a resistance element 52 and a capacitor 53 in a plurality of stages, for example, in a six-stage connection such as a six-stage connection.
[0049]
The filter 49 sets a usable voltage higher than a voltage used in a normal filter so as to function effectively also with respect to the voltage of the three-phase short circuit 33, and sets an upper limit value of an input voltage (hereinafter referred to as input). Withstand voltage) is at least 100 V, that is, a voltage of 100 V can effectively function.
[0050]
It is preferable that the input withstand voltage of the filter 49 be as high as possible. However, if the input withstand voltage is improved, the manufacturing cost of the filter 49 is increased. Therefore, if the input withstand voltage is increased more than necessary, unnecessary manufacturing cost increases. Therefore, the input withstand voltage of the filter 49 is preferably set to 5 to 600 V, more preferably 40 to 300 V, and further preferably 80 to 230 V. For example, the filter 49 shown in FIG. 2 may work effectively for voltages up to 250V.
[0051]
Further, the filter 49 has a high attenuation characteristic of obtaining a gain of at least -50 dB at a commercial frequency of 50 Hz or 60 Hz as a gain characteristic of the filter 49. For example, the filter 49 illustrated in FIG. Is obtained.
[0052]
The gain characteristic of the filter 49 is preferably as high as possible at the commercial frequency of 50 Hz or 60 Hz from the viewpoint of measurement accuracy. However, if the filter attenuation rate is set in consideration of the ease and cost of manufacturing the filter and the required measurement accuracy, it is preferably −45 dB to −80 dB, more preferably −50 dB to −70 dB, More preferably, it is -50 dB to -60 dB.
[0053]
The amplifier 50 included in the measurement channel 43 is a low drift amplifier having a linearity at an amplification factor of at least 50 or more and having low drift characteristics. The amplification factor of the amplifier 50 used in the stator winding conductor temperature measuring device 30 shown in FIG. 1 is preferably 50 to 1000 times, more preferably 70 to 500 times, and still more preferably 90 to 500 times. Times to 250 times.
[0054]
The digital recording device 45 provided in the voltage / current measuring means 38 has at least 14 bits (2-14= 1/16384). The resolution of the digital recording device 45 used in the stator winding conductor temperature measuring device 30 shown in FIG. 1 is preferably as good as possible in terms of measurement. However, considering the cost of the device and the required resolution, 14 to 16 bits is sufficient. For example, the resolution of the digital recording device 45 used in the stator winding conductor temperature measuring device 30 shown in FIG. 1 is 14 bits, and when 10 V is input, the resolution is 10 × 1/16384 = 0.61 mV.
[0055]
The data processing device 46 included in the voltage / current measuring unit 38 has an averaging function for performing averaging processing and a calculation processing function for performing calculation processing by substituting the averaged value obtained by the averaging processing into the input equation. The data processing device 46 includes a stator winding resistance value Ra ′ calculated from the DC voltage value and the current value measured by the voltage / current measurement means 38 and a stator winding resistance value measured in advance at 95 ° C. Reference resistance value R converted to value95And Equation 4 representing the relationship between the stator winding conductor temperature T and
(Equation 4)
Figure 2004077245
Input beforehand the measurement of stator winding conductor temperature.
[0056]
Then, the stator winding conductor temperature is measured, and the data processing device 46 calculates the expression 4 from the measured DC voltage and current. The data processing device 46 converts the stator winding conductor temperature T. And, if necessary, display the output on a display.
[0057]
A method of measuring the temperature of the stator winding conductor during the three-phase short-circuit energizing operation using the stator winding conductor temperature measuring device 30 shown in FIG. 1 will be described.
[0058]
First, before performing the stator winding conductor temperature measurement during the three-phase short-circuit energizing operation, the resistance value of the stator winding 32 of each phase is measured in advance, and a predetermined value is determined from the measured resistance value and the temperature at the time of resistance measurement. A reference resistance value calculating step of calculating a reference resistance value of the temperature is performed. In the reference resistance value calculation step, the resistance value of the stator winding 32 of each phase is measured, and the measured resistance value of the stator winding 32 and the temperature at the time of the resistance measurement are substituted into Expression 1 to be expressed by Expression 4. Reference resistance value R95Is calculated. Then, the calculated reference resistance value R95Is input to the data processing device 46.
[0059]
Next, a three-phase short circuit step of forming the three-phase short circuit 33 by short-circuiting the stator windings 32 of each phase with the three-phase short conductor 39 is performed. Then, after the three-phase short circuit 33 is formed in the three-phase short circuit step, the measurement basic circuit 36 and the voltage / current measurement means 38 of the stator winding conductor temperature measuring device 30 and the three-phase short circuit 33 are electrically connected. Perform a measurement device connection step to connect to the measurement device.
[0060]
In the measuring device connection step, first, a three-phase short circuit 33 in which the stator winding 32 to be measured is three-phase short-circuited is electrically connected between the variable DC voltage source 31 and the shunt 35 constituting the measurement basic circuit 36. Connect in series. Then, one of the channels of the measurement channel 43 provided in the voltage / current measurement unit 38 is electrically connected in parallel to the three-phase short circuit 33, and the other channel of the measurement channel 43 is electrically connected in parallel to the shunt 35.
[0061]
Next, the measurer puts the AC rotating electric machine into the three-phase short-circuit energizing operation state, and performs a voltage / current measurement step of measuring the DC voltage value and the current value of the three-phase short circuit 33 by the voltage / current measurement unit 38. The voltage Vs applied across the three-phase short circuit 33 is measured by measuring the voltage Vs applied directly across the three-phase short circuit 33 because one of the measurement channels 43, for example, one channel is connected to both ends of the three-phase short circuit 33. This is done by measuring the value. On the other hand, the current Is flowing into the three-phase short circuit 33 is measured by using the fact that the current flowing through the shunt 35 is equal to the current flowing into the three-phase short circuit 33.
[0062]
The measurement of the current Is flowing into the three-phase short circuit 33 will be described more specifically. The measurement of the current Is flowing into the three-phase short circuit 33 is performed by first setting the other of the measurement channels 43, for example, 2ch to both ends of the shunt 35. Connected, the voltage value across the shunt 35 is measured. Next, a current value flowing through the shunt 35 is calculated from the measured voltage value applied to both ends of the shunt 35 by using a known resistance value of the shunt 35. Since the current value flowing through the shunt 35 is equal to the current value flowing into the three-phase short circuit 33, the current value flowing into the three-phase short circuit 33 can be determined if the current value flowing through the shunt 35 is known.
[0063]
Next, the data processing device 46 performs a winding resistance value calculation step of calculating the resistance value of the stator winding 32 from the DC voltage value and the current value measured in the voltage / current measurement step. In the winding resistance value calculation step, first, the resistance value Ra of the three-phase short circuit 33 is calculated from the DC voltage value and the current value measured by the data processing device 46. Then, a stator winding resistance value Ra 'is calculated from the calculated resistance value Ra of the three-phase short circuit 33.
[0064]
Since the resistance value Ra of the three-phase short circuit 33 includes the resistance value Rex of the winding short-circuit conductor 39A, it is necessary to correct the resistance value Rex of the winding short-circuit conductor 39A measured in advance.
The relationship among the stator winding resistance Ra ', the resistance Ra of the three-phase short circuit 33, and the resistance Rex of the winding short-circuit conductor 39A is expressed by the following Equation 5.
[0065]
(Equation 5)
Ra '= 3 (Ra-Rex)
[0066]
Next, the data processing device 46 calculates the stator winding resistance value Ra 'calculated in the winding resistance value calculation step and the reference resistance value R which is input in advance.95A winding conductor temperature calculating step of calculating the stator winding conductor temperature T from Equation 4 and Equation 4 is performed, and the calculation result, that is, the stator winding conductor temperature T is displayed on a display.
[0067]
According to the present embodiment, the stator winding conductor temperature measuring device 30 supplies a variable DC voltage capable of supplying a DC voltage equal to or greater than the AC voltage generated in the three-phase short circuit 33 during the three-phase short circuit energizing operation. A measurement basic circuit 36 including a means and a limiting resistor 34 for limiting an AC voltage generated in the three-phase short circuit 33 and a shunt 35; a measurement channel 43 for greatly attenuating an AC component superimposed on a measurement signal with respect to a DC component; By providing a voltage / current measuring means 38 having a digital recording device 45 having a high resolution and a data processing device 46 for processing a measurement signal, the resistance value of the stator winding 32 can be reduced to at least 10-7Since the resistance value can be accurately measured to the order of Ω, the temperature change of the stator winding 32 can be measured with an accuracy of about 1 ° C.
