JP2004075641A - Carbohydrate compound modifier - Google Patents

Carbohydrate compound modifier Download PDF

Info

Publication number
JP2004075641A
JP2004075641A JP2002241469A JP2002241469A JP2004075641A JP 2004075641 A JP2004075641 A JP 2004075641A JP 2002241469 A JP2002241469 A JP 2002241469A JP 2002241469 A JP2002241469 A JP 2002241469A JP 2004075641 A JP2004075641 A JP 2004075641A
Authority
JP
Japan
Prior art keywords
compound
carbohydrate
carbohydrate compound
formula
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241469A
Other languages
Japanese (ja)
Inventor
Reiko Sato
佐藤 玲子
Hiroko Kawakami
川上 宏子
Kazuyoshi Toma
戸澗 一孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP2002241469A priority Critical patent/JP2004075641A/en
Publication of JP2004075641A publication Critical patent/JP2004075641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for modifying a carbohydrate compound by using a carbohydrate compound modifier having ultraviolet absorption and giving a neoglycolipid from a carbohydrate compound having reducing terminal by reducing amination method and provide a new carbohydrate compound derivative produced by the method and useful as a probe for analyzing the function of sugar chain. <P>SOLUTION: The carbohydrate compound modifier is composed of a compound expressed by formula (1) (R is O(CH<SB>2</SB>)<SB>n</SB>CH<SB>3</SB>or H; (m) is an integer of 2-6; and (n) is an integer of 11-17). The carbohydrate compound derivative is produced by bonding the compound expressed by formula (1) to a carbohydrate compound having a reducing terminal by reducing amination method. The invention further provides a method for producing the derivative. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な糖質化合物修飾方法に関するものである。
より詳細には、糖質化合物修飾剤、及び、その糖質化合物修飾剤と還元末端を持つ糖質化合物を還元アミノ化法によって結合することによって得られる糖質化合物誘導体、及び、その製造法に関するものである。
【0002】
【従来の技術】
糖蛋白質等の糖鎖の機能を解析することは、糖鎖を産業的に利用する上で極めて重要である。その為には、糖蛋白質やプロテオグリカンから遊離される、N−あるいはO−結合型の糖鎖と、それを認識する蛋白質との相互作用を、微量で解析する手法が必要である。
例えば、糖鎖生合成の阻害、蛋白質の糖鎖結合部位の点変異、大量の糖質による阻害等の手法も考えられるが、間接的である為、特異性を正確に解析することは出来ない。
また、糖蛋白から遊離される糖質化合物は、しばしばヘテロな混合物であり、精製が難しい上に、遊離の状態では多価効果を失う為に、阻害効果を見るのに大量のサンプルが必要となる。
【0003】
こうした問題を解決する為に、遊離された糖質化合物を人工脂質で修飾し、ネオ糖脂質に誘導する手法が開発された(T. Feizi et al., Methods Enzymol., 230, 484−519, 1994)。還元末端を持つ糖質化合物と、アミノ基を持つ人工脂質とが形成するシッフ塩基を、水素化シアノホウ素ナトリウムで還元する修飾法である。
ネオ糖脂質は、糖蛋白質からヒドラジン分解やアルカリ性条件下の水素化ホウ素分解あるいは糖質加水分解酵素等を用いて切り出した糖質化合物ばかりでなく、天然あるいは合成の糖質化合物に対しても適用出来る。
得られたネオ糖脂質は、薄層クロマトグラフィー(TLC)上にスポットしたり、プラスティックディッシュにコートしたり、リポソームに取り込んだりして、糖鎖の機能を解析する為のプローブとしての有用性が示されている。
しかし、Feizi等により開発されたこの方法には、修飾剤として用いるL−1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン(DPPE)やL−1,2−ジヘキサデシル−sn−グリセロ−3−ホスホエタノールアミン(DHPE)は市販されているものの高価であること、それらの反応性が低い為、糖質化合物に対して大過剰の人工脂質試薬を要すること、さらに、人工脂質及び生成するネオ糖脂質に紫外吸収が無い為、高速液体クロマトグラフィー(HPLC)での取り扱いが困難であること等の問題点が残されており、その解決が望まれていた。
【0004】
【発明が解決しようとする課題】
本発明の目的は、紫外吸収を持った糖質化合物修飾剤を用いた、新規な糖質化合物修飾方法、及び、それによって得られる、糖鎖の機能解析用プローブとして有用な、新規な糖質化合物誘導体を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、市販の化合物から安価に得られ、248nmに紫外吸収の極大を持つ、式(1)の化合物を人工脂質として用いれば、Feizi等の方法の問題点が解決出来ると考えて検討を行った。その結果、式(1)の化合物を用いれば、人工脂質を大過剰用いることなく、還元アミノ化法により、還元末端を持つ糖質化合物を結合させたネオ糖脂質が、高収率で得られることを見出した。さらに、得られた化合物はHPLCの紫外検出器を用いて検出出来ることを確認して、本発明を完成するに至った。
【0006】
すなわち、本発明は、式(1)
【化2】

