JP2004076521A - Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same - Google Patents

Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same Download PDF

Info

Publication number
JP2004076521A
JP2004076521A JP2002241748A JP2002241748A JP2004076521A JP 2004076521 A JP2004076521 A JP 2004076521A JP 2002241748 A JP2002241748 A JP 2002241748A JP 2002241748 A JP2002241748 A JP 2002241748A JP 2004076521 A JP2004076521 A JP 2004076521A
Authority
JP
Japan
Prior art keywords
steel pipe
diaphragm
protrusion
pipe column
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241748A
Other languages
Japanese (ja)
Inventor
Hiromi Shimokawa
下川 弘海
Haruhito Okamoto
岡本 晴仁
Takuya Ueki
植木 卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002241748A priority Critical patent/JP2004076521A/en
Publication of JP2004076521A publication Critical patent/JP2004076521A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the rational connecting structure for connecting a steel pipe post and a H-shape steel beam which can prevent an early brittle fracture in a flange welding part as much as possible and which can reduce a cost, and to provide a diaphragm used for the connecting structure. <P>SOLUTION: In the connecting structure of the steel pipe post 1 and the H-shape steel beam 3 for connecting the steel pipe post 1 and the H-shape steel beam 3 to each other through the diaphragm 5 provided in the steel pipe post 1, the diaphragm 5 has a projecting part 5a having the nearly same width with a flange 7 of the H-shape steel beam 3, and the projecting part 5a and the flange 7 are made to abut on each other for welding. When the appearance dimension of the projecting part 5a of the diaphragm 5 from the steel pipe post 1 is d1, the projection dimension of the projecting part 5a is d2 and a radius of an internal corner is R, d1 and d2 are set to satisfy a relation that 30 mm ≤ d1 ≤ 55mm and that d2 ≥ R + 10mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は建築又は土木の鉄骨構造物における鋼管柱とH形鋼製梁の接合構造及び該接合構造に用いるダイアフラムに関する。
【0002】
【従来の技術】
鉄骨構造物における鋼管柱とH形鋼製梁の接合構造としては、通しダイアフラムや外ダイアフラムにH形鋼梁を溶接する形式が一般的である。
図10はこのような一般的な接合構造のうち、通しダイアフラム形式の角形鋼管柱51にH形鋼梁53を溶接接合した例である。ダイアフラム55と梁フランジ57は突き合わせ溶接され、梁ウエブ59は、工場での組立の場合はすみ肉溶接にて、工事現場での組立の場合は高力ボルトにて角形鋼管柱51と接合される。
【0003】
しかしながら、上記の一般的な接合構造では以下のような問題がある。
梁端溶接部近傍の応力が最大となり、また梁フランジ溶接部縁端に応力が集中し、さらに溶接部縁端は溶接欠陥が発生し易く、応力集中が拡大される等の要因から早期脆性破壊が発生し易い。
【0004】
そこで、上記の問題を解決するものとして、例えば特開平9−217420号公報及び特開2001−81863号公報に開示されたダイアフラム及びこれを用いた鋼管柱とH形鋼製梁の接合構造がある。
