JP2004074593A - Manufacturing method for honeycomb structure - Google Patents

Manufacturing method for honeycomb structure Download PDF

Info

Publication number
JP2004074593A
JP2004074593A JP2002238402A JP2002238402A JP2004074593A JP 2004074593 A JP2004074593 A JP 2004074593A JP 2002238402 A JP2002238402 A JP 2002238402A JP 2002238402 A JP2002238402 A JP 2002238402A JP 2004074593 A JP2004074593 A JP 2004074593A
Authority
JP
Japan
Prior art keywords
partition wall
honeycomb structure
manufacturing
partition
wall reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002238402A
Other languages
Japanese (ja)
Inventor
Sadaaki Hirai
平井 貞昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002238402A priority Critical patent/JP2004074593A/en
Publication of JP2004074593A publication Critical patent/JP2004074593A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a honeycomb structure capable of manufacturing the honeycomb structure reduced in heat capacity and pressure loss and having high erosion resistance while achieving high productivity and sharp cost reduction with scarcely generating damage of partition walls or outer walls at the time of baking and the outer dimension range between a region where partition wall reinforcing parts are present and other partition wall general parts. <P>SOLUTION: A honeycomb-like molded object having a large number of partition walls is manufactured from a raw material based on a ceramics material. After a penetrant capable of being destroyed by drying or baking is infiltrated in at least a part of the molded object, a partition wall reinforcing agent is bonded to at least a part of the penetrant impregnated portion before baking the molded object. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は、ハニカム構造体の製造方法に関する。より詳しくは、少なくとも隔壁の一部に隔壁強化剤を付着することで、隔壁の一部を強化して、ハニカム構造体の耐エロージョン性を向上させるハニカム構造体の製造方法に関する。
【0002】
【従来の技術】排ガス浄化用の触媒担体等に広く用いられているハニカム構造体にあっては、年々強化される排ガス規制に対応すべく、より高い浄化性能が求められており、その一方で、低燃費化、高出力化等の要請から、圧力損失の低減も求められている。
【0003】このような状況下、ハニカム構造体の隔壁の厚さをいっそう薄くすることで、ハニカム構造体のセル開口端面における開口率を高めて圧力損失を低減し、かつ隔壁の熱容量を低減してエンジン始動後に早期に触媒を活性化させ、浄化性能を向上させる動きが強まっている。
【0004】他方、このようなハニカム構造体の薄壁化の進展にともない、排ガス中に混入する種々の異物が、ハニカム構造体のセル開口端部に存在する隔壁に衝突して隔壁が破損するエロージョン現象が、新たな問題となっている。
【0005】もっとも、この問題に対しても、既にセル開口端部に存在する隔壁に、他の隔壁部よりも強度を向上させた隔壁強化部を設けたハニカム構造体が提案されており(特開2000−51710公報等)、隔壁強化部を設ける方法についても種々検討されている。
【0006】従来、隔壁強化部を有するハニカム構造体の製造方法としては、コージェライト化原料を主成分とするハニカム状の成形体を作製した後、この成形体のセル開口端部を、コージェライト融点低下成分であるタルクと溶媒とを混合させた混合液に浸漬し、その後、乾燥、焼成する方法が提案されている(同号公報等)。この方法は、コージェライトの融点低下による局所的な溶融を利用して、セル開口端部に存する隔壁の気孔を減少させることにより隔壁強化部を形成するものであり、隔壁の厚肉化を伴わないため、ハニカム構造体の圧力損失を増大させることなく、耐エロージョン性を向上させ得るものである。
【0007】しかし、この製造方法は、図3、4に示すように、隔壁材料の溶融により気孔4を減少せしめて隔壁強化部2を形成するものであり、必然的に当該隔壁強化部2では焼成時の収縮率が大きくなるものであった。このため、この製造方法では、焼成時に、隔壁強化部2とその他の隔壁一般部1との間で収縮率較差が大きくなり、当該両部間で引張応力が増大することから、ハニカム構造体の隔壁や外壁に亀裂を生じさせる場合があった。
【0008】また、この製造方法では、隔壁強化部2が、その他の隔壁一般部1に比べ、焼成時の収縮率が大きくなる結果、隔壁強化部2が設けられるセル開口端部でのみハニカム構造体の外形寸法が小さくなって円筒度が低下するため、キャニング時に局所的な応力集中が起こり易かった。
【0009】
【発明が解決しようとする課題】本発明は、上述のような従来技術の問題点に鑑みてなされたものであって、その目的とするところは、圧力損失、及び熱容量の増大を伴うことなく、耐エロージョン性に優れるハニカム構造体を、焼成によるハニカム構造体の隔壁や外壁の損傷、及び隔壁強化部とその他の隔壁一般部間での外形寸法較差を殆ど生じることなく作製することができるハニカム構造体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】本発明者は、上述の問題点に鑑みて鋭意検討した結果、ハニカム状の成形体の所望部位に、乾燥又は焼成により消失可能な浸透剤を含浸させた後、隔壁強化剤を付着させ、その後、焼成することにより、上述の問題点を解決できることを見出し、本発明の製造方法を完成するに至った。
【0011】即ち、本発明は、セラミックス原料を主成分とする材料により、複数の隔壁を有するハニカム状の成形体を作製し、該成形体の少なくとも一部に、隔壁強化剤を付着させた後、焼成するハニカム構造体の製造方法であって、成形体の少なくとも一部に、乾燥、又は焼成により消失可能な浸透剤を含浸させた後、浸透剤を含浸させた部分の少なくとも一部に、隔壁強化剤を付着させ、その後、焼成することを特徴とするハニカム構造体の製造方法を提供するものである。
【0012】本発明で用いられる浸透剤としては、石油系炭化水素化合物又は絶対粘度100mPa・s未満のジメチルシリコーンオイルの少なくとも1種を主成分とする疎水性化合物からなるものが好ましい。また、本発明においては、隔壁強化剤の主成分が、燃焼により無機酸化物を生成する化合物であることが好ましく、また、Si、Ti、Mg、及びAlよりなる群から選ばれる少なくとも1種の元素を構造中に有する疎水性液状化合物であることが好ましい。また、Siを構造中に有する疎水性液状化合物としては、不揮発性シリコーンオイル、シリコーンワニス、又はアルコキシオリゴマーの少なくとも1種であることが好ましい。
【0013】また、本発明においては、セラミックス原料を主成分とする材料が、水溶性有機バインダーを含有する場合に、特にその効果が大きいため好ましい。
【0014】また、当該水溶性有機バインダーとしては、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、及びポリビニルアセタールからなる群より選択される少なくとも1種の水溶性化合物からなるものを挙げることができる。
【0015】
【発明の実施の形態】以下、本発明の実施の形態を、具体的に説明する。
【0016】本発明の製造方法は、上述のように、セラミックス原料を主成分とする材料により、複数の隔壁を有するハニカム状の成形体を作製し、この成形体の少なくとも一部に、乾燥、又は焼成により消失可能な浸透剤を含浸させた後、当該浸透剤を含浸させた部分の少なくとも一部に、隔壁強化剤を付着させ、その後、焼成するものである。
