JP2004075245A - Pneumatic conveying device for powdery and granular material - Google Patents

Pneumatic conveying device for powdery and granular material Download PDF

Info

Publication number
JP2004075245A
JP2004075245A JP2002235675A JP2002235675A JP2004075245A JP 2004075245 A JP2004075245 A JP 2004075245A JP 2002235675 A JP2002235675 A JP 2002235675A JP 2002235675 A JP2002235675 A JP 2002235675A JP 2004075245 A JP2004075245 A JP 2004075245A
Authority
JP
Japan
Prior art keywords
granular material
pneumatic
accelerator
powdery
pneumatic conveying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235675A
Other languages
Japanese (ja)
Inventor
Manabu Takahata
高畑 学
Ryoichi Nishino
西野 良一
Kenichi Jodo
浄土 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Engineering Co Ltd
Original Assignee
Diamond Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Engineering Co Ltd filed Critical Diamond Engineering Co Ltd
Priority to JP2002235675A priority Critical patent/JP2004075245A/en
Publication of JP2004075245A publication Critical patent/JP2004075245A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic conveying device preventing the blockage phenomenon generated in a transferring part from an airtight supply device to a pneumatic conveying pipe of a conventional device, when the powdery and granular material such as crushed waste plastic is taken out from a tank, and stably conveying the powdery and granular material with a small amount of conveying gas. <P>SOLUTION: In this pneumatic conveying device for powdery and granular material, composed of a measuring device for measuring the powdery and granular material fed out from the tank, and the air-tight supplying device for supplying the measured powdery and granular material to the pneumatic conveying pipe, an accelerator for pneumatic conveying is mounted at a downstream side of the airtight supplying device, and a stirring blade is mounted inside the accelerator. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は粉粒体の空気輸送装置に関し、さらに詳しくは破砕された廃プラスチックを貯蔵槽から定量的に抜き出し、燃焼装置等へ空気輸送するための装置に関する。
【0002】
【従来の技術】
従来、破砕された廃プラスチック等の粉粒体を定量的に空気輸送装置で輸送するには、たとえば図3において貯蔵槽101の下部にテーブルフィーダーもしくはスクリューフィーダー等の定量供給装置102、連続計量装置103と気密用ロータリーバルブ104を設置し、ロータリーバルブの下に空気輸送用加速器105を取付け、空気輸送配管に廃プラスチックを供給する方法が行われていた。しかしながら、破砕された廃プラスチック等の粉粒体は、原材料の種類と破砕されたサイズによりその物理的性質が変動する。特に、嵩比重の小さい破砕された廃プラスチックは、重力落下部分で流路断面積が上流側より小さくなっている場合に流路においてブリッジを容易に形成して、空気輸送用加速管105の内部で詰りが発生しやすい。
【0003】
たとえば、嵩比重の極端に小さいフラフ状破砕プラスチックでは、ロータリーバルブ等の定量排出装置104の流路断面積が大きくなるため空気輸送配管との接続部分で急激な絞りが必要となる。従来の排出装置出口部分では空気輸送配管への接続は絞りを伴う流路を重力落下で供給するため、この流路で破砕された廃プラスチックの棚吊が発生するという問題がある。一方、絞りがないように空気輸送管を大きくすると搬送用ガスの流量が大きくなり、輸送に必要なエネルギーが大きくなる。
【0004】
【発明が解決しようとする課題】
本発明は、破砕された廃プラスチック等の粉粒体を貯蔵槽から取出して空気輸送配管に導入する場合に、気密供給装置から空気輸送配管への乗り移り部分において、従来発生していた閉塞現象を起こさず、かつ少ない搬送用ガス量で、粉粒体の安定した空気輸送を実現しうる空気輸送装置を提供するものである。
【0005】
【課題を解決するための手段】
本発明の要旨は、貯蔵槽から排出される粉粒体を計量するための計量装置、ならびに計量された粉粒体を空気輸送配管に供給するための気密供給装置から構成される粉粒体の空気輸送装置において、気密供給装置の下流側に空気輸送用の加速器を設け、かつ該加速器の内部に攪拌翼を設けてなることを特徴とする粉粒体の空気輸送装置にある。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0007】
本発明の粉粒体の空気輸送装置は、貯蔵槽から定量排出装置に排出される粉粒体を計量するための計量装置、ならびに計量された粉粒体を空気輸送配管に供給するための気密供給装置から構成される。計量装置としては、特に制限されず、たとえばベルトコンベヤーに計量器を設け、ベルトコンベヤー上の粉流体の質量とベルトコンベヤーの移動速度から排出速度を求めるベルトコンベヤースケール等が使用されうるが、好適には環状コンベア、破砕物投入口および該投入口から180°異なる位置にある破砕物排出口を備え、該環状コンベア上には放射状に等間隔に設けられ該環状コンベア上の空間を分画する羽根を有し、該環状コンベアは軸の周りを水平方向に回転される連続計量装置において、破砕物投入口より充填された破砕物の質量と該羽根の回転数を演算することにより破砕物の排出速度を得る演算手段を備えてなることを特徴とする連続計量装置を用いるのが好適である。この連続計量装置は、上部に貯蔵槽から粉粒体を抜き出すための連続定量抜き出し装置が設置されており、抜き出された粉粒体は、連続計量装置へ投入される。
【0008】
投入された粉粒体は、連続計量装置内を半周した後、下流側のロータリーバルブへ供給される。粉粒体の種類、大きさは、特に制限されないが、ペットボトル破砕物、紙状フラフ、綿状フラフ等が挙げられ、たとえば2m×2mの廃プラスチックシートをミルでたとえば20mm×20mm程度に破砕したものが挙げられる。これらの粉粒体の嵩比重は0.03〜0.6、粒子サイズは50mm以下であるのが好適である。
【0009】
この連続計量装置の質量は、たとえば3点支持式の、質量をそれに比例した電気信号に変換する変換器であるロードセルで測定されており、この質量と連続計量装置の回転数(rpm)の積を2倍することにより排出速度が求められる。すなわち、この連続計量装置は、上流側の連続定量抜出装置の抜出し量に連動して回転数を変えることができ、この連続計量装置は、常にある一定範囲内の質量を指示するようにされるのが好適である。
【0010】
質量変動を少なく抑えることにより連続計量装置の回転数は安定し、排出速度の演算が安定して上流側の連続定量抜出装置を正しく制御でき、所定の場所に安定して破砕物を供給できるので、たとえば下流側の燃焼装置の安定運転が可能となる。
【0011】