上記公報に開示されたダイアフラムは梁フランジとの接合部を外方に突出させたものである。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例においては、突出部を設ける点は開示されているものの、その具体的な形状については何らも示されていない。
そのため、実際の施行に際して、具体的にどのような形状にすべきかが不明であり、実現できないものである。
【0006】
確かに、上記従来例において、突出長さについて、特開平9−217420号公報では、150〜300mm程度とするのが好ましいとしており、また、特開2001−81863号公報では、実施例の説明において80mm突出した状態が示されている。
しかし、これらは合理的な理由もなく示されたものであり、このような長さであれば、接合部への付加応力を減らすことはできるもの、突出部の長さが長いためにダイアフラムの歩留りが悪くコストアップにつながる。また、突出部の長さが長いと梁ウエブと柱面との接合が難しくなるという問題もある。
【0007】
本発明はかかる課題を解決するためになされたものであり、フランジ溶接部の早期脆性破壊を可及的に防止できると共に、合理的でコスト低下ができる鋼管柱とH形鋼製梁の接合構造及び該接合構造に用いるダイアフラムを得ることを目的としている。
【0008】
【課題を解決するための手段】
本発明に係る鋼管柱とH形鋼製梁の接合構造は、鋼管柱とH形鋼製梁を前記鋼管柱に設けたダイアフラムを介して接合する鋼管柱とH形鋼製梁の接合構造において、前記ダイアフラムは、前記H形鋼製梁のフランジと略同一幅の突出部を有し、該突出部と前記フランジとが突き合わされて溶接されるものであって、前記ダイアフラムにおける突出部の前記鋼管柱からの出寸法をd1、前記突出部の突出寸法をd2、入り隅部の半径をRとしたときに、前記d1、d2を、それぞれ30mm≦d1≦55mm、d2≧R+10mmとしたものである。
【0009】
また、本発明に係るダイアフラムは鋼管柱に設けられてH形鋼製梁を前記鋼管柱に接合するものであって、前記H形鋼製梁のフランジと略同一幅を有し、前記H形鋼製梁のフランジが突き合わされて溶接される突出部を有し、前記鋼管柱に設置された状態において、前記鋼管柱からの出寸法をd1、前記突出部の突出寸法をd2、入り隅部の半径をRとしたときに、前記d1、d2を、それぞれ30mm≦d1≦55mm、d2≧R+10mmとしたものである。
【0010】
また、上記ダイアフラムの入り隅部の半径Rを、R≧6mmとしたものである。
【0011】
【発明の実施の形態】
図1は本発明の一実施の形態にかかる鋼管柱1とH形鋼製梁3の接合構造の要部の説明図である。
本実施の形態においては、鋼管柱1とH形鋼製梁3を鋼管柱1に設けたダイアフラム5を介して接合する鋼管柱1とH形鋼製梁3の接合構造において、ダイアフラム5にH形鋼製梁3のフランジ7と略同一幅の突出部5aを設け、突出部5aとフランジ7とを突き合わせ溶接したものである。そして、ダイアフラム5の突出部5aにおける鋼管柱1からの出寸法をd1、突出部5aの突出寸法(ダイアフラム5における突出部5a以外の部分からの突出長さ)をd2、入り隅部の半径をRとしたときに、d1、d2を、それぞれ30mm≦d1≦55mm、d2≧R+10mmとしたものである。また、入り隅部Rを、R≧6mmとしている。
【0012】
ここで、突出部の出寸法の最小値、最大値の根拠を説明する。
1)ダイアフラムの突出部の出寸法の最小値について
ダイアフラムの突出部5aにおける鋼管柱1からの出寸法d1(図2参照)の最小値は、鋼管柱1とダイアフラム5の溶接部の柱溶接金属9の肉盛(12mm程度)及びこの部分の熱影響部11(肉盛の外側へ8mm程度)、H形鋼製梁3のフランジ7とダイアフラム5の溶接によるダイアフラム側の熱影響部13(8mm程度)を考慮して、これら熱影響部が重ならないように設定している。
つまり、肉盛(12mm)、熱影響部11(8mm)、熱影響部13(8mm)の合計(28mm)よりもd1が大きくなるようにd1≧30mmとしている。
【0013】
2)ダイアフラムの突出部の出寸法の最大値について
従来例に示した特開平9−217420号公報ではダイアフラムの突出部の出寸法d1を150〜300mm程度とし、特開2001−81863号公報の実施例においてはd1=80mmとし、両者ともに比較的長い寸法としている。
突出部の出寸法を長くすると、ダイアフラム製造時に不要となる部分が多くなり、歩留まりが悪く、その結果コストアップになる。
【0014】
また、突出部の出寸法が長くなると、H形鋼製梁3に設けるスカラップが長くなり、座屈の危険があることから、同公報では図3に示すように、ガセットプレート15を鋼管柱1の側面およびダイアフラム5に溶接して、ガセットプレート15と梁3のウエブ17をボルト接合するという構造を採用している。
しかし、このような構造ではガセットプレート15の溶接が煩雑になるという問題がある。
【0015】
そこで、本実施形態では、このような構造を用いる必要のない、一般的な構造で対応できるようにした。一般的な構造とは、例えば、図4に示すように、ガセットプレート15を設けたとしても、ガセットプレート15とダイアフラム5の溶接を行わない構造である。また、図5に示すように、ガセットプレートを設けることなく梁ウエブ17を鋼管柱1の側面まで延出させて梁ウエブ17の端部を柱面に溶接するような構造である。
【0016】
このような一般的な構造を考えると、d1が大きすぎるとスカラップ19が長くなり、このスカラップ19を設けた部分におけるフランジ7、ウエブ17での早期座屈が生じることになる。