Figure 2004075641
(式中、RはO(CHCHまたはHを表し、mは2から6の整数を、nは11から17の整数を表す。)
で示される化合物からなる糖質化合物修飾剤、及び、式(1)で示される化合物と還元末端を持つ糖質化合物を還元アミノ化法によって結合することによって得られる糖質化合物誘導体、及び、式(1)で示される化合物と還元末端を持つ糖質化合物を還元アミノ化法によって結合することを特徴とする糖質化合物誘導体の製造法、を提供するものである。
【0007】
式(1)の化合物は、例えば、川上等の方法(H. Kawakami et al., pp. 381−384 in Peptide Science 2001, H. Aoyagi ed., The Japanese Peptide Society, Osaka, 2002)に従って、3,5−ジヒドロキシ安息香酸あるいは3,4,5−トリヒドロキシ安息香酸から、安価に合成することが出来る。
糖質化合物としては、還元末端を持つものであれば何でもよいが、例えば、糖蛋白質からヒドラジン分解やアルカリ性条件下の水素化ホウ素分解あるいは糖質加水分解酵素等を用いて切り出した糖質化合物、あるいは、天然に存在するオリゴ糖や多糖、あるいは、有機合成によって得られる糖質化合物等を用いることが出来る。
【0008】
還元剤としては、シッフ塩基を還元してアミンを与えるものであれば何でもよいが、例えば、水素化シアノホウ素ナトリウム、水素化ホウ素ナトリウム等を用いることが出来る。
溶媒としては、糖質化合物と式(1)の化合物と還元剤を同時に溶解する溶媒系であれば何でもよいが、例えば、メタノールとクロロホルムの混合溶媒、もしくは、それに少量の水を加えた溶媒を用いることができる。
糖質化合物誘導体の合成は、例えば、糖質化合物を少量の水に溶解し、メタノールとクロロホルムの混合溶煤、式(1)の化合物、水素化シアノホウ素ナトリウムを加え、反応が充分に進行するまで加熱することによって行うことが出来る。
【0009】
式(1)で示される化合物と還元末端を持つ糖質化合物を還元アミノ化法によって結合することによって得られる糖質化合物誘導体の精製は、DPPEやDHPE誘導体と同様にシリカゲルの分取用TLCやカラムクロマトグラフィー等を用いることが出来る。また、分子量が大きくなるので、SephadexLH−20等の有機溶媒を用いるゲルクロマトグラフィーを用いて精製することも出来る。さらに、化合物が紫外吸収を持つ為に、HPLCを用いて精製することも出来る。
LH−20等を用いるゲルクロマトグラフィーを用いれば、修飾前の糖質化合物が混合物であれば、糖質化合物誘導体も混合物のまま精製することが可能であり、HPLCを用いれば、その混合物を分離・精製することが可能になる。
こうして得られた、式(1)で示される化合物と還元末端を持つ糖質化合物を還元アミノ化法によって結合することによって得られる糖質化合物誘導体は、DPPEやDHPE誘導体と同様に、TLC上にスポットしたり、プラスティックディッシュにコートしたり、リポソームに取り込んだり、さらには、表面プラズモン共鳴バイオセンサーの疎水性表面に固定化したりして、糖鎖の機能を解析する為のプローブとして用いることが出来る。
【0010】
【発明の実施の形態】
以下に、本発明をさらに詳細に説明するが、本発明は以下の記述に限定されるものではない。
【実施例1】
(N−(6−アミノヘキシル)−3,5−ビス(ドデシロキシ)ベンズアミドによるラクトースの修飾)
ラクトース1水和物(10.0 mg, 27.8μmol)を蒸留水(225μl)に溶解した後、N−(6−アミノヘキシル)−3,5−ビス(ドデシロキシ)ベンズアミド溶液(4.24 mgを4.56 mlのクロロホルム:メタノール=1:1溶媒に溶解)と水素化シアノホウ素ナトリウム溶液(5.0 mgを0.5 mlメタノールに溶解)を加え、60℃で一晩加熱撹拌した。反応終了後、メタノールを加え溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール:水=130:50:9)により精製し、目的の糖質化合物誘導体(17.6 mg, 69%)を得た。
H−NMR (CDOD, 600 MHz) δ6.93 (2H, d, J = 2.1 Hz)、6.61 (1H, t, J = 2.1Hz)、4.48 (1H, d, J = 7.6 Hz)、4.14 (1H, m)、3.99 (4H, t, J = 6.5 Hz)、3.89 (1H, m)、3.73−3.84 (7H, m)、3.57 (1H, bdd, J = 4.8 Hz, 8.3 Hz)、3.53 (1H, dd, J = 7.6 Hz, 9.6 Hz)、3.49 (1H, dd, J = 3.4 Hz, 9.6 Hz)、3.37 (2H, t, J = 6.9 Hz)、3.32 (1H, m)、2.99−3.08 (3H, m)、1.76 (4H, m)、1.47(8H, m)、1.35 (4H, m)、1.29 (32H, m)、0.89 (6H, t, J = 7.2 Hz)。 MALDI−TOFMS(dithranol)m/z 916([M+H])。HPLC(Shimadzu LC−6A;カラム:Inertsil SIL 100A, 4.6×150 mm;移動相:クロロホルム−メタノール−水 (130 :50 : 9);流速:0.6 ml / 分;検出器:UV (248 nm))保持時間:4.0分
【0011】
【発明の効果】
本発明は、還元末端を持つ糖質化合物と還元アミノ化法によりネオ糖脂質を与え、かつ、紫外吸収を持った糖質化合物修飾剤を用いた、新規な糖質化合物修飾方法、及び、それによって得られる、糖鎖の機能解析用プローブとして有用な、新規な糖質化合物誘導体を提供するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel carbohydrate compound modification method.
More specifically, the present invention relates to a carbohydrate compound modifier, a carbohydrate compound derivative obtained by binding the carbohydrate compound modifier and a carbohydrate compound having a reducing end by a reductive amination method, and a method for producing the same. Things.
[0002]
[Prior art]
Analyzing the functions of sugar chains such as glycoproteins is extremely important for industrial use of sugar chains. For that purpose, a technique for analyzing the interaction between N- or O-linked sugar chains released from glycoproteins and proteoglycans and proteins recognizing them in a very small amount is required.
For example, methods such as inhibition of sugar chain biosynthesis, point mutation of the sugar chain binding site of protein, inhibition by a large amount of sugar, etc. can be considered, but specificity cannot be accurately analyzed because of indirect methods. .
Also, carbohydrate compounds released from glycoproteins are often heterogeneous mixtures, which are difficult to purify and, in the free state, lose polyvalent effects, requiring a large amount of sample to see the inhibitory effect. Become.
[0003]
