JP2004072985A - Ac generator - Google Patents

Ac generator Download PDF

Info

Publication number
JP2004072985A
JP2004072985A JP2002258254A JP2002258254A JP2004072985A JP 2004072985 A JP2004072985 A JP 2004072985A JP 2002258254 A JP2002258254 A JP 2002258254A JP 2002258254 A JP2002258254 A JP 2002258254A JP 2004072985 A JP2004072985 A JP 2004072985A
Authority
JP
Japan
Prior art keywords
phase
armature
windings
power supply
neutral point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002258254A
Other languages
Japanese (ja)
Other versions
JP4189835B2 (en
Inventor
Takayuki Fujikawa
藤川 隆幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Daiwa Kogyo Co Ltd
Original Assignee
Shin Daiwa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Daiwa Kogyo Co Ltd filed Critical Shin Daiwa Kogyo Co Ltd
Priority to JP2002258254A priority Critical patent/JP4189835B2/en
Publication of JP2004072985A publication Critical patent/JP2004072985A/en
Application granted granted Critical
Publication of JP4189835B2 publication Critical patent/JP4189835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an AC generator which allows the use of a three-phase AC power supply and a single-phase three-wire AC power supply at the same time, and in which an output voltage is set freely and, in particular, voltage specifications facilitate an adaptability to versatile overseas situations. <P>SOLUTION: The AC generator has a stator in which three armature windings (a), (b), and (c) wound from a starting end to a termination are wound in Y-connection with the same number of turns and 120° of phase difference to each other. The respective starting ends are connected to a neutral point O, and three-phase output terminals R, S and T are connected to the respective terminations. The features of the AC generator is that, for example, (a), (b) among the three armature windings (a), (b), and (c) includes taps H1, H2 disposed at a fixed position between the starting end and the termination (in Fig.1, situated at an intermediate point close to the termination side and at a position at which the number of turns is equal), and armature extension windings d1, d2 in which the terminals on one side are connected to the taps H1, H2, whereas the terminals on the other side serve as single-phase output terminals, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、交流発電機に関し、特に、交流発電機用電源に関する。
【0002】
【従来の技術】
この種の交流発電機は、工事現場や各種イベント会場などで使用される動力用の200V三相電源の他に、照明や電熱器具用の100V単相電源および200V単相電源も兼ね備えているものが要求されることが多い。このような要求に応えるために、例えば、図10ないし図12に示すような従来例の発電装置が特開昭63−87157号公報として開示されている。
【0003】
すなわち、図10において、従来例は、互いに120度(電気角)の位相差で中性点Oに接続した電機子巻線U、V、Wから成る三相の固定子のうち、例えば電機子巻線WをW1とW2とに二等分割し、電機子巻線W1とW2とを直列に接続するだけでなく、電機子巻線W1のみ逆位相(破線で図示)にして中性点Oに接続するための接続切り替え装置(図示せず)を持つ構成を備えている。この接続切り替え装置の切り替え操作により、電機子巻線W1とW2とを直列に接続した場合には、三相電源として使用でき、図11の電圧ベクトルに示されるように、端子L1、L2、L3から200Vの三相交流電力が出力される。
【0004】
一方、接続切り替え装置(図示せず)の切り替え操作により、電機子巻線W1のみが逆位相にされ中性点Oに接続される場合には、図12の電圧ベクトルに示されるように、単相三線式電源として使用でき、端子L1と端子Nとの間、および端子L2と端子Nとの間から100Vの単相交流電力が、端子L1と端子L2との間から200Vの単相交流電力が出力される。ところで、図10のように、中性点Oには、接地線Le、Le′および中性端子Nを持つ中性線がそれぞれ接続され、接地線が大地に接続されるが、単相三線式電源に切り替えられると同時に接地線Leが切り離され、中性端子Nに接地線Le′が接続されこの接地線を介して大地に接地されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来例では、次のような問題がある。
【0006】
▲1▼ 従来例の接続切り替え装置は、出力する電力量を許容できる接点容量を持つ切り替えスイッチを必要とする。その結果、コストが高くなるだけでなく、電気配線も複雑になる。
【0007】