そこで、これらフランジ7及びウエブ17での早期座屈が生じないという観点からd1の最大値を規定した。
教科書等にも示されている実験による座屈曲線から、細長比λがλ≦20であれば、部材降伏前での座屈はほぼ生じない。そして、λと板厚の関係は下式で表せる。
【0017】
【数1】

Figure 2004076521
【0018】
ここで、Lは座屈長さ、Iは断面二次モーメント、Aは断面積である。上記の式において、座屈長さLを図4、図5のスカラッブ長さ(d1+35mm)×1/2(35mmはスカラップのRの大きさである。また、1/2倍としたのは両端固定のためである。)とし、フランジまたはウエブ幅をw、板厚をtとすると、上式は下式のように変形できる。
【0019】
【数2】
Figure 2004076521
また、上述したように、座屈の生じない細長比λとして、λ≦20を考えるとd1の最大値は下式で与えられる。
【数3】
Figure 2004076521
【0020】
一般的な梁材を考えた場合、フランジの厚みt≧12mm、ウエブの厚みt≧8mmであり、ウエブの厚みの方が薄いのでウエブの厚みでd1が規定される。そして、ウエブの厚みの最も薄いものでt=8mm程度であるから、上式のtに8mmを代入すると、d1=57.4mmとなる。そこで、この値からより安全側を想定してd1≦55mmと言う条件を設ける。
【0021】
次に、入り隅部Rを、R≧6mmとした理由を説明する。
図6は図1に示す入り隅部Rを変化させた場合の応力集中係数(α)の変化を示したグラフである。これは、FEMによる弾性解析の結果である。フラックスタブを用いた従来型柱梁溶接部の繰返し載荷実験(R=1mm程度)により全塑性時の変形量δの3〜4倍の変形で亀裂が生じることがあることがわかった。亀裂が生じると、これた派生して破断に至る危険もある。
【0022】
そこで、このような危険を避けるために、応力集中度を緩和し変形量を倍にすることを考え、倍にするためには、図6に示した応力集中係数αを半分以下にすることが考えられる。そして、図6において、R=1でα=8.8であるから、αを半分以下のα=4にするためには、図6よりR=5.7以上でなければならないことがわかる。そこで、入り隅部RはR≧6mmとしたものである。
【0023】
次に、溶接部の位置d2をR+10mmとした理由を説明する。
従来型柱梁溶接部(R=1mm程度)では応力集中係数はα=8程度であり(図6参照)、上述したように、全塑性時の変形量δの3〜4倍の変形で亀裂が生じる。
そこで、溶接部からどの程度離れれば応力集中が緩和されるかを知るために、溶接部から一定の距離ごとの応力集中係数を解析で求めたところ、R止まり+10mmの位置では、応力集中係数は1.2〜1.3程度であることがわかった。そこで、溶接位置(図1のd2)としては、R止まり+10mm以上であれば、溶接部への応力集中は大きく緩和でき、変形性能を確保できると判断し、溶接部の位置d2としてd2=R+10mmと規定した。
【0024】
以上説明したように、本実施の形態では、ダイアフラム5の突出部5aにおける鋼管柱1からの出寸法d1、突出部5aの突出寸法d2、入り隅部の半径Rを、解析結果等種々の要件に基づいて規定した。
以下においては、上記実施の形態の寸法にしたときの効果について説明する。図7乃至図9は本実施形態の効果を説明するための図であり、本発明と従来例の柱梁接合部繰り返し載荷実験結果を示すグラフである。
【0025】
図7が本実施形態を示し、図8が従来例を示し、図9は本実施形態と従来例の両方を示したものである。
本実施形態の実験条件は、入り隅R=10、d1=40、d2=20である。また、従来例は図10に示すような突出部のないダイアフラムを使用し、Rは1mm〜2mm程度である。
【0026】
図9に示すとおり、従来例に比較して、本実施形態は、大きな変形能力を有する。また、本実施形態の破断位置は、溶接部ではなくスカラップ底からの延性破壊であったことから、従来の溶接部での脆性破壊に対して、十分な変形性能を示していると言える。
【0027】
【発明の効果】
以上のように、本発明においては、ダイアフラムを、H形鋼製梁のフランジと略同一幅の突出部を有し、該突出部と前記フランジとが突き合わされて溶接されるものであって、前記ダイアフラムにおける突出部の前記鋼管柱からの出寸法をd1、前記突出部の突出寸法をd2、入り隅部の半径をRとしたときに、前記d1、d2を、それぞれ30mm≦d1≦55mm、d2≧R+10mmとしたので、フランジ溶接部の早期脆性破壊を可及的に防止できると共に、合理的でコスト低減が実現できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の要部の説明図である。
【図2】本発明の一実施の形態の要部の説明図である。
【図3】H形鋼製梁とダイアフラムの接合状態の説明図である。
【図4】H形鋼製梁とダイアフラムの接合状態の説明図である。
【図5】H形鋼製梁とダイアフラムの接合状態の説明図である。
【図6】本発明の一実施の形態のダイアフラムの入り隅部Rを変化させた場合の応力集中係数の変化を示すグラフである。
【図7】本発明の一実施の形態の柱梁接合部繰り返し載荷実験結果を示すグラフである。
【図8】従来例の柱梁接合部繰り返し載荷実験結果を示すグラフである。
【図9】本発明の一実施の形態及び従来例の柱梁接合部繰り返し載荷実験結果を示すグラフである。
【図10】従来のH形鋼製梁と鋼管柱の接合構造の説明図である。
【符号の説明】
1 鋼管柱
3 H形鋼製梁
5 ダイアフラム
5a 突出部