【0017】本発明では、1回の焼成により、ハニカム構造体全体の焼成と、隔壁強化部の形成を同時に行うことができるため、生産性の向上及び製品の低コスト化を大幅に改善することができる。
【0018】加えて、本発明による製造方法では、予め成形体に含浸させた浸透剤の存在により、隔壁強化剤の隔壁内部への浸入が妨げられ、隔壁強化成分が、隔壁表面付近に存在する状態で、乾燥(必要に応じて行われる。)、及び焼成が行われる。このため、図1に示すように、焼成時においては、隔壁強化部2の表層部分7のみ、隔壁のその他を構成する一般部1に比べ緻密化され、隔壁強化部2の心材部分6では当該一般部とほぼ同程度に緻密化される。従って、本発明の製造方法によれば、図2に示すように、焼成時における隔壁強化部2と一般部1との収縮較差が極めて小さく、焼成時におけるクラック等の発生、及び隔壁強化部2が存するハニカム構造体の外形寸法と隔壁の一般部1が存するハニカム構造体の外形寸法の較差を大幅に低減することができる。以下、各工程毎に具体的に説明する。
【0019】本発明においては、まず、セラミックス原料を主成分とする材料により、複数の隔壁を有するハニカム状の成形体を作製する。
【0020】本発明においては、セラミックス原料について特に制限はなく、例えば、炭化ケイ素、炭化ホウ素、炭化チタン、炭化ジルコニウム、窒化ケイ素、窒化ホウ素、窒化アルミニウム、アルミナ、ジルコニア、ムライト、コージェライト化原料、チタン酸アルミニウム、及びサイアロンよりなる群から選ばれる少なくとも1種を用いることができる。
【0021】本発明においては、必要に応じて他の添加物を原料に含有させてもよく、例えば、バインダー、結晶成長助剤、分散剤、又は造孔剤等を含有させてもよい。また、バインダーとしては、例えば、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコール、又はポリビニルアセタール等の水溶性有機バインダーを挙げることができる。また、結晶成長助剤としては、例えば、マグネシア、シリカ、イットリア、又は酸化鉄等を挙げることができ、分散剤としては、例えば、エチレングリコール、デキストリン、脂肪酸石鹸、又はポリアルコール等を挙げることができる。また、造孔剤としては、例えば、グラファイト、小麦粉、澱粉、フェノール樹脂、又はポリエチレンテレフタレート等を挙げることができる。なお、これら添加剤は、目的に応じて1種又は2種以上混合させて含有させることができる。
【0022】上記セラミックス原料を主成分とする材料は、例えば、セラミックス原料にバインダー等の所望の添加物を添加したものに、水等の媒体を所定量混合した後、加圧ニーダー、真空土練機等で混練して調製すればよい。
【0023】また、本発明において、ハニカム状の成形体を作製する方法については特に制限はなく、例えば、押出し成形方法、プレス成形方法等の方法で作製すればよい。但し、量産性に優れる点で、例えば、ラム式押出成形装置、又は2軸スクリュー式連続押出成形装置等の押出成形装置を用いて、押出成形することが好ましい。
【0024】また、本発明においては、ハニカム構造体の隔壁厚さ、セル密度、セル形状等についても特に制限はなく、用途に応じて好ましい範囲のものとすればよい。もっとも、本発明の製造方法で得られるハニカム構造体は、隔壁強化部が、他の一般部とほぼ同等の隔壁厚さを有し、圧力損失を増大させることなく、耐エロージョン性を向上させることができるという利点を有するため、例えば、隔壁厚さ0.1mm以下の薄壁のハニカム構造体とする場合に、本発明の製造方法を適用することが特に好ましい。
【0025】本発明においては、次に、予め、ハニカム状の成形体の少なくとも一部に、後述する乾燥又は焼成により消失可能な浸透剤を含浸させる。
【0026】ここで、本発明における「浸透剤」は、自らは、隔壁内部へ浸透可能であり、後述する隔壁強化剤を付着した際には、当該隔壁強化剤の隔壁内部への浸透を抑制し得るものである。また、「乾燥又は焼成により消失可能」とは、後述する乾燥又は焼成の際に、気体化して隔壁内部に殆ど残存することなく外部に放出される、という意味である。
【0027】従って、本発明における「浸透剤」は、後述する乾燥又は焼成の際の条件下で気体化して、それ自体は殆ど緻密化に寄与しないものであることを要し、具体的には、乾燥及び焼成により、無機酸化物や金属成分を浸透剤の全質量に対して30質量%以上生成しないものが好ましい。
【0028】本発明における浸透剤としては、例えば、トルエン若しくはキシレン等の芳香族炭化水素、石油エーテル若しくはケロシン等の脂肪族炭化水素、灯油、軽油若しくはワックス等の石油系炭化水素、イソプロピルアルコール、ラウリルアルコール、若しくはブタノール等のアルコール類、又は絶対粘度100mPa・s未満のジメチルシリコーンオイル等の1種又はこれらを2種以上含有する疎水性化合物からなるものを挙げることができる。
【0029】本発明において用いられる浸透剤は、乾燥により揮発して、焼成時の発熱及び熱応力が低減できる点で、高揮発性のものが好ましく、上記化合物の中でも、灯油、軽油等の石油系炭化水素、又は絶対粘度100mPa・s未満のジメチルシリコーンオイルの少なくとも1種を主成分とする疎水性化合物が好ましい。また、バインダーとして、水溶性有機バインダーを用いる場合には、バインダーの溶解及び膨潤を防止して、セルよれ等の隔壁変形を低減するために、疎水性のものが好ましく、灯油、軽油等の石油系炭化水素、絶対粘度100mPa・s未満のジメチルシリコーンオイル、又は芳香族炭化水素の少なくとも1種を主成分とする疎水性化合物が好ましい。
【0030】また、絶対粘度100mPa・s未満のジメチルシリコーンオイルの具体的な市販品としては、例えば、ジメチルシリコーンオイルKF96−50CS(信越化学工業株式会社製/粘度:50mPa・s)等を挙げることができる。
【0031】なお、本発明においては、絶対粘度100mPa・s未満のジメチルシリコーンオイル以外のシリコーンオイルであっても、乾燥及び焼成により生成されるSiO量が、浸透剤の全質量に対して、30質量%未満のものであれば浸透剤として用いることができる。また、そのようなシリコーンオイルとしては、例えば、メチルフェニルシリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、フェノール変性シリコーンオイル、片末端反応性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アルキル変性シリコーンオイル、又は高級脂肪酸エステル変性シリコーンオイル等のうち、後述する乾燥及び焼成により、SiOが浸透剤の全質量に対して30質量%以上生成しない各種シリコーンオイルを挙げることができる。
【0032】本発明においては、このような浸透剤は、後述する隔壁強化剤を付着する部分を含むハニカム状の成形体の少なくとも一部に含浸させればよく、例えば、成形体全体に浸透剤を含浸させてもよい。
【0033】また、本発明においては、浸透剤を必ずしも隔壁の心材部分まで含浸させる必要はなく、例えば、数秒程度、成形体の一部又は全体を浸透剤中に含浸させればよい。
【0034】また、本発明においては、次に述べる隔壁強化剤が、隔壁表面に存在する浸透剤により付着を妨げられないように、浸透剤の含浸後、隔壁の最表面に存在する浸透剤を除去することが好ましい。この際、当該除去工程としては、例えば、常温〜100℃程度の圧縮空気を数秒〜数分程度の短時間吹付けることを挙げることができる。
【0035】本発明においては、次に、ハニカム状の成形体の浸透剤を含浸させた部分の少なくとも一部に、隔壁強化剤を付着する。
【0036】ここで、本明細書中、「隔壁強化剤」とは、隔壁中の気孔を低減する成分を含むもの総てを意味する。
【0037】本発明における隔壁強化剤としては、例えば、隔壁の細孔内に侵入して細孔の容積を低下させるもの、或いは燃焼により無機酸化物を生成し、この無機酸化物が隔壁を構成するセラミックスの融点を低下させて、焼成時に隔壁の特定個所を溶融させることにより気孔を低減するものを挙げることができる。
【0038】また、後者の隔壁強化剤としては、均一な耐エロージョン性(均一に緻密化されている)を有するハニカム構造体を精度よく形成することができる点で、液状疎水性化合物を隔壁強化成分とするもの、より具体的には、隔壁強化成分が、Si、Ti、Mg、及びAlよりなる群から選ばれる少なくとも1種の元素を構造中に有する液状疎水性化合物からなるものが好ましい。なお、隔壁強化剤が、当該液状疎水性化合物からなる場合には、一般に隔壁内部への浸入が容易となるが、本発明においては、前述したように、予め隔壁に浸透剤を含浸させており、隔壁内への浸入を充分に抑制することができる。
【0039】本発明において、Ti又はAlを構造中に有する化合物としては、例えば、アセトアルコキシアルミニウムジイソプロピレート等のアルミネートアルコキシオリゴマー、又はカップリング剤として用いられるチタネートアルコキシオリゴマー等が好ましい。
【0040】また、Siを構造中に有する化合物としては、シロキサン結合を有する化合物等が好ましく、例えば、不揮発性シリコーンオイル、シリコーンワニス、又はアルコキシオリゴマーの少なくとも1種を含有するものが好ましい。
【0041】ここで、本願明細書において「不揮発性シリコーンオイル」とは、焼成の際に、SiOが、シリコーンオイルの全質量に対して30質量%以上残存するシリコーンオイルを意味する。