[0068]
The 1ch and 2ch of the two measurement channels 43 included in the voltage / current measurement unit 38 have the same configuration, so that even if they are connected in reverse, there is no problem in measurement. Also, the number of channels of the measurement channel 43 does not necessarily need to be two, and it is sufficient that the number of channels is at least two or more.
[0069]
The filter 49 is a multi-stage connection of RC filters. If the input withstand voltage range (100 V to 600 V) and the filter gain characteristic that function effectively are approximately the same (−50 dB to −60 dB), for example, It may be realized by another filter such as a digital filter.
[0070]
[Second embodiment]
FIG. 3 shows an example of a winding conductor temperature measuring device 30A of an AC rotary electric machine according to a second embodiment of the present invention.
[0071]
The stator winding conductor temperature measuring device 30A is different from the stator winding conductor temperature measuring device 30 according to the first embodiment in that a first averaging device 55 is added instead of the voltage / current measuring means 38. It is provided with a voltage / current measuring means 38A, and other portions are not different. Therefore, portions that are not different from the stator winding conductor temperature measuring device 30 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0072]
The stator winding conductor temperature measuring device 30A shown in FIG. 3 includes a measurement basic circuit 36 and a voltage / current measuring unit 38A, similarly to the stator winding conductor temperature measuring device 30 shown in FIG. The measurement basic circuit 36 is electrically connected to the voltage / current measuring means 38A at both ends of the three-phase short circuit 33. The voltage Vs applied to both ends of the three-phase short circuit 33 in one channel of the measurement channel 43 is applied to the other channel. , The current Is flowing into the three-phase short circuit 33 is measured.
[0073]
The voltage / current measuring means 38A included in the stator winding conductor temperature measuring device 30 performs high-speed sampling on the voltage / current measuring means 38 shown in FIG. 1 and averages the sampled data to calculate an average value. A first averaging device 55 as an averaging device is added. The first averaging device 55 is provided between the digital recording device 45 and the data processing device 46 and is electrically connected. You.
[0074]
The first averaging device 55 included in the voltage / current measuring unit 38A can perform high-speed sampling at a sampling period of about 1000 points in 0.1 second, that is, about 100 μs, as shown in FIG. The first averaging device 55 can obtain stable and accurate data by sampling and averaging 1000 points in 0.1 second.
[0075]
The stator winding conductor temperature measuring method during the three-phase short-circuit energizing operation using the stator winding conductor temperature measuring device 30A shown in FIG. 3 is based on the stator during the three-phase short-circuit energizing operation according to the first embodiment. The only difference from the method for measuring the winding conductor temperature is that a first averaging step is provided. Therefore, the description of the same contents as those of the method of measuring the stator winding conductor temperature during the three-phase short-circuit energizing operation according to the first embodiment will be simplified or omitted.
[0076]
In the stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30A shown in FIG. 3, first, the measurer first calculates a reference resistance value R in a reference resistance value calculating step.95And the obtained reference resistance value R95Is input to the data processing device 46. Then, a three-phase short circuit step for forming the three-phase short circuit 33 and a measuring device connection step for electrically connecting the measurement basic circuit 36 and the voltage / current measuring means 38A to the three-phase short circuit 33 are performed.
[0077]
Next, the measurer puts the AC rotating electric machine into a three-phase short-circuit energizing operation state and performs a voltage / current measurement step. The data processing device 46 performs high-speed sampling in which the DC voltage value and the current value measured in the voltage / current measurement step are sampled at 1000 points in 0.1 second, and averages the high-speed sampled DC voltage value and the current value. An averaging process step for calculating an average value is performed.
[0078]
Next, the data processing device 46 calculates a winding value for calculating the stator winding resistance value Ra ′ from the DC voltage value and the current value averaged in the averaging process step, that is, the DC voltage average value and the current average value. A resistance value calculating step is performed, and a winding conductor temperature calculating step is performed.
[0079]
According to the present embodiment, the voltage / current measuring unit 38A included in the stator winding conductor temperature measuring device 30A includes the first averaging device 55, performs high-speed sampling, and calculates the average value of the sampled data. Since the output is performed, it is possible to collect stable and accurate data as compared with the stator winding conductor temperature measuring device 30 according to the first embodiment.
[0080]
Therefore, the measurement method of measuring the stator winding conductor temperature of the AC rotating electric machine according to the present embodiment is better than the measuring method of the winding conductor temperature of the AC rotating electric machine according to the first embodiment. The accuracy is improved.
[0081]
The sampling capability of the first averaging device 55 included in the voltage / current measuring unit 38A does not necessarily have to be 1000 points in 0.1 second, and sampling can be performed in a range of 500 points to 2000 points. Is fine.
[0082]
[Third Embodiment]
FIG. 4 shows an example of a winding conductor temperature measuring device 30B of an AC rotary electric machine according to a third embodiment of the present invention.
[0083]
The stator winding conductor temperature measuring device 30B is different from the stator winding conductor temperature measuring device 30A according to the second embodiment in that a voltage / current measuring unit 38B is provided instead of the voltage / current measuring unit 38A. , Other parts are not different. Therefore, portions that are not different from the stator winding conductor temperature measuring device 30A according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0084]
The stator winding conductor temperature measuring device 30B shown in FIG. 4 includes a measurement basic circuit 36 and a voltage / current measuring unit 38B. Voltage / current measuring means 38B is electrically connected to the measurement basic circuit 36, and the voltage Vs applied to both ends of the three-phase short circuit 33 in one channel of the measurement channel 43 flows into the three-phase short circuit 33 in the other channel. Is measured.
[0085]
The voltage / current measuring unit 38B included in the stator winding conductor temperature measuring device 30 performs high-speed sampling instead of the first averaging device 55 included in the voltage / current measuring unit 38A illustrated in FIG. After calculating the average value, a second averaging processing device 57 as an averaging processing means for performing statistical processing is added. The second averaging processing device 57 includes a digital recording device 45 and a data processing device 46. And are electrically connected.
[0086]
The second averaging device 57 included in the voltage / current measuring unit 38B samples 1000 points in 0.1 seconds, performs averaging processing, and then performs, for example, Statistical processing, such as excluding data within a range of ± 3σ (σ: standard deviation) from the average value and excluding other data, that is, data outside a range of ± 3σ from the average value, is performed. By averaging only data, more stable and accurate data can be obtained.
[0087]
The stator winding conductor temperature measuring method during the three-phase short-circuit energizing operation using the stator winding conductor temperature measuring device 30B shown in FIG. 4 is based on the stator during the three-phase short-circuit energizing operation according to the second embodiment. Only the processing content of the averaging processing step differs from the method of measuring the winding conductor temperature. Therefore, the description of the same contents as those of the method of measuring the stator winding conductor temperature during the three-phase short-circuit energizing operation according to the second embodiment will be simplified or omitted.
[0088]
In the stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30B shown in FIG. 4, the measurer firstly sets a reference resistance value R in a reference resistance value calculating step.95And the obtained reference resistance value R95Is input to the data processing device 46. Then, a three-phase circuit short-circuiting step for forming the three-phase short-circuit 33 and a measuring device connection step for electrically connecting the measurement basic circuit 36 and the voltage / current measuring means 38B to the three-phase short-circuit 33 are performed.
[0089]
Next, the measurer puts the AC rotating electric machine into a three-phase short-circuit energizing operation state and performs a voltage / current measurement step. The data processing device 46 performs high-speed sampling in which the DC voltage value and the current value measured in the voltage / current measurement step are sampled at 1000 points in 0.1 second, and averages the high-speed sampled DC voltage value and the current value. An average value is calculated, and further, an averaging process step is performed on the calculated average value, for example, to perform a statistical process of excluding data outside the range of the average value ± 3σ.
[0090]
Next, the data processing device 46 calculates a winding value for calculating the stator winding resistance value Ra ′ from the DC voltage value and the current value averaged in the averaging process step, that is, the DC voltage average value and the current average value. A resistance value calculating step is performed, and a winding conductor temperature calculating step is performed.
[0091]
According to the present embodiment, the voltage / current measuring means 38B included in the stator winding conductor temperature measuring device 30B includes the second averaging processing device 57, calculates the average value of the high-speed sampled data, and then calculates the average value. Since the average value is output after performing a statistical process such as excluding the average value outside the range of ± 3σ from the average value, for example, the winding conductor temperature measuring device of the AC rotating electric machine according to the second embodiment is provided. Compared with 30A, more stable and accurate data can be collected.