7 フランジ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a joint structure between a steel pipe column and an H-shaped steel beam in a building or civil engineering steel structure, and a diaphragm used in the joint structure.
[0002]
[Prior art]
As a joint structure between a steel pipe column and an H-shaped steel beam in a steel structure, a type in which an H-shaped steel beam is welded to a through diaphragm or an outer diaphragm is generally used.
FIG. 10 shows an example in which an H-shaped steel beam 53 is welded to a through-diaphragm-shaped square steel pipe column 51 in such a general joining structure. The diaphragm 55 and the beam flange 57 are butt-welded, and the beam web 59 is joined to the square steel tubular column 51 by fillet welding in the case of assembly at a factory, and by high-strength bolts in the case of assembly at a construction site.
[0003]
However, the above general joining structure has the following problems.
Stress near the beam end weld becomes maximum, stress concentrates on the edge of the beam flange weld, and the weld edge is liable to generate welding defects at the weld edge, causing early brittle fracture due to factors such as increased stress concentration. Is easy to occur.
[0004]
In order to solve the above problems, for example, there are a diaphragm disclosed in JP-A-9-217420 and JP-A-2001-81863, and a joint structure of a steel pipe column and an H-beam made of the diaphragm using the diaphragm. .
The diaphragm disclosed in the above publication has a joint with a beam flange protruding outward.
[0005]
[Problems to be solved by the invention]
However, in the above conventional example, although the point of providing the protruding portion is disclosed, nothing is shown about the specific shape thereof.
Therefore, in actual implementation, it is unclear what shape should be specifically formed and cannot be realized.
[0006]
Certainly, in the above conventional example, the projection length is preferably set to about 150 to 300 mm in Japanese Patent Application Laid-Open No. 9-217420, and in Japanese Patent Application Laid-Open No. 2001-81863, The state where it is projected by 80 mm is shown.
However, these are shown for no reasonable reason. Such a length can reduce the applied stress to the joint, but the length of the projections makes the diaphragm Yield is poor, leading to cost increase. Further, if the length of the protruding portion is long, there is a problem that it is difficult to join the beam web and the column surface.