【0042】具体的には、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、フェノール変性シリコーンオイル、片末端反応性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、アルキル変性シリコーンオイル、又は高級脂肪酸エステル変性シリコーンオイル等のうち、後述する焼成により、隔壁中にSiOとして、30質量%以上が残存するものを挙げることができる。
【0043】本発明においては、中でも、SiOとして隔壁中に残存する率が大きく、隔壁の緻密化を起こし易い点で、メチルハイドロジェンシリコーンオイル、又は絶対粘度が100mPa・s以上のジメチルシリコーンオイル等が好ましい。なお、上記各種化合物は、1種単独で又は2種以上混合して隔壁強化剤を調製することができる。
【0044】本発明における隔壁強化剤は、前述した不揮発性シリコーンオイル等の隔壁強化成分に、既に浸透剤として説明した化合物、即ち、トルエン若しくはキシレン等の芳香族炭化水素、石油エーテル若しくはケロシン等の脂肪族炭化水素、灯油若しくは軽油等の石油系炭化水素、イソプロピルアルコール、ラウリルアルコール、若しくはブタノール等のアルコール類、又は揮発性シリコーンオイル等の1種又は2種以上からなるものを希釈液として混合してもよい。これら化合物により希釈することで、隔壁の緻密化の度合いを任意にコントロールすることができ、しかも、隔壁強化剤の粘度を任意に調整することができるため、隔壁強化剤の均一な付着が容易となる。
【0045】また、本発明においては、希釈剤が急速に揮発することにより、残留した隔壁強化成分の隔壁内での移動を抑制できることからも、上記の各種化合物からなる希釈剤の添加は好ましい。
【0046】また、このような希釈剤と、メチルハイドロジェンシリコーンオイル(MHSO)等の隔壁強化成分との混合比(隔壁強化成分/希釈成分)は、10/90〜75/25(質量比)であることが好ましく、15/85〜50/50(質量比)であることがより好ましく、25/75〜50/50(質量比)であることが更に好ましく、30/70〜50/50(質量比)であることが特に好ましい。混合比がこの範囲であれば、隔壁強化剤の均一な付着が容易な粘度が得られ、かつ隔壁強化部が存する部位の外形寸法とその他の一般部が存する部位との外形寸法較差を殆ど生じさせることなく、耐エロージョン性に優れるハニカム構造体を得ることができる。
【0047】本発明においては、上記のように調製される隔壁強化剤は、当該隔壁強化剤を隔壁に均一の厚さで付着させることが容易な点で、絶対粘度1〜10000mPa・sのものが好ましく、絶対粘度10〜1000mPa・sのものがより好ましい。
【0048】また、本発明における隔壁強化剤は、セラミックス原料の種類に応じて、適切なものを選択することが好ましく、例えば、コージェライト化原料を主成分とする材料では、シリコーンオイル等のSiを構造中に有する化合物等が好ましい。
【0049】また、本発明において、隔壁強化剤を隔壁に付着させる際には、前述した浸透剤が含浸されている隔壁部分に付着することに留意することの他は、特に制限はなく、その用途に応じて、適切な部分に付着すればよい。但し、ハニカム構造体を触媒担体として、排ガス経路に設置した場合には、通常、当該ハニカム構造体の排ガス導入側のセル開口端部に存在する隔壁で集中的にエロージョン現象が起こるため、少なくともハニカム状の成形体のセル開口端部に存在する隔壁を含んで、付着することが好ましい。
【0050】本発明においては、隔壁強化剤の付着方法について特に制限はなく、例えば、充分量の隔壁強化剤中に、成形体の一部又は全体を浸すディッピング法、又はスプレーを用いて隔壁強化剤を成形体の一部又は全体に塗布するスプレー法等を挙げることができ、隔壁強化部を設ける領域を任意にコントロールすることが容易な点で、前者のディッピング法が好ましい。
【0051】次に、本発明においては、隔壁強化剤を付着させたハニカム状の成形体を、必要に応じて乾燥後、1回の焼成工程により、基材の焼成と隔壁強化部の形成を同時に行う。
【0052】本発明においては、成形体を、必ずしも焼成前に乾燥する必要はなく、成形体を直ちに焼成することもできる。但し、浸透剤、又は隔壁強化剤中に揮発成分を含む場合には、焼成時の発熱及び熱応力が低減できる点で、成形体を乾燥後に焼成することが好ましい。また、乾燥方法としては、例えば、送風乾燥、熱風乾燥、又はマイクロ波乾燥等を挙げることができ、乾燥条件は、浸透剤、成形体を構成する材料及び隔壁強化剤の種類に応じて、適宜所望の条件を選択すればよい。
【0053】また、焼成する際の条件については、成形体を構成する材料及び隔壁強化剤の種類に応じて、適宜所望の条件を選択することが好ましく、例えば、成形体がコージェライト化原料を主成分とし、隔壁強化剤が、シリコーンオイル等のSiを構造中に有する化合物を主成分とする場合は、1300〜1500℃で焼成すればよい。
【0054】以上、本発明の製造方法について各工程毎に説明したが、本発明の製造方法では、熱容量及び圧力損失が小さく、かつ耐エロージョン性に優れるハニカム構造体を、焼成による隔壁や外壁の損傷、及び隔壁強化部とその他の隔壁一般部間での外形寸法較差を殆ど生じることなく1回の焼成工程により製造することができ、高生産性及び製品の大幅な低コスト化を達成できるものである。
【0055】
【実施例】以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、各実施例及び比較例で得られたハニカム構造体について、以下のようにして評価した。
【0056】
(1)隔壁強化部及び一般部の気孔率
各実施例及び比較例により得られたハニカム構造体について、図1に示すように、ハニカム構造体の一のセル開口端部に存する隔壁(隔壁強化部)について、当該端面のほぼ全面である70cmの範囲で切出して隔壁強化部の試料とし、ハニカム構造体のセル開口端面から流路方向に9cmの位置でハニカム構造体を切断して得られる断面に存する隔壁(一般部)について、当該断面のほぼ全面である70cmの範囲で切出して一般部の試料とした。気孔率の測定は、各試料について水銀ポロシメーターにより細孔容積を測定し、コージェライトの真比重を2.52g/ccとして求めた。
【0057】
(2)寸法較差
各実施例及び比較例による製造方法でハニカム構造体を10個ずつ製造し、各ハニカム構造体について、セル開口端面から軸方向に9cmの位置におけるハニカム構造体(隔壁の一般部が存する部位)の外径と、セル開口端部の位置におけるハニカム構造体(隔壁強化部が存する部位)の外径とを測定し、前者に対する後者の寸法の差を求めた。
【0058】
(3)焼成時におけるクラック発生率
各実施例及び比較例による製造方法でハニカム構造体を10個ずつ製造した際に、焼成工程終了後、各ハニカム構造体について、クラック等の欠陥が発生しているかを目視観察し、その発生率を求めた。
【0059】
(実施例1)
コージェライト化原料からなるセラミックス原料100質量部に対して、メチルセルロース8質量部、ラウリン酸カリ石鹸0.5質量部、ポリエーテル2質量部、水28質量部を混合したものを、連続押出し成形機に投入し、ハニカム状の成形体を作製した。
【0060】次に、得られた成形体を、灯油(室温)に、セル開口端面から軸方向に8mmの深さで3秒間浸漬して、セル開口端部に存在する隔壁に灯油を含浸させた。また、その後、室温の圧縮空気を送風して、隔壁表面に過剰に付着した灯油を排除した後、50℃の送風乾燥により、成形体を30秒乾燥した。
【0061】次に、灯油をセル開口端部に存在する隔壁に含浸させた成形体を、メチルハイドロジェンシリコーンオイル(信越化学工業株式会社製、商品名:KF99、絶対粘度:20mPa・s)20質量%と、揮発性ジメチルシリコーンオイル(信越化学工業株式会社製、商品名:KF96L−0.65CS、絶対粘度:0.65mPa・s)80質量%とを混合した隔壁強化剤に、セル開口端面から軸方向に5mmの深さで浸漬して、基材のセル開口端部に存在する隔壁に隔壁強化剤を付着させた。また、その後、室温の圧縮空気を送風して、過剰に付着した隔壁強化剤を排除した後、50℃の送風乾燥により、成形体を30秒乾燥した。
【0062】次に、セル開口端部に存在する隔壁に隔壁強化剤を付着させた成形体を、1400℃で4時間焼成して、隔壁厚さ50μm、直径100mm、高さ100mmで、四角セルを140セル/cmの密度で有する、開口率88%の円柱状のハニカム構造体を製造した。
【0063】
(実施例2〜4)
成形体に予め含浸させる浸透剤として、それぞれ液状パラフィン(日本精鑞株式会社製、商品名:SCP0018)、パラフィンワックス(日本精鑞株式会社製、商品名:PW115、温度:60℃)、絶対粘度が50mPa・sのジメチルシリコーンオイル(信越化学工業株式会社製、商品名:KF96−50CS)を用いたこと以外は実施例1と同様にして、ハニカム構造体を製造した。
【0064】
(実施例5)
隔壁強化剤として、メチルハイドロジェンシリコーンオイル(信越化学工業株式会社製、商品名:KF99、絶対粘度:20mPa・s)30質量%と、揮発性ジメチルシリコーンオイル(信越化学工業株式会社製、商品名:KF96L−0.65CS、絶対粘度:0.65mPa・s)70質量%とを混合したものを用いたこと以外は実施例1と同様にして、ハニカム構造体を製造した。
【0065】
(実施例6)