[0092]
Therefore, the measurement method of measuring the stator winding conductor temperature of the winding conductor temperature of the AC rotating electric machine according to the present embodiment is better than the measuring method of the winding conductor temperature of the AC rotating electric machine according to the second embodiment. The accuracy is improved.
[0093]
Note that the sampling capability of the second averaging device 57 included in the voltage / current measuring unit 38B does not necessarily have to be 1000 points in 0.1 seconds, and sampling can be performed in the range of 500 points to 2000 points. Is fine.
[0094]
[Fourth embodiment]
FIG. 5 shows an example of a winding conductor temperature measuring device 30C of an AC rotary electric machine according to a fourth embodiment of the present invention.
[0095]
The stator winding conductor temperature measuring device 30C is different from the stator winding conductor temperature measuring device 30 according to the first embodiment in that the three-phase stator winding 32 included in the three-phase short circuit 33 is three-phase short-circuited. The cooling means 59 for cooling the winding short-circuit conductor 39A is provided, and other portions are not different. Therefore, portions that are not different from the stator winding conductor temperature measuring device 30 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0096]
A stator winding conductor temperature measuring device 30C shown in FIG. 5 includes a measurement basic circuit 36 and a voltage / current measuring unit 38, and a three-phase short circuit, similarly to the stator winding conductor temperature measuring device 30 shown in FIG. And a cooling means 59 for cooling the winding short-circuit conductor 39 </ b> A provided in 33. The cooling means 59 includes a cooling water passage 60 for passing the cooling water through the winding short-circuit conductor 39A provided in the three-phase short circuit 33, and a circulation pump 61 for circulating the cooling water.
[0097]
A voltage / current measuring means 38B is electrically connected to the measurement basic circuit 36 provided in the stator winding conductor temperature measurement device 30C, and the voltage Vs applied to both ends of the three-phase short circuit 33 in one channel of the measurement channel 43 is measured. The current Is flowing into the three-phase short circuit 33 on the other channel is measured. The cooling means 59 cools the winding short-circuit conductor 39A by circulating cooling water through the winding short-circuit conductor 39A by the circulation pump 61, suppresses the temperature rise of the winding short-circuit conductor 39A, and short-circuits the winding. The temperature of the conductor 39A is kept almost constant.
[0098]
The measurement of the stator winding conductor temperature of the AC rotating electric machine during the three-phase short-circuit energization operation using the stator winding conductor temperature measurement device 30C shown in FIG. 5 will be described.
[0099]
The stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30C shown in FIG. 5 is performed by using the stator winding conductor temperature measuring device 30 according to the first embodiment. It differs from the conductor temperature measuring method only in that a winding short-circuit conductor cooling step for cooling the winding short-circuit conductor 39A is provided. Therefore, the description of the same contents as those of the stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30 according to the first embodiment will be simplified or omitted.
[0100]
First, the measurer calculates the reference resistance value R in the reference resistance value calculation step.95And the obtained reference resistance value R95Is input to the data processing device 46. Then, a three-phase short circuit step for forming the three-phase short circuit 33 and a measuring device connection step for electrically connecting the measurement basic circuit 36 and the voltage / current measuring means 38A to the three-phase short circuit 33 are performed. After the measurement device connection step is completed, the winding short-circuit conductor cooling step is performed next.
[0101]
In the winding short-circuit conductor cooling step, the operation of the circulation pump 61 provided in the cooling means 59 is started to circulate cooling water through the winding short-circuit conductor 39A that short-circuits the stator winding 32 in three phases, thereby cooling the three-phase conductor. This is performed to suppress the temperature fluctuation of the resistance value Rex of the winding short-circuit conductor 39A by suppressing the temperature fluctuation of the winding short-circuit conductor 39A during the short-circuit energizing operation.
[0102]
The resistance value Rex of the winding short-circuit conductor 39A is such that a current near the rated current value (including the rated current value) (hereinafter referred to as approximately the rated current) is continuously obtained by three-phase short-circuiting the stator winding 32 in the AC rotating electric machine. The temperature rises as the temperature of the winding short-circuit conductor 39 </ b> A rises due to energization. Therefore, if the resistance value Rex of the winding short-circuit conductor 39A is regarded as constant and the stator winding resistance value Ra 'is calculated from the three-phase short-circuit circuit 33 by using Expression 5, an error will occur.
[0103]
Therefore, by suppressing the temperature fluctuation of the resistance value Rex of the winding short-circuit conductor 39A in the winding short-circuit conductor cooling step, the resistance value Rex of the winding short-circuit conductor 39A can be regarded as constant throughout the three-phase short-circuiting operation. In addition, the measurement error that may occur when the stator winding resistance value Ra ′ is calculated and evaluated using Expression 5 is reduced. The subsequent measurement steps include a voltage / current measurement step, a winding resistance value calculation step, and a winding conductor temperature calculation step, as in the first embodiment.
[0104]
According to the present embodiment, since the stator winding conductor temperature measuring device 30C includes the cooling means 59, three-phase short-circuiting is performed, and the rated current is continuously supplied, so that the heat generated in the stator winding 32 is generated. , The temperature fluctuation of the winding short-circuit conductor 39A due to the conduction of the stator winding 32 can be suppressed, and the measurement error generated when measuring the resistance value of the stator winding 32 can be reduced. Therefore, the stator winding conductor temperature measuring device 30C according to the present embodiment is generated at the time of measuring the resistance value of the stator winding 32 as compared with the stator winding conductor temperature measuring device 30 according to the first embodiment. A measurement error can be further reduced to enable accurate resistance value measurement and a more accurate temperature measurement of the stator winding conductor.
[0105]
[Fifth Embodiment]
FIG. 6 shows an example of a winding conductor temperature measuring device 30D of an AC rotary electric machine according to a fifth embodiment of the present invention.
[0106]
The stator winding conductor temperature measuring device 30D is different from the stator winding conductor temperature measuring device 30C according to the fourth embodiment in that a winding short-circuit conductor temperature measuring means 63 is further provided. Are not different. Therefore, portions that are not different from the stator winding conductor temperature measuring device 30C according to the fourth embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0107]
The stator winding conductor temperature measuring device 30D shown in FIG. 6 includes a measurement basic circuit 36, a voltage / current measuring unit 38, and a cooling unit 59, similarly to the stator winding conductor temperature measuring device 30C shown in FIG. And a winding short-circuit conductor temperature measuring means 63 for measuring the temperature of the winding short-circuit conductor 39A.
[0108]
The winding short-circuit conductor temperature measuring means 63 includes a temperature measuring device 64 for measuring the temperature of the winding short-circuit conductor 39A, and an A / D converter for converting an analog signal output from the temperature measuring device 64 into a digital signal and outputting the digital signal. 65. The input side of the winding short-circuit conductor temperature measuring means 63 is electrically connected to the three-phase short circuit 33, and the output side is electrically connected to the data processing device 46.
[0109]
The measurement of the stator winding conductor temperature of the AC rotating electric machine during the three-phase short-circuit energizing operation using the stator winding conductor temperature measuring device 30D shown in FIG. 6 will be described.
[0110]
The stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30D shown in FIG. 6 is based on a stator winding using the stator winding conductor temperature measuring device 30C according to the fourth embodiment. It differs from the conductor temperature measuring method only in that a winding short-circuit conductor resistance calculating step of calculating the resistance value Rex of the winding short-circuit conductor 39A from a conversion formula is provided. Therefore, the description of the same contents as those of the stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30D according to the fourth embodiment will be simplified or omitted.
[0111]
First, the measurer performs a reference resistance value calculating step. In the reference resistance value calculation step, when the connection state is the same as that during operation, that is, when the temperature is stabilized after a three-phase short circuit and a sufficient long period of time, the reference winding resistance value Ra′b, The reference temperature Tab, the reference resistance value (hereinafter referred to as reference external resistance) Rexb 36 of the winding short-circuit conductor 39A, and the reference temperature Texb are measured, and the measured values and the formulas required for the conversion are previously sent to the data processing device 46. Enter in.
[0112]
Next, a three-phase short circuit step for forming a three-phase short circuit 33, a three-phase short circuit 33 in which the stator winding 32 to be measured is short-circuited in three phases, a basic measurement circuit 36, and a voltage / current measurement means 38 are electrically connected. And a measuring device connecting step of performing a dynamic connection. Then, when the measurement device connection step is completed, the winding short-circuit conductor 39A is cooled in the winding short-circuit conductor cooling step.
[0113]
Next, the measurer performs a voltage / current measurement step. In the voltage / current measurement step, the voltage and current of the three-phase short circuit 33 are measured, and the temperature of the winding short conductor 39A is measured by the winding short conductor temperature measuring means 63 provided in the stator winding conductor temperature measuring device 30D. I do.