このようにして計量された粉粒体を空気輸送配管に供給するための気密供給装置は、計量装置の下流に設けられ、粉粒体の空気輸送時の圧力が定量供給装置および計量装置に逆流するのを防止する。このような気密供給装置としては特に制限されないが、ロータリーバルブが好適である。
【0012】
本発明においては、このような粉粒体の空気輸送装置において、気密供給装置の下流側に空気輸送用の加速器を設け、かつ該加速器の内部に攪拌翼を設けてなるように構成されることが必要である。気密供給装置の下流側は排出シュート部分での詰まりを発生させないために、流路の断面積が小さくならないように気密供給装置の排出側と同じ形状で加速器に接続されされるのが好ましい。好適には、加速器の形状は水平に配置された円筒形であり、その直径は接続管路の幅よりも大きくされる。該加速器の内部には攪拌翼が設けられ、設定された回転数で連続回転される。その回転数は1〜60RPMが好適である。攪拌翼の形状はリボンスクリュー等が挙げられるが、リボンスクリューが最も好適である。加速器の下流側は接続配管の直径に合わせて通常、円錐状に絞り込まれる。本発明においては、さらに好適には加速器の内部に攪拌翼と同一軸上で回転する気体噴出ノズルを設け、攪拌翼と同一の回転数で回転させながら高速ガスを噴出させることにより、加速器の下流部分(上記のように、通常は円錐形状を有する)における粉粒体の閉塞を効率よく防止しうる。
【0013】
図1は本発明に係る粉粒体の空気輸送装置の1実施態様を示す概略図、そして図2は図1における加速器部分を拡大して示す概略図である。フラフ等の粉粒体は貯蔵槽1から、その底部に設けられた定量排出装置2で排出される。その排出量は定量排出装置の下流に設けられた連続計量装置3で計量され、気密供給装置4に投入される。気密供給装置4の下流にはその排出口と同一サイズのシュートおよび加速器5が設置され、フラフは管路での閉塞が発生しないように加速器5内に粉粒体供給ノズル13より導入される。加速器5の上流にはルーツブロワ−等の圧力源が接続され、上流側に設置された搬送用ガス入口ノズル14から搬送用ガスが供給される。加速器5の内部にはリボンスクリュ−型の攪拌翼6が水平方向に配置されており、通常1〜60RPMの速度で連続回転される。このリボンスクリュ−型の攪拌翼6は加速器5の中心部分のガス流れを阻害しないので、上記の搬送ガスによる加速効果と攪拌翼による攪拌効果の相乗効果を得ることができる。このようにして、投入されたフラフは加速器5の底部に滞留しないで下流の円錐状部分に導かれる。さらに、この円錐状部分のフラフは、攪拌翼6と同一の回転軸を中心として回転する気体噴出ノズル7から噴出される高速の攪拌ガス流(10は攪拌ガス入口ノズル、9は回転継ぎ手、8は駆動スプロット、そして11は軸封部を示す)によりさらに攪拌され、輸送配管接続ノズル12から空気輸送配管への円滑な導入が達成されうる。
【0014】
【発明の効果】
本発明によれば、破砕廃プラスチック等の粉粒体、特に繊維質を多く含むフラフ状廃プラスチックを閉塞を起こさないで、高い固体/気体比の下で空気輸送配管による輸送をすることができる。
【図面の簡単な説明】
【図1】本発明に係る粉粒体空気輸送装置の1実施態様を示す概略図。
【図2】図1の空気輸送装置における加速器部分を拡大して示す概略図。
【図3】従来の粉粒体空気輸送装置の1例を示す概略図。
【符号の説明】
1…貯蔵槽
2…定量排出装置
3…連続計量装置
4…気密供給装置
5…加速器
6…攪拌翼
7…気体噴出ノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a pneumatic transportation device for granular material, and more particularly to a device for quantitatively extracting crushed waste plastic from a storage tank and transporting the pulverized plastic to a combustion device or the like.
[0002]
[Prior art]
Conventionally, in order to quantitatively transport crushed powders such as waste plastics by a pneumatic transport device, for example, in FIG. 3, a quantitative feeder 102 such as a table feeder or a screw feeder, a continuous metering device, etc. 103 and a rotary valve 104 for airtightness are installed, an accelerator 105 for air transport is mounted below the rotary valve, and waste plastic is supplied to the air transport pipe. However, the physical properties of the crushed powder such as waste plastic vary depending on the type of raw material and the crushed size. In particular, the crushed waste plastic having a small bulk specific gravity easily forms a bridge in the flow path when the cross-sectional area of the flow path is smaller than the upstream side in the gravity falling portion, and the inside of the pneumatic transportation acceleration tube 105 Easily clogged.
[0003]
For example, in the case of a fluff-like crushed plastic having an extremely small bulk specific gravity, the flow path cross-sectional area of the fixed-quantity discharge device 104 such as a rotary valve becomes large, so that a sharp restriction is required at a connection portion with the air transport pipe. At the outlet of the conventional discharge device, since connection to the air transport pipe is supplied by gravity drop through a flow path with a throttle, there is a problem that crushed waste plastic is suspended on the flow path in this flow path. On the other hand, if the air transport pipe is enlarged so that there is no restriction, the flow rate of the carrier gas increases, and the energy required for transport increases.
[0004]
[Problems to be solved by the invention]
The present invention relates to a method of removing crushed waste plastics and other particulates from a storage tank and introducing them into a pneumatic transportation pipe. It is an object of the present invention to provide a pneumatic transport device which can realize stable pneumatic transport of powder and granules without causing a small amount of transport gas.
[0005]
[Means for Solving the Problems]