成形体に予め含浸させる浸透剤として、液状パラフィン(日本精鑞株式会社製、商品名:SCP0018)を用いたこと、並びに隔壁強化剤として、メチルハイドロジェンシリコーンオイル(信越化学工業株式会社製、商品名:KF99、絶対粘度:20mPa・s)30質量%と、揮発性ジメチルシリコーンオイル(信越化学工業株式会社製、商品名:KF96L−0.65CS、絶対粘度:0.65mPa・s)70質量%とを混合したものを用いたこと以外は実施例1と同様にして、ハニカム構造体を製造した。
【0066】
(比較例1)
成形体に予め浸透剤を含浸させずに、直接、隔壁強化剤を付着させたこと以外は、実施例1と同様にしてハニカム構造体を製造した。
【0067】
(評価)
浸透剤及び隔壁強化剤を含浸又は付着させずに焼成した隔壁の一般部の気孔率は、27〜28%であったのに対し、実施例1〜6及び比較例1の何れでも、隔壁強化剤を付着させたセル開口端部に存在する隔壁強化部の気孔率は20〜23.5%と低くなり、緻密化していた。
【0068】但し、比較例1で得られたハニカム構造体では、隔壁強化部が存する位置のハニカム構造体の外径が、隔壁の一般部が存する位置のハニカム構造体の外径に対し、0.5mm以上小さくなっており、大きな寸法較差が認められた。また、焼成クラックの発生率も50%と大きかった。
【0069】これに対し、実施例1〜6で得られたハニカム構造体では、隔壁強化部が存する位置のハニカム構造体の外径が、隔壁の一般部が存する位置のハニカム構造体の外径に対し、最大でも0.2mmと殆ど寸法較差は認められず、高い円筒度を有していた。また、クラックの発生率も10%以下と小さかった。
【0070】また、浸透剤として、パラフィンワックスを用いた実施例3では、クラックの発生率が10%であったが、浸透剤として、灯油、液状パラフィン、又は絶対粘度50mPa・sのジメチルシリコーンオイルを用いた実施例1、2、又は4では、クラックの発生率が0%と全くクラックの発生が認められなかった。
【0071】更に、隔壁強化剤として、メチルハイドロジェンシリコーンオイル(絶対粘度:20mPa・s)と、揮発性ジメチルシリコーンオイル(絶対粘度:0.65mPa・s)とを、20:80の割合で混合した実施例1,2に比べ、30:70の割合で混合した実施例5,6では、隔壁強化部の気孔率が3.0%小さくなり、より緻密化されていることが認められた。用いた浸透剤、及び隔壁強化剤、並びに評価結果を表1にまとめて示す。
【0072】
【表1】

Figure 2004074593
【0073】
【発明の効果】以上説明したように、本発明によれば、熱容量及び圧力損失が小さく、かつ耐エロージョン性に優れるハニカム構造体を、高生産性及び製品の大幅な低コスト化を達成しながら、焼成時の隔壁や外壁の損傷、及び隔壁強化部の存する部位とその他の隔壁一般部とで外形寸法較差を殆ど生じることなく製造することができる。
【図面の簡単な説明】
【図1】本発明の製造方法において、各工程における隔壁及びハニカム構造体全体の状態を模式的に示す説明図である。
【図2】本発明の製造方法において、焼成後に得られるハニカム構造体全体の外形を模式的に示す説明図である。
【図3】従来の製造方法において、各工程における隔壁及びハニカム構造体全体の状態を模式的に示す説明図である。
【図4】従来の製造方法において、焼成後に得られるハニカム構造体全体の外形を模式的に示す説明図である。
【符号の説明】
1…一般部、2…隔壁強化部、4…気孔、6…心材部分、7…表層部分、10…成形体。[0001]
[0001] The present invention relates to a method for manufacturing a honeycomb structure. More specifically, the present invention relates to a method for manufacturing a honeycomb structure in which a partition reinforcing agent is attached to at least a part of a partition to reinforce a part of the partition and improve erosion resistance of the honeycomb structure.
[0002]
2. Description of the Related Art A honeycomb structure widely used as a catalyst carrier for purifying exhaust gas, etc., is required to have higher purification performance in order to comply with stricter exhaust gas regulations year by year. Due to demands for lower fuel consumption, higher output, etc., reduction of pressure loss is also required.
[0003] Under such circumstances, by reducing the thickness of the partition walls of the honeycomb structure, the opening ratio at the cell opening end face of the honeycomb structure is increased to reduce the pressure loss and reduce the heat capacity of the partition walls. Therefore, there is a growing movement to activate the catalyst early after the engine is started and to improve the purification performance.
On the other hand, with the progress of such thinning of the honeycomb structure, various foreign substances mixed in the exhaust gas collide with the partition existing at the cell opening end of the honeycomb structure, and the partition is damaged. The erosion phenomenon is a new problem.
However, in order to solve this problem, there has been proposed a honeycomb structure in which a partition already existing at an end of a cell opening is provided with a partition reinforcing portion whose strength is improved as compared with the other partition (see, for example, Japanese Patent Application Laid-Open No. H11-157556). JP-A-2000-51710, etc.), and various methods for providing a partition reinforcing portion have been studied.
Conventionally, as a method of manufacturing a honeycomb structure having a partition wall reinforcing portion, a honeycomb-shaped formed body containing a cordierite-forming raw material as a main component is prepared, and a cell opening end of the formed body is cordierite-coated. There has been proposed a method of immersing in a mixed solution in which talc, which is a melting point lowering component, and a solvent are mixed, followed by drying and firing (the same publication). This method uses a local melting due to a decrease in the melting point of cordierite, and reduces the pores of the partition existing at the cell opening end to form a partition reinforcing portion, which involves increasing the thickness of the partition. Therefore, the erosion resistance can be improved without increasing the pressure loss of the honeycomb structure.
