JP2004075531A - Siliceous filler and solidified material obtained through acidolysis of chrysotile and chrysotile-containing serpentine - Google Patents
Siliceous filler and solidified material obtained through acidolysis of chrysotile and chrysotile-containing serpentine Download PDFInfo
- Publication number
- JP2004075531A JP2004075531A JP2003282806A JP2003282806A JP2004075531A JP 2004075531 A JP2004075531 A JP 2004075531A JP 2003282806 A JP2003282806 A JP 2003282806A JP 2003282806 A JP2003282806 A JP 2003282806A JP 2004075531 A JP2004075531 A JP 2004075531A
- Authority
- JP
- Japan
- Prior art keywords
- chrysotile
- asbestos
- siliceous filler
- serpentine
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、クリソタイル及びクリソタイル含有蛇紋岩を酸分解して得られるシリカ質フィラー及び固化体に関するものであり、特に、混和剤として用いることにより、吸放湿性能、化学物質吸着性能に優れ、補強機能を合わせ持つと共に、生体への影響を低減させたシリカ質フィラー及び固化体に関するものである。 TECHNICAL FIELD The present invention relates to a siliceous filler and a solidified body obtained by acid-decomposing chrysotile and chrysotile-containing serpentine. The present invention relates to a siliceous filler and a solid having both functions and reduced effects on a living body.
従来、セメント系建築材料の原料や接着剤・シーリング剤の混和剤としてクリソタイルが用いられてきた。しかしながら石綿は生体への影響がある物質として規制され、管理して使用されてきたが、日本国内においても使用が禁止されることが決定している。
セメント系建築材料では、石綿代替として、パルプ、ガラス繊維、化学繊維などが用いられている。また、接着剤・シーリング剤の混和剤の代替としては、鉱物系の混和剤が用いられている。
特許文献1には、石綿繊維表面を有機ポリマーで被覆することにより、発がん性を減弱させることが示されている。しかしながら、石綿としての強度は保持されるが、石綿繊維表面を有機ポリマーで被覆することにより、石綿が保持している保水性が損なわれるとともに、また、揺変性も大幅に低下してしまう。
In cement-based building materials, pulp, glass fiber, chemical fiber, and the like are used as an alternative to asbestos. Further, as an alternative to the admixture of the adhesive and the sealing agent, a mineral-based admixture is used.
Patent Document 1 discloses that carcinogenicity is reduced by coating the surface of an asbestos fiber with an organic polymer. However, while maintaining the strength of asbestos, coating the surface of asbestos fibers with an organic polymer impairs the water retention of asbestos and greatly reduces thixotropic properties.
石綿代替材料は、天然品の場合は、その要求特性から産地が限定され、価格が高く、合成品の場合は価格が高く、汎用性を求められる内装建材及び内装仕上用混和材料には普及が困難となっているという問題点があり、また、これらは性能的には石綿の代替とするためには複数の物質を組み合わせる必要があった。
本発明は、石綿代替品として用いるだけではなく、代替品にさらに機能を付加することにより、代替品以上の性能や付加価値を持たせ、生体影響を低減したフィラーを提供しようとするものであり。また、石綿含有製品中より回収した石綿を処理し、石綿含有製品廃材のリサイクル手段として利用できるものを提供しようとするものである。
さらに、本発明は、汎用性があり、しかも低価格で、リサイクル石綿の利用にも有効な、調湿機能を有し室内環境の改善に有用な内装建材及び内装仕上用混和材料用の吸放湿性能の高いシリカ質フィラー及びそのフィラーを用いた固化体を提供することを目的とする。
In the case of natural products, asbestos substitute materials have limited production areas due to their required characteristics, and are expensive.In the case of synthetic products, prices are high, and they are widely used for interior building materials and interior finishing admixtures that require versatility. There is a problem that it is difficult, and in terms of performance, it is necessary to combine a plurality of substances in order to substitute for asbestos.
The present invention is intended not only to be used as an asbestos substitute, but also to provide a filler having a function and an added value more than that of the substitute by adding further functions to the substitute, thereby reducing biological effects. . Another object of the present invention is to provide asbestos that can be used as a means for recycling asbestos-containing product waste by treating asbestos recovered from asbestos-containing products.
Further, the present invention provides a versatile, low-cost, effective for use of recycled asbestos, a moisture control function, and a heat absorbing and discharging material for interior building materials and interior finishing admixtures useful for improving the indoor environment. An object of the present invention is to provide a siliceous filler having high wet performance and a solidified body using the filler.
本発明者等は、上記の課題を解決するために鋭意研究を続け、クリソタイル又はクリソタイル含有蛇紋岩を酸分解して得た本発明によるシリカが高い調湿機能を有し、かつ生体への影響を著しく低減したものであることを見出し、その理由が下記の点にあることを究明し、本発明を完成するに至った。
a)蛇紋岩及び石綿を分解して得られるシリカは、元の構造(クリソタイルの構造)を保持し、中空繊維構造を有している。
b)この中空径(細孔径)は、100オングストローム前後で、吸放湿性能が優れているとされる珪藻頁岩が有する細孔と同レベルである。
c)また、酸処理によるMgOの脱離により比表面積が200〜300m2/gと大きくなり、この点においては、珪藻頁岩と同等以上である。
d)酸分解により石綿(クリソタイル)が非晶質化する。
The present inventors have continued intensive research to solve the above-mentioned problems, and the silica according to the present invention obtained by acid decomposition of chrysotile or chrysotile-containing serpentinite has a high humidity control function, and the effect on living organisms Was found to be significantly reduced, and the reason was ascertained as follows, and the present invention was completed.
a) Silica obtained by decomposing serpentine and asbestos retains its original structure (chrysotile structure) and has a hollow fiber structure.
b) The hollow diameter (pore diameter) is around 100 angstroms, which is the same level as the pores of diatom shale which is considered to have excellent moisture absorption / release performance.
c) Further, the specific surface area is increased to 200 to 300 m 2 / g due to the desorption of MgO by the acid treatment, and in this respect, the specific surface area is equal to or more than that of diatom shale.
d) Asbestos (chrysotile) becomes amorphous due to acid decomposition.