The gist of the present invention is to provide a measuring device for measuring a granular material discharged from a storage tank, and an airtight supply device for supplying the measured granular material to an air transport pipe. In the pneumatic transport device, there is provided a pneumatic transport device for a granular material, wherein an accelerator for pneumatic transport is provided downstream of an airtight supply device, and a stirring blade is provided inside the accelerator.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0007]
The pneumatic device for transporting granules of the present invention is a measuring device for measuring granules discharged from a storage tank to a constant-rate discharging device, and an airtight device for supplying the measured granules to a pneumatic transportation pipe. It consists of a supply device. The weighing device is not particularly limited. For example, a weighing device may be provided on a belt conveyor, and a belt conveyor scale or the like that determines a discharge speed from the mass of the powdered fluid on the belt conveyor and the moving speed of the belt conveyor may be used. Is provided with an annular conveyor, a crushed material input port, and a crushed material discharge port located at a position 180 ° different from the input port, and blades provided radially at equal intervals on the annular conveyor to divide a space on the annular conveyor. In a continuous weighing device in which the annular conveyor is rotated around an axis in a horizontal direction, the mass of the crushed material charged from the crushed material input port and the rotation speed of the blades are calculated to discharge the crushed material. It is preferable to use a continuous weighing device characterized by comprising a calculation means for obtaining a speed. This continuous weighing device is provided with a continuous fixed-quantity extracting device for extracting a granular material from a storage tank at an upper portion, and the extracted granular material is put into the continuous weighing device.
[0008]
The charged granular material is supplied to the downstream rotary valve after making a half turn in the continuous measuring device. The type and size of the powdery granules are not particularly limited, but include crushed PET bottles, paper-like fluff, cotton-like fluff, and the like. For example, a 2 mx 2 m waste plastic sheet is crushed by a mill to, for example, about 20 mm x 20 mm. What was done. It is preferable that the bulk specific gravity of these powders is 0.03 to 0.6 and the particle size is 50 mm or less.
[0009]
The mass of the continuous weighing device is measured, for example, by a load cell, which is a three-point support type converter that converts the mass into an electric signal proportional thereto, and the product of the mass and the rotation speed (rpm) of the continuous weighing device is used. The discharge rate is determined by doubling. In other words, this continuous weighing device can change the rotation speed in conjunction with the withdrawal amount of the upstream continuous quantitative withdrawal device, and the continuous weighing device always indicates a mass within a certain range. It is preferred that
[0010]
The rotation speed of the continuous weighing device is stabilized by suppressing the mass fluctuation, the calculation of the discharge speed is stable, the continuous continuous extraction device on the upstream side can be correctly controlled, and the crushed material can be stably supplied to a predetermined place. Therefore, for example, stable operation of the downstream combustion device can be performed.
[0011]
An airtight supply device for supplying the thus-measured powder to the pneumatic transportation pipe is provided downstream of the measurement device, and the pressure at the time of pneumatic transportation of the powder flows back to the quantitative supply device and the measurement device. To prevent Such an airtight supply device is not particularly limited, but a rotary valve is preferable.
[0012]