However, in this manufacturing method, as shown in FIGS. 3 and 4, the pores 4 are reduced by melting the partition wall material to form the partition wall reinforcing portions 2, and inevitably, the partition reinforcing portions 2 need to be formed. The shrinkage during firing was increased. For this reason, in this manufacturing method, during firing, the difference in shrinkage ratio between the partition reinforcing portion 2 and the other general partition 1 increases, and the tensile stress increases between the two portions. In some cases, cracks were formed on the partition walls and the outer wall.
Further, in this manufacturing method, the partition wall reinforcing portion 2 has a higher shrinkage rate during firing than the other general partition wall portions 1, and as a result, the honeycomb structure is formed only at the cell opening end where the partition reinforcing portion 2 is provided. Since the external dimensions of the body were reduced and the cylindricity was reduced, local stress concentration was likely to occur during canning.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to reduce the pressure loss and the heat capacity without increasing the heat capacity. A honeycomb structure having excellent erosion resistance can be manufactured without causing damage to the partition walls and outer walls of the honeycomb structure due to sintering, and almost no external dimension difference between the partition reinforcing portion and other general partition portions. An object of the present invention is to provide a method for manufacturing a structure.
[0010]
Means for Solving the Problems The present inventor has conducted intensive studies in view of the above-mentioned problems, and as a result, after impregnating a desired portion of a honeycomb-shaped molded body with a penetrating agent that can be eliminated by drying or firing. It has been found that the above-mentioned problems can be solved by attaching a partition wall reinforcing agent and then firing the same, thereby completing the production method of the present invention.
That is, according to the present invention, a honeycomb-shaped formed body having a plurality of partition walls is produced from a material mainly composed of a ceramic raw material, and a partition wall reinforcing agent is attached to at least a part of the formed body. A method for manufacturing a honeycomb structure to be fired, wherein at least a part of the molded body is dried or impregnated with a penetrant that can be eliminated by firing, and then at least a part of the part impregnated with the penetrant, An object of the present invention is to provide a method for manufacturing a honeycomb structure, which comprises applying a partition wall reinforcing agent and then firing.
The penetrant used in the present invention is preferably a hydrophobic compound containing at least one petroleum hydrocarbon compound or dimethyl silicone oil having an absolute viscosity of less than 100 mPa · s as a main component. In the present invention, the main component of the partition wall reinforcing agent is preferably a compound that generates an inorganic oxide by burning, and at least one kind selected from the group consisting of Si, Ti, Mg, and Al It is preferably a hydrophobic liquid compound having an element in the structure. The hydrophobic liquid compound having Si in the structure is preferably at least one of a nonvolatile silicone oil, a silicone varnish, and an alkoxy oligomer.
In the present invention, it is preferable that the material containing a ceramic raw material as a main component contains a water-soluble organic binder because the effect is particularly large.
The water-soluble organic binder includes at least one water-soluble compound selected from the group consisting of hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, and polyvinyl acetal. be able to.
[0015]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below.
In the production method of the present invention, as described above, a honeycomb-shaped formed body having a plurality of partition walls is produced from a material mainly composed of a ceramic raw material, and at least a part of the formed body is dried, Alternatively, after impregnating with a penetrating agent that can be eliminated by baking, a partition wall reinforcing agent is attached to at least a part of the portion impregnated with the permeating agent, and then baking is performed.
According to the present invention, the firing of the entire honeycomb structure and the formation of the partition wall reinforcing portion can be simultaneously performed by one firing, thereby greatly improving the productivity and reducing the cost of the product. Can be.
In addition, in the production method according to the present invention, the penetration of the partition wall reinforcing agent into the inside of the partition wall is prevented by the presence of the penetrating agent impregnated in the molded body in advance, and the partition wall reinforcing component exists near the partition wall surface. In the state, drying (performed if necessary) and firing are performed. For this reason, as shown in FIG. 1, at the time of firing, only the surface layer portion 7 of the partition wall reinforcing portion 2 is densified as compared with the general portion 1 constituting the other portion of the partition wall, and the core material portion 6 of the partition wall reinforcing portion 2 has a higher density. It is densified almost as much as a general part. Therefore, according to the production method of the present invention, as shown in FIG. 2, the shrinkage difference between the partition reinforcing portion 2 and the general portion 1 during firing is extremely small, and cracks and the like occur during firing and the partition reinforcing portion 2 The difference between the external dimensions of the honeycomb structure where the general structure 1 exists and the external dimensions of the honeycomb structure where the general portion 1 of the partition wall can be greatly reduced. Hereinafter, each step will be specifically described.
In the present invention, first, a honeycomb-shaped formed body having a plurality of partition walls is produced from a material mainly composed of a ceramic raw material.
In the present invention, the ceramic raw material is not particularly limited. For example, silicon carbide, boron carbide, titanium carbide, zirconium carbide, silicon nitride, boron nitride, aluminum nitride, alumina, zirconia, mullite, cordierite raw material, At least one selected from the group consisting of aluminum titanate and sialon can be used.
In the present invention, if necessary, other additives may be contained in the raw material. For example, a binder, a crystal growth aid, a dispersant, a pore-forming agent, or the like may be contained. Examples of the binder include water-soluble organic binders such as hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, and polyvinyl acetal. Examples of the crystal growth aid include, for example, magnesia, silica, yttria, and iron oxide, and examples of the dispersant include ethylene glycol, dextrin, fatty acid soap, and polyalcohol. it can. Examples of the pore-forming agent include graphite, wheat flour, starch, phenolic resin, and polyethylene terephthalate. These additives can be contained alone or in combination of two or more depending on the purpose.
The material mainly composed of the above-mentioned ceramic raw material is, for example, a material obtained by adding a desired additive such as a binder to the ceramic raw material, mixing a predetermined amount of a medium such as water, and then pressing the mixture with a pressure kneader and a vacuum kneader. What is necessary is just to knead | mix and prepare by a machine etc.
In the present invention, there is no particular limitation on a method for producing a honeycomb-shaped molded body, and it may be produced by, for example, an extrusion molding method, a press molding method, or the like. However, in terms of excellent mass productivity, it is preferable to perform extrusion molding using, for example, an extrusion molding device such as a ram extrusion molding device or a twin screw continuous extrusion molding device.
In the present invention, the thickness of the partition walls, the cell density, the cell shape and the like of the honeycomb structure are not particularly limited, and may be in a preferable range according to the application. However, in the honeycomb structure obtained by the manufacturing method of the present invention, the partition reinforcing portion has a partition thickness almost equal to that of other general portions, and improves erosion resistance without increasing pressure loss. Therefore, it is particularly preferable to apply the manufacturing method of the present invention to a thin-walled honeycomb structure having a partition wall thickness of 0.1 mm or less, for example.
Next, in the present invention, at least a part of the honeycomb formed body is impregnated with a penetrating agent which can be eliminated by drying or baking described later.
Here, the "penetrating agent" in the present invention is capable of penetrating into the inside of the partition wall itself, and when the partition wall reinforcing agent described later is adhered, the penetration of the partition wall reinforcing agent into the partition wall is suppressed. Can be done. Further, “can be eliminated by drying or baking” means that it is gasified and released to the outside with almost no remaining inside the partition walls during drying or baking described below.
Therefore, the "penetrating agent" in the present invention is required to be gasified under the conditions at the time of drying or baking, which will be described later, and to contribute little to densification itself. It is preferable that the inorganic oxide and the metal component are not generated in an amount of 30% by mass or more based on the total mass of the penetrant by drying and firing.
Examples of the penetrant in the present invention include aromatic hydrocarbons such as toluene or xylene, aliphatic hydrocarbons such as petroleum ether or kerosene, petroleum hydrocarbons such as kerosene, light oil or wax, isopropyl alcohol, lauryl. Examples thereof include alcohols, alcohols such as butanol, dimethylsilicone oil having an absolute viscosity of less than 100 mPa · s, and a hydrophobic compound containing two or more of these.