すなわち、本発明は、下記の手段により上記の課題を解決することができた。
(1)クリソタイル又はクリソタイル含有蛇紋岩を酸分解して得た、繊維形状を保持することを特徴とするシリカ質フィラー。
(2)クリソタイル又はクリソタイル含有蛇紋岩から酸分解により、MgOを選択的に溶解したことを特徴とする前記(1)記載のシリカ質フィラー。
(3)前記酸の使用量が前記蛇紋岩又は石綿に含まれるMgO(塩基成分)に対して、化学当量比で2.3倍以上であることを特徴とする前記(2)記載のシリカ質フィラー。
(4)クリソタイル又はクリソタイル含有蛇紋岩を酸分解して得た、繊維形状を保持するシリカ質フィラーを水と混合、成形後、乾燥することにより固化させたことを特徴とするシリカ質固化体。
That is, the present invention has solved the above-mentioned problems by the following means.
(1) A siliceous filler obtained by acid-decomposing chrysotile or chrysotile-containing serpentine and retaining a fiber shape.
(2) The siliceous filler according to (1), wherein MgO is selectively dissolved from chrysotile or chrysotile-containing serpentine by acid decomposition.
(3) The siliceous substance according to (2), wherein the amount of the acid used is 2.3 times or more in chemical equivalent ratio to MgO (base component) contained in the serpentine or asbestos. Filler.
(4) A siliceous solidified material obtained by mixing a silica filler having a fiber shape, obtained by acid-decomposing chrysotile or chrysotile-containing serpentine, with water, molding, and then drying to solidify.
本発明によるシリカは、吸放湿性能の高いものであるので、調湿機能を有し室内環境の改善に有用な内装建材用の高いシリカ質フィラーとして有用であり、生体への影響が低減している。さらに、揺変性及び補強効果を保持している。特に、生体への影響の低減については、細胞毒性が低減し、染色体異常誘発を消失し、亜慢性の肺傷害を低減するとともに、体液溶解性が高まっているので、クリソタイルのような問題はなくなっている。
また、本発明によるシリカは、天然資源として豊富で国内に広く分布しているクリソタイル又はクリソタイル含有蛇紋岩を、酸処理することで容易に得られるため、これを原料として、特に塩酸を使用して酸処理を行った場合に、汎用性のある調湿内装材の製造が可能となる。さらに、石綿を原料として用いることができるので、石綿含有建材を回収して得られたリサイクル石綿を用いることも可能であることから、資源の有効活用をはかることができる。このシリカ質フィラーを用いて固化体を得ることができる。
Since the silica according to the present invention has high moisture absorption / desorption performance, it is useful as a high siliceous filler for interior building materials having a humidity control function and useful for improving the indoor environment, and has a reduced effect on living bodies. ing. Furthermore, it has thixotropic and reinforcing effects. In particular, with regard to the reduction of effects on the living body, cytotoxicity has been reduced, clastogenesis has been eliminated, subchronic lung injury has been reduced, and body fluid solubility has been increased, so problems such as chrysotile are eliminated. ing.
In addition, the silica according to the present invention can be easily obtained by acid treatment of chrysotile or chrysotile-containing serpentine which is abundant as a natural resource and widely distributed in Japan. When the acid treatment is performed, a versatile humidity-control interior material can be manufactured. Furthermore, since asbestos can be used as a raw material, it is also possible to use recycled asbestos obtained by collecting asbestos-containing building materials, so that resources can be effectively used. A solid can be obtained using this siliceous filler.
本発明においては、天然資源として国内に広く存在している蛇紋岩を原料とし、この蛇紋岩に酸処理を行なうことにより得られるシリカが高い吸放湿性を示すとともに、生体への影響を低減させることを見出し、本発明を完成した。また、石綿含有建材から回収したリサイクル石綿を非石綿化し、有用材料をもたらすリサイクル手段を提供することが可能となる。従って、石綿含有建材を回収して得られたリサイクル石綿を用いることも可能である。 In the present invention, the raw material is serpentine, which is widely present in Japan as a natural resource, and silica obtained by subjecting the serpentine to acid treatment exhibits high moisture absorption / release properties and reduces the effect on living organisms. Thus, the present invention has been completed. In addition, it is possible to provide a recycling means for converting useful asbestos recovered from asbestos-containing building materials into non-asbestos and providing useful materials. Therefore, it is also possible to use recycled asbestos obtained by collecting asbestos-containing building materials.
本発明においては、以下の処理により目的とするシリカ質フィラーを得る。
(イ)蛇紋岩又は石綿を粉砕する。粒度は特に限定はないが、酸処理を効率に行なうためには20メッシュ以下程度とすることが望ましい。
また、原料の蛇紋岩中には、アンチゴライトを含まないものを選定すると酸処理に要する時間を短縮することが可能となる。この理由としては、アンチゴライトは、耐酸性が高く、酸分解が困難であること、及び形状がクリソタイルと異なり中空構成ではなく、吸放湿性には寄与しないと考えられることが考えられる。アンチゴライトを含む場合には10%以下であれば十分処理することができる。
In the present invention, a target siliceous filler is obtained by the following treatment.
(B) Crush serpentine or asbestos. The particle size is not particularly limited, but is preferably about 20 mesh or less in order to perform the acid treatment efficiently.