[0114]
Next, a winding short-circuit conductor resistance calculating step of calculating the resistance value Rex of the winding short-circuit conductor 39A from the conversion formula shown in Expression 1 is performed. The resistance value Rex of the three-phase winding short-circuit conductor 39A is calculated by converting the resistance value Rex of the winding short-circuit conductor 39A from Equation 6 from the measured temperature T of the winding short-circuit conductor 39A.
[0115]
(Equation 6)
Figure 2004077245
[0116]
When the winding short-circuit conductor resistance calculation step is completed, a winding resistance value calculation step is performed as in the fourth embodiment. The stator winding resistance value Ra ′ of the AC rotating electric machine in the winding resistance value calculation step is calculated by substituting the resistance value Rex of the winding short-circuit conductor 39A calculated in the winding short-circuit conductor resistance calculation step into Equation 5. We ask by doing. Next, a winding conductor temperature calculation step is performed, and the data processor 46 displays the stator winding conductor temperature T on the display of the data processor 46.
[0117]
According to this embodiment, since the stator winding conductor temperature measuring device 30D includes the winding short-circuit conductor temperature measuring means 63, the temperature of the winding short-circuit conductor 39A during the three-phase short-circuit energizing operation of the AC rotating electric machine is reduced. It is possible to perform measurement and to perform accurate measurement in consideration of the resistance value Rex of the winding short-circuit conductor 39A at the measured temperature T. Therefore, the stator winding conductor temperature measuring device 30D according to the present embodiment is generated when measuring the resistance value of the stator winding 32 as compared with the stator winding conductor temperature measuring device 30C according to the fourth embodiment. A measurement error can be further reduced to enable accurate resistance value measurement and a more accurate temperature measurement of the stator winding conductor.
[0118]
[Sixth Embodiment]
FIG. 7 shows an example of a winding conductor temperature measuring device 30E of an AC rotary electric machine according to a sixth embodiment of the present invention.
[0119]
The stator winding conductor temperature measurement device 30E is different from the stator winding conductor temperature measurement device 30 according to the first embodiment in that a measurement basic circuit 36A is provided instead of the measurement basic circuit 36. Is not different. Therefore, portions that are not different from the stator winding conductor temperature measuring device 30 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0120]
The stator winding conductor temperature measurement device 30E shown in FIG. 7 includes a measurement basic circuit 36A and a voltage / current measurement unit 38. The measurement basic circuit 36A has a circuit configuration obtained by replacing the measurement basic circuit 36 with a variable DC voltage source 31 and a variable DC voltage supply circuit 68 as variable DC voltage supply means.
[0121]
FIG. 8 is a circuit configuration diagram showing the circuit configuration of the variable DC voltage supply circuit 68.
[0122]
The variable DC voltage supply circuit 68 shown in FIG. 8 is one form of a variable DC voltage supply means, and includes a single-phase AC variable voltage commercial frequency power supply (the same frequency as the AC rotating machine to be tested: 50 Hz or 60 Hz) 69, and a ground insulation. A single-phase full-wave rectifier 72 including a transformer 70 and a diode 71 is electrically connected. The variable DC voltage supply circuit 68 functions in the same manner as the variable DC voltage source 31 in the measurement basic circuit 36A, and can supply a large current up to about 100A.
[0123]
The measurement of the stator winding conductor temperature of the AC rotating electric machine during the three-phase short-circuit energizing operation using the stator winding conductor temperature measurement device 30E shown in FIG. 7 will be described.
[0124]
The stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30E shown in FIG. 7 is based on the stator winding conductor temperature measuring device 30 according to the first embodiment. The measuring steps are basically the same as the conductor temperature measuring method except that the variable DC voltage supplying means for supplying the DC voltage is different.
[0125]
That is, in the same manner as the method of measuring the winding conductor temperature of the AC rotating electric machine according to the first embodiment, the measurer can calculate a reference resistance value, a three-phase circuit short-circuiting step, a measuring device connection step, a voltage / current measurement step, A winding resistance value calculation step and a winding conductor temperature calculation step are performed, and the stator winding conductor temperature T is displayed on the display of the data processing device 46.
[0126]
According to the present embodiment, the stator winding conductor temperature measurement device 30E includes the measurement basic circuit 36A including the variable DC voltage supply circuit 68 as the DC variable voltage supply means, so that the DC power supply can be performed. A stable DC voltage is supplied to the three-phase AC rotating electric machine without being affected by beat vibration and the like caused by the third harmonic generated by operating the AC rotating electric machine by short-circuiting the three-phase AC rotating electric machine and passing a rated current. It can be supplied to the short circuit 33.
[0127]
Therefore, the stator winding conductor temperature measuring device 30E enables more accurate stator winding conductor resistance value measurement as compared to the stator winding conductor temperature measuring device 30 according to the first embodiment, It is possible to measure the temperature of the stator winding conductor with higher accuracy.
[0128]
Although the single-phase full-wave rectifier 72 constituting the variable DC voltage supply circuit 68 shown in FIG. 8 is shown using the diode 71 as a rectifying element, the single-phase full-wave rectifier 72 is not necessarily used. The rectifying element used is not limited to the diode 71. For example, the single-phase full-wave rectifier 72 may be configured by using a thyristor instead of the diode 71 for the rectifier used in the single-phase full-wave rectifier 72.
[0129]
[Seventh embodiment]
FIG. 9 shows an example of a winding conductor temperature measuring device 30F of the AC rotary electric machine according to the seventh embodiment of the present invention.
[0130]
The stator winding conductor temperature measuring device 30F measures the temperature of the stator winding 32 of the AC rotating electric machine in which the RTD 74 is inserted, between the conductor portion and the outer surface, and the stator winding according to the first embodiment. In addition to the conductor temperature measuring device 30, a stator winding outer surface temperature measuring means 75 is further provided to enable the temperature measurement of each of the conductor portion and the insulating portion 76 of the stator winding 32.
[0131]
The stator winding conductor temperature measuring device 30F is capable of measuring the temperature of the conductor of the stator winding 32 and the temperature of the insulating portion 76, and thereby has a temperature characteristic (hereinafter, referred to as temperature) with respect to the radial length of the insulating portion 76. Gradient), and the temperature characteristics of the insulating portion 76 of the stator winding 32 can be evaluated. Evaluating the temperature characteristics of the insulating portion 76 of the stator winding 32 is important and significant from the viewpoint of material development and the like.
[0132]
The stator winding conductor temperature measuring device 30F is different from the stator winding conductor temperature measuring device 30 in that a stator winding outer surface temperature measuring device 75 is further provided. Therefore, portions that are not different from the stator winding conductor temperature measuring device 30 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0133]
The stator winding conductor temperature measuring device 30F is inserted between the measurement basic circuit 36 and the voltage / current measuring means 38 and the stator winding 32, similarly to the stator winding conductor temperature measuring device 30 shown in FIG. A stator winding outer surface temperature measuring means 75 for obtaining a temperature measurement signal from the RTD 74 and measuring the outer surface temperature of the stator winding 32. The stator winding outer surface temperature measuring means 75 has basically the same configuration as the winding short-circuit conductor temperature measuring means 63 provided in the stator winding conductor temperature measuring device 30D shown in FIG. Only different.
[0134]
That is, the stator winding outer surface temperature measuring means 75 converts the analog signal output from the temperature measuring device 64 into a digital signal by measuring the outer surface temperature of the stator winding 32 with the RTD 74. And an A / D converter 65 for outputting the data. The input side of the stator winding outer surface temperature measuring means 75 is electrically connected to the RTD 74, and the output side is electrically connected to the data processing device 46.
[0135]
Measurement of the stator winding conductor temperature of the AC rotating electric machine during the three-phase short-circuit energization operation using the stator winding conductor temperature measurement device 30F shown in FIG. 9 will be described.
[0136]
The stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30F shown in FIG. 9 is performed by using the stator winding conductor temperature measuring device 30 according to the first embodiment. The difference from the conductor temperature measuring method is that a stator winding outer surface temperature measuring step of measuring the outer surface temperature of the stator winding 32 is further performed. Therefore, the description of the same contents as those of the stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30F according to the seventh embodiment will be simplified or omitted.
[0137]
The stator winding conductor temperature measuring method using the stator winding conductor temperature measuring device 30F first calculates a reference resistance value in a reference resistance value calculating step, and in the present embodiment, calculates a reference resistance value together with a mathematical expression necessary for data processing. The thickness of the insulating portion 77 of the winding 32 is input to the data processing device 46. Next, the measurer performs a three-phase circuit short-circuiting step, a measuring device connection step, and a voltage-current measurement step, and simultaneously measures the DC voltage value and the current value of the three-phase short-circuit 33 in the voltage-current measurement step. Perform a winding outer surface temperature measurement step.