In the present invention, such a pneumatic material transport device is configured such that an accelerator for air transport is provided downstream of the hermetic supply device, and a stirring blade is provided inside the accelerator. is necessary. The downstream side of the hermetic supply device is preferably connected to the accelerator in the same shape as the discharge side of the hermetic supply device so that the cross-sectional area of the flow path is not reduced so as not to cause clogging at the discharge chute portion. Preferably, the shape of the accelerator is a horizontally arranged cylinder, the diameter of which is greater than the width of the connecting line. A stirring blade is provided inside the accelerator, and is continuously rotated at a set rotation speed. The rotation speed is preferably 1 to 60 RPM. The shape of the stirring blade may be a ribbon screw or the like, but a ribbon screw is most preferable. The downstream side of the accelerator is usually conically narrowed according to the diameter of the connecting pipe. In the present invention, more preferably, a gas jet nozzle that rotates on the same axis as the stirring blade is provided inside the accelerator, and high-speed gas is jetted while rotating at the same rotation speed as the stirring blade, thereby downstream of the accelerator. Blockage of the granular material at a portion (which usually has a conical shape as described above) can be efficiently prevented.
[0013]
FIG. 1 is a schematic diagram showing one embodiment of the pneumatic material transport apparatus according to the present invention, and FIG. 2 is an enlarged schematic diagram showing an accelerator part in FIG. Granules such as fluff are discharged from the storage tank 1 by a fixed amount discharging device 2 provided at the bottom thereof. The discharged amount is measured by a continuous measuring device 3 provided downstream of the fixed amount discharging device, and is supplied to an airtight supply device 4. A chute and an accelerator 5 having the same size as the discharge port are installed downstream of the airtight supply device 4, and the fluff is introduced into the accelerator 5 from the powder supply nozzle 13 so as not to cause blockage in the pipeline. A pressure source such as a Roots blower is connected upstream of the accelerator 5, and a carrier gas is supplied from a carrier gas inlet nozzle 14 provided on the upstream side. Inside the accelerator 5, a ribbon screw type stirring blade 6 is disposed in a horizontal direction, and is normally continuously rotated at a speed of 1 to 60 RPM. Since the ribbon screw type stirring blade 6 does not hinder the gas flow in the central portion of the accelerator 5, a synergistic effect of the acceleration effect by the carrier gas and the stirring effect by the stirring blade can be obtained. In this way, the introduced fluff is guided to the downstream conical portion without staying at the bottom of the accelerator 5. Further, the fluff of the conical portion is formed by a high-speed stirring gas flow (10 is a stirring gas inlet nozzle, 9 is a rotating joint, 8 Are further agitated by a drive splot, and 11 is a shaft seal), and smooth introduction from the transport pipe connection nozzle 12 to the pneumatic transport pipe can be achieved.
[0014]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, a granular material, such as a crushed waste plastic, especially a fluffy waste plastic containing much fibrous material, can be transported by a pneumatic transportation pipe under a high solid / gas ratio without causing blockage. .
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a pneumatic material transportation device according to the present invention.
FIG. 2 is an enlarged schematic view showing an accelerator part in the pneumatic transportation device of FIG. 1;
FIG. 3 is a schematic view showing an example of a conventional pneumatic material transport device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Storage tank 2 ... Fixed amount discharger 3 ... Continuous metering device 4 ... Airtight supply device 5 ... Accelerator 6 ... Stirring blade 7 ... Gas ejection nozzle