In addition, if a material that does not contain antigorite is selected from the serpentine as a raw material, the time required for acid treatment can be reduced. It is considered that the reason for this is that antigolite has high acid resistance and is difficult to decompose in acid, and it is considered that unlike anti-chrysotile, the antigolite does not have a hollow structure and does not contribute to moisture absorption and desorption. When antigorite is contained, the treatment can be sufficiently performed if the content is 10% or less.
(ロ)酸溶液中に粉砕した蛇紋岩又は石綿を投入し、撹拌しながら分解する。
用いる酸の種類は特に限定はない。酸の使用量は、蛇紋岩又は石綿に含まれるMgO量に対して、化学当量比で2.3倍以上となる酸が必要である。また、分解時の温度は、高い程、所要時間が短くなり、100℃では、1時間以上処理すれば、目的を達する。酸としては、例えば塩酸、硫酸、硝酸が挙げられる。
(B) Pulverized serpentine or asbestos is put into an acid solution and decomposed with stirring.
The type of acid used is not particularly limited. The amount of acid used is required to be 2.3 times or more in chemical equivalent ratio with respect to the amount of MgO contained in serpentine or asbestos. In addition, the higher the temperature at the time of decomposition, the shorter the required time. At 100 ° C., if the treatment is performed for 1 hour or more, the purpose is achieved. Examples of the acid include hydrochloric acid, sulfuric acid, and nitric acid.
(ハ)分解終了後は、溶解残として残るシリカをろ別、水洗し、乾燥することで、目的物を得る。
上記のシリカ質フィラーを得る酸処理を含む製造工程を取りまとめて図1に示す。
(C) After completion of the decomposition, the silica remaining as a residual residue is filtered off, washed with water, and dried to obtain the desired product.
The manufacturing process including the acid treatment for obtaining the above siliceous filler is summarized in FIG.
得られたシリカは、各種内装壁材の原料として用いることで、調湿機能を持った内装材の製造が可能となる。また、石綿含有蛇紋岩や石綿を原料としているが、石綿は酸分解により完全に改質されることから安全性についても問題はない。
(1)シリカ質フィラーの用途としては、繊維形態を保持していることから、クリソタイルと同等以上の性能を持った揺変性フィラーとしてセメント・樹脂用混和材として利用することができる。
(2)MgOを選択的に溶解することにより、高比表面積となり、珪藻土岩より高い吸着性を有することから、調湿機能・脱臭機能・各種有害物質吸着機能に優れた、混和材ちして利用することができる。比表面積は、珪藻土は120m2/gであるが、本発明の繊維状シリカは約220m2/gである。
By using the obtained silica as a raw material for various interior wall materials, it becomes possible to produce interior materials having a humidity control function. In addition, although asbestos-containing serpentine and asbestos are used as raw materials, asbestos is completely modified by acid decomposition, so that there is no problem in safety.
(1) Silica fillers can be used as thixotropic fillers having a performance equal to or higher than that of chrysotile as admixtures for cement / resin because they retain the fiber form.
(2) By selectively dissolving MgO, it has a high specific surface area and has higher adsorptivity than diatomaceous rock, so it is an admixture excellent in humidity control function, deodorization function, and various harmful substance adsorption functions. Can be used. The specific surface area of diatomaceous earth is 120 m 2 / g, whereas that of the fibrous silica of the present invention is about 220 m 2 / g.
(3)シリカ質フィラーを水と混合、成形、乾燥することで固化させ、固化体を得る。この成形のための成形方法としては、例えば、プレス成形、押出成形などを用いることができる。この固化体はオートクレーブ養生などは必要なく、成形・乾燥だけで固化することから省エネルギー成形が可能であり、またこの固化体は、上記(2)の各種性能を保持しているので室内環境改善材、空気浄化フィルターなどとして用いることが可能である。また、焼成することで固化体の強度がアップするので、強度を要する部材への利用も可能となる。また、酸分解時に不純物を完全に除去すれば白い固化体が得られ、不純物として鉄が残っていると黄土色(色の濃さは不純物として残った鉄の量によって変わる)に着色された固化体を得ることができる。また、シリカ質フィラーを紙に配合されば、前記(2)の機能を持った紙(壁紙)を作ることが可能である。
(4)シリカ質フィラーは、繊維形態を保持していることから、補強効果も保持していることから、クリソタイル代替繊維であるガラス繊維と同等の補強効果を持っており、プラスチック補強繊維としての利用が可能である。
(3) The siliceous filler is mixed with water, molded, and dried to solidify to obtain a solid. As a molding method for this molding, for example, press molding, extrusion molding, or the like can be used. This solid does not require autoclave curing, etc., and is solidified only by molding and drying, so that energy-saving molding can be performed. Further, since the solid has the above-mentioned various properties (2), it can be used as an indoor environment improving material. It can be used as an air purification filter or the like. Further, since the strength of the solidified body is increased by firing, it can be used for a member requiring strength. Also, if impurities are completely removed during acid decomposition, a white solid is obtained, and if iron remains as an impurity, it is colored ocher (the color depth depends on the amount of iron remaining as impurities). You can get the body. Further, if a siliceous filler is blended into paper, paper (wallpaper) having the function (2) can be produced.
(4) Since the siliceous filler retains the fiber form and also has the reinforcing effect, it has the same reinforcing effect as glass fiber which is a chrysotile substitute fiber, and is used as a plastic reinforcing fiber. Available.