[0138]
In the stator winding outer surface temperature measuring step, the temperature information obtained by the RTD 74 by the stator winding outer surface temperature measuring means 75 is A / D converted, and the data processing device 46 performs data processing on the stator information. The outer surface temperature of 32 is measured. In the measurement steps after the voltage / current measurement step and the stator winding outer surface temperature measurement step, a winding resistance value calculation step and a winding conductor temperature calculation step are performed as in the first embodiment.
[0139]
According to the present embodiment, since the stator winding conductor temperature measuring device 30F further includes the stator winding outer surface temperature measuring means 75, each of the measured conductor portion and outer surface of the stator winding 32 is provided. From this temperature, the temperature gradient of the insulating portion 76 of the stator winding 32 can be obtained, and the temperature characteristics of the insulating portion 76 can be evaluated.
[0140]
[Eighth Embodiment]
A method for measuring the winding conductor temperature of an AC rotary electric machine according to an eighth embodiment of the present invention will be described.
[0141]
In the method of measuring the winding conductor temperature of the AC rotating electric machine according to the present embodiment, the voltage Vs applied to both ends of the three-phase short circuit 33 in which the stator winding 32 to be measured is three-phase short-circuited is 50 V during the three-phase short-circuit energizing operation. The above is performed when a high voltage is generated.
[0142]
When the voltage Vs applied to both ends of the three-phase short circuit 33 is as high as 50 V or more during the three-phase short-circuit energizing operation, the voltage / current method uses a large AC with respect to the DC voltage and DC current to be measured. The components overlap. Therefore, it becomes difficult to maintain the resistance measurement accuracy of the stator winding 32 required to obtain the temperature accuracy that meets the demand. Therefore, in the method of measuring the winding conductor temperature of the AC rotating electric machine according to the present embodiment, the three-phase short-circuit energizing operation of the AC rotating electric machine is performed by extrapolation using the RTD 74 inserted between the stator windings 32 of the stator. It estimates the stator winding conductor temperature.
[0143]
As the winding conductor temperature measuring device of the AC rotating electric machine according to the present embodiment, a stator winding conductor temperature measuring device capable of measuring the outer surface temperature of the stator winding 32 with the RTD 74 is used. The stator winding conductor temperature measuring device 30F is used.
[0144]
FIG. 10 is an explanatory diagram (graph) illustrating a method for measuring the winding conductor temperature of the AC rotary electric machine according to the present embodiment.
[0145]
In the explanatory diagram shown in FIG. 10, the horizontal axis of the graph indicates the elapsed time t (min) from the time when the stator winding current becomes 0, and the vertical axis indicates the temperature (° C.) or the current (A). Thus, the temperature (° C.) transition with respect to the elapsed time t from the time when the stator winding current became 0 is shown.
[0146]
The measurement of the stator winding conductor temperature of the AC rotating electric machine during the three-phase short-circuit energizing operation according to the present embodiment is performed by first applying the rated current to the three-phase short-circuit 33 in which the stator winding 32 of the AC rotating electric machine is short-circuited in three phases. Is continuously energized. Then, the outer surface temperature T of the stator winding 32 obtained by the RTD 74R, The stator winding current Ia and the refrigerant temperature Tc are continuously measured.
[0147]
Next, the fact that the temperature of the stator winding 32 is completely saturated is obtained from the RTD 74 by the outer surface temperature T of the stator winding 32.RCheck with the indicated value. When the temperature of the stator winding 32 is completely saturated, the AC rotating electric machine is turned off. When the AC rotating electric machine is set in the non-energized state, the stator winding current Ia starts to decrease, and eventually, Ia = 0.
[0148]
When Ia = 0, for example, one minute after the non-energized state (t = 0), the stator winding resistance Ra ′ is obtained by the voltage / current measuring means 38 provided in the stator winding conductor temperature measuring device 30F. Is measured, and the stator winding conductor temperature T is obtained from the measured stator winding resistance Ra ′. Then, for example, the measurement is performed at certain intervals such as every minute, and the measurement is continued until the stator winding conductor temperature T and the coolant temperature Tc become substantially equal.
[0149]
The stator winding conductor temperature T obtained by the measurement is approximated by, for example, an exponential function, so that the stator winding conductor temperature T is represented by a function of the elapsed time t. By substituting t = 0 into the function formula of the wire conductor temperature T, the time when the stator winding current Ia starts to decrease (t = 0), that is, the stator winding conductor temperature T when the rated current is applied is estimated. be able to.
[0150]
In the present embodiment, even when the voltage Vs applied to both ends of the three-phase short circuit 33 in which the stator winding 32 to be measured is three-phase short-circuited is as high as 50 V or more during the three-phase short-circuit energizing operation, Since the temperature can be quickly measured in the non-energized state, the temperature of the conductor of the stator winding 32 during the three-phase short-circuit energized operation can be estimated by extrapolation.
[0151]
When estimating the temperature of the conductor of the stator winding 32 during the three-phase short-circuit energizing operation by extrapolation, the stator winding conductor temperature measuring device 30F connects the measurement basic circuit 36 and the voltage / current measuring means 38 with each other. Since the AC component can be largely removed by the provision, if the stator winding current Ia becomes Ia = 0, the temperature measurement of the stator winding conductor temperature T is started before the rotor stops. Therefore, it is possible to more accurately estimate the temperature of the conductor of the stator winding 32 during the three-phase short-circuit energizing operation.
[0152]
It should be noted that the winding conductor temperature measuring device of the AC rotating electric machine according to the present embodiment is not limited to the stator winding conductor temperature measuring device 30F shown in FIG. 9, but measures the outer surface temperature of the stator winding from the RTD 74. If the stator winding outer surface temperature measuring means is added externally, the stator winding conductor temperature measuring devices 30 to 30E used in other embodiments may be applied.
[0153]
Further, even if the stator winding outer surface temperature measuring means for measuring the outer surface temperature of the stator winding from the RTD 74 is not externally provided, it is sufficient until the stator winding conductor temperature becomes stable from the start of the three-phase short-circuit energizing operation. If the measurement is performed after a lapse of a long time, the stator winding conductor temperature measuring devices 30 to 30E used in other embodiments may be applied.
[0154]
As described above, according to the winding conductor temperature measuring device and the measuring method of the AC rotating electric machine according to the present invention, the stator winding conductor temperature measuring device 30 is capable of controlling the three-phase short circuit during the three-phase short-circuit energizing operation. A variable DC voltage source 31 as a variable DC voltage supply means capable of supplying a DC voltage equal to or greater than the AC voltage generated at 33, a limiting resistor 34 for limiting the AC voltage generated in the three-phase short circuit 33, and a shunt 35. A measurement basic circuit 36, a measurement channel 43 for greatly attenuating an AC component superimposed on a measurement signal with respect to a DC component, a digital recording device 45 with high resolution, and a data processing device 46 for processing the measurement signal. With the provision of the current measuring means 38, the resistance of the stator winding 32 can be reduced to a minimum of 10-7It is possible to accurately measure the resistance value on the order of Ω. Therefore, it is possible to provide a winding conductor temperature measuring device and a measuring method of an AC rotating electric machine capable of accurately measuring a temperature change of the stator winding 32 with an accuracy of about 1 ° C.
[0155]
Also, the stator winding conductor temperature measuring device 30A including the voltage / current measuring means 38A including the first averaging device 55 for performing high-speed sampling and calculating and outputting the average value of the sampled data or the high-speed sampling is performed. After calculating the average value of the data, the voltage / current measuring means 38B having the second averaging device 57 for performing statistical processing on the calculated average value and outputting the result is used for the measurement of the winding conductor temperature. Thus, more stable and accurate data can be collected.
[0156]
Further, the stator winding 32 to be measured is short-circuited in three phases, and a rated current is continuously applied to the stator winding 32, so that the temperature fluctuation of the winding short-circuit conductor 39A due to conduction of heat generated in the stator winding 32 is suppressed. By using the stator winding conductor temperature measuring device 30C including the means 59 for measuring the winding conductor temperature of an AC rotating electric machine, the measurement error of the resistance value Rex of the winding short-circuit conductor 39A can be suppressed and the stator winding 32 Can be reduced when a resistance value is measured.