In order to solve these problems, a method has been developed in which the released saccharide compound is modified with artificial lipids to induce neoglycolipids (T. Feizi et al., Methods Enzymol., 230 , 484-519, 1994). This is a modification method in which a Schiff base formed by a saccharide compound having a reducing end and an artificial lipid having an amino group is reduced by sodium cyanoborohydride.
Neoglycolipids are applicable not only to carbohydrate compounds cut out from glycoproteins using hydrazinolysis, borohydride decomposition under alkaline conditions, or carbohydrate hydrolases, but also to natural or synthetic carbohydrate compounds. I can do it.
The resulting neoglycolipid is useful as a probe for analyzing the functions of sugar chains by spotting it on thin layer chromatography (TLC), coating it on a plastic dish, or incorporating it into liposomes. It is shown.
However, this method developed by Feizi et al. Includes L-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and L-1,2-dihexadecyl-sn-glycero used as modifiers. -3-Phosphoethanolamine (DHPE) is commercially available but expensive, and because of their low reactivity, requires a large excess of artificial lipid reagents relative to carbohydrate compounds. However, problems such as difficulty in handling by high performance liquid chromatography (HPLC) remain because neoglycolipids do not have ultraviolet absorption, and their solution has been desired.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel method for modifying a carbohydrate compound using a carbohydrate compound modifier having ultraviolet absorption, and a novel carbohydrate obtained thereby, which is useful as a probe for analyzing the function of a sugar chain. It is to provide a compound derivative.
[0005]
[Means for Solving the Problems]
The present inventors believe that the use of a compound of formula (1) which is inexpensively obtained from a commercially available compound and has an ultraviolet absorption maximum at 248 nm as an artificial lipid can solve the problems of the method of Feizi and the like. Study was carried out. As a result, when the compound of the formula (1) is used, a neoglycolipid to which a saccharide compound having a reducing end is bound can be obtained in a high yield by a reductive amination method without using a large excess of artificial lipid. I found that. Furthermore, it was confirmed that the obtained compound could be detected using an ultraviolet detector of HPLC, and the present invention was completed.
[0006]
That is, the present invention relates to formula (1)
Embedded image
Figure 2004075641
(In the formula, R represents O (CH 2 ) n CH 3 or H, m represents an integer of 2 to 6, and n represents an integer of 11 to 17.)
A carbohydrate compound modifier comprising a compound represented by the formula: and a carbohydrate compound derivative obtained by binding the compound represented by the formula (1) to a carbohydrate compound having a reducing end by a reductive amination method; It is intended to provide a method for producing a saccharide compound derivative, wherein the compound represented by (1) and a saccharide compound having a reducing end are bound by a reductive amination method.
[0007]
The compound of the formula (1) can be synthesized, for example, according to the method of Kawakami et al. It can be synthesized at low cost from 2,5-dihydroxybenzoic acid or 3,4,5-trihydroxybenzoic acid.
As the saccharide compound, any saccharide compound may be used as long as it has a reducing end.For example, saccharide compounds cut out from glycoproteins using hydrazinolysis, borohydride decomposition under alkaline conditions, or saccharide hydrolases, Alternatively, a naturally occurring oligosaccharide or polysaccharide, a saccharide compound obtained by organic synthesis, or the like can be used.
[0008]
Any reducing agent may be used as long as it reduces the Schiff base to give an amine, and examples thereof include sodium cyanoborohydride and sodium borohydride.