The penetrant used in the present invention is preferably a highly volatile one in that it can be volatilized by drying to reduce heat generation and thermal stress during firing, and among the above compounds, petroleum such as kerosene and gas oil is preferable. Hydrophobic compounds containing at least one of hydrocarbons and dimethyl silicone oil having an absolute viscosity of less than 100 mPa · s are preferred. When a water-soluble organic binder is used as the binder, hydrophobic binders are preferable in order to prevent dissolution and swelling of the binder and to reduce partition wall deformation such as cell distortion. Hydrophobic compounds containing at least one of hydrocarbons, dimethyl silicone oil having an absolute viscosity of less than 100 mPa · s, and aromatic hydrocarbons as a main component are preferable.
Specific examples of commercially available dimethyl silicone oil having an absolute viscosity of less than 100 mPa · s include, for example, dimethyl silicone oil KF96-50CS (manufactured by Shin-Etsu Chemical Co., Ltd./viscosity: 50 mPa · s). Can be.
In the present invention, even if a silicone oil other than dimethyl silicone oil having an absolute viscosity of less than 100 mPa · s is used, the SiO 2 If the amount is less than 30% by mass based on the total mass of the penetrant, it can be used as a penetrant. Examples of such silicone oils include methylphenyl silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carbinol-modified silicone oil, methacryl-modified silicone oil, mercapto-modified silicone oil, and phenol-modified silicone oil. Silicone oil, one-end reactive silicone oil, heterofunctional group-modified silicone oil, polyether-modified silicone oil, alkyl-modified silicone oil, or higher fatty acid ester-modified silicone oil. 2 Various silicone oils which do not produce 30% by mass or more with respect to the total mass of the penetrant.
In the present invention, such a penetrating agent may be impregnated into at least a part of a honeycomb-shaped formed body including a portion to which a partition wall reinforcing agent to be described later is adhered. May be impregnated.
In the present invention, it is not always necessary to impregnate the core material of the partition wall with the penetrating agent. For example, a part or the whole of the molded body may be impregnated with the penetrating agent for about several seconds.
Further, in the present invention, after the impregnating agent is impregnated with the penetrating agent present on the outermost surface of the partition wall, the partition wall reinforcing agent described below is not impeded by the penetrating agent present on the partition wall surface. Removal is preferred. At this time, as the removal step, for example, blowing compressed air at room temperature to about 100 ° C. for a short time of about several seconds to several minutes can be mentioned.
Next, in the present invention, a partition wall reinforcing agent is attached to at least a part of a portion of the honeycomb formed body impregnated with the penetrant.
Here, in the present specification, the term "partition reinforcing agent" means any substance containing a component that reduces pores in the partition.
As the partition wall reinforcing agent in the present invention, for example, those which enter the pores of the partition walls to reduce the volume of the pores, or generate inorganic oxide by combustion, and this inorganic oxide constitutes the partition walls One that lowers the melting point of the ceramic to be formed and melts a specific portion of the partition wall at the time of firing to reduce pores can be cited.
As the latter partition wall reinforcing agent, a liquid hydrophobic compound is used to strengthen a partition wall in that a honeycomb structure having uniform erosion resistance (uniformly densified) can be accurately formed. The component, more specifically, the partition reinforcing component is preferably a liquid hydrophobic compound having in its structure at least one element selected from the group consisting of Si, Ti, Mg, and Al. In addition, when the partition wall reinforcing agent is made of the liquid hydrophobic compound, it is generally easy to penetrate into the partition walls. However, in the present invention, as described above, the partition walls are impregnated with a penetrant in advance. In addition, it is possible to sufficiently suppress intrusion into the partition walls.
In the present invention, the compound having Ti or Al in the structure is preferably, for example, an aluminate alkoxy oligomer such as acetoalkoxyaluminum diisopropylate, or a titanate alkoxy oligomer used as a coupling agent.
As the compound having Si in the structure, a compound having a siloxane bond is preferable, and for example, a compound containing at least one of a non-volatile silicone oil, a silicone varnish, and an alkoxy oligomer is preferable.
Here, in the present specification, the term “non-volatile silicone oil” refers to SiO 2 when firing. 2 Means silicone oil remaining at 30% by mass or more with respect to the total mass of silicone oil.
Specifically, for example, dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, carboxyl-modified silicone oil, carbinol-modified silicone oil, methacryl-modified silicone oil , Mercapto-modified silicone oil, phenol-modified silicone oil, one-end reactive silicone oil, heterofunctional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, alkyl-modified silicone oil, or higher fatty acid ester-modified silicone oil, etc. Among them, the baking to be described later causes SiO 2 Examples include those in which 30% by mass or more remains.
In the present invention, among others, SiO 2 From the viewpoint that the rate of remaining in the partition walls is large and the partition walls are easily densified, methyl hydrogen silicone oil or dimethyl silicone oil having an absolute viscosity of 100 mPa · s or more is preferable. In addition, the above-mentioned various compounds can be used alone or in combination of two or more to prepare a partition wall reinforcing agent.
The partition wall reinforcing agent in the present invention may be added to the partition wall reinforcing component such as the above-mentioned non-volatile silicone oil or the like by the compounds already described as penetrants, ie, aromatic hydrocarbons such as toluene or xylene, petroleum ether or kerosene. Mix one or more diluents consisting of aliphatic hydrocarbons, petroleum hydrocarbons such as kerosene or light oil, alcohols such as isopropyl alcohol, lauryl alcohol, or butanol, or volatile silicone oils. You may. By diluting with these compounds, the degree of densification of the partition walls can be arbitrarily controlled, and the viscosity of the partition wall reinforcing agent can be arbitrarily adjusted, so that uniform adhesion of the partition wall reinforcing agent is facilitated. Become.
In the present invention, the addition of a diluent composed of the above-mentioned various compounds is preferable because the diluent volatilizes rapidly and the migration of the remaining partition wall strengthening component in the partition walls can be suppressed.
The mixing ratio of such a diluent to a partition reinforcing component such as methyl hydrogen silicone oil (MHSO) (partition reinforcing component / diluting component) is 10/90 to 75/25 (mass ratio). Is preferably, 15/85 to 50/50 (mass ratio), more preferably 25/75 to 50/50 (mass ratio), and 30/70 to 50/50 (mass ratio). Is particularly preferable. When the mixing ratio is within this range, a viscosity that facilitates uniform adhesion of the partition wall reinforcing agent can be obtained, and a difference in external dimensions between a portion where the partition wall reinforcing portion exists and a portion where other general portions exist is almost caused. Without this, a honeycomb structure having excellent erosion resistance can be obtained.
In the present invention, the partition wall reinforcing agent prepared as described above has an absolute viscosity of 1 to 10,000 mPa · s, since the partition wall reinforcing agent can be easily adhered to the partition walls with a uniform thickness. Are preferable, and those having an absolute viscosity of 10 to 1000 mPa · s are more preferable.
Further, it is preferable to select an appropriate partition wall reinforcing agent according to the type of the ceramic raw material in the present invention. Are preferred in the structure.
Further, in the present invention, when the partition wall reinforcing agent is attached to the partition walls, there is no particular limitation except that the partition walls are impregnated with the penetrant as described above. What is necessary is just to adhere to an appropriate part according to a use. However, when the honeycomb structure is provided in the exhaust gas path as a catalyst carrier, the erosion phenomenon occurs intensively at the partition present at the cell opening end of the honeycomb structure on the exhaust gas introduction side. It is preferable that the adhesive is adhered including the partition existing at the cell opening end of the shaped article.
In the present invention, the method of adhering the partition wall reinforcing agent is not particularly limited. For example, the partition wall reinforcing agent is immersed in a sufficient amount of the partition wall reinforcing agent by dipping a part or the whole of the molded article, or by spraying. The former dipping method is preferable in that it is easy to arbitrarily control the area where the partition wall reinforcing portion is provided, such as a spray method of applying the agent to a part or the whole of the molded body.
Next, in the present invention, after drying the honeycomb-shaped formed body to which the partition wall reinforcing agent is adhered, if necessary, the firing of the base material and the formation of the partition wall reinforcing portion are carried out by one firing step. Perform at the same time.