[0157]
Furthermore, by using the stator winding conductor temperature measuring device 30D including the cooling means 59 and the winding short-circuit conductor temperature measuring means 63 for measuring the winding conductor temperature of the AC rotating electric machine, a three-phase short circuit of the AC rotating electric machine is achieved. The temperature of the winding short-circuit conductor 39A during the energization operation can be measured, and accurate measurement can be performed in consideration of the resistance value Rex of the winding short-circuit conductor 39A at the measured temperature T.
[0158]
On the other hand, by using the stator winding conductor temperature measurement device 30E including the measurement basic circuit 36A including the variable DC voltage supply circuit 68 as the DC variable voltage supply means for measuring the winding conductor temperature of the AC rotating electric machine, A stable DC voltage can be obtained without being affected by beat vibration and the like caused by the third harmonic generated by running the AC rotating electric machine by three-phase short-circuiting and supplying approximately the rated current when supplying DC power. The current can be supplied to the three-phase short circuit 33 of the AC rotating electric machine, and the resistance value of the stator winding conductor can be measured more accurately, and the temperature of the stator winding conductor can be measured more accurately.
[0159]
Further, by using the stator winding conductor temperature measuring device 30F including the stator winding outer surface temperature measuring means 75 for measuring the winding conductor temperature of the AC rotating electric machine, the measured conductor of the stator winding 32 can be measured. The temperature gradient of the insulating portion 76 of the stator winding 32 can be obtained from the respective temperatures of the portion and the outer surface, and the temperature characteristics of the insulating portion 76 can be evaluated.
[0160]
Furthermore, the stator winding conductor temperature measuring devices 30 to 30F according to the present invention provide a three-phase short circuit 33 formed by three-phase short-circuiting the stator winding 32 to be measured. Even when a voltage as high as 50 V or more is generated during the short-circuit energizing operation, the temperature can be quickly measured without energizing. Therefore, the stator winding 32 during the three-phase short-circuit energizing operation can be extrapolated. Can be estimated.
[0161]
Furthermore, when estimating the temperature of the conductor portion of the stator winding 32 during the three-phase short-circuit energizing operation by extrapolation, the stator winding conductor temperature measuring devices 30 to 30F according to the present invention use the measurement basic circuit 36 and The provision of the voltage / current measuring means 38 to 38B makes it possible to largely remove the AC component. Therefore, if the stator winding current Ia becomes Ia = 0, the stator winding is stopped before the rotor stops. Since the temperature measurement of the wire conductor temperature T can be started, it is possible to more accurately estimate the temperature of the conductor portion of the stator winding 32 during the three-phase short-circuit energizing operation.
[0162]
In the method of measuring the winding conductor temperature of the AC rotating electric machine according to the present invention, in the reference resistance value measuring step, the resistance value of the stator winding 32 of each phase is measured, and the measured resistance value of the stator winding 32 is measured. And the temperature at the time of resistance measurement are substituted into Equation 1 to obtain a reference resistance value R shown in Equation 4.95, And the calculated reference resistance value R95Is input to the data processing device 46, but the equation 1 is input to the data processing device 46, and the measured resistance value of the stator winding 32 and temperature data at the time of the resistance measurement can be input to the data processing device 46. And a reference resistance value R.95May be calculated.
[0163]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the winding conductor temperature measuring device and the measuring method of the AC rotating electric machine according to the present invention, it is possible to accurately measure the stator winding resistance during the three-phase short-circuit energizing operation of the AC rotating electric machine at the rated speed. Therefore, it is possible to provide a winding conductor temperature measuring apparatus and a measuring method for an AC rotating electric machine capable of accurately and stably measuring the stator winding conductor temperature of the AC rotating machine to be tested.
[0164]
According to the winding conductor temperature measuring device and the measuring method of the AC rotating electric machine according to the present invention, the voltage between the stator windings generated when the stator windings are short-circuited in three phases during the three-phase short circuit energizing operation is reduced. Even when the voltage / current method cannot be applied, the temperature measurement of the stator winding conductor temperature T can be started before the rotor stops, even when the rotor is stopped. It is possible to provide a winding conductor temperature measuring device and a measuring method of an AC rotating electric machine capable of measuring the winding conductor temperature with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a first embodiment of the present invention.
FIG. 2 is a circuit configuration diagram showing a circuit configuration of a filter included in a measurement channel provided in the winding conductor temperature measurement device of the AC rotary electric machine according to the first embodiment of the present invention.
FIG. 3 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a third embodiment of the present invention.
FIG. 5 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a fourth embodiment of the present invention.
FIG. 6 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a fifth embodiment of the present invention.
FIG. 7 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a sixth embodiment of the present invention.
FIG. 8 is a schematic configuration diagram showing a circuit configuration of a variable DC voltage supply circuit used as variable DC voltage supply means in a winding conductor temperature measuring device of an AC rotating electric machine according to a sixth embodiment of the present invention.
FIG. 9 is a schematic configuration diagram showing a configuration of a winding conductor temperature measuring device of an AC rotary electric machine according to a seventh embodiment of the present invention.
FIG. 10 is an explanatory diagram showing a method of measuring a winding conductor temperature of an AC rotating electric machine according to the present invention, and showing a relationship between an elapsed time after stopping power supply and a stator winding conductor temperature.
FIG. 11 is a schematic configuration diagram illustrating a configuration of a stator used in the AC rotating electric machine.
FIG. 12 is a conventional method for measuring a stator winding conductor temperature during energization, which explains a circuit configuration of a stator winding resistance measurement circuit that measures the resistance of the stator winding while stopping the AC rotating electric machine. FIG.
FIG. 13 is a conventional method for measuring a stator winding conductor temperature during energization, and is an explanatory diagram illustrating a circuit configuration of a stator winding conductor temperature measurement circuit that measures the stator winding conductor temperature using an RTD. .
FIG. 14 is an explanatory diagram illustrating a circuit configuration of a stator winding resistance measuring circuit that measures a stator winding conductor temperature of an AC rotating electric machine during a three-phase short-circuit energizing operation defined by IEC standard 60279.
[Explanation of symbols]
30, 30A, 30B, 30C, 30D, 30E, 30F: stator winding conductor temperature measuring device, 31: variable DC voltage source (variable DC voltage supply means), 32: stator winding, 33: three-phase short circuit , 34: limiting resistance, 35: shunt (resistance for current measurement), 36, 36A: measurement basic circuit, 38, 38A, 38B: voltage / current measurement means, 39, 39A: winding short-circuit conductor (three-phase short-circuit means), Reference numeral 40: neutral point, 41: line terminal, 43: measurement channel, 45: digital recording device, 46: data processing device, 49: filter, 50: amplifier, 52: resistor element, 53: capacitor, 55: first Averaging device, 57 second averaging device, 59 cooling means, 60 cooling water passage, 61 circulating pump, 63 winding short-circuit conductor temperature measuring means, 64 temperature measuring instrument, 65 A / D converter, 8: Variable DC voltage supply circuit (variable DC voltage supply means), 69: Single-phase AC variable voltage commercial frequency power supply, 70: Ground insulating transformer, 71: Diode, 72: Single-phase full-wave rectifier, 74: RTD ( Resistance temperature device), 75: stator winding outer surface temperature measuring means, 76: insulating unit.

Claims (10)

回転電機の固定子巻線を三相短絡する三相短絡手段と、
前記三相短絡手段によって得られた三相短絡回路に直流電圧を可変可能に供給する可変直流電圧供給手段と、前記三相短絡回路と、電流計測用抵抗とを電気的に接続することにより構成される測定基本回路と、
前記三相短絡回路に印加された直流電圧値および前記三相短絡回路に通電された電流値を取得する測定チャンネルと、この測定チャンネルからのアナログ出力をデジタル変換し記録するデジタル記録手段と、このデジタル記録手段からの出力をデータ処理して入力結果を出力するデータ処理手段とを備える電圧電流測定手段とを具備したことを特徴とする交流回転電機の巻線導体温度測定装置。
Three-phase short-circuit means for three-phase short-circuiting the stator winding of the rotating electric machine;
A variable DC voltage supply means for variably supplying a DC voltage to the three-phase short circuit obtained by the three-phase short circuit means, the three-phase short circuit, and a current measuring resistor electrically connected. Measurement basic circuit,
A measurement channel for obtaining a DC voltage value applied to the three-phase short circuit and a current value supplied to the three-phase short circuit; digital recording means for digitally converting and recording an analog output from the measurement channel; A winding conductor temperature measuring device for an AC rotating electric machine, comprising: a voltage / current measuring means including data processing means for processing an output from a digital recording means and outputting an input result.