As the solvent, any solvent may be used as long as it can simultaneously dissolve the saccharide compound, the compound of the formula (1) and the reducing agent. For example, a mixed solvent of methanol and chloroform or a solvent obtained by adding a small amount of water thereto is used. Can be used.
In the synthesis of a saccharide compound derivative, for example, a saccharide compound is dissolved in a small amount of water, a mixed soot of methanol and chloroform, a compound of the formula (1), and sodium cyanoborohydride are added, and the reaction proceeds sufficiently. Can be carried out by heating to
[0009]
Purification of a saccharide compound derivative obtained by combining a compound represented by the formula (1) and a saccharide compound having a reducing end by a reductive amination method can be performed by using a TLC for silica gel preparative separation, like DPPE or DHPE derivative. Column chromatography and the like can be used. In addition, since the molecular weight increases, purification can also be performed using gel chromatography using an organic solvent such as Sephadex LH-20. Further, since the compound has ultraviolet absorption, it can be purified using HPLC.
If gel chromatography using LH-20 or the like is used, if the saccharide compound before modification is a mixture, it is possible to purify the saccharide compound derivative as a mixture, and if using HPLC, the mixture is separated.・ Purification becomes possible.
The thus obtained saccharide compound derivative obtained by bonding the compound represented by the formula (1) and the saccharide compound having a reducing end by a reductive amination method, as well as the DPPE or DHPE derivative, is shown on TLC. It can be spotted, coated on a plastic dish, incorporated into liposomes, or immobilized on the hydrophobic surface of a surface plasmon resonance biosensor, and used as a probe to analyze the function of sugar chains. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail, but the present invention is not limited to the following description.
Embodiment 1
(Modification of lactose with N- (6-aminohexyl) -3,5-bis (dodecyloxy) benzamide)
Lactose monohydrate (10.0 mg, 27.8 μmol) was dissolved in distilled water (225 μl), and then N- (6-aminohexyl) -3,5-bis (dodecyloxy) benzamide solution (4.24 mg). Was added to 4.56 ml of chloroform: methanol = 1: 1 solvent) and sodium cyanoborohydride solution (5.0 mg was dissolved in 0.5 ml of methanol), and the mixture was heated and stirred at 60 ° C. overnight. After completion of the reaction, methanol was added and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol: water = 130: 50: 9) to obtain the desired saccharide compound derivative (17.6 mg, 69%).
1 H-NMR (CD 3 OD, 600 MHz) δ 6.93 (2H, d, J = 2.1 Hz), 6.61 (1H, t, J = 2.1 Hz), 4.48 (1H, d) , J = 7.6 Hz), 4.14 (1H, m), 3.99 (4H, t, J = 6.5 Hz), 3.89 (1H, m), 3.73-3.84 (7H, m), 3.57 (1H, bdd, J = 4.8 Hz, 8.3 Hz), 3.53 (1H, dd, J = 7.6 Hz, 9.6 Hz), 49 (1H, dd, J = 3.4 Hz, 9.6 Hz), 3.37 (2H, t, J = 6.9 Hz), 3.32 (1H, m), 2.99-3. 08 (3H, m), 1.76 (4H, m), 1.47 (8H, m), 1.35 (4H, m), 1.29 (32H, m), 0.8 9 (6H, t, J = 7.2 Hz). MALDI-TOFMS (dithranol) m / z 916 ([M + H] < +>). HPLC (Shimadzu LC-6A; column: Inertsil SIL 100A, 4.6 × 150 mm; mobile phase: chloroform-methanol-water (130: 50: 9); flow rate: 0.6 ml / min; detector: UV ( 248 nm)) Retention time: 4.0 minutes
【The invention's effect】
The present invention provides a carbohydrate compound having a reducing end and a neoglycolipid by a reductive amination method, and a novel carbohydrate compound modification method using a carbohydrate compound modifier having ultraviolet absorption, and The present invention provides a novel saccharide compound derivative useful as a probe for analyzing the function of a sugar chain obtained by the above method.