本発明のシリカ質フィラーは、生体への影響が低減されているが、それについて具体的に説明すると、生体への影響を調べる試験方法があり、それらの試験方法によって確認することができる。例えば、ハムスター培養細胞を用いる乳酸脱水素酵素の放出量及びコロニー形成能についての試験により、細胞毒性をみることができる。また、同じハムスター培養細胞を用いてその染色体異常を試験する。さらに、シリカ質フィラーの呼吸器への影響については急性及び亜慢性の肺傷害を調べることにより、知ることができる。体液溶解性を調べることにより、体内へ入った場合の影響を知ることができる。本発明のシリカ質フィラーは、これらの試験方法により調べたところ、酸分解する前のクリソタイル又はクリソタイル含有蛇紋岩からのフィラーに比して、いずれも細胞毒性が低減し、染色体異常誘発性が消失し、亜慢性の肺傷害が低減しており、さらに体液溶解性が高まっていることが確認された。 シ リ カ The siliceous filler of the present invention has a reduced effect on living bodies. To be more specific, there are test methods for examining the effects on living bodies, which can be confirmed by those test methods. For example, cytotoxicity can be determined by testing hamster cultured cells for the amount of lactate dehydrogenase released and the ability to form colonies. The same hamster culture cells are used to test for chromosomal abnormalities. Furthermore, the effect of the siliceous filler on the respiratory tract can be known by examining acute and subchronic lung injury. By examining the body fluid solubility, the effect of entering the body can be known. When the siliceous filler of the present invention was examined by these test methods, all showed reduced cytotoxicity and lost clastogenicity as compared to fillers from chrysotile or chrysotile-containing serpentine before acid decomposition. However, it was confirmed that subchronic lung injury was reduced and that body fluid solubility was increased.
以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものでない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
(実施例1) 酸処理の例
蛇紋岩粉末100gを98%硫酸130gで100℃で2時間処理し、41gのシリカを得た。処理条件及び生成物の性状を第1表に示す。
(Example 1) Example of acid treatment 100 g of serpentine powder was treated with 130 g of 98% sulfuric acid at 100 ° C for 2 hours to obtain 41 g of silica. Table 1 shows the processing conditions and the properties of the products.
(調湿建材の例)−硫酸使用−
本発明で得られたシリカ100gを粒度100メッシュ以下に粉砕し、澱粉系増粘材をシリカ全量に対して0.5wt%添加、適量の水を加えて、粘土状になるまで混練した。
この原料を押出形成し、厚さ100mm×幅100mm×長さ150mmの大きさの板状の成型体を作成した後、700℃で1時間焼成して、固化体とした。得られた調湿建材の性能を第2表に示す。
また、蛇紋岩廃石または石綿含有建材の廃材から本発明の吸放湿性能の高いシリカ質フィラーの製造のための酸処理工程のチャートを図1に示す。
(Example of humidity control building material)-Using sulfuric acid-
100 g of the silica obtained in the present invention was pulverized to a particle size of 100 mesh or less, a starch-based thickener was added in an amount of 0.5 wt% based on the total amount of silica, an appropriate amount of water was added, and the mixture was kneaded until it became a clay.
This raw material was extruded to form a plate-shaped molded body having a size of 100 mm thick × 100 mm wide × 150 mm long, and then fired at 700 ° C. for 1 hour to obtain a solidified body. Table 2 shows the performance of the obtained humidity control building materials.
FIG. 1 is a chart of an acid treatment step for producing a siliceous filler having high moisture absorption / release performance of the present invention from waste serpentine stone or asbestos-containing building material.
(実施例2)
酸処理用の酸を塩酸に変えたこと以外は、実施例1と同じ製法工程で得られたシリカを使用し、同一製法で調製した固化体を気温20℃において、湿度90%で24時間と湿度50%で24時間を繰返したときの吸湿率の変化を測定した。比較例として珪藻頁岩、セピオライトについても同様に測定した。測定結果を第3表に示す。
(Example 2)
Except that the acid for acid treatment was changed to hydrochloric acid, a solid obtained by the same method using silica obtained by the same method as in Example 1 was used, and the solidified product prepared by the same method was heated at a temperature of 20 ° C and a humidity of 90% for 24 hours. The change of the moisture absorption rate when repeating 24 hours at a humidity of 50% was measured. As comparative examples, diatom shale and sepiolite were similarly measured. Table 3 shows the measurement results.
(実施例3)
実施例1で得たシリカを試料として、(1)酸分解シリカ揺変性(チクソトロピー)を測定した。
試料/可塑剤(フタル酸ジ−2−エチルヘキシル)比0.4(シリカSP−07は容積が大きいため、試料/可塑剤比0.2)で混合し、回転粘度計で2回転および20回転の粘度を測定した。揺変性は下記の式により求めた。いずれもクリソタイルより高い揺変性を示した。
揺変性(TI値)=2rpm粘度/20rpm粘度
試験結果は、第4表及び第2図に示す。
(Example 3)
Using the silica obtained in Example 1 as a sample, (1) acid-decomposed silica thixotropic (thixotropic) was measured.
Mix at a sample / plasticizer (di-2-ethylhexyl phthalate) ratio of 0.4 (silica SP-07 has a large volume and therefore a sample / plasticizer ratio of 0.2) and use a rotary viscometer for 2 and 20 rotations. Was measured for viscosity. Thixotropic was determined by the following equation. All showed higher thixotropic properties than chrysotile.
Thixotropic (TI value) = 2 rpm viscosity / 20 rpm viscosity The test results are shown in Table 4 and FIG.