▲2▼ 従来例で単相三線式電源を構成した場合、単相三線式電源の中性線の端子Nすなわち中性端子には、逆相にした電機子巻線の電圧が現れる結果、大地と同電位であるという中性点の性質が失われる。そこで、接地線Leの接続を中性点Oから端子Nに切り替えることが行われるが、このことは▲1▼の問題に拍車をかける。
【0008】
▲3▼ 従来例では、三相電源と単相三線式電源との交流電力を同時に出力できず、交流発電機の利用率も低くなる。
【0009】
▲4▼ 従来例では、三相電源の電機子巻線を2つに分離して切り替え操作して単相三線式電源にする構成のため、単相三線式電源の電機子巻線の巻数が三相電源の電機子巻線の巻数に依存している結果、三相電源から単相三線式電源の出力電圧を自由に設定できず、特に、電圧仕様が多様な海外事情への対応を困難にしている。
【0010】
そこで、本発明の課題は、切り替えスイッチを必要とせず、三相電源と単相三線式電源との交流電力を同時に出力でき利用率が高く、しかも、単相三線式電源の電機子巻線の巻数が三相電源の電機子巻線の巻数に依存せず、三相電源から単相三線式電源の出力電圧を自由に設定でき、特に、電圧仕様が多様な海外事情への対応を容易にすることができる交流発電機を提供することにある。
【0011】
【課題を解決するための手段】
前記課題を解決した本発明のうちの請求項1に記載の発明は、三相交流電力を出力する三相電源と、単相交流電力を出力する単相三線式電源とを有する交流発電機であって、前記三相電源は、中性点に接続された巻始端から巻終端まで巻回された3つの電機子巻線(a,b,c)が、巻数同一で互いに120度の位相差で前記中性点にY結線するように構成され、前記3つの電機子巻線のうち、2つ(a,b)のそれぞれには、前記中性点側の巻始端からの巻数の等しい所定の位置にタップ部(H1,H2)が、それぞれ設けられ、前記タップ部(H1,H2)と、前記中性点との間で、前記2つの電機子巻線(a,b)の一部を(h1,h2)とし、前記2つの電機子巻線の一部(h1,h2)の半分の巻数を有する電機子延在巻線(d1,d2)が、前記2つ以外の残りの電機子巻線(c)と電気的に同相になるよう前記タップ部に延在するよう接続され、これにより、前記電機子延在巻線(d1,d2)のそれぞれは、前記タップ部(H1,H2)を介して前記2つの電機子巻線(a,b)の一部(h1,h2)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする交流発電機である。
【0012】
また、請求項2に記載の発明は、前記タップ部のそれぞれの所定の位置は、前記巻終端側の端子であり、これにより、前記2つの電機子巻線(a,b)はその一部(h1,h2)と同一となり、前記電機子延在巻線(d1,d2)のそれぞれは、前記端子に位置するタップ部(H1,H2)を介して前記2つの電機子巻線(a,b)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする請求項1に記載の交流発電機である。
【0013】
さらに、請求項3に記載の発明は、三相交流電力を出力する三相電源と、単相交流電力を出力する単相三線式電源とを有する交流発電機であって、前記三相電源は、中性点に接続された巻始端から巻終端まで巻回された3つの電機子巻線(a,b,c)が、巻数同一で互いに120度(電気角)の位相差で前記中性点にY結線するように構成され、前記3つの電機子巻線のうち、2つ(a,b)のそれぞれには、前記中性点側の巻始端からの巻数の等しい所定の位置にタップ部(H3,H4)が、それぞれ設けられ、前記タップ部(H3,H4)と、前記中性点との間にあり、前記2つの電機子巻線(a,b)の一部を(h3,h4)とし、前記2つの電機子巻線の一部(h3,h4)と同一の巻数を有する電機子延在巻線(d3,d4)が、前記(d3)は、前記電機子巻線bに対して電気的に逆相となるよう前記タップ部H3に接続され、前記(d4)は、前記電機子巻線aに対して電気的に逆相となるよう前記タップ部H4に接続され、これにより、前記電機子延在巻線(d3,d4)のそれぞれは、前記タップ部(H3,H4)を介して前記2つの電機子巻線(a,b)の一部(h3,h4)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする交流発電機である。
【0014】
そのうえ、請求項4に記載の発明は、前記タップ部(H3,H4)のそれぞれの所定の位置は、前記2つの電機子巻線(a,b)の巻数を二等分する位置であり、これにより、前記電機子延在巻線(d3,d4)のそれぞれは、前記タップ部(H3,H4)を介して前記2つの電機子巻線(a,b)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする請求項3に記載の交流発電機である。
【0015】
本発明によれば、常時、三相電源と単相三線式電源との出力が同時に生じるように作用する。その結果、三相電源と単相三線式電源とを切り替える必要はなくなり、利用効率も増加する。
【0016】
また、タップ部は、所定の位置を自由に設定でき、その結果、出力電圧が自由に設定され、特に、電圧仕様が多様な海外事情への対応が容易になる。
【0017】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態に係る交流発電機の詳細について説明する。
【0018】
図1は、本発明の第1実施の形態に係る交流発電機の回路図で、請求項1に係る実施例である。図2は、図1の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【0020】
図1の交流発電機は、中性点Oに接続された巻始端から巻終端まで巻回された3つの電機子巻線a,b,およびcが、巻数同一で互いに120度の位相差でY結線された固定子を有し、三相電源を構成している。中性点Oには必要に応じて接地線Leを接続する。
【0021】
この交流発電機の特徴は、前記3つの電機子巻線a,b,およびcのうち、a,bには、巻始端すなわち中性点Oから巻終端までの所定の位置(図1では巻終端側に近い中間点であって、巻数の等しい位置)に配設されたタップ部H1,H2と、タップ部H1,H2に一方の端子が接続されるとともに、他方の端子L1,L2を単相出力端子とする電機子延在巻線d1,d2と、をそれぞれ備えることである。電機子延在巻線d1,d2は、電機子巻線h1、h2の半分の巻数を有し、図2では電圧ベクトルEd1、Ed2で図示され、図1では電機子巻線c(図2ではベクトルEcで図示されている。)に対して同相に設定している。
【0022】
図2を参照して、この交流発電機を駆動した時は、3相の電圧ベクトルEa,Eb,およびEcが発生し、端子R・S間、端子S・T間、および端子T・U間には隣接する相間の合成ベクトルとして、破線で表された電圧ベクトルEab、電圧ベクトルEbc(図示せず)、電圧ベクトルEca(図示せず)が発生する。
【0023】
一方、電機子延在巻線d1およびd2のそれぞれには、電圧ベクトルEcと同相のEd1およびEd2が発生する。また、電機子巻線h1には電圧ベクトルEaと同相の電圧ベクトルEh1が発生し、電機子巻線h2には電圧ベクトルEbと同相の電圧ベクトルEh2が発生する。各ベクトルの大きさには、
2|Ed1|=2|Ed2|=|Eh1|=|Eh2|
の関係がある。これらのベクトル演算から、電圧ベクトルEd1とEh1との合成ベクトルの電圧ベクトルE1は、E2と等しく、E3の大きさは、E1またはE2の大きさの2倍であることが導出される。すなわち、電圧ベクトルE1,E2,およびE3が端子L1、L2、および中性点Oから単相三線式電源の単相交流電力として出力される。
【0024】
また、タップ部H1,H2の所定の位置は、三相電源の電機子巻線の電圧ベクトルEab、Ebc(図示せず)、Eca(図示せず)に依存せずに、所望の位置に設定することができる。
【0025】