Claims (3)

式(1)で示される化合物からなる糖質化合物修飾剤。
Figure 2004075641
(式中、RはO(CHCHまたはHを表し、mは2から6の整数を、nは11から17の整数を表す。)
A carbohydrate compound modifier comprising a compound represented by the formula (1).
Figure 2004075641
(In the formula, R represents O (CH 2 ) n CH 3 or H, m represents an integer of 2 to 6, and n represents an integer of 11 to 17.)
式(1)で示される化合物と還元末端を持つ糖質化合物を還元アミノ化法によって結合することによって得られる糖質化合物誘導体。A saccharide compound derivative obtained by combining a compound represented by the formula (1) with a saccharide compound having a reducing end by a reductive amination method. 式(1)で示される化合物と還元末端を持つ糖質化合物を還元アミノ化法によって結合することを特徴とする糖質化合物誘導体の製造法。A method for producing a saccharide compound derivative, comprising combining a compound represented by the formula (1) with a saccharide compound having a reducing end by a reductive amination method.
JP2002241469A 2002-08-22 2002-08-22 Carbohydrate compound modifier Pending JP2004075641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241469A JP2004075641A (en) 2002-08-22 2002-08-22 Carbohydrate compound modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241469A JP2004075641A (en) 2002-08-22 2002-08-22 Carbohydrate compound modifier