Claims (8)

貯蔵槽から排出される粉粒体を計量するための計量装置、ならびに計量された粉粒体を空気輸送配管に供給するための気密供給装置から構成される粉粒体の空気輸送装置において、気密供給装置の下流側に空気輸送用の加速器を設け、かつ該加速器の内部に攪拌翼を設けてなることを特徴とする粉粒体の空気輸送装置。In a pneumatic transport apparatus for a granular material including a measuring device for measuring the granular material discharged from the storage tank and an airtight supply device for supplying the measured granular material to an air transport pipe, An air transport device for pulverized particles, wherein an accelerator for air transport is provided downstream of a supply device, and a stirring blade is provided inside the accelerator. 加速器が水平に配置された円筒形状を有する請求項1記載の粉粒体の空気輸送装置。2. The pneumatic conveying apparatus for granular material according to claim 1, wherein the accelerator has a cylindrical shape arranged horizontally. 加速器の下流側が空気輸送配管への接続配管に向けて円錐状に絞り込まれている請求項1もしくは2記載の粉粒体の空気輸送装置。3. The pneumatic material transport device according to claim 1, wherein the downstream side of the accelerator is conically narrowed toward a connection pipe to the pneumatic transport pipe. 加速器の内部に攪拌翼と同一軸上で回転する気体噴出ノズルを設けてなる請求項1記載の粉粒体の空気輸送装置。2. The pneumatic conveying apparatus for a granular material according to claim 1, further comprising a gas ejection nozzle that rotates on the same axis as the stirring blade inside the accelerator. 攪拌翼がリボンスクリュー状の形状を有する請求項1〜4のいずれかに記載の粉粒体の空気輸送装置。The pneumatic transportation device for a granular material according to any one of claims 1 to 4, wherein the stirring blade has a ribbon screw shape. 粉粒体が破砕された廃プラスチックである請求項1〜5のいずれかに記載の粉粒体の空気輸送装置。The pneumatic transportation device for a granular material according to any one of claims 1 to 5, wherein the granular material is crushed waste plastic. 粉粒体の嵩比重が0.03〜0.6である請求項1〜6のいずれかに記載の粉粒体の空気輸送装置。The pneumatic transportation device for a granular material according to any one of claims 1 to 6, wherein the bulk specific gravity of the granular material is 0.03 to 0.6. 粉粒体の粒子サイズが50mm以下である請求項1〜7のいずれかに記載の粉粒体の空気輸送装置。The pneumatic transportation device for a granular material according to any one of claims 1 to 7, wherein the particle size of the granular material is 50 mm or less.
JP2002235675A 2002-08-13 2002-08-13 Pneumatic conveying device for powdery and granular material Pending JP2004075245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235675A JP2004075245A (en) 2002-08-13 2002-08-13 Pneumatic conveying device for powdery and granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235675A JP2004075245A (en) 2002-08-13 2002-08-13 Pneumatic conveying device for powdery and granular material