[0007]
The present invention has been made in order to solve such problems, and it is possible to prevent the early brittle fracture of the flange welded portion as much as possible, and at the same time, it is possible to reduce the cost and rationally reduce the cost. And a diaphragm used for the joining structure.
[0008]
[Means for Solving the Problems]
The joint structure of a steel pipe column and an H-beam made of steel according to the present invention is a joint structure of a steel pipe column and an H-beam made of a steel pipe and an H-beam joined via a diaphragm provided on the steel pillar. The diaphragm has a protrusion having substantially the same width as the flange of the H-shaped steel beam, and the protrusion and the flange are abutted and welded, and the protrusion of the diaphragm has When the protrusion dimension from the steel pipe column is d1, the protrusion dimension of the protrusion is d2, and the radius of the entry corner is R, the d1 and d2 are 30 mm ≦ d1 ≦ 55 mm and d2 ≧ R + 10 mm, respectively. is there.
[0009]
Further, the diaphragm according to the present invention is provided on a steel pipe column to join an H-shaped steel beam to the steel pipe column, and has a width substantially equal to a flange of the H-shaped steel beam, The steel beam has a projection to which a flange is abutted and welded, and when installed on the steel pipe column, the protrusion dimension from the steel pipe column is d1, the protrusion dimension of the protrusion is d2, and the entry corner is When the radius of R is R, d1 and d2 are set to 30 mm ≦ d1 ≦ 55 mm and d2 ≧ R + 10 mm, respectively.
[0010]
Further, the radius R at the corner of the diaphragm is set to R ≧ 6 mm.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an explanatory view of a main part of a joint structure between a steel pipe column 1 and an H-beam 3 according to an embodiment of the present invention.
In the present embodiment, in the joint structure between the steel pipe column 1 and the H-shaped steel beam 3 in which the steel pipe column 1 and the H-shaped steel beam 3 are joined via the diaphragm 5 provided on the steel pipe column 1, A protrusion 5a having substantially the same width as the flange 7 of the shaped steel beam 3 is provided, and the protrusion 5a and the flange 7 are butt-welded. The protrusion size of the protrusion 5a of the diaphragm 5 from the steel pipe column 1 is d1, the protrusion size of the protrusion 5a (the protrusion length from a portion other than the protrusion 5a of the diaphragm 5) is d2, and the radius of the entry corner is d2. When R is set, d1 and d2 are set to 30 mm ≦ d1 ≦ 55 mm and d2 ≧ R + 10 mm, respectively. The entry corner R is set to R ≧ 6 mm.
[0012]
Here, the grounds for the minimum value and the maximum value of the protrusion dimensions of the protrusion will be described.
1) Regarding the minimum value of the protruding dimension of the projection of the diaphragm The minimum value of the protruding dimension d1 (see FIG. 2) from the steel pipe column 1 in the protruding section 5a of the diaphragm is determined by the column welding metal of the welding portion between the steel pipe column 1 and the diaphragm 5. 9 (about 12 mm) and the heat-affected zone 11 (about 8 mm outward of the overlay), a heat-affected zone 13 (8 mm) on the diaphragm side by welding the flange 7 of the H-beam 3 and the diaphragm 5. Degree), the heat affected zone is set so as not to overlap.
That is, d1 ≧ 30 mm is set so that d1 is larger than the sum (28 mm) of the overlay (12 mm), the heat-affected zone 11 (8 mm), and the heat-affected zone 13 (8 mm).
[0013]
2) Regarding the maximum value of the projection size of the projection of the diaphragm In Japanese Patent Application Laid-Open No. 9-217420 shown in the conventional example, the projection dimension d1 of the projection of the diaphragm is set to about 150 to 300 mm, and the implementation of Japanese Patent Application Publication No. 2001-81863. In the example, d1 = 80 mm, and both have relatively long dimensions.
When the protrusion dimension of the protruding portion is increased, unnecessary portions are increased at the time of manufacturing the diaphragm, thereby lowering the yield and increasing the cost.
[0014]
In addition, if the protrusion dimension of the protruding portion becomes longer, the scallops provided on the H-shaped steel beam 3 become longer and there is a risk of buckling. Therefore, as shown in FIG. Is welded to the side surface of the diaper 5 and the diaphragm 5, and the gusset plate 15 and the web 17 of the beam 3 are bolted to each other.