(実施例4)
実施例1で得たシリカを試料として、(2)繊維状シリカの吸着性能を調べた。
繊維状シリカ及び珪藻土(各5g)をそれぞれにおい袋(25cm×35cm)に入れ、ヒートシールを施した後、空気3リットルを封入し、ガス濃度が約500ppmとなるようにアンモニアを添加した。これを室温下で放置し、10分後にガス検知管により袋内のガス濃度を測定した。また、ホルムアルデヒド(約20ppm)についても同様に試験し、トルエン(約100ppm)については測定時間を10、30、60、120、および180分として同様に試験した。なお、試料を入れずに同様な操作を行い、これを空試験とした。アンモニア、ホルムアルデヒド及びトルエンの試験結果をそれぞれ第5表、第6表及び第7表に示す。
(Example 4)
Using the silica obtained in Example 1 as a sample, (2) the adsorption performance of fibrous silica was examined.
Each of fibrous silica and diatomaceous earth (5 g each) was placed in an odor bag (25 cm × 35 cm), heat-sealed, sealed with 3 liters of air, and added with ammonia to a gas concentration of about 500 ppm. This was left at room temperature, and after 10 minutes, the gas concentration in the bag was measured by a gas detector tube. Formaldehyde (about 20 ppm) was also tested in the same manner, and toluene (about 100 ppm) was similarly tested with measurement times of 10, 30, 60, 120, and 180 minutes. In addition, the same operation was performed without putting a sample, and this was set as a blank test. The test results for ammonia, formaldehyde, and toluene are shown in Tables 5, 6, and 7, respectively.
比較対象の珪藻土と比較すると、アンモニアについては同等(検出限界以下)、ホルムアルデヒド及びトルエンについては本発明のシリカの吸着性能が優れている。 ア ン モ ニ ア Compared to the diatomaceous earth to be compared, ammonia is equivalent (below the detection limit), and formaldehyde and toluene are superior in the adsorption performance of the silica of the present invention.
(実施例5)
実施例1で得たシリカを試料として、(3)繊維状シリカと珪藻土の吸放湿性能を試験した。
20℃・50%雰囲気で恒量になるまで放置し、恒量となったときの試験体の重量を100とした。次に、20℃・90%雰囲気に24時間放置し、重量を測定し、その後20℃・50%雰囲気に戻し、24時間放置後重量を測定した。これを繰り返し、吸放湿性能を見た。
図3にその吸放湿性能の変化をグラフで示す。前記グラフは、恒量となったときの試料の重量を100とし、重量変化分を%で表した。
珪藻土と比べ、繊維状シリカは高い吸放湿性能を有する。
(Example 5)
Using the silica obtained in Example 1 as a sample, (3) the moisture absorption / release performance of fibrous silica and diatomaceous earth was tested.
The sample was allowed to stand in a 20 ° C./50% atmosphere until a constant weight was reached. Next, the sample was left in an atmosphere of 20 ° C. and 90% for 24 hours, and the weight was measured. Thereafter, the sample was returned to the atmosphere of 20 ° C. and 50% and left for 24 hours and the weight was measured. This was repeated to observe the moisture absorption / release performance.
FIG. 3 is a graph showing the change in the moisture absorption / release performance. In the graph, the weight of the sample when the weight became constant was set to 100, and the weight change was expressed in%.
Compared to diatomaceous earth, fibrous silica has high moisture absorption / release performance.
(実施例6)
実施例1で得た繊維状シリカを試料として用い、下記のようにして酸分解シリカ固化体を得た。
下記配合でミキサー混練し、プレス成形することで固化体を得た。
〔配合〕 繊維状シリカ:100、有機繊維:10、水:50
〔固化体成分〕SiO2 96%、Al2O3 3%、Fe2O3 0.5%であった。
固化体を焼成したものの強度の大きさをみるために、固化体を焼成温度を変えて焼成し、破壊試験を行ない、破壊するときの荷重の大きさを測定した。測定結果を第8表に示す。焼成温度が高いほど破壊強度が大となっている。
(Example 6)
Using the fibrous silica obtained in Example 1 as a sample, a solidified acid-decomposed silica was obtained as follows.
A solid was obtained by kneading the mixture with the following composition and press molding.
[Blending] Fibrous silica: 100, organic fiber: 10, water: 50
[Solidified component] SiO 2 96%, Al 2 O 3 3%, was Fe 2 O 3 0.5%.
In order to determine the magnitude of the strength of the fired solid, the solid was fired at different firing temperatures, a destruction test was performed, and the magnitude of the load at the time of breaking was measured. Table 8 shows the measurement results. The higher the firing temperature, the greater the breaking strength.
(実施例7)
実施例1で得た繊維状シリカを試料として配合し抄紙を行い、吸放湿性能及び物性を確認した。
[試験体]
1)調湿機能試験及び吸放湿変化試験
シートマシンにて、NBKP(針葉樹漂白クラフトパルプ)にシリカSP−07を第9表の粒度及び添加量で混合し、抄造した。
2)物性試験
シートマシンにて、NBKPにシリカSP−07の粒度調整しないものを20%添加し、抄造した。
(Example 7)
Papermaking was performed by mixing the fibrous silica obtained in Example 1 as a sample, and the moisture absorption / release performance and physical properties were confirmed.
[Specimen]
1) Humidity control function test and moisture absorption / desorption change test NBKP (softwood bleached kraft pulp) was mixed with silica SP-07 at the particle size and addition amount shown in Table 9 by a sheet machine to form a paper.
2) Physical property test A sheet machine was added to NBKP to add 20% of silica SP-07, whose particle size was not adjusted, and paper-making was performed.
[性能試験]
1)調湿機能試験及び吸放湿変化試験
(イ)調湿機能試験
1.20℃・50%雰囲気で恒量になるまで放置する。
2.恒量となったときの試験体の重量を100とする。
3.次に、20℃・90%雰囲気に24時間放置し、重量を測定する。
4.また20℃・50%雰囲気に戻し、24時間放置後重量を測定する。これを繰り返し、吸放湿性能を見る。
[performance test]
1) Humidity control function test and moisture absorption / desorption change test (a) Humidity control function test 1. Leave at constant temperature at 20 ° C. and 50% atmosphere.