Publications (1)

Publication Number Publication Date
JP2004075245A true JP2004075245A (en) 2004-03-11

Family

ID=32020094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235675A Pending JP2004075245A (en) 2002-08-13 2002-08-13 Pneumatic conveying device for powdery and granular material

Country Status (1)

Country Link
JP (1) JP2004075245A (en)

Similar Documents

Publication Publication Date Title
US8905681B2 (en) Pneumatic conveying process for particulate materials
CN205414308U (en) Casting sand cooler
KR102713530B1 (en) Device for producing poly(meth)acrylate in powder form
KR101312837B1 (en) Dosing device
US4617191A (en) Method and apparatus for coating particulate materials with powdery materials
JP2015101462A (en) Feeder
JPH05149774A (en) System and method for continuously measuring injectable material with gravity and conveying and/or mixing material with air pressure
JP2004075245A (en) Pneumatic conveying device for powdery and granular material
CN107055099B (en) Dense-phase conveying method and system for urea particles
US11744270B2 (en) Cooling particulate material with nitrogen
CN102849463A (en) Positive-pressure conveying device applicable to mixed flour of various grain raw materials
EP3285132B1 (en) Method and dispensing apparatus for dispensing a powder and/or granular material
JP3513735B2 (en) Char transfer device
JP2004075244A (en) Beating device
JP2000255790A (en) Rotary feeder
CN212402741U (en) Powder feeding device
JP2000226124A (en) Air-blow transportation device for powder and grain
RU131154U1 (en) DOSING DEVICE
EP4005663A1 (en) Powder blender for a system for continuous processing of powder products
CN213621958U (en) Automatic quantitative dispensing device of raw materials
CN201604935U (en) Viscous material bin capable of quantitatively delivering
JPH05332804A (en) Powder particle constant supplier
KR20020095419A (en) Air transfer system for granular material and the method therefor
JP3015022B1 (en) Rotary feeder
CN206485999U (en) A kind of urea granules two-phase transportation is with close phase elutriator