However, such a structure has a problem that welding of the gusset plate 15 becomes complicated.
[0015]
Therefore, in the present embodiment, a general structure that does not require such a structure can be used. The general structure is, for example, a structure in which the gusset plate 15 and the diaphragm 5 are not welded even if the gusset plate 15 is provided as shown in FIG. Further, as shown in FIG. 5, the beam web 17 is extended to the side surface of the steel tube column 1 without providing a gusset plate, and the end of the beam web 17 is welded to the column surface.
[0016]
Considering such a general structure, if d1 is too large, the scallop 19 becomes long, and the buckling of the flange 7 and the web 17 at the portion where the scallop 19 is provided occurs early.
Therefore, the maximum value of d1 is defined from the viewpoint that early buckling does not occur in the flange 7 and the web 17.
From the buckling line of the experiment shown in the textbooks and the like, if the slenderness ratio λ is λ ≦ 20, buckling almost does not occur before the member yields. The relationship between λ and the plate thickness can be expressed by the following equation.
[0017]
(Equation 1)
Figure 2004076521
[0018]
Here, L k is the buckling length, I is the second moment of area, and A is the cross-sectional area. In the above formula, the buckling length L k is the scalloped length (d1 + 35 mm) × 1/2 (35 mm is the size of the scalloped R in FIGS. 4 and 5). If the flange or web width is w and the plate thickness is t, the above equation can be modified as the following equation.
[0019]
(Equation 2)
Figure 2004076521
As described above, when λ ≦ 20 is considered as the slenderness ratio λ that does not cause buckling, the maximum value of d1 is given by the following equation.
[Equation 3]
Figure 2004076521
[0020]
If you thought the general beam material, the flange of the thickness t f ≧ 12mm, it is a web thickness t w ≧ 8mm, because the people of the web of the thickness of thin d1 the web thickness is defined. Then, since t w is about 8 mm in the thinnest web, substituting 8 mm for t in the above equation gives d1 = 57.4 mm. Therefore, a condition of d1 ≦ 55 mm is set assuming a safer side from this value.
[0021]
Next, the reason why the entry corner R is set to R ≧ 6 mm will be described.
FIG. 6 is a graph showing a change in the stress concentration coefficient (α) when the corner R shown in FIG. 1 is changed. This is the result of elasticity analysis by FEM. A repeated loading experiment (R = 1 mm) of a conventional column-beam welded part using a flux tub revealed that a crack may be generated by a deformation of 3 to 4 times the deformation amount δ p during full plasticity. If a crack occurs, there is a risk that it may be broken and cause a break.
[0022]
Therefore, in order to avoid such a danger, consider reducing the stress concentration and doubling the amount of deformation. In order to double the stress concentration, the stress concentration coefficient α shown in FIG. Conceivable. In FIG. 6, since R = 1 and α = 8.8, it can be seen from FIG. 6 that R must be equal to or greater than 5.7 in order to make α equal to or less than half, that is, α = 4. Therefore, the corner R is set to R ≧ 6 mm.
[0023]
Next, the reason why the position d2 of the welded portion is set to R + 10 mm will be described.
In a conventional beam-to-column welded portion (R = 1 mm), the stress concentration coefficient is about α = 8 (see FIG. 6), and as described above, the deformation is 3 to 4 times the deformation amount δ p in all plasticity. Cracks form.
Therefore, in order to know how far away from the welded part the stress concentration is reduced, the stress concentration coefficient at a certain distance from the welded part was obtained by analysis. It turned out that it is about 1.2-1.3. Therefore, if the welding position (d2 in FIG. 1) is R stop +10 mm or more, it is determined that stress concentration on the welded portion can be relieved greatly and deformation performance can be ensured, and d2 = R + 10 mm as the welded position d2. It was specified.
[0024]
As described above, in the present embodiment, the projecting dimension d1 of the projecting portion 5a of the diaphragm 5 from the steel pipe column 1, the projecting dimension d2 of the projecting portion 5a, and the radius R of the entry corner are determined by various requirements such as analysis results. Stipulated based on
In the following, effects when the dimensions are set to those in the above embodiment will be described. 7 to 9 are diagrams for explaining the effect of the present embodiment, and are graphs showing the results of repeated loading experiments of the present invention and a conventional example of a beam-column joint.