2. The weight of the test specimen when the constant weight is reached is set to 100.
3. Next, it is left in a 20 ° C./90% atmosphere for 24 hours, and its weight is measured.
4. After returning to an atmosphere of 20 ° C. and 50%, the weight is measured after standing for 24 hours. This is repeated, and the moisture absorption / release performance is observed.
図4のグラフに調湿機能を示す。
吸放湿繰返しを行った結果、繰返しによる性能低下は見られない。
パルプ分に対し同量のシリカを添加することで、吸湿量は約2.5倍、倍量のシリカ添加では約4倍となり、添加量により吸放湿性能は大きく向上する。
シリカの粒度による吸放湿性能はほとんど変わらない。
(ロ)吸放湿変化試験
1.105℃で24時間乾燥し絶乾状態にする。
2.20℃90RH%雰囲気に置き、経時重量変化を測定する。
3.24時間後に雰囲気を20℃50RH%にし、同様に経時重量変化を測定する。
図5に、吸放湿変化試験の結果をグラフで示す。このグラフより、吸放湿変化は約3時間経過時点でほぼ横ばいとなり、それ以降は吸放湿機能がほぼなくなること、及び速答性があり、急な湿度変化に対応出来ることが分かる。
The graph of FIG. 4 shows the humidity control function.
As a result of repeated moisture absorption and desorption, no performance deterioration due to the repeated moisture absorption and desorption was observed.
By adding the same amount of silica to the pulp content, the amount of moisture absorption is about 2.5 times, and the addition of twice the amount of silica is about 4 times, and the moisture absorption / desorption performance is greatly improved depending on the amount of addition.
The moisture absorption / release performance is hardly changed by the silica particle size.
(B) Moisture absorption / desorption change test 1. Dry at 105C for 24 hours to make it completely dry.
2. Place in an atmosphere of 20 ° C. and 90 RH%, and measure the weight change with time.
3. After 24 hours, the atmosphere is set to 20 ° C. and 50 RH%, and the weight change over time is measured similarly.
FIG. 5 is a graph showing the results of the moisture absorption / release change test. From this graph, it can be seen that the change in moisture absorption / desorption is almost flat after about 3 hours, and thereafter, the function of moisture absorption / desorption is almost eliminated, and it has a quick response and can respond to a sudden change in humidity.
2)物性試験
試験結果を第10表に示す。それによれば、耐折強度は低下しているが、壁紙用には不要な性能である。その他の紙としての物理性能に問題は認められない。
2) Physical property test Table 10 shows the test results. According to this, although the bending strength is reduced, it is unnecessary performance for wallpaper. No problem was found in the physical performance as other paper.
[試験結果]
1)調湿機能試験及び吸放湿変化試験
作成後の紙の状態は第11表のとおりである。(※絶乾時)
[Test results]
1) Humidity control function test and moisture absorption / desorption change test The state of the paper after preparation is as shown in Table 11. (* When completely dry)
シートマシンでの製紙は特に問題なく作成出来る。原料のロスはパルプ単体で13%、シリカ単体で19%となる。パルプにシリカを同量添加することにより、厚みは50%程度増加する。色調は、シリカの色(グレー)にやや近づく。 紙 Paper making with a sheet machine can be made without any problem. Raw material loss is 13% for pulp alone and 19% for silica alone. By adding the same amount of silica to the pulp, the thickness increases by about 50%. The color tone approaches the color of silica (gray) slightly.
(実施例8)
(6)プラスチック補強繊維とした場合の強度等を測定した。
繊維状シリカと市販ガラス繊維を用いて、PPに配合し射出成形にて試験体を作成し、引張強度等を測定した。配合割合を第12表に、また試験結果を第13表に示す。
(Example 8)
(6) The strength and the like in the case of plastic reinforcing fibers were measured.
Using fibrous silica and commercially available glass fiber, it was blended with PP to prepare a test body by injection molding, and the tensile strength and the like were measured. Table 12 shows the mixing ratio, and Table 13 shows the test results.
引張試験で、破壊ひずみがブランクや市販ガラス繊維と比較して大幅に低い値となっているが、弾性率は市販ガラス繊維と同等であり、剛性を高める効果はガラス繊維と同等である。 In the tensile test, the breaking strain is significantly lower than that of the blank or commercial glass fiber, but the elastic modulus is equivalent to that of commercial glass fiber, and the effect of increasing rigidity is equivalent to that of glass fiber.
[生体に関する試験]
(試験例1)シリカ質フィラーの細胞毒性
シリカ質フィラーの細胞毒性について、チャイニーズハムスター培養細胞を用いた乳酸脱水素酵素(LDH)の放出量及びコロニー形成能(細胞生存率)について試験を実施した。陽性対照(クリソタイル)と比較すると、LDHにおいて50μg/mlの投与レベルで約1/3、コロニー形成能は50%細胞生存率のレベルで約1:40となった。
[Tests on living organisms]
(Test Example 1) Cytotoxicity of siliceous filler Regarding cytotoxicity of siliceous filler, a test was performed on the release amount of lactate dehydrogenase (LDH) and colony forming ability (cell viability) using cultured Chinese hamster cells. . Compared to the positive control (chrysotile), the LDH at the 50 μg / ml dose level was about 1/3 and the colony forming ability was about 1:40 at the 50% cell viability level.