前記測定基本回路を前記三相短絡回路に生じる交流電圧に匹敵する直流電圧を印加できるように構成し、
前記電圧電流測定手段を測定時に取得されるアナログ測定信号から交流成分を減衰させるフィルタと、このフィルタから出力されるアナログ測定信号を増幅する増幅器とを備える前記測定チャンネルと、14bit〜16bitの分解能を有する前記デジタル記録手段と、データ処理して処理結果を表示する前記データ処理手段とを電気的に接続して構成し、
前記フィルタを商用周波数50Hzおよび60Hzでフィルタ利得が−40〜−80dB、入力耐電圧が100〜600Vで構成し、
前記増幅器を増幅率が50〜1000倍でドリフトの発生が少なく、前記増幅率で線形性を有する低ドリフトアンプで構成することで、前記固定子巻線の抵抗値を10−7Ωオーダまでの精度で測定可能に構成したことを特徴とする請求項1に記載の交流回転電機の巻線導体温度測定装置。
The measurement basic circuit is configured to be able to apply a DC voltage comparable to an AC voltage generated in the three-phase short circuit,
The voltage / current measuring means includes a filter for attenuating an AC component from an analog measurement signal obtained at the time of measurement, an amplifier for amplifying the analog measurement signal output from the filter, and a measurement channel having a resolution of 14 bits to 16 bits. The digital recording means having, the data processing means for displaying the processing result by performing data processing is configured to be electrically connected,
The filter has a commercial frequency of 50 Hz and 60 Hz, a filter gain of -40 to -80 dB, and an input withstand voltage of 100 to 600 V.
By configuring the amplifier with a low drift amplifier having an amplification factor of 50 to 1000 times and less occurrence of drift and having linearity at the amplification factor, the resistance value of the stator winding is reduced to the order of 10 −7 Ω. The winding conductor temperature measuring device for an AC rotary electric machine according to claim 1, wherein the measuring device is configured to be able to measure with accuracy.
前記固定子巻線への通電がない無通電状態にて、前記固定子巻線の抵抗値を求め、基準温度における巻線抵抗値に換算する基準抵抗値算出ステップと、
スター接続された交流回転電機の固定子巻線を三相短絡し三相短絡回路を形成する三相短絡ステップと、
前記交流回転電機が運転され、前記固定子巻線への通電がある状態にて、可変直流電圧供給手段により前記三相短絡回路に印加される直流電圧値および通電される直流電流値を測定することで前記固定子巻線の抵抗値を算出する巻線抵抗値算出ステップと、
前記固定子巻線の抵抗値と前記基準抵抗値とを用いて前記交流回転電機の運転中における固定子巻線導体温度を前記電圧電流測定手段で算出する巻線導体温度算出ステップとを含むことを特徴とする交流回転電機の巻線導体温度測定方法。
In a non-energized state where no current is applied to the stator winding, a resistance value of the stator winding is determined, and a reference resistance value calculating step of converting the resistance value into a winding resistance value at a reference temperature,
A three-phase short-circuit step of three-phase short-circuiting the stator windings of the star-connected AC rotating electric machine to form a three-phase short circuit;
When the AC rotating electric machine is operated and the stator winding is energized, the DC voltage value applied to the three-phase short circuit and the DC current value applied are measured by the variable DC voltage supply means. A winding resistance value calculating step of calculating a resistance value of the stator winding by doing
A winding conductor temperature calculating step of calculating a stator winding conductor temperature during operation of the AC rotating electric machine by the voltage / current measuring means using the resistance value of the stator winding and the reference resistance value. A method for measuring a winding conductor temperature of an AC rotating electric machine, characterized by comprising:
前記回転電機が運転された状態にて測定された前記三相短絡回路の直流電圧値および電流値を平均化処理手段で高速サンプリングして、平均化処理する第1の平均化処理ステップを備え、
前記巻線抵抗値算出ステップで巻線抵抗を算出する際に、前記第1の平均化処理ステップで平均化処理された前記三相短絡回路の直流電圧値および電流値を用いて前記交流回転電機の固定子巻線導体温度を測定することを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。
A first averaging process step of high-speed sampling of a DC voltage value and a current value of the three-phase short circuit measured in a state where the rotating electric machine is operated by an averaging device, and performing an averaging process;
When calculating the winding resistance in the winding resistance value calculating step, the AC rotating electric machine uses the DC voltage value and the current value of the three-phase short circuit, which have been averaged in the first averaging processing step. 4. The method for measuring a winding conductor temperature of an AC rotary electric machine according to claim 3, wherein the stator winding conductor temperature is measured.
前記回転電機が運転された状態にて測定された前記三相短絡回路の直流電圧値および電流値を平均化処理手段で高速サンプリングして、平均化処理して得られた平均値に対して、一定偏差を超える範囲のサンプリングデータを除外する統計的処理を施した後、残りのサンプリングデータを平均化処理する第2の平均化処理ステップを備え、
前記巻線抵抗値算出ステップで巻線抵抗を算出する際に、前記第2の平均化処理ステップで平均化処理された前記三相短絡回路の直流電圧値および電流値を用いて前記交流回転電機の固定子巻線導体温度を測定することを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。
The DC voltage value and the current value of the three-phase short circuit measured in a state where the rotating electric machine is operated are sampled at high speed by the averaging processing means, and the average value obtained by the averaging process is A second averaging process step of averaging the remaining sampled data after performing a statistical process for excluding the sampled data in a range exceeding a certain deviation,
When calculating the winding resistance in the winding resistance value calculation step, the AC rotating electric machine uses the DC voltage value and the current value of the three-phase short circuit averaged in the second averaging processing step. 4. The method for measuring a winding conductor temperature of an AC rotary electric machine according to claim 3, wherein the stator winding conductor temperature is measured.
前記交流回転電機を三相短絡通電運転している間、前記巻線短絡導体を冷却し、前記巻線短絡導体の温度変化を抑制する導体冷却ステップを備え、前記巻線抵抗値算出ステップで算出される前記固定子巻線の抵抗値を測定する際の測定誤差の低減を図ったことを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。A conductor cooling step of cooling the winding short-circuit conductor and suppressing a temperature change of the winding short-circuit conductor during the three-phase short-circuit energizing operation of the AC rotating electric machine; 4. The method according to claim 3, wherein a measurement error in measuring the resistance value of the stator winding is reduced. 前記交流回転電機を三相短絡通電運転している間、前記巻線短絡導体を冷却し、前記巻線短絡導体の温度変化を抑制する導体冷却ステップと、
前記巻線短絡導体の抵抗値を換算式から算出する巻線短絡導体抵抗算出ステップとを備えたことを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。
A conductor cooling step of cooling the winding short-circuit conductor and suppressing a temperature change of the winding short-circuit conductor during the three-phase short-circuit energizing operation of the AC rotating electric machine,
4. The method according to claim 3, further comprising calculating a resistance value of the winding short-circuit conductor from a conversion formula.
前記可変直流電圧供給手段に、単相交流可変電圧商用周波電源と、対地から絶縁された変圧器と、単相全波整流装置とを電気的に接続して直流電圧の可変供給を可能に構成した可変直流電圧供給回路を使用して行うことを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。The variable DC voltage supply means is configured to electrically connect a single-phase AC variable voltage commercial frequency power supply, a transformer insulated from the ground, and a single-phase full-wave rectifier to enable variable supply of a DC voltage. The method according to claim 3, wherein the measurement is performed using a variable DC voltage supply circuit. 前記交流回転電機を三相短絡通電運転中における前記交流回転電機の固定子巻線の外表面温度を測定する固定子巻線外表面温度測定ステップを備え、
前記基準抵抗値算出ステップで基準抵抗値およびデータ処理に必要な数式とともに前記固定子巻線の絶縁部の厚さを入力した後に、
前記三相短絡回路の電圧値および電流値を測定することを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。
The AC rotating electric machine includes a stator winding outer surface temperature measuring step of measuring an outer surface temperature of a stator winding of the AC rotating electric machine during a three-phase short-circuit energizing operation,
After inputting the thickness of the insulating portion of the stator winding together with the reference resistance value and a mathematical expression required for data processing in the reference resistance value calculation step,
The method according to claim 3, wherein a voltage value and a current value of the three-phase short circuit are measured.