[0025]
7 shows the present embodiment, FIG. 8 shows a conventional example, and FIG. 9 shows both the present embodiment and the conventional example.
The experimental conditions of the present embodiment are as follows: corner R = 10, d1 = 40, d2 = 20. The conventional example uses a diaphragm having no protrusion as shown in FIG. 10, and R is about 1 mm to 2 mm.
[0026]
As shown in FIG. 9, the present embodiment has a greater deformation capability than the conventional example. In addition, since the fracture position in the present embodiment was ductile fracture not from the welded portion but from the scalloped bottom, it can be said that the fractured position shows sufficient deformation performance with respect to brittle fracture in the conventional welded portion.
[0027]
【The invention's effect】
As described above, in the present invention, the diaphragm has a projecting portion having substantially the same width as the flange of the H-section steel beam, and the projecting portion and the flange are abutted and welded, When the protrusion size of the protrusion of the diaphragm from the steel pipe column is d1, the protrusion size of the protrusion is d2, and the radius of the entering corner is R, the d1 and d2 are respectively 30 mm ≦ d1 ≦ 55 mm, Since d2 ≧ R + 10 mm, early brittle fracture of the flange welded portion can be prevented as much as possible, and rational and cost reduction can be realized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a main part of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a main part of one embodiment of the present invention.
FIG. 3 is an explanatory diagram of a joint state between an H-shaped steel beam and a diaphragm.
FIG. 4 is an explanatory view of a joint state between an H-shaped steel beam and a diaphragm.
FIG. 5 is an explanatory diagram of a joint state between an H-shaped steel beam and a diaphragm.
FIG. 6 is a graph showing a change in a stress concentration coefficient when an inside corner R of a diaphragm according to an embodiment of the present invention is changed.
FIG. 7 is a graph showing the results of a repeated loading test of a beam-column joint according to an embodiment of the present invention.
FIG. 8 is a graph showing the results of a repeated loading test of a beam-column joint of a conventional example.
FIG. 9 is a graph showing the results of a repeated loading test of a beam-column joint according to an embodiment of the present invention and a conventional example.
FIG. 10 is an explanatory view of a conventional joint structure between an H-shaped steel beam and a steel pipe column.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel pipe column 3 H-beam 5 Diaphragm 5a Projection 7 Flange

Claims (4)

鋼管柱とH形鋼製梁を前記鋼管柱に設けたダイアフラムを介して接合する鋼管柱とH形鋼製梁の接合構造において、
前記ダイアフラムは、前記H形鋼製梁のフランジと略同一幅の突出部を有し、
該突出部と前記フランジとが突き合わされて溶接されるものであって、
前記ダイアフラムにおける突出部の前記鋼管柱からの出寸法をd1、前記突出部の突出寸法をd2、入り隅部の半径をRとしたときに、前記d1、d2を、それぞれ30mm≦d1≦55mm、d2≧R+10mmとしたことを特徴とする鋼管柱とH形鋼製梁の接合構造。
In a joint structure of a steel pipe column and an H-beam made of a steel pipe and an H-beam, which are connected via a diaphragm provided on the steel pipe column,
The diaphragm has a protrusion having substantially the same width as the flange of the H-shaped steel beam,
The projection and the flange are butted and welded,
When the protrusion size of the protrusion of the diaphragm from the steel pipe column is d1, the protrusion size of the protrusion is d2, and the radius of the entering corner is R, the d1 and d2 are respectively 30 mm ≦ d1 ≦ 55 mm, A joint structure between a steel pipe column and an H-shaped steel beam, wherein d2 ≧ R + 10 mm.