(試験例2)シリカ質フィラーの染色体異常
シリカ質フィラーの染色体異常誘発性について、チャイニーズハムスター培養細胞を用いて調べた。試験は、連続試験法(24時間及び48時間)により行なった。処理濃度は、24時間、48時間ともに、0.075、0.15、0.3、0.45、0.6mg/mlの5段階とした。試験の結果、構造異常を持つ細胞の出現率及び倍数体を持つ細胞の出現率はともに5%未満であり、繊維状シリカゲルの染色体異常誘発性は陰性と判断された。なお、陽性対照のクリソタイルは、0.01mg/mlのレベルで倍数体出現率が24時間と48時間でそれぞれ25.7%、23.1%であった。
(Test Example 2) Chromosomal abnormality of siliceous filler The clastogenicity of the siliceous filler was examined using cultured Chinese hamster cells. The test was performed by a continuous test method (24 hours and 48 hours). The treatment concentration was set to five levels of 0.075, 0.15, 0.3, 0.45, and 0.6 mg / ml for both 24 hours and 48 hours. As a result of the test, the appearance rate of cells having a structural abnormality and the appearance rate of cells having a polyploid were both less than 5%, and it was judged that the fibrous silica gel had negative clastogenicity. The polyploid appearance rate of the positive control chrysotile at the level of 0.01 mg / ml was 25.7% and 23.1% at 24 hours and 48 hours, respectively.
(試験例3)シリカ質フィラーの急性及び亜慢性の肺傷害
シリカ質フィラーの呼吸器への影響として、ラット器官内単回投与による急性及び亜慢性の肺傷害を気管支肺胞洗浄(BAL)によって調べ、クリソタイルと比較して呼吸器への影響を確認した。
気管支肺胞洗浄液(BALF)の細胞学的及び生化学的分析結果により、陽性対照であるクリソタイルでは、投与早期の好中球・好酸球の増加、炎症関連生化学指標(総蛋白量(TP)と乳酸脱水素酵素(LDH))の増加と持続性、及び肺胞マクロファージ(PAM)の細胞傷害・崩壊と高度な変化であった。シリカ質フィラーでは、投与早期の生化学指標の増加はクリソタイルに比べて軽く、PAMの傷害も軽度であった。
(Test Example 3) Acute and subchronic lung injury of the siliceous filler As an effect on the respiratory organs of the siliceous filler, acute and subchronic lung injury caused by a single administration in the organ of a rat was evaluated by bronchoalveolar lavage (BAL). Investigations and respiratory effects compared to chrysotile were confirmed.
According to the cytological and biochemical analysis results of bronchoalveolar lavage fluid (BALF), Chrysotile, a positive control, showed an increase in neutrophils and eosinophils in the early stage of administration, an inflammation-related biochemical index (total protein (TP ) And lactate dehydrogenase (LDH) were increased and persistent, and alveolar macrophage (PAM) cytotoxicity / disintegration and advanced changes were observed. With the siliceous filler, the increase in the biochemical index at the early stage of administration was smaller than that of chrysotile, and the injury of PAM was also mild.
病理組織学的検査の結果では、陽性対照であるクリソタイルでは、胚細胞化生を伴う細気管支炎、肺胞腔へのPAMの動員・崩壊のほか、細気管支・肺胞道にかけて肉芽腫及び線維化を伴う高度な病変を認めた。一方、シリカ質フィラーでは細気管支、肺胞道の軽度の炎症、細気管支上皮の過形成、肺胞腔へのPAMの動員といった病変を認める程度で、PAMの崩壊像、肉芽腫及び線維化がみられずクリソタイルよりはるかに軽度な変化であった。 Histopathological examination showed that the positive control, chrysotile, showed bronchiolitis with germ cell metaplasia, recruitment / disintegration of PAM into the alveolar space, and granuloma and fibrosis in the bronchiole / alveolar tract. Severe lesions accompanied by hyperplasia were observed. On the other hand, siliceous fillers show lesions such as mild inflammation of bronchiole and alveolar tract, hyperplasia of bronchiolar epithelium, and recruitment of PAM to alveolar space. It was much less severe than chrysotile.
(試験例4)体液溶解性
クリソタイルとシリカ質フィラーをそれぞれ0.5、生体近似液(ギャンブル液)1リットルで溶解した。試験結果では、クリソタイルがギャンブル液に溶解性が低かったのに対し、シリカ質フィラーは、多く溶解した。また、モスハイジ(宇部マテリアルズ、塩基性硫酸マグネシウムウィスカー)は発ガン性のないことが確認されている合成繊維であるが、本発明の酸分解シリカ(シリカ質フィラー)よりも低い溶解性であった。その試験結果を第14表に示す。なお、試験は6時間後、24時間後の重量を測定し、その重量の減少割合で溶解性の大きさを評価した。
(Test Example 4) Body fluid solubility Chrysotile and siliceous filler were each dissolved in 0.5 and 1 liter of a biological approximation solution (gambling solution). In the test results, the chrysotile had low solubility in the gambling liquid, whereas the siliceous filler dissolved much. Moss Heidi (Ube Materials, basic magnesium sulfate whisker) is a synthetic fiber that has been confirmed to be non-carcinogenic, but has a lower solubility than the acid-decomposed silica (siliceous filler) of the present invention. Was. Table 14 shows the test results. In the test, the weight was measured after 6 hours and 24 hours, and the degree of solubility was evaluated based on the weight reduction ratio.