In the present invention, the molded article does not necessarily need to be dried before firing, and the molded article can be fired immediately. However, when a volatile component is contained in the penetrating agent or the partition wall reinforcing agent, it is preferable to fire the molded body after drying, since heat generation and thermal stress during firing can be reduced. In addition, examples of the drying method include blast drying, hot air drying, and microwave drying, and the drying conditions are appropriately determined according to the type of the penetrant, the material forming the molded body, and the partition wall reinforcing agent. What is necessary is just to select desired conditions.
As for the conditions for firing, it is preferable to appropriately select desired conditions in accordance with the material constituting the molded body and the type of the partition wall reinforcing agent. When the partition wall reinforcing agent is mainly composed of a compound having Si in its structure, such as silicone oil, the firing may be performed at 1300 to 1500 ° C.
As described above, the manufacturing method of the present invention has been described for each step. However, in the manufacturing method of the present invention, a honeycomb structure having a small heat capacity and a small pressure loss and having excellent erosion resistance can be obtained by firing a partition wall or an outer wall by firing. A product that can be manufactured by a single firing step with almost no damage and little difference in external dimensions between the partition wall reinforced part and other partition general parts, and can achieve high productivity and a significant cost reduction of the product. It is.
[0055]
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, about the honeycomb structure obtained by each Example and the comparative example, it evaluated as follows.
[0056]
(1) Porosity of partition wall reinforced part and general part
As shown in FIG. 1, with respect to the honeycomb structure obtained in each of the examples and the comparative examples, as shown in FIG. 2 Of the partition wall (general part) in a section obtained by cutting the honeycomb structure at a position 9 cm in the flow direction from the cell opening end face of the honeycomb structure in the flow path direction. Almost 70cm 2 Was cut out to obtain a general part sample. For the measurement of the porosity, the pore volume of each sample was measured with a mercury porosimeter, and the true specific gravity of cordierite was determined as 2.52 g / cc.
[0057]
(2) Dimensional difference
Ten honeycomb structures were manufactured by the manufacturing method according to each of the examples and the comparative examples. For each honeycomb structure, the honeycomb structure (the portion where the general portion of the partition wall exists) at a position 9 cm in the axial direction from the cell opening end face was used. The outer diameter and the outer diameter of the honeycomb structure (the portion where the partition wall reinforcing portion exists) at the position of the cell opening end were measured, and the difference between the former and the latter was determined.
[0058]
(3) Crack generation rate during firing
When ten honeycomb structures were manufactured by the manufacturing method according to each of the examples and the comparative examples, after the firing step was completed, each honeycomb structure was visually observed for occurrence of defects such as cracks, and the occurrence rate thereof. I asked.
[0059]
(Example 1)
A continuous extrusion molding machine was prepared by mixing 8 parts by mass of methylcellulose, 0.5 parts by mass of potassium laurate soap, 2 parts by mass of polyether, and 28 parts by mass of water with respect to 100 parts by mass of a ceramic raw material composed of cordierite-forming raw material. And a honeycomb-shaped formed body was produced.
Next, the obtained molded body was immersed in kerosene (room temperature) at a depth of 8 mm in the axial direction from the end face of the cell opening for 3 seconds to impregnate the partition existing at the end of the cell opening with kerosene. Was. Thereafter, compressed air at room temperature was blown to remove kerosene excessively adhering to the partition wall surface, and then the molded body was dried by blow drying at 50 ° C. for 30 seconds.
Next, a molded product in which kerosene was impregnated in a partition wall present at the cell opening end was filled with methyl hydrogen silicone oil (trade name: KF99, manufactured by Shin-Etsu Chemical Co., Ltd., absolute viscosity: 20 mPa · s). Cell partition end face mixed with 80% by mass of volatile dimethyl silicone oil (trade name: KF96L-0.65CS, absolute viscosity: 0.65 mPa · s, manufactured by Shin-Etsu Chemical Co., Ltd.) Then, the substrate was immersed in the axial direction at a depth of 5 mm to attach the partition wall reinforcing agent to the partition wall present at the cell opening end of the substrate. Further, after that, compressed air at room temperature was blown to remove excessively adhered partition wall reinforcing agents, and then the molded body was dried by blowing air at 50 ° C. for 30 seconds.
Next, the molded body obtained by adhering the partition wall reinforcing agent to the partition wall present at the cell opening end was fired at 1400 ° C. for 4 hours to obtain a rectangular cell having a partition wall thickness of 50 μm, a diameter of 100 mm, a height of 100 mm and a rectangular cell. Is 140 cells / cm 2 And a columnar honeycomb structure having an opening ratio of 88% having a density of.
[0063]
(Examples 2 to 4)
As a penetrant for impregnating the molded body in advance, liquid paraffin (manufactured by Nippon Seiro Co., Ltd., trade name: SCP0018), paraffin wax (manufactured by Nippon Seiro Co., Ltd., trade name: PW115, temperature: 60 ° C.), absolute viscosity Was used in the same manner as in Example 1 except that dimethyl silicone oil (trade name: KF96-50CS, manufactured by Shin-Etsu Chemical Co., Ltd.) of 50 mPa · s was used to manufacture a honeycomb structure.
[0064]
(Example 5)
30% by mass of methyl hydrogen silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF99, absolute viscosity: 20 mPa · s) and volatile dimethyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.) : KF96L-0.65CS, absolute viscosity: 0.65 mPa · s) A honeycomb structure was manufactured in the same manner as in Example 1 except that 70% by mass was used.
[0065]
(Example 6)
Liquid paraffin (manufactured by Nippon Seiro Co., Ltd., trade name: SCP0018) was used as a penetrating agent for impregnating the molded body in advance, and methyl hydrogen silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., product manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a partition wall reinforcing agent. Name: KF99, absolute viscosity: 20 mPa · s) 30% by mass, and volatile dimethyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF96L-0.65CS, absolute viscosity: 0.65 mPa · s) 70% by mass A honeycomb structure was manufactured in the same manner as in Example 1 except that a mixture of the above was used.
[0066]
(Comparative Example 1)
A honeycomb structure was manufactured in the same manner as in Example 1 except that the partition wall reinforcing agent was directly adhered to the molded body without impregnating the penetrant in advance.
[0067]
(Evaluation)
The porosity of the general portion of the partition wall fired without impregnating or adhering the penetrating agent and the partition wall reinforcing agent was 27 to 28%, whereas the partition wall reinforcement in each of Examples 1 to 6 and Comparative Example 1 was The porosity of the partition wall reinforced portion existing at the cell opening end to which the agent was attached was low at 20 to 23.5%, and the cell was dense.
However, in the honeycomb structure obtained in Comparative Example 1, the outer diameter of the honeycomb structure at the position where the partition wall reinforcing portion exists is smaller than the outer diameter of the honeycomb structure at the position where the general portion of the partition wall exists by 0%. 0.5 mm or more, and a large dimensional difference was recognized. The rate of occurrence of firing cracks was as large as 50%.
On the other hand, in the honeycomb structures obtained in Examples 1 to 6, the outer diameter of the honeycomb structure at the position where the partition reinforcing portion exists is the outer diameter of the honeycomb structure at the position where the general portion of the partition exists. On the other hand, the dimensional difference was hardly recognized at 0.2 mm at the maximum, and the cylindricity was high. The crack occurrence rate was as small as 10% or less.
In Example 3 in which paraffin wax was used as the penetrant, the crack generation rate was 10%. However, as the penetrant, kerosene, liquid paraffin, or dimethyl silicone oil having an absolute viscosity of 50 mPa · s was used. In Examples 1, 2, or 4 using No. 1, the crack generation rate was 0%, and no crack generation was observed.
Further, methyl hydrogen silicone oil (absolute viscosity: 20 mPa · s) and volatile dimethyl silicone oil (absolute viscosity: 0.65 mPa · s) are mixed at a ratio of 20:80 as a partition wall reinforcing agent. In Examples 5 and 6, which were mixed at a ratio of 30:70, as compared with Examples 1 and 2 described above, the porosity of the partition wall reinforcing portion was reduced by 3.0%, and it was confirmed that the partition wall was further densified. Table 1 shows the used penetrant, partition wall reinforcing agent, and evaluation results.