Publications (1)

Publication Number Publication Date
JP2004075641A true JP2004075641A (en) 2004-03-11

Family

ID=32023939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241469A Pending JP2004075641A (en) 2002-08-22 2002-08-22 Carbohydrate compound modifier

Country Status (1)

Country Link
JP (1) JP2004075641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335652A (en) * 2005-05-31 2006-12-14 Noguchi Inst Low non-specific interaction sugar chain probe
JP2007269768A (en) * 2006-03-07 2007-10-18 Noguchi Inst Method for purifying sugar-chain-binding substance
JP2008074720A (en) * 2006-09-19 2008-04-03 Noguchi Inst Gm3 sugar chain probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335652A (en) * 2005-05-31 2006-12-14 Noguchi Inst Low non-specific interaction sugar chain probe
JP2007269768A (en) * 2006-03-07 2007-10-18 Noguchi Inst Method for purifying sugar-chain-binding substance
JP2008074720A (en) * 2006-09-19 2008-04-03 Noguchi Inst Gm3 sugar chain probe

Similar Documents

Publication Publication Date Title
Lindhorst et al. Trivalent α-D-mannoside clusters as inhibitors of type-1 fimbriae-mediated adhesion of Escherichia coli: Structural variation and biotinylation
CN107778372B (en) A kind of oligosaccharides connexon and the antibody-drug conjugates of the fixed point connection using oligosaccharides connexon preparation
JP2003531213A (en) Metal chelating composite
JPH07505634A (en) Novel opiate derivatives, protein and polypeptide opiate-derived conjugates and labels
TWI335920B (en) Sugar chain asparagine derivatives, sugar chain asparagine and sugar chain and manufacture thereof
JPH02184700A (en) Glycosphingolipid containing group capable of coupling in sphingoid part
JPH0138798B2 (en)
US11628216B2 (en) 6-acetylmorphine analogs, and methods for their synthesis and use
JPH07505631A (en) Novel amphetamine derivatives, protein and polypeptide amphetamine-derived conjugates and labels
US5668272A (en) Method for producing synthetic N-linked glycoconjugates
JP4800771B2 (en) Glycoligand complex and protein analysis method using the ligand complex
JP2002536428A (en) Improved compounds for protein binding
WO1989008115A1 (en) NEW DERIVATIVES OF DEOXY-2&#39;-URIDINE SUBSTITUTED IN THE 5, 3&#39; OR 5&#39; POSITION BY ACYLATED alpha-AMINO GROUPS, PROCESS FOR OBTAINING THEM AND DRUGS CONTAINING THEM
JP2004075641A (en) Carbohydrate compound modifier
TW200413408A (en) Saccharide chain asparagine derivatives and manufacture thereof
EP0871650B1 (en) Solid phase organic synthesis
Jiang et al. A toolbox of diverse arginine N-glycosylated peptides and specific antibodies
WO2006070737A1 (en) β-BENZYLOXYASPARTIC ACID DERIVATIVE HAVING TWO SUBSTITUENTS ON BENZENE RING
JP2003212893A (en) Amide-linked sugar chain-containing carbosilane dendrimer and method for producing the same
JP2001505558A (en) Combinatorial synthesis of hydrocarbon libraries
JP5478612B2 (en) Method for glycosidation of colchicine and thiocolchicine
JP4813838B2 (en) O-linked sugar amino acid derivative having core 6 type structure and method for producing the same
JP3992510B2 (en) Novel lactosamine derivative and method for producing the same
JP2565034B2 (en) Novel dopa derivative and its production method
JP3134010B2 (en) Desalanine benanomycin A derivatives and methods for their production