本発明は、石綿代替品として用いられ、さらに機能を付加することにより、代替品位上の性能や付加価値を持たせ、かつ生体影響を低減したフィラーを提供できるものであり、石綿含有製品中より回収した石綿を処理し、石綿含有製品廃材のリサイクル手段として利用できる。
さらに、本発明は、汎用性があり、しかも低価格で、リサイクル石綿の利用にも有効な、調湿機能を有し室内環境の改善に有用な内装建材及び内装仕上用混和材料用の吸放湿性能の高いシリカ質フィラーを提供することができる。
シリカ質フィラーは、水と混合、成形、乾燥するだけで固化することから、特別の養生を必要とせず、調湿機能や室内環境の改善に有用な固化体を得ることができる。
The present invention is used as an asbestos substitute, and by adding a function, it is possible to provide a filler having a performance and an added value in an alternative grade, and to reduce a biological effect. The recovered asbestos can be processed and used as a means of recycling asbestos-containing product waste.
Further, the present invention provides a versatile, low-cost, effective for use of recycled asbestos, a moisture control function, and a heat absorbing and discharging material for interior building materials and interior finishing admixtures useful for improving the indoor environment. It is possible to provide a siliceous filler having high wet performance.
Since the siliceous filler is solidified only by mixing with water, molding and drying, it does not require any special curing and can provide a solidified body useful for a humidity control function and an improvement in the indoor environment.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003282806A JP2004075531A (en) | 2002-07-30 | 2003-07-30 | Siliceous filler and solidified material obtained through acidolysis of chrysotile and chrysotile-containing serpentine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002221486 | 2002-07-30 | ||
JP2003282806A JP2004075531A (en) | 2002-07-30 | 2003-07-30 | Siliceous filler and solidified material obtained through acidolysis of chrysotile and chrysotile-containing serpentine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004075531A true JP2004075531A (en) | 2004-03-11 |
Family
ID=32032761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003282806A Pending JP2004075531A (en) | 2002-07-30 | 2003-07-30 | Siliceous filler and solidified material obtained through acidolysis of chrysotile and chrysotile-containing serpentine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004075531A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046514A1 (en) * | 2004-10-25 | 2006-05-04 | Nozawa Corporation | Curable composition containing as constituent material silica obtained by decomposing chrysotile and cured object |
WO2006103723A1 (en) * | 2005-03-25 | 2006-10-05 | Nozawa Corporation | Fibrous silica and process for producing the same |
KR101624411B1 (en) | 2014-08-22 | 2016-05-26 | 전남대학교산학협력단 | Method for recovering valuable resources from chrysotile |
US11331526B2 (en) * | 2015-09-22 | 2022-05-17 | Paul Poggi | Method and stationary or movable device for neutralizing and recycling asbestos waste |
-
2003
- 2003-07-30 JP JP2003282806A patent/JP2004075531A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046514A1 (en) * | 2004-10-25 | 2006-05-04 | Nozawa Corporation | Curable composition containing as constituent material silica obtained by decomposing chrysotile and cured object |
WO2006103723A1 (en) * | 2005-03-25 | 2006-10-05 | Nozawa Corporation | Fibrous silica and process for producing the same |
KR101624411B1 (en) | 2014-08-22 | 2016-05-26 | 전남대학교산학협력단 | Method for recovering valuable resources from chrysotile |
US11331526B2 (en) * | 2015-09-22 | 2022-05-17 | Paul Poggi | Method and stationary or movable device for neutralizing and recycling asbestos waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69008066T2 (en) | Hydraulic inorganic composition and molded parts made of it. | |
Paul et al. | Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber | |
Karimi et al. | Valorization of waste baby diapers in concrete | |
KR101184750B1 (en) | Control of biodegradability of polyvinyl alchol and cellulose polymer mixed polymer films and the preparation thereof | |
CN107434885A (en) | Environmentally friendly PP composite material | |
Nensok et al. | Fresh state and mechanical properties of ultra-lightweight foamed concrete incorporating alkali treated banana fibre | |
CN105461975B (en) | A kind of preparation method of natural rubber/palygorskite nano composite material | |
WO2006046514A1 (en) | Curable composition containing as constituent material silica obtained by decomposing chrysotile and cured object | |
JP2007284294A (en) | Plaster material containing powder of scallop shell as main component, its producing method, tile containing powder of scallop shell, and method for producing them | |
Trambitski et al. | Modification of clay materials with retrograded starch hydrogel | |
CN110662791A (en) | Method for processing a mixture of lignocellulosic fibres for the preparation of a bio-based composite material | |
JP2009190017A (en) | Raw material of brick-blocked body, brick-blocked body and method for producing brick-blocked body | |
JP2004075531A (en) | Siliceous filler and solidified material obtained through acidolysis of chrysotile and chrysotile-containing serpentine | |
Shayestehkia et al. | Effects of cellulose nanocrystals as extender on physical and mechanical properties of wood cement composite panels | |
Ahmad et al. | Effect of fibre treatment on the physical and mechanical properties of kenaf fibre reinforced blended cementitious composites | |
US5744257A (en) | Production of composites | |
Tayommai et al. | Natural fiber/PLA composites: mechanical properties and biodegradability by gravimetric measurement respirometric (GMR) system | |
Puitel et al. | Environmentally friendly vegetal fiber based materials | |
JP2004182877A (en) | Biodegradable resin composition, biodegradable resin product, and method of its production | |
CN109020327A (en) | A kind of plasticity antimycotic antiseptic diatom ooze and its agitating device | |
JP2636185B2 (en) | Clay / gelatin composite porous body, its fibrous body, and production method thereof | |
Greco et al. | Biocompatible blends based on poly (Vinyl alcohol) and solid organic waste | |
Regulska et al. | Properties of gypsum composites with shavings | |
JPH0892418A (en) | Polysaccharide/clay composite material and its production | |
Galán-Marín et al. | The mechanical properties and molecular bonding characteristics of clay-based natural composites reinforced with animal fibres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050412 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20060425 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A02 | Decision of refusal |
Effective date: 20090407 Free format text: JAPANESE INTERMEDIATE CODE: A02 |