入り隅部の半径Rを、R≧6mmとしたことを特徴とする請求項1記載の鋼管柱とH形鋼製梁の接合構造。2. The joint structure between a steel pipe column and an H-shaped steel beam according to claim 1, wherein the radius R of the entering corner is set to R ≧ 6 mm. 鋼管柱に設けられてH形鋼製梁を前記鋼管柱に接合するダイアフラムであって、
前記H形鋼製梁のフランジと略同一幅を有し、前記H形鋼製梁のフランジが突き合わされて溶接される突出部を有し、
前記鋼管柱に設置された状態において、前記鋼管柱からの出寸法をd1、前記突出部の突出寸法をd2、入り隅部の半径をRとしたときに、前記d1、d2を、それぞれ30mm≦d1≦55mm、d2≧R+10mmとしたことを特徴とするダイアフラム。
A diaphragm provided on a steel pipe column and joining an H-shaped steel beam to the steel pipe column,
The flange of the H-shaped steel beam has substantially the same width, and the flange of the H-shaped steel beam has a protruding portion that is abutted and welded,
When installed on the steel pipe column, when the protrusion dimension from the steel pipe column is d1, the protrusion dimension of the protrusion is d2, and the radius of the entry corner is R, the d1 and d2 are each 30 mm ≦ A diaphragm characterized by d1 ≦ 55 mm and d2 ≧ R + 10 mm.
入り隅部の半径Rを、R≧6mmとしたことを特徴とする請求項3記載のダイアフラム。4. The diaphragm according to claim 3, wherein a radius R of the entering corner is set to R ≧ 6 mm.
JP2002241748A 2002-08-22 2002-08-22 Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same Pending JP2004076521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241748A JP2004076521A (en) 2002-08-22 2002-08-22 Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241748A JP2004076521A (en) 2002-08-22 2002-08-22 Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same

Publications (1)

Publication Number Publication Date
JP2004076521A true JP2004076521A (en) 2004-03-11

Family

ID=32024142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241748A Pending JP2004076521A (en) 2002-08-22 2002-08-22 Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same

Country Status (1)

Country Link
JP (1) JP2004076521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264583A (en) * 2004-03-19 2005-09-29 Jfe Steel Kk Beam member
JP2007254953A (en) * 2006-03-20 2007-10-04 Tsuru Gakuen Reinforcing structure of column/beam joint of steel structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264583A (en) * 2004-03-19 2005-09-29 Jfe Steel Kk Beam member
JP4655491B2 (en) * 2004-03-19 2011-03-23 Jfeスチール株式会社 Beam member
JP2007254953A (en) * 2006-03-20 2007-10-04 Tsuru Gakuen Reinforcing structure of column/beam joint of steel structure

Similar Documents

Publication Publication Date Title
JP4970827B2 (en) Direct connection method of beam and inner diaphragm of steel structure column beam joint
JP5999749B2 (en) Direct connection method for steel diaphragm beam-to-column joint and inner diaphragm with protrusions
JP6304074B2 (en) Method and structure for welding and joining steel members
JP5187993B2 (en) Column beam joint with excellent earthquake resistance and its construction method
JPH1161994A (en) Column-beam joint of steel frame and connection method thereof
JP2004076521A (en) Connecting structure of steel pipe post and h-shape steel beam, and diaphragm used for the same
JP2010216236A (en) Direct connection method of beam and inner diaphragm for steel structure column-beam joint part
JP2002160056A (en) High-strength joint construction method for steel-frame structure
JP2000110237A (en) Structure of welded part of column with beam
JP2000248617A (en) Connection structure of steel structure
JP4398782B2 (en) Manufacturing method of building steel structure
JP6924609B2 (en) Joint structure of braces and columns and beams
JP5982879B2 (en) Welded assembled H-section steel
JP2009030357A (en) Structure of welding and joining column and beam
JP5932567B2 (en) Steel structure manufacturing method
JP7500414B2 (en) Beam joint structure and method for improving the performance of the beam joint structure
JP4892045B2 (en) Manufacturing method of building steel structure
JP2001214518A (en) Column-to-beam connection structure
JP2003013497A (en) Column and beam connecting structure for steel-frame building and its execution method
JP2003253758A (en) Beam-column joint monolithic method of steel framed structure
JP6500823B2 (en) Column-beam connection structure
JP3079332B2 (en) Mounting method of outer diaphragm of steel pipe column
JP2000199270A (en) Beam-column connection structure of steel structure
JP2004324361A (en) Uneven beam field execution method of steel framed structure
JPH10266340A (en) Jointing part for structural steel member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226