[0072]
[Table 1]
Figure 2004074593
[0073]
As described above, according to the present invention, a honeycomb structure having a small heat capacity and a small pressure loss and excellent in erosion resistance can be obtained while achieving high productivity and significantly lowering the cost of products. In addition, the partition wall and the outer wall at the time of firing are not damaged, and the partition wall reinforcing portion can be manufactured with almost no difference in external dimensions between the portion where the partition wall reinforcing portion is present and other general partition walls.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a state of a partition wall and a whole honeycomb structure in each step in a manufacturing method of the present invention.
FIG. 2 is an explanatory diagram schematically showing the outer shape of the entire honeycomb structure obtained after firing in the manufacturing method of the present invention.
FIG. 3 is an explanatory view schematically showing a state of a partition wall and an entire honeycomb structure in each step in a conventional manufacturing method.
FIG. 4 is an explanatory view schematically showing the outer shape of the entire honeycomb structure obtained after firing in a conventional manufacturing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... General part, 2 ... Partition reinforcement part, 4 ... Porosity, 6 ... Core material part, 7 ... Surface part, 10 ... Molded body.

Claims (7)

セラミックス原料を主成分とする材料により、複数の隔壁を有するハニカム状の成形体を作製し、該成形体の少なくとも一部に、隔壁強化剤を付着させた後、焼成するハニカム構造体の製造方法であって、
該成形体の少なくとも一部に、乾燥、又は該焼成により消失可能な浸透剤を含浸させた後、該浸透剤を含浸させた部分の少なくとも一部に、該隔壁強化剤を付着させ、その後、焼成することを特徴とするハニカム構造体の製造方法。
A method of manufacturing a honeycomb structure in which a honeycomb-shaped formed body having a plurality of partition walls is manufactured using a material mainly composed of a ceramic raw material, a partition wall reinforcing agent is attached to at least a part of the formed body, and then fired. And
After at least a part of the molded body is impregnated with a penetrating agent that can be dried or eliminated by the baking, the partition wall reinforcing agent is adhered to at least a part of the part impregnated with the penetrating agent, and thereafter, A method for manufacturing a honeycomb structure, comprising firing.
前記浸透剤が、石油系炭化水素化合物又は絶対粘度100mPa・s未満のジメチルシリコーンオイルの少なくとも1種を主成分とする疎水性化合物からなる請求項1に記載のハニカム構造体の製造方法。The method for manufacturing a honeycomb structure according to claim 1, wherein the penetrant comprises a hydrophobic compound mainly composed of at least one kind of a petroleum hydrocarbon compound or dimethyl silicone oil having an absolute viscosity of less than 100 mPa · s. 前記隔壁強化剤の主成分が、燃焼により無機酸化物を生成する化合物である請求項1に記載のハニカム構造体の製造方法。The method for manufacturing a honeycomb structure according to claim 1, wherein a main component of the partition wall reinforcing agent is a compound that generates an inorganic oxide by combustion. 前記隔壁強化剤の主成分が、Si、Ti、Mg、及びAlよりなる群から選ばれる少なくとも1種の元素を構造中に有する疎水性液状化合物である請求項3に記載のハニカム構造体の製造方法。The manufacturing method of the honeycomb structure according to claim 3, wherein a main component of the partition wall reinforcing agent is a hydrophobic liquid compound having at least one element selected from the group consisting of Si, Ti, Mg, and Al in a structure. Method. 前記疎水性液状化合物が、不揮発性シリコーンオイル、シリコーンワニス、又はアルコキシオリゴマーの少なくとも1種である請求項3に記載のハニカム構造体の製造方法。The method for producing a honeycomb structure according to claim 3, wherein the hydrophobic liquid compound is at least one of a nonvolatile silicone oil, a silicone varnish, and an alkoxy oligomer. 前記セラミックス原料を主成分とした材料が、該セラミックス原料に加え、水溶性有機バインダーを含有する請求項1〜5のいずれか一項に記載のハニカム構造体の製造方法。The method for manufacturing a honeycomb structure according to any one of claims 1 to 5, wherein the material containing the ceramic raw material as a main component contains a water-soluble organic binder in addition to the ceramic raw material. 前記水溶性有機バインダーが、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、及びポリビニルアセタールからなる群より選択される少なくとも1種の水溶性化合物からなる請求項6に記載のハニカム構造体の製造方法。The honeycomb structure according to claim 6, wherein the water-soluble organic binder comprises at least one water-soluble compound selected from the group consisting of hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, and polyvinyl acetal. Manufacturing method.
JP2002238402A 2002-08-19 2002-08-19 Manufacturing method for honeycomb structure Withdrawn JP2004074593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002238402A JP2004074593A (en) 2002-08-19 2002-08-19 Manufacturing method for honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238402A JP2004074593A (en) 2002-08-19 2002-08-19 Manufacturing method for honeycomb structure

Publications (1)

Publication Number Publication Date
JP2004074593A true JP2004074593A (en) 2004-03-11

Family

ID=32021827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238402A Withdrawn JP2004074593A (en) 2002-08-19 2002-08-19 Manufacturing method for honeycomb structure

Country Status (1)

Country Link
JP (1) JP2004074593A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200994A (en) * 2011-03-25 2012-10-22 Ngk Insulators Ltd Ceramic molded object, ceramics structure, and method for manufacturing ceramic structure
JP2012200993A (en) * 2011-03-25 2012-10-22 Ngk Insulators Ltd Ceramic dried object, ceramic structure, and method for manufacturing ceramic structure
CN110314706A (en) * 2018-03-30 2019-10-11 日本碍子株式会社 Catalyst load honeycomb structure and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200994A (en) * 2011-03-25 2012-10-22 Ngk Insulators Ltd Ceramic molded object, ceramics structure, and method for manufacturing ceramic structure
JP2012200993A (en) * 2011-03-25 2012-10-22 Ngk Insulators Ltd Ceramic dried object, ceramic structure, and method for manufacturing ceramic structure
CN110314706A (en) * 2018-03-30 2019-10-11 日本碍子株式会社 Catalyst load honeycomb structure and its manufacturing method
CN110314706B (en) * 2018-03-30 2023-08-29 日本碍子株式会社 Honeycomb structure for supporting catalyst and method for producing the same

Similar Documents

Publication Publication Date Title
JP5042176B2 (en) Honeycomb filter for exhaust gas purification
KR100804933B1 (en) Honeycomb structural body and manufacturing method thereof
US8951624B2 (en) Honeycomb structure
US7540898B2 (en) Honeycomb structured body
US8574386B2 (en) Method for manufacturing honeycomb structure
US8153073B2 (en) Honeycomb filter, exhaust gas purifying apparatus and method for manufacturing honeycomb filter
US7556664B2 (en) Sealed honeycomb structure and method of producing the same
EP1598102A1 (en) Ceramic honeycomb structure
US9028946B2 (en) Ceramic honeycomb structure with applied inorganic skin
US20040051196A1 (en) Method for producing porous ceramic article
JP4294964B2 (en) Manufacturing method of ceramic honeycomb structure
JPWO2013054793A1 (en) Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
JPWO2006117899A1 (en) Honeycomb structure
JPWO2005094967A1 (en) Honeycomb structure and manufacturing method thereof
JP5184509B2 (en) Method for manufacturing plugged honeycomb structure
US7344770B2 (en) Ceramics honeycomb structural body and method of manufacturing the structural body
EP1559878A1 (en) Honeycomb structure
EP2448884A1 (en) Process for producing cemented and skinned acicular mullite honeycomb structures
JP2018027541A (en) Honeycomb structure and method for producing the same
JP2004074593A (en) Manufacturing method for honeycomb structure
JP4369097B2 (en) Coating material, honeycomb structure and manufacturing method thereof
JP2014184356A (en) Honeycomb catalyst carrier
JP2015144983A (en) Honeycomb structure and method for producing the same
JP2004074700A (en) Manufacturing method for honeycomb structure
KR100841509B1 (en) Honeycomb structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101