図3は、本発明の第2実施の形態に係る交流発電機の回路図で、請求項2に係る実施例である。図4は、図3の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【0026】
図3の交流発電機は、タップ部H1の所定の位置が端子Rと同一位置であることを特徴としている。図4の電圧ベクトルEabの大きさを200Vに設定すれば、図3の端子R、S、Tから200Vの三相交流電力が出力され、同時に、端子L1・中性点O間および端子L2・中性点O間からそれぞれ100Vの単相交流電力が出力され、端子L1・端子L2間から200Vの単相交流電力が出力される。
【0027】
図5は、本発明の第3実施形態に係る交流発電機の回路である。過電流保護用のMCCB(配線用遮断機)が端子R,S,Tと電機子巻線a,b,cとの間に介在させたことを特徴とする。MCCBは、電力の通路である回路を開閉するためのもので、図2または図4に示した電圧ベクトルはMCCBの有無によって全く影響を受けない。従って、従来周知の技術の範囲内で必要な箇所にMCCBを配設できる。
この事情は以降の実施例においても同様である。
【0028】
図6は、本発明の第4実施の形態に係る交流発電機の回路図で、請求項3に係る実施例である。図7は、図6の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【0029】
図6の交流発電機は、中性点Oに接続された巻始端から巻終端まで巻回された3つの電機子巻線a,b,およびcが、巻数同一で互いに120度の位相差でY結線された固定子を有し、三相電源を構成している。中性点Oには必要に応じて接地線Leを接続する。
【0030】
この交流発電機の特徴は、前記3つの電機子巻線a,b,およびcのうち、a,bには、巻始端すなわち中性点Oから巻終端までの所定の位置(図6では巻始端側に近い中間点であって、巻数の等しい位置)に配設されたタップ部H3,H4と、タップ部H3,H4に一方の端子が接続されるとともに、他方の端子L1,L2を単相出力端子とする電機子延在巻線d3,d4と、をそれぞれ備え、電機子巻線h3と、d3とは、巻数が同一で、電機子巻線h4と、d4とも、巻数が同一である。そして、電機子延在巻線d3、d4は、電機子巻線a,bに対して電気的に逆相に接続されていることを特徴としている。
【0031】
図7を参照して、電機子巻線d3には、電圧ベクトルEbに対して逆相の電圧ベクトルEd3が発生し、電機子巻線d4には電圧ベクトルEaに対して逆相の電圧ベクトルEd4が発生する。また、電機子巻線h3には、電圧ベクトルEaと同相の電圧ベクトルEh3が発生し、電機子巻線h4には、電圧ベクトルEbと同相の電圧ベクトルEh4が発生する。各ベクトルの大きさには
|Ed3|=|Ed4|=|Eh3|=|Eh4|
の関係がある。これらのベクトル演算から、電圧ベクトルEd3とEh3との合成ベクトルの電圧ベクトルE1は、E2と等しく、E3の大きさは、E1またはE2の大きさの2倍であることが導出される。すなわち、電圧ベクトルE1,E2,およびE3が端子L1、L2、および中性点Oから単相三線式電源の単相交流電力として出力される。
【0032】
また、タップ部H3およびH4の位置を変えることにより、単相三線式電源の電圧ベクトルE1,E2,E3の大きさを三相電源の電圧ベクトルEab,Ebc(図示せず),Eca(図示せず)に依存せず、独立させて所望の値に設定できる。
【0033】
図8は本発明の第5実施の形態に係る交流発電機の回路図で、請求項4に係る実施例である。図9は、図8の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【0034】
図8では、図6のタップ部H3を電機子巻線aの巻数を二等分する位置に設け、タップ部H4を電機子巻線bの巻数を二等分する位置に設けた例である。図9を参照して、端子R・S間、端子S・T間、および端子T・R間の電圧ベクトルEab、Ebc(図示せず)、Eca(図示せず)の大きさを200Vに設定すれば、図8に示すように、端子R、S、Tから200Vの三相交流電力が出力され、同時に、端子L1・中性点O間および端子L2・中性点O間からそれぞれ100Vの単相交流電力が出力され、端子L1・端子L2間から200Vの単相交流電力が出力される。
【0035】
以上、上述した実施の形態は、電圧ベクトルを200Vと100Vとに限定して説明したが、本発明はこれらに限定されず、様々な変形例が考えられる。
【0036】
例えば、電機子巻線a,b,cのそれぞれの所定の位置に、タップ部および延在巻線の組み合わせを複数設けて、所望の出力電圧を得られるようにしても良い。
【0037】
【発明の効果】
本発明によれば、三相電源と単相三線式電源とを始めから兼ね備えるように構成されているから、従来例の両電源を切り替えるための切り替えスイッチが不要であるとともに、両電源にとっての中性点および接地線は共通であるから、これに係る切り替えスイッチも不要になる。従って、電気配線が著しく簡素化され、コスト低減の効果がある。
【0038】
また、三相電源からの三相交流電力と単相三線式電源からの単相交流電力とを同時に出力、すなわち、常時、三相と単相との出力を同時に利用したいという現場の要求に応えることができる。その結果、利用効率も増加するという効果が期待できる。
【0039】
さらに、タップ部は、所定の位置を自由に設定でき、電機子延在巻線は所望の電機子巻線に同相または逆相に延長するように接続される結果、単相三線式電源の出力電圧を三相電源の出力電圧から独立させて自由に設定することが可能となるから、電圧仕様が多様な海外事情への対応が容易になるという効果も期待できる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態に係る交流発電機の回路図である。
【図2】図1の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【図3】本発明の第2実施の形態に係る交流発電機の回路図である。
【図4】図3の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【図5】本発明の第3実施の形態に係る交流発電機の回路図である。
【図6】本発明の第4実施の形態に係る交流発電機の回路図である。
【図7】図6の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【図8】本発明の第5実施の形態に係る交流発電機の回路図である。
【図9】図8の交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【図10】交流発電機の従来例の回路図である。
【図11】図10の交流発電機の回路においてW1とW2と(実線で表された2つの同一方向(左向き)の電圧ベクトル)を直列に接続した場合に、交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示すベクトル図である。
【図12】図10の交流発電機の回路においてW1のみ逆相(破線の右向きの電圧ベクトル)に接続した場合に、交流発電機を駆動した時の各電機子巻線に発生する電圧の関係を示す他のベクトル図である。
【符号の説明】
a,b,およびc 電機子巻線
Ea,Eb,Ec 電圧ベクトル
H1,H2 タップ部
Le 接地線
O 中性点
d1,d2 電機子延在巻線
Eab 端子R・S間における隣接する相間の合成ベクトル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alternator, and more particularly to an alternator power supply.
[0002]
[Prior art]
This type of alternator has a 200V three-phase power source for lighting and electric appliances in addition to a 200V three-phase power source for power used in construction sites and various event venues. Is often required. In order to meet such a demand, for example, a conventional power generator as shown in FIGS. 10 to 12 is disclosed in Japanese Patent Application Laid-Open No. 63-87157.
[0003]
That is, in FIG. 10, the conventional example is, for example, an armature among three-phase stators composed of armature windings U, V, and W connected to the neutral point O with a phase difference of 120 degrees (electric angle) from each other. The winding W is divided into two equal parts, W1 and W2, and not only the armature windings W1 and W2 are connected in series, but also the armature winding W1 is set to the opposite phase (shown by a broken line) and the neutral point O is set. And a connection switching device (not shown) for connecting to the device. When the armature windings W1 and W2 are connected in series by the switching operation of the connection switching device, the armature windings W1 and W2 can be used as a three-phase power supply, and the terminals L1, L2, and L3 are connected as shown in the voltage vector of FIG. Output 200V three-phase AC power.
[0004]
On the other hand, when only the armature winding W1 is brought into the opposite phase and connected to the neutral point O by the switching operation of the connection switching device (not shown), as shown in the voltage vector of FIG. It can be used as a three-phase three-wire power supply. A single-phase AC power of 100 V is supplied between the terminals L1 and N and between the terminals L2 and N, and a single-phase AC power of 200 V is supplied between the terminals L1 and L2. Is output. By the way, as shown in FIG. 10, a neutral point O is connected to ground lines Le and Le 'and a neutral line having a neutral terminal N, respectively, and the ground line is connected to the ground. At the same time as switching to the power supply, the ground line Le is cut off, the ground line Le 'is connected to the neutral terminal N, and the ground is grounded via this ground line.
[0005]
[Problems to be solved by the invention]
However, the conventional example has the following problem.
[0006]
{Circle around (1)} The connection switching device of the conventional example requires a changeover switch having a contact capacity that can tolerate the amount of power to be output. As a result, not only costs are increased, but also electrical wiring becomes complicated.
[0007]
{Circle around (2)} When a single-phase three-wire power supply is configured in the conventional example, the voltage of the armature winding in the opposite phase appears at the terminal N of the neutral wire of the single-phase three-wire power supply, that is, at the neutral terminal. The property of the neutral point that is the same potential as that of the neutral point is lost. Therefore, switching of the connection of the ground line Le from the neutral point O to the terminal N is performed, which adds to the problem (1).
[0008]
{Circle around (3)} In the conventional example, the AC power of the three-phase power supply and the single-phase three-wire power supply cannot be output simultaneously, and the utilization rate of the AC generator is reduced.
[0009]
{Circle around (4)} In the conventional example, since the armature winding of the three-phase power supply is separated into two and switched to be a single-phase three-wire power supply, the number of turns of the armature winding of the single-phase three-wire power supply is reduced. As a result of depending on the number of turns of the armature windings of the three-phase power supply, the output voltage of the single-phase three-wire power supply cannot be freely set from the three-phase power supply, and it is particularly difficult to respond to overseas situations with various voltage specifications. I have to.
[0010]
Therefore, an object of the present invention is to provide a high utilization factor that can simultaneously output AC power of a three-phase power supply and a single-phase three-wire power supply without requiring a changeover switch. The number of turns does not depend on the number of turns of the armature windings of the three-phase power supply, and the output voltage of the single-phase three-wire power supply can be set freely from the three-phase power supply.Especially, it is easy to respond to overseas situations with various voltage specifications. It is an object of the present invention to provide an alternator which can be used.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention that solves the above problem is an AC generator having a three-phase power supply that outputs three-phase AC power, and a single-phase three-wire power supply that outputs single-phase AC power. In the three-phase power supply, three armature windings (a, b, c) wound from a winding start end to a winding end connected to a neutral point have the same number of turns and a phase difference of 120 degrees from each other. And the two armature windings (a, b) of the three armature windings have the same number of turns from the winding start end on the neutral point side. And tap portions (H1, H2) are respectively provided at positions of the two armature windings (a, b) between the tap portions (H1, H2) and the neutral point. (H1, h2), and the armature extension winding (d1) having half the number of turns of a part (h1, h2) of the two armature windings. d2) is connected to extend to the tap portion so as to be in phase with the remaining armature windings (c) other than the two armature windings. Each of d2) is connected to a part (h1, h2) of the two armature windings (a, b) via the tap portion (H1, H2) together with the neutral point. An alternator characterized by comprising a single-phase three-wire power supply.
[0012]
Also, in the invention according to claim 2, the predetermined position of each of the tap portions is a terminal on the winding end side, whereby the two armature windings (a, b) are partially provided. (H1, h2), and each of the armature extension windings (d1, d2) is connected to the two armature windings (a, h2) via tap portions (H1, H2) located at the terminals. 2. The alternator according to claim 1, wherein the single-phase three-wire power supply is configured as a result of being connected with b) and the neutral point.
[0013]
Further, the invention according to claim 3 is an AC generator having a three-phase power supply that outputs three-phase AC power, and a single-phase three-wire power supply that outputs single-phase AC power, wherein the three-phase power supply is The three armature windings (a, b, c) wound from the winding start end to the winding end connected to the neutral point have the same number of turns and a phase difference of 120 degrees (electrical angle) from each other. A tap is provided at a predetermined position having the same number of turns from the neutral point side winding start end to each of two (a, b) of the three armature windings. Parts (H3, H4) are provided, respectively, between the tap part (H3, H4) and the neutral point, and a part of the two armature windings (a, b) is (h3 , H4), and the armature extension windings (d3, d4) having the same number of turns as part (h3, h4) of the two armature windings The (d3) is connected to the tap portion H3 so that the phase is electrically opposite to the armature winding b, and the (d4) is electrically opposite to the armature winding a. The taps are connected to the tap portion H4 so that the two armature windings (d3, d4) extend through the tap portions (H3, H4). The alternator is characterized in that the single-phase three-wire power supply is configured as a result of being connected together with a part (h3, h4) of (a, b) and the neutral point.
[0014]
In addition, in the invention according to claim 4, the predetermined position of each of the tap portions (H3, H4) is a position that bisects the number of turns of the two armature windings (a, b), Thereby, each of the armature extension windings (d3, d4) is connected to the two armature windings (a, b) via the tap portions (H3, H4) together with the neutral point. 4. The alternator according to claim 3, wherein the result is that the single-phase three-wire power supply is configured.
[0015]
According to the present invention, the three-phase power supply and the single-phase three-wire power supply always operate so that the outputs are simultaneously generated. As a result, there is no need to switch between the three-phase power supply and the single-phase three-wire power supply, and the utilization efficiency increases.
[0016]
In addition, the tap portion can be freely set at a predetermined position, and as a result, the output voltage can be set freely, and it is particularly easy to deal with overseas situations where the voltage specifications are various.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, with reference to the drawings, details of an AC generator according to an embodiment of the present invention will be described.
[0018]
FIG. 1 is a circuit diagram of an AC generator according to a first embodiment of the present invention, which is an example according to claim 1. FIG. 2 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator shown in FIG. 1 is driven.
[0020]
In the alternator shown in FIG. 1, three armature windings a, b, and c wound from the winding start end to the winding end connected to the neutral point O have the same number of turns and a phase difference of 120 degrees from each other. It has a Y-connected stator and constitutes a three-phase power supply. A neutral line Le is connected to the neutral point O as necessary.
[0021]
A feature of this AC generator is that, among the three armature windings a, b, and c, a, b has a predetermined position from the winding start end, that is, the neutral point O to the winding end (in FIG. Taps H1 and H2 disposed at an intermediate point near the terminal end and having the same number of turns), one terminal is connected to the taps H1 and H2, and the other terminal L1 and L2 is simply connected. Armature extension windings d1 and d2 serving as phase output terminals. The armature extension windings d1 and d2 have half the number of turns of the armature windings h1 and h2, and are illustrated in FIG. 2 by voltage vectors Ed1 and Ed2. In FIG. 1, the armature winding c (in FIG. (Illustrated by the vector Ec).
[0022]
Referring to FIG. 2, when this AC generator is driven, three-phase voltage vectors Ea, Eb, and Ec are generated, and terminals R and S, terminals S and T, and terminals TU and U are generated. Generates a voltage vector Eab, a voltage vector Ebc (not shown), and a voltage vector Eca (not shown) represented by broken lines as combined vectors between adjacent phases.
[0023]
On the other hand, Ed1 and Ed2 having the same phase as voltage vector Ec are generated in armature extending windings d1 and d2, respectively. Further, a voltage vector Eh1 having the same phase as the voltage vector Ea is generated in the armature winding h1, and a voltage vector Eh2 having the same phase as the voltage vector Eb is generated in the armature winding h2. The magnitude of each vector is
2 | Ed1 | = 2 | Ed2 | = | Eh1 | = | Eh2 |
There is a relationship. From these vector calculations, it is derived that the voltage vector E1 of the composite vector of the voltage vectors Ed1 and Eh1 is equal to E2, and the magnitude of E3 is twice the magnitude of E1 or E2. That is, voltage vectors E1, E2, and E3 are output from terminals L1, L2, and neutral point O as single-phase AC power of a single-phase three-wire power supply.
[0024]
The predetermined positions of the tap portions H1 and H2 are set at desired positions without depending on the voltage vectors Eab, Ebc (not shown) and Eca (not shown) of the armature windings of the three-phase power supply. can do.
[0025]
FIG. 3 is a circuit diagram of an AC generator according to a second embodiment of the present invention. FIG. 4 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator shown in FIG. 3 is driven.
[0026]
The AC generator of FIG. 3 is characterized in that the predetermined position of the tap portion H1 is the same position as the terminal R. If the magnitude of the voltage vector Eab in FIG. 4 is set to 200 V, three-phase AC power of 200 V is output from the terminals R, S, and T in FIG. 3, and at the same time, between the terminal L1 and the neutral point O and between the terminals L2 and L2. A single-phase AC power of 100 V is output from between the neutral points O, and a single-phase AC power of 200 V is output from between the terminals L1 and L2.
[0027]
FIG. 5 is a circuit diagram of an AC generator according to a third embodiment of the present invention. An MCCB (interruption circuit breaker) for overcurrent protection is interposed between the terminals R, S, T and the armature windings a, b, c. The MCCB is for opening and closing a circuit that is a power path, and the voltage vector shown in FIG. 2 or FIG. 4 is not affected at all by the presence or absence of the MCCB. Therefore, the MCCB can be provided at a necessary place within the range of the conventionally known technique.
This situation is the same in the following embodiments.
[0028]
FIG. 6 is a circuit diagram of an AC generator according to a fourth embodiment of the present invention. FIG. 7 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator of FIG. 6 is driven.
[0029]
In the alternator shown in FIG. 6, three armature windings a, b, and c wound from the winding start end to the winding end connected to the neutral point O have the same number of turns and a phase difference of 120 degrees from each other. It has a Y-connected stator and constitutes a three-phase power supply. A neutral line Le is connected to the neutral point O as necessary.
[0030]
The feature of this AC generator is that, among the three armature windings a, b, and c, a, b has a predetermined position from the winding start end, that is, the neutral point O to the winding end (in FIG. The taps H3, H4 disposed at an intermediate point near the starting end and having the same number of turns), one terminal is connected to the taps H3, H4, and the other terminal L1, L2 is simply connected. Armature extension windings d3 and d4 each serving as a phase output terminal. The armature windings h3 and d3 have the same number of turns, and the armature windings h4 and d4 have the same number of turns. is there. The armature extension windings d3 and d4 are characterized in that they are electrically connected in opposite phases to the armature windings a and b.
[0031]
Referring to FIG. 7, a voltage vector Ed3 having a phase opposite to voltage vector Eb is generated in armature winding d3, and a voltage vector Ed4 having a phase opposite to voltage vector Ea is generated in armature winding d4. Occurs. Further, a voltage vector Eh3 having the same phase as the voltage vector Ea is generated in the armature winding h3, and a voltage vector Eh4 having the same phase as the voltage vector Eb is generated in the armature winding h4. | Ed3 | = | Ed4 | = | Eh3 | = | Eh4 |
There is a relationship. From these vector operations, it is derived that the voltage vector E1 of the composite vector of the voltage vectors Ed3 and Eh3 is equal to E2, and the magnitude of E3 is twice the magnitude of E1 or E2. That is, voltage vectors E1, E2, and E3 are output from terminals L1, L2, and neutral point O as single-phase AC power of a single-phase three-wire power supply.
[0032]
Further, by changing the positions of the tap portions H3 and H4, the magnitudes of the voltage vectors E1, E2, E3 of the single-phase three-wire power supply are changed to the voltage vectors Eab, Ebc (not shown), Eca (not shown) of the three-phase power supply. ) Can be set independently to a desired value.
[0033]
FIG. 8 is a circuit diagram of an AC generator according to a fifth embodiment of the present invention, which is an embodiment according to claim 4. FIG. 9 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator of FIG. 8 is driven.
[0034]
FIG. 8 shows an example in which the tap portion H3 of FIG. 6 is provided at a position where the number of turns of the armature winding a is bisected, and the tap portion H4 is provided at a position where the number of turns of the armature winding b is bisected. . Referring to FIG. 9, the magnitudes of voltage vectors Eab, Ebc (not shown), and Eca (not shown) between terminals R and S, between terminals S and T, and between terminals T and R are set to 200 V. As a result, as shown in FIG. 8, three-phase AC power of 200 V is output from terminals R, S, and T, and at the same time, 100 V is applied between terminals L1 and neutral point O and between terminals L2 and neutral point O. Single-phase AC power is output, and 200-V single-phase AC power is output from between the terminals L1 and L2.
[0035]
As described above, in the above-described embodiment, the voltage vector is limited to 200 V and 100 V. However, the present invention is not limited to these, and various modifications can be considered.
[0036]
For example, a plurality of combinations of tap portions and extended windings may be provided at predetermined positions of the armature windings a, b, and c to obtain a desired output voltage.
[0037]
【The invention's effect】
According to the present invention, since a three-phase power supply and a single-phase three-wire power supply are configured from the beginning, a switch for switching between the two power supplies in the conventional example is not required, and the power supply for both power supplies is not required. Since the characteristic point and the ground line are common, a changeover switch for this is not required. Therefore, electric wiring is significantly simplified, and there is an effect of cost reduction.
[0038]
In addition, it responds to the on-site demand for simultaneously outputting three-phase AC power from a three-phase power supply and single-phase AC power from a single-phase three-wire power supply, that is, always using the three-phase and single-phase outputs simultaneously. be able to. As a result, the effect of increasing the use efficiency can be expected.
[0039]
Further, the tap portion can be set to a predetermined position freely, and the armature extension winding is connected to the desired armature winding so as to extend in the same phase or in the opposite phase. As a result, the output of the single-phase three-wire power supply Since the voltage can be freely set independently of the output voltage of the three-phase power supply, an effect that the voltage specification can easily be adapted to various overseas situations can be expected.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an AC generator according to a first embodiment of the present invention.
FIG. 2 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator of FIG. 1 is driven.
FIG. 3 is a circuit diagram of an AC generator according to a second embodiment of the present invention.
FIG. 4 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator shown in FIG. 3 is driven.
FIG. 5 is a circuit diagram of an AC generator according to a third embodiment of the present invention.
FIG. 6 is a circuit diagram of an AC generator according to a fourth embodiment of the present invention.
FIG. 7 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator of FIG. 6 is driven.
FIG. 8 is a circuit diagram of an AC generator according to a fifth embodiment of the present invention.
9 is a vector diagram showing a relationship between voltages generated in each armature winding when the AC generator of FIG. 8 is driven.
FIG. 10 is a circuit diagram of a conventional example of an AC generator.
11 is a diagram showing a case where the AC generator is driven when W1 and W2 (two voltage vectors in the same direction (leftward) represented by solid lines) are connected in series in the circuit of the AC generator of FIG. 10; FIG. 4 is a vector diagram showing a relationship between voltages generated in each armature winding.
12 is a diagram illustrating a relationship between voltages generated in armature windings when the AC generator is driven, when only W1 is connected in the opposite phase (the rightward voltage vector of the broken line) in the circuit of the AC generator in FIG. FIG. 14 is another vector diagram showing
[Explanation of symbols]
a, b, and c Armature windings Ea, Eb, Ec Voltage vector H1, H2 Tap portion Le Ground line O Neutral point d1, d2 Armature extension winding Eab Synthesis between adjacent phases between terminals R and S vector

Claims (4)

三相交流電力を出力する三相電源と、単相交流電力を出力する単相三線式電源とを有する交流発電機であって、
前記三相電源は、中性点に接続された巻始端から巻終端まで巻回された3つの電機子巻線(a,b,c)が、巻数同一で互いに120度(電気角)の位相差で前記中性点にY結線するように構成され、
前記3つの電機子巻線のうち、2つ(a,b)のそれぞれには、前記中性点側の巻始端からの巻数の等しい所定の位置にタップ部(H1,H2)が、それぞれ設けられ、
前記タップ部(H1,H2)と、前記中性点との間にあり、前記2つの電機子巻線(a,b)の一部を(h1,h2)とし、
前記2つの電機子巻線の一部(h1,h2)の半分の巻数を有する電機子延在巻線(d1,d2)が、前記2つ以外の残りの電機子巻線(c)と電気的に同相となるよう前記タップ部に延在するよう接続され、
これにより、前記電機子延在巻線(d1,d2)のそれぞれは、前記タップ部(H1,H2)を介して前記2つの電機子巻線(a,b)の一部(h1,h2)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする交流発電機。
An AC generator having a three-phase power supply that outputs three-phase AC power, and a single-phase three-wire power supply that outputs single-phase AC power,
In the three-phase power supply, three armature windings (a, b, c) wound from a winding start end to a winding end connected to a neutral point have the same number of turns and are 120 degrees (electrical angle) from each other. It is configured to be Y-connected to the neutral point by a phase difference,
Of the three armature windings, two (a, b) are provided with tap portions (H1, H2) at predetermined positions having the same number of windings from the winding start end on the neutral point side, respectively. And
A part of the two armature windings (a, b) between the tap portion (H1, H2) and the neutral point is (h1, h2);
The armature extension windings (d1, d2) having half the number of turns of a part (h1, h2) of the two armature windings are electrically connected to the remaining armature windings (c) other than the two. Are connected to extend to the tap portion so as to be in phase with each other,
Thereby, each of the armature extension windings (d1, d2) is part (h1, h2) of the two armature windings (a, b) via the tap portions (H1, H2). Wherein the single-phase three-wire power supply is configured as a result of being connected together with the neutral point.
前記タップ部のそれぞれの所定の位置は、前記巻終端側の端子であり、
これにより、前記2つの電機子巻線(a,b)はその一部(h1,h2)と同一となり、前記電機子延在巻線(d1,d2)のそれぞれは、前記端子に位置するタップ部(H1,H2)を介して前記2つの電機子巻線(a,b)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする請求項1に記載の交流発電機。
Each predetermined position of the tap portion is a terminal on the winding end side,
Thereby, the two armature windings (a, b) become the same as part (h1, h2), and each of the armature extension windings (d1, d2) is a tap located at the terminal. The single-phase three-wire power supply is configured as a result of being connected to the two armature windings (a, b) via the sections (H1, H2) together with the neutral point. Item 7. The alternator according to Item 1.
三相交流電力を出力する三相電源と、単相交流電力を出力する単相三線式電源とを有する交流発電機であって、
前記三相電源は、中性点に接続された巻始端から巻終端まで巻回された3つの電機子巻線(a,b,c)が、巻数同一で互いに120度(電気角)の位相差で前記中性点にY結線するように構成され、
前記3つの電機子巻線のうち、2つ(a,b)のそれぞれには、前記中性点側の巻始端からの巻数の等しい所定の位置にタップ部(H3,H4)が、それぞれ設けられ、
前記タップ部(H3,H4)と、前記中性点との間にあり、前記2つの電機子巻線(a,b)の一部を(h3,h4)とし、
前記2つの電機子巻線の一部(h3,h4)と同一の巻数を有する電機子延在巻線(d3,d4)が、前記(d3)は、前記電機子巻線bに対して電気的に逆相となるよう前記タップ部H3に接続され、前記(d4)は、前記電機子巻線aに対して電気的に逆相となるよう前記タップ部H4に接続され、
これにより、前記電機子延在巻線(d3,d4)のそれぞれは、前記タップ部(H3,H4)を介して前記2つの電機子巻線(a,b)の一部(h3,h4)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする交流発電機。
An AC generator having a three-phase power supply that outputs three-phase AC power, and a single-phase three-wire power supply that outputs single-phase AC power,
In the three-phase power supply, three armature windings (a, b, c) wound from a winding start end to a winding end connected to a neutral point have the same number of turns and are 120 degrees (electrical angle) from each other. It is configured to be Y-connected to the neutral point by a phase difference,
Of the three armature windings, two (a, b) have tap portions (H3, H4) at predetermined positions where the number of turns from the neutral point side winding start end is equal. And
A part of the two armature windings (a, b) between the tap portion (H3, H4) and the neutral point is (h3, h4);
The armature extension windings (d3, d4) having the same number of turns as a part (h3, h4) of the two armature windings are electrically connected to the armature winding b. (D4) is connected to the tap portion H4 so that the phase is electrically opposite to the armature winding a;
Thereby, each of the armature extension windings (d3, d4) is part (h3, h4) of the two armature windings (a, b) via the tap portions (H3, H4). Wherein the single-phase three-wire power supply is configured as a result of being connected together with the neutral point.
前記タップ部(H3,H4)のそれぞれの所定の位置は、前記2つの電機子巻線(a,b)の巻数を二等分する位置であり、
これにより、前記電機子延在巻線(d3,d4)のそれぞれは、前記タップ部(H3,H4)を介して前記2つの電機子巻線(a,b)と、前記中性点と共に結線される結果、前記単相三線式電源が、構成されることを特徴とする請求項3に記載の交流発電機。
Each predetermined position of the tap portions (H3, H4) is a position that bisects the number of turns of the two armature windings (a, b),
Thereby, each of the armature extension windings (d3, d4) is connected to the two armature windings (a, b) via the tap portions (H3, H4) together with the neutral point. 4. The alternator according to claim 3, wherein the single-phase three-wire power supply is configured as a result.
JP2002258254A 2002-08-01 2002-08-01 AC generator Expired - Lifetime JP4189835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258254A JP4189835B2 (en) 2002-08-01 2002-08-01 AC generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258254A JP4189835B2 (en) 2002-08-01 2002-08-01 AC generator

Publications (2)

Publication Number Publication Date
JP2004072985A true JP2004072985A (en) 2004-03-04
JP4189835B2 JP4189835B2 (en) 2008-12-03

Family

ID=32024520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258254A Expired - Lifetime JP4189835B2 (en) 2002-08-01 2002-08-01 AC generator

Country Status (1)

Country Link
JP (1) JP4189835B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204005A (en) * 2005-01-20 2006-08-03 Denyo Co Ltd Generator
JP2008172919A (en) * 2007-01-11 2008-07-24 Shin Daiwa Kogyo Co Ltd Generator breaker
JP5685335B1 (en) * 2014-04-04 2015-03-18 北越工業株式会社 AC generator
CN110212671A (en) * 2019-05-22 2019-09-06 湖北研道特磁科技有限公司 A kind of super-pressure phase modifier system applied in ultra-high voltage converter station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231567A (en) 2011-04-25 2012-11-22 Yamabiko Corp Three-phase inverter type power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204005A (en) * 2005-01-20 2006-08-03 Denyo Co Ltd Generator
JP2008172919A (en) * 2007-01-11 2008-07-24 Shin Daiwa Kogyo Co Ltd Generator breaker
JP5685335B1 (en) * 2014-04-04 2015-03-18 北越工業株式会社 AC generator
CN110212671A (en) * 2019-05-22 2019-09-06 湖北研道特磁科技有限公司 A kind of super-pressure phase modifier system applied in ultra-high voltage converter station
CN110212671B (en) * 2019-05-22 2024-05-03 武汉研道科技有限公司 Ultra-high voltage camera system applied to ultra-high voltage converter station

Also Published As

Publication number Publication date
JP4189835B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4933632B2 (en) Power supply with two inverters connected in series for a polyphase electromechanical actuator
JP6809960B2 (en) Generator system
EP2110943B1 (en) Systems and methods involving variable speed generators
US6995546B2 (en) Alternating current generator
JP2004072985A (en) Ac generator
Zheng et al. Current optimization for a multi-phase machine under an open circuit phase fault condition
CA2519968A1 (en) Electric generator for vehicle producing dual output voltages
JP5209973B2 (en) Synchronous generator
JP3598126B2 (en) Three-phase load voltage phase adjustment transformer
RU2314620C2 (en) Three-phased balancing device
JP5575424B2 (en) Synchronous generator
JP2003333814A (en) Setting-changeable generator
CN105790478B (en) Corner connection three phase alternating current motor and the dual-purpose winding of three-phase reactor
JP4780966B2 (en) Generator
Adil et al. Novel Inherently Fault Tolerant Permanent Magnet Synchronous Machine (PMSM) With Multiphase Windings
EP0820142A1 (en) Ac motor with reactor connected to power source
RU2340063C1 (en) Phase voltage recovering device for four-wire network
JP2008043017A (en) Kondorfer starting device for electric motor
EP1496606A1 (en) Electric induction motor
JP5991702B2 (en) AC generator
JP4105126B2 (en) 3-phase AC generator
JP7382567B2 (en) Power supplies and vehicles
JP6732834B2 (en) Generator
JP5685335B1 (en) AC generator
JP2763500B2 (en) Engine driven arc welding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4189835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term