前記交流回転電機を三相短絡通電運転中において、前記三相短絡回路の電圧が50〜600Vと高い場合には、通電を遮断して無通電状態とした後、
前記巻線抵抗値算出ステップおよび巻線導体温度算出ステップを例えば、1分間等の任意の一定間隔で前記固定子巻線導体温度を算出し、冷媒温度とほぼ等しくなるまで前記巻線抵抗値算出ステップおよび巻線導体温度算出ステップをくりかえし行って算出した前記固定子巻線導体温度の推移から前記固定子巻線導体温度の推移を関数近似して通電遮断時の固定子巻線導体温度を推定することを特徴とする請求項3に記載の交流回転電機の巻線導体温度測定方法。
During the three-phase short-circuit energizing operation of the AC rotating electric machine, if the voltage of the three-phase short-circuit is as high as 50 to 600 V, the energization is cut off to make the non-energized state,
In the winding resistance value calculating step and the winding conductor temperature calculating step, for example, the stator winding conductor temperature is calculated at an arbitrary constant interval such as one minute, and the winding resistance value calculation is performed until the temperature becomes substantially equal to the refrigerant temperature. From the transition of the stator winding conductor temperature calculated by repeating the step and the winding conductor temperature calculation step, the transition of the stator winding conductor temperature is approximated by a function to estimate the stator winding conductor temperature at the time of energization interruption. The method for measuring the temperature of a winding conductor of an AC rotating electric machine according to claim 3, wherein:
JP2002236651A 2002-08-14 2002-08-14 Winding conductor temperature measuring device and measuring method for AC rotating electrical machine Expired - Fee Related JP4197602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236651A JP4197602B2 (en) 2002-08-14 2002-08-14 Winding conductor temperature measuring device and measuring method for AC rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236651A JP4197602B2 (en) 2002-08-14 2002-08-14 Winding conductor temperature measuring device and measuring method for AC rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2004077245A true JP2004077245A (en) 2004-03-11
JP4197602B2 JP4197602B2 (en) 2008-12-17

Family

ID=32020751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236651A Expired - Fee Related JP4197602B2 (en) 2002-08-14 2002-08-14 Winding conductor temperature measuring device and measuring method for AC rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4197602B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274520A (en) * 2004-03-26 2005-10-06 Mitsubishi Electric Corp Temperature measuring device and temperature measuring method for rotor of rotary electric machine
CN104316207A (en) * 2014-10-31 2015-01-28 国家电网公司 Winding temperature real-time monitoring device and method used in transformer temperature rise test
CN105588665A (en) * 2014-11-06 2016-05-18 奥迪股份公司 Method For Determining A Coil Temperature Of An Electric Machine
CN112946367A (en) * 2021-01-21 2021-06-11 威凯检测技术有限公司 Winding temperature rise test method capable of rapidly measuring winding thermal state resistance value
CN115902623A (en) * 2023-01-09 2023-04-04 睿动(山西)科技有限公司 Device for testing brushless motor and control method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958328A (en) * 1982-09-29 1984-04-04 Toshiba Corp Analog inputting device of resistance temperature measuring body
JPS62123531U (en) * 1986-01-29 1987-08-05
JPS63306049A (en) * 1987-06-05 1988-12-14 Oki Electric Ind Co Ltd Temperature detector for winding
JPH01126520A (en) * 1987-11-10 1989-05-18 Mitsui Toatsu Chem Inc Spot type indicating thermometer
JPH04369487A (en) * 1991-06-18 1992-12-22 Railway Technical Res Inst Coil temperature measurement method for direct current motor
JPH05284692A (en) * 1992-03-30 1993-10-29 Toshiba Corp Monitoring equipment for temperature of coil of rotating electric machine
JPH0794290A (en) * 1993-09-28 1995-04-07 Tec Corp Discharge lamp lighting device
JPH08293330A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Battery temperature detecting device
JP2000185046A (en) * 1998-12-22 2000-07-04 Matsushita Electric Ind Co Ltd Woman's clinical thermometer
JP2002058221A (en) * 2000-08-07 2002-02-22 Hitachi Ltd Brushless ac generating apparatus and measurement method for its field winding temperature

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958328A (en) * 1982-09-29 1984-04-04 Toshiba Corp Analog inputting device of resistance temperature measuring body
JPS62123531U (en) * 1986-01-29 1987-08-05
JPS63306049A (en) * 1987-06-05 1988-12-14 Oki Electric Ind Co Ltd Temperature detector for winding
JPH01126520A (en) * 1987-11-10 1989-05-18 Mitsui Toatsu Chem Inc Spot type indicating thermometer
JPH04369487A (en) * 1991-06-18 1992-12-22 Railway Technical Res Inst Coil temperature measurement method for direct current motor
JPH05284692A (en) * 1992-03-30 1993-10-29 Toshiba Corp Monitoring equipment for temperature of coil of rotating electric machine
JPH0794290A (en) * 1993-09-28 1995-04-07 Tec Corp Discharge lamp lighting device
JPH08293330A (en) * 1995-04-24 1996-11-05 Matsushita Electric Ind Co Ltd Battery temperature detecting device
JP2000185046A (en) * 1998-12-22 2000-07-04 Matsushita Electric Ind Co Ltd Woman's clinical thermometer
JP2002058221A (en) * 2000-08-07 2002-02-22 Hitachi Ltd Brushless ac generating apparatus and measurement method for its field winding temperature

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274520A (en) * 2004-03-26 2005-10-06 Mitsubishi Electric Corp Temperature measuring device and temperature measuring method for rotor of rotary electric machine
JP4566594B2 (en) * 2004-03-26 2010-10-20 三菱電機株式会社 Temperature measuring device for rotating body of rotating electrical machine
CN104316207A (en) * 2014-10-31 2015-01-28 国家电网公司 Winding temperature real-time monitoring device and method used in transformer temperature rise test
CN104316207B (en) * 2014-10-31 2017-02-15 国家电网公司 Winding temperature real-time monitoring device and method used in transformer temperature rise test
CN105588665A (en) * 2014-11-06 2016-05-18 奥迪股份公司 Method For Determining A Coil Temperature Of An Electric Machine
US10295414B2 (en) 2014-11-06 2019-05-21 Audi Ag Method for determining a coil temperature of an electric machine
CN112946367A (en) * 2021-01-21 2021-06-11 威凯检测技术有限公司 Winding temperature rise test method capable of rapidly measuring winding thermal state resistance value
CN112946367B (en) * 2021-01-21 2023-09-12 威凯检测技术有限公司 Winding temperature rise test method capable of rapidly measuring thermal state resistance value of winding
CN115902623A (en) * 2023-01-09 2023-04-04 睿动(山西)科技有限公司 Device for testing brushless motor and control method thereof
CN115902623B (en) * 2023-01-09 2023-05-30 睿动(山西)科技有限公司 Device for brushless motor test and control method thereof

Also Published As

Publication number Publication date
JP4197602B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
Mohammed et al. Stator winding fault thermal signature monitoring and analysis by in situ FBG sensors
Fernandez-Bernal et al. Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement
Lee et al. An evaluation of model-based stator resistance estimation for induction motor stator winding temperature monitoring
US6042265A (en) Sensorless estimation of rotor temperature in induction motors
Quispe et al. Experimental study of the effect of positive sequence voltage on the derating of induction motors under voltage unbalance
Popov et al. Motor temperature monitoring based on impedance estimation at PWM frequencies
US8135551B2 (en) Robust on line stator turn fault identification system
Lee et al. A remote and sensorless thermal protection scheme for small line-connected ac machines
Boglietti et al. Efficiency determination of converter-fed induction motors: Waiting for the IEC 60034–2–3 standard
KR20140075596A (en) Estimation of Resistance in Electrical Machines
Albla et al. Online temperature monitoring of a grid connected induction motor
Iyer et al. A novel two-axis theory-based approach towards parameter determination of line-start permanent magnet synchronous machines
JP4197602B2 (en) Winding conductor temperature measuring device and measuring method for AC rotating electrical machine
KR102147657B1 (en) Apparatus for measuring both AC and DC power including a shunt resistor sensor
KR100798469B1 (en) Apparatus, and method for diagnosing the insulation condition of three phase alternating current rotating machinery, and a medium having computer readable program for executing the method
Aminu et al. Identification of induction machine parameters using only no-load test measurements
JP5333411B2 (en) Vector control device for induction motor
David et al. The use of time domain spectroscopy as a diagnostic tool for rotating machine windings
Mushenya et al. A simplified efficiency estimation approach for converter-fed induction motors
WO2020088604A1 (en) Dynamic parameter test and measurement method for excitation synchronous motors
Zoeller et al. Insulation monitoring of three phase inverter-fed ac machines based on two current sensors only
Agamloh et al. Applicability of superposition equivalent loading method for induction machine temperature tests
Armando et al. Winding thermal model for short-time thermal transient: Validation in motor operative conditions
Boglietti et al. Experimental validation in operative conditions of winding thermal model for short-time transient
Xu et al. Sensorless Temperature Estimator of the Rotor for Submersible Motor Based on Input Voltages and Currents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees