JP2004072863A - Single-run detecting method for distributed power supply - Google Patents

Single-run detecting method for distributed power supply Download PDF

Info

Publication number
JP2004072863A
JP2004072863A JP2002227270A JP2002227270A JP2004072863A JP 2004072863 A JP2004072863 A JP 2004072863A JP 2002227270 A JP2002227270 A JP 2002227270A JP 2002227270 A JP2002227270 A JP 2002227270A JP 2004072863 A JP2004072863 A JP 2004072863A
Authority
JP
Japan
Prior art keywords
voltage
injection
current
admittance
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002227270A
Other languages
Japanese (ja)
Other versions
JP3896051B2 (en
Inventor
Mitsuaki Okamoto
岡本 光明
Soji Nishimura
西村 荘治
Yoshibumi Minowa
蓑輪 義文
Giko Haneda
羽田 儀宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002227270A priority Critical patent/JP3896051B2/en
Publication of JP2004072863A publication Critical patent/JP2004072863A/en
Application granted granted Critical
Publication of JP3896051B2 publication Critical patent/JP3896051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To certainly detect single run for a distributed power supply from a variation in the admittance (or susceptance) of a frequency injected to a system by reducing an influence to the system, by minimizing a current amount to be injected more than in conventional ways and by preventing false detection due to the background noise of the system. <P>SOLUTION: The voltage of an interdigital harmonic of an injection degree which is larger than the background noise of the interdigital harmonic of the injection degree of the system 5 and is smaller than the voltage of the interdigital harmonic of the injection degree during the system stop is set as a reference voltage value of reactive detection. A measured voltage value and the reference voltage value of the interdigital harmonic of the injection degree of the system 5 are compared with each other. Only when the measured voltage is larger than the reference value voltage, the admittance (or the susceptance) of the interdigital harmonic of the injection degree of the system 5 is calculated and detected from the measured voltage and a measured current value. The single run is detected by the variation in the detected admittance (or the susceptance). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、系統基本波の非整数倍周波数の次数間高調波の電流を系統に注入して、系統電源に連系運転される分散型電源の系統停止時の単独運転を検出する分散型電源の単独運転検出方法に関する。
【0002】
【従来の技術】
従来、需要家の太陽光発電装置,燃料電池装置等の分散型電源は、例えば6.6KVの高圧系統やさらに高圧の特別高圧(特高)系統に接続されて系統電源に連系運転される。
【0003】
そして、系統事故等により変電所の遮断器が開放される系統停止時、系統電源が消失して分散型電源が連系運転から単独運転に移行すると、単独運転による系統充電での感電事故等が発生する虞れがある。
【0004】
そのため、系統停止時に迅速に系統から分散型電源を切離し、解列する必要がある。
【0005】
この系統事故等による系統停止を需要家等の側(以下需要家等側という)で迅速かつ確実に検出するため、従来、例えば分散型電源を有する需要家等側から系統にその基本波に同期した系統基本波周波数の非整数倍周波数のm次(mは帯小数)の次数間高調波を注入し、その需要家等側で系統の注入次数mの次数間高調波を計測し、この計測に基づいて系統の注入次数mの次数間高調波のアドミタンスを検出し、その大きさ(絶対値)の変化から、系統停止を検出する分散型電源の単独運転検出方法が提案されている(例えば特開平10−248168号公報参照)。
【0006】
また、特高系統に連系された分散型電源の単独運転防止(逆潮流有り)にあっては、「分散型電源系統連系技術指針,JEAG9701−2001」(社団法人 日本電気協会発行)にも記載されているように、いわゆる他律方式の転送遮断装置が用いられる。
【0007】
この転送遮断装置は、変電所側の転送発信装置に通信線を介して需要家等側の転送受信装置を接続して形成され、系統事故が発生すると、転送発信器から通信線を介して転送受信装置に事故通知の信号を送り、受信装置によって系統停止を検出する。
【0008】
【発明が解決しようとする課題】
前記従来の検出方法では、系統のバックグランドノイズの影響を受けないように、十分な電圧歪みを生じさせて系統の注入次数mの電圧を確実に検出するため、十分な大きさの次数間高調波を注入する必要がある。
【0009】
そして、種々の実験等によると、本来は存在しない次数間高調波が、系統に基本波電圧の0.01%程度のバックグランドノイズとして存在するため、系統の注入次数mのアドミタンスの変化から分散型電源の単独運転を検出するには、次数間高調波を注入して系統に0.05%程度の歪みを生じさせる必要がある。
【0010】
この0.05%程度の歪みを生じさせるには、とくに短絡容量が極めて大きい特高系統では相当な大電流注入が必要になり、高圧系統にあってもアンペア単位の電流注入が必要になる。
【0011】
一方、前記技術指針の他律方式では、受信装置や送信装置を要するだけでなく、両装置の間に長距離の通信ケーブルの敷設も必要になり、その上、需要家等側だけでは検出することができない。
【0012】
そして、この種の単独運転検出にあっては、注入電流を極力少なくして系統への影響を極力少なくするとともに、注入電源を小型,軽量化等することが極めて重要な課題の1つになっている。
【0013】
なお、系統停止による分散型電源の単独運転は、アドミタンスの逆数のインピーダンスの変化から検出することも考えられるが、この場合、系統正常時の系統の注入次数mの検出インピーダンスは系統電源の短絡インピーダンスによって小さくなり、系統停止時の系統の注入次数mの検出インピーダンスは系統負荷に依存して変動し、系統正常時と系統停止時の検出インピーダンスの差は大きくない場合もある。
【0014】
そのため、系統の注入次数mのインピーダンス変化からは系統停止の有無の確実な判別は困難であり、このインピーダンスの変化から単独運転を検出することは、実用的でない。
【0015】
本発明は、従来より注入電流量を少なくして系統への影響を低減しつつ、系統のバックグランドノイズによる誤検出を防止して系統の注入周波数(注入次数m)のアドミタンス(又はそのサセプタンス)を検出し、このアドミタンス(又はサセプタンス)の変化から確実に分散型電源の単独運転を検出することを課題とする。
【0016】
【課題を解決するための手段】
前記の課題を解決するために、請求項1の分散型電源の単独運転検出方法は、系統に次数間高調波を注入し、
系統の注入次数の次数間高調波の電圧,電流を計測し、
計測電圧,計測電流から系統の注入次数の次数間高調波のアドミタンスを演算して検出し、
検出したアドミタンスの変化から系統停止時の分散型電源の単独運転を検出する分散型電源の単独運転検出方法であって、
系統の注入次数の次数間高調波のバックグランドノイズより大きく、かつ、系統停止時の注入次数の次数間高調波の電圧より小さい注入次数の次数間高調波の電圧を、検出無効の基準値電圧として設定し、
前記計測電圧と前記基準値電圧とを比較し、
前記計測電圧が前記基準値電圧より大きいときにのみ、前記計測電圧,前記計測電流から系統の注入次数の次数間高調波のアドミタンスを演算して検出し、
検出したアドミタンスの変化から単独運転の検出を行う。
【0017】
この場合、系統に注入する次数間高調波の電流(注入電流)が従来より少なくても分散型電源が単独運転に移行する系統停止時は、系統電源が切離されて注入周波数(注入次数m)の系統インピーダンスが大きくなり、系統の注入周波数のアドミタンスが小さくなることから、注入電流に基づく系統の注入周波数の電圧(注入電圧)がバックグランドノイズより十分に大きくなり、注入電流及び注入電圧を精度よく計測して系統の注入周波数(注入次数の次数間高調波)のアドミタンス(=注入電流(計測電流)/注入電圧(計測電圧))を精度よく演算して検出することができる。
【0018】
一方、分散型電源が系統電源に連系運転される系統正常時は、系統インピーダンスが小さく、系統の注入周波数のアドミタンスが大きくなるため、注入電流が少ないと、注入電圧はバックグラウンドノイズレベル程度に小さくなり、しかも、そのレベルが容易に変動するため、注入電流は計測できても、注入電圧は計測が困難になる。
【0019】
そこで、本発明においては、適当な大きさの検出無効の基準値電圧を設定し、計測電圧が基準値電圧より大きくなるときのみ、計測電圧が有効であるとし、このときにのみ計測電流と計測電圧とから系統の注入周波数のアドミタンスを検出し、このアドミタンスの変化から分散型電源の単独運転を検出する。
【0020】
したがって、計測電圧が基準値電圧以下のときは、計測電圧を無効にして、系統が正常であるとみなして分散型電源の単独運転を誤検出しないようにすることができ、高圧系統の分散型電源については、従来より注入電流を少なくして確実に単独運転を検出することができ、短絡容量が小さい特高系統の分散型電源については、少ない注入電流で単独運転を検出することができる、新規な自律方式の能動型単独運転検出方法を提供できる。
【0021】
そして、注入周波数のアドミタンスとして、そのサセプタンスを検出してもよい。
また、次数間高調波の注入電流は分散電源のインバータから系統に注入してもよい。
【0022】
【発明の実施の形態】
本発明の実施の形態につき、図1〜図4を参照して説明する。
(1形態)
まず、実施の1形態について、図1〜図3を参照して説明する。
図1は電力系統の1例の単線結線図であり、上位系統1に変電所2の1又は複数の変圧器3の1次側が接続され、各変圧器3の2次側から遮断器4を介して1又は複数の下位の電力系統5が分枝状に引出される。
【0023】
これらの電力系統5は、例えば、6.6kVの高圧系統の場合、分散型電源6を有する需要家設備7,分散型電源6が設けられていない一般需要家設備8等の複数の需要家設備が接続される。
【0024】
そして、本発明が適用される需要家設備7は他の需要家設備と同様、電力系統5に引込線9の遮断器10を介して負荷母線11が接続され、この負荷母線11に各負荷フィーダ12の変圧器13を介してそれぞれの負荷が接続される。
【0025】
また、負荷母線11に遮断器14が接続され、この遮断器14に解列用の開閉器15を介して分散型電源6が接続されるとともに、次数間高調波の電流注入装置16が接続される。
【0026】
この電流注入装置16は次数間高調波の注入電流を出力するインバータ等の電源部17,この電源部17と負荷母線11との間に設けられた注入用の変圧器18により形成される。
【0027】
また、引込線9の遮断器10より負荷母線11側に、受電点変圧器19及び受電点変流器20が設けられ、それらの3相各相の電圧,電流の計測信号が系統停止検出処理装置21のサンプル・ホールド回路22に供給される。
【0028】
このサンプル・ホールド回路22は水晶発振器等の定周波発生器で形成されたタイミング指令部23の一定周波数のサンプリング指令のタイミング信号により系統電圧,両計測信号をサンプル・ホールドし、その出力が後段のA/D変換回路24によりデジタル信号に変換され、サンプリングデータとなる。
【0029】
そして、A/D変換回路24によりデジタル信号に変換された電圧,電流のサンプリングデータが演算処理部25に供給される。
【0030】
この処理部25はマイクロコンピュータ等で形成され、そのソフトウェア処理により、両サンプリングデータに公知のフーリエ変換のデジタルフィルタ演算を施し、電流注入装置16から電力系統5に注入された注入次数の次数間高調波を抽出して検出し、その変化から遮断器4が開放する系統停止の発生,すなわち分散型電源6の単独運転の発生を監視して検出する。
【0031】
さらに、この単独運転の検出時は、演算処理部25から開閉器15に解列の指令が供給されて開閉器15が開放され、分散型電源6が電力系統5から切離される。
【0032】
ところで、系統正常時は、遮断器4,10,14及び開閉器15がいずれも閉成され、上位系統1の電力が電力系統5に給電され、電力系統5が電力供給状態にある。
【0033】
このとき、分散型電源6は電力系統5に連系して運転され、その出力は自設備7内で消費されるとともに余剰分が引込線9を介して電力系統5に出力される。
【0034】
さらに、需要家設備7においては、受電点変圧器19,受電点変流器20により、受電点Aの電圧及び受電点Aを出入する電流が常時計測される。
【0035】
また、演算処理部25がタイミング指令部23の一定周波数のタイミング信号に同期して電源部17に周期的に起動指令を出力し、この指令に基づき、電源部17が前記タイミング信号に同期して系統基本波の非整数倍周波数の次数間高調波の電流を形成し、この注入電流が変圧器18,負荷母線11,引込線9を介して需要家設備7の受電点Aから電力系統5に注入される。
【0036】
このとき、従来は電力系統5に存在する0.01%程度のバックグランドノイズを考慮し、注入電流によって系統電圧を基本波電圧の0.05%程度歪ませてアドミタンスの検出,監視を行うため、注入電流を、例えば1A程度の比較的大きな電流としていたが、本形態の場合、注入電流を単独運転発生時に十分な電圧歪みが生じる程度まで少なくし、例えば従来の1/5の0.2A程度とする。
【0037】
そのため、電流注入の系統5への影響は少なく、しかも、電流注入装置16等が従来装置より小容量,小型,軽量になる。
【0038】
そして、受電点Aからの電流の注入に基づき、受電点変圧器19,受電点変流器20の計測信号に注入次数mの次数間高調波の電圧,電流が含まれる。
【0039】
そして、これらの計測信号はタイミング指令部23のタイミング信号に基づき、前記したようにサンプル・ホールド回路22のサンプリングにより、サンプル・ホールドされる。
【0040】
さらに、電圧,電流のホールド出力がA/D変換回路24によりデジタル信号に変換され、これらのデジタル信号に変換されたサンプリングデータが演算処理部25で処理され、注入電流に基づく系統5の注入次数mの次数間高調波の計測電圧,計測電流が抽出されて検出される。
【0041】
そして、これらの計測電圧,計測電流をVih,Iihとし、受電点Aからみた電力系統5の注入周波数のアドミタンスをYihとすると、アドミタンスYihは、Yih=Iih/Vihの演算から検出され、アドミタンスYihのサセプタンスbihは、bih=Im(Iih/Vih),(Imは虚数成分を示す関数)から求まる。
【0042】
そして、分散型電源6が系統電源に連系運転される系統正常時(健全時)は、受電点Aからみた電力系統5の電源インピーダンスが短絡インピーダンスであり、このとき受電点Aからみた電力系統5の注入次数の次数間高調波のアドミタンスYih,そのサセプタンスbihは大きくなる。
【0043】
つぎに、系統事故等に基づく電力系統5の停止により遮断器4が開放されると、受電点Aからみた電力系統5の電源インピーダンスが短絡インピーダンスから開放インピーダンスに増大するため、受電点Aからみた電力系統5のアドミタンスYih,サセプタンスbihは小さくなり、このアドミタンスYih又はサセプタンスbihの変化から電力系統5の停止,すなわち分散型電源6の単独運転を検出できる。
【0044】
しかし、注入電流Iihを極力少なくしているため、とくに系統正常時、電圧Vihが極めて小さくなり、場合によっては電圧Vihが電力系統5のバックグランドノイズ以下になることから、この電圧Vihを用いてアドミタンスYih又はサセプタンスbihを算出すると、誤検出が生じる。
【0045】
そこで、この形態においては、電力系統5の注入次数mのバックグランドノイズの電圧歪み0.01%よりは大きく、単独運転時の注入次数mの電圧歪みよりは極力小さい程度なレベルの電圧,具体的には例えば0.02%の電圧歪みが生じる電圧を、検出無効の基準値電圧Vrefとして演算処理部25に設定する。この演算処理部25は、具体的には、図2の単独運転検出フローを実行する。
【0046】
そして、設定された計測インターバル毎に、この検出フローのステップS1 により、電力系統5の3相各相の電圧,電流の計測信号をA/D変換して電力系統5の時々刻々のサンプリング時点kの電圧V(k),電流I(k)の計測データを得ると、ステップS2 により例えば回帰形DFT演算を実行し、各相毎に、つぎの数1の式で示される注入次数mの次数間高調波の各時点kでの電圧Vm(k),電流Im(k)を求める。
【0047】
【数1】
Vm(k)=(2/N)・{Vm(k−1)−V(k−N)+V(k))・x−1
Im(k)=(2/N)・{Im(k−1)−I(k−N)+I(k))・x−1
【0048】
但し、式中のNはDFT演算に用いる時系列のサンプリング数であり、過去Nサンプリングの計測データを用いてDFT演算が行われる。
【0049】
なお、Nの具体的な値は、例えば系統基本波32波に渡り、基本波1周期当り64サンプリングをくり返して得られる(64×32=)2048サンプリング数である。
また、xはx=exp(j・2π・m/N)である。
【0050】
さらに、電圧Vm(k),電流Im(k)は複素数値であり、3相をa相,b相,c相とし、数1の式から求まるa,b,c各相の電圧Vam(k),Vbm(k),Vcm(k),電流Iam(k),Ibm(k),Icm(k)に基づき、ステップS3 により、例えば、つぎの数2の逆相演算から電力系統5の注入次数mの計測電圧V2m(k),計測電流I2m(k)を求める。
【0051】
【数2】
V2m(k)=(Vam(k)+a・a・Vbm(k)+a・Vcm(k))/3
I2m(k)=(Iam(k)+a・a・Ibm(k)+a・Icm(k))/3
【0052】
なお、計測電圧V2m(k),計測電流I2m(k)は、正相演算から求めたものであってもよく、aはa=exp・(2π/3))である。
【0053】
つぎに、ステップS4 に移行し、計測電圧V2m(k)と設定された基準値電圧Vrefとを比較し、V2m(k)>Vrefであれば、ステップS5 に移行し、電力系統5の注入次数mの例えば逆相のアドミタンスYihのサセプタンスbih(=b2m(k))を、つぎの数3の式から演算して算出する。なお、Imは虚部(虚数成分)を示す関数である。
【0054】
【数3】
bih=b2m(k)=−Im(I2m(k)/V2m(k))
【0055】
さらに、ステップS,Sにより、検出したサセプタンスbih(=b2m(k))の大きさ(絶対値)が、設定された整定時間T継続して単独運転検出のサセプタンス判定値bref,例えば0.6(s)以下か否かを監視して検出する。
【0056】
そして、bih≦brefの状態が例えばT=0.7秒の整定時間継続したときにステップS8 に移行し、このとき、系統停止による分散型電源6の単独運転への移行が発生したことを検出し、この検出により遮断器15を開放して分散型電源6を電力系統5から切離し、処理を終了する。
【0057】
つぎに、系統正常時は計測電圧V2m(k)が小さく、この計測電圧V2m(k)が基準値電圧Vref以下であれば、注入電流量が少なく、計測電圧V2m(k)の正確な判別は困難であり、かつ、ほとんどの場合、系統正常と考えられるため、ステップSからステップSに移行する。
【0058】
そして、ステップS9 により、この形態では注入次数mのサセプタンスbih(=b2m(k))を、判定値brefより大きい設定値bfix,例えば1.0(s)に固定してステップSに移行する。
【0059】
このとき、bih(=b2m(k))≧brefになるため、ステップS6 からステップS1 に戻り、単独運転を検出することなく、つぎのインターバルの計測を開始する。
【0060】
例えば、図3に示すように、時刻t1 に遮断器4の開放による系統停止が検出され、それからΔt(=0.05秒)遅れて0.7秒経過したときに分散型電源6の単独運転が検出されて遮断器15が開放され、分散型電源6が系統から切離される場合、電力系統5の基本波電圧は、同図の(a)に示すように変化し、注入周波数(例えば136Hz)の計測電圧Vih(=V2m(k))は同図の(b)に示すように変化する。
【0061】
さらに、この計測電圧Vihに基づき、Vih<Vrefの間は、図3の(c)に示すようにサセプタンスbih(=b2m(k))が設定値bfix(>bref)に固定され、実質的にサセプタンスbihは演算から検出されず、Vih≧Vrefを検出するt1 +ΔTから、サセプタンスbih(=b2m(k))の演算が始まり、単独運転の有効な検出が始まる。
【0062】
そして、t2 時までbih(=b2m(k))>brefの状態が継続すれば、単独運転が検出されて分散型電源6が切離され、このとき、電力系統5の基本波電圧が消失する。
【0063】
そして、注入電流量を従来より少なくしたことで、系統正常時、電力系統5の注入周波数(注入次数m)の電圧Vihが極めて小さくなり、電圧Vihの測定が行えなくなっても、その間はサセプタンスbihを設定値bfixに固定することで、分散型電源6の単独運転の誤検出を防止することができ、従来より注入電流量が少なく、電源部17が小容量,小型の構成で分散型電源6の単独運転を確実に検出することができる。
【0064】
ところで、前記形態では、図2のステップS4 でV2m(k)≦Vrefになり、電圧Vih(=V2m(k))の検出が困難になると、ステップS9 に移行してサセプタンスbihを設定値bfixに固定した後、ステップS,Sにより、形式的にサセプタンスbihと判定値brefとを比較したが、処理の簡素化等を図る場合は、ステップS4 でV2m(k)≦Vrefになると、直ちにステップSに戻り、サセプタンスbih,brefの比較判定を省いてもよい。
【0065】
つぎに、前記形態では、電力系統5のアドミタンスYihの系統停止による変化が主にそのサセプタンスbihの変化に依存することから、サセプタンスbihの変化から分散型電源6の単独運転検出を行うようにしたが、アドミタンスYihの変化から分散型電源6の単独運転を検出するようにしてもよく、この場合は、例えば図2のステップS5 により、アドミタンスYihを、Yih=I2m(k)/V2m(k)から演算して検出し、ステップS,Sにより、その絶対値|Yih|が整定時間以上、設定した判定値Yref以下か否かを判別し、さらに、ステップSでV2m(k)≦Vrefであれば、ステップSによりアドミタンスYihを設定値Yfix(≧Yref)にすればよい。
【0066】
なお、基準値電圧Vrefは、具体的には、系統5の抵抗負荷と誘導性負荷との割合いが6対4であるとして、系統5の最大予測負荷を求め、この負荷から系統5の最大のバックグラウンドノイズを予測して設定すればよい。
【0067】
(他の形態)
つぎに、他の形態について、図4を参照して説明する。
前記1形態では、前記注入装置16を分散型電源6と別個独立に設けたが、分散型電源6がインバータ電源等の場合は、例えば図4に示すように構成して分散型電源6から電力系統5に注入電流を注入してもよく、この場合は、図1の電流注入装置16を省くことができる。
【0068】
図4において、図1と同一符合は同一もしくは相当するものを示し、21′は図1の検出処理装置21の代わりに設けられた分散型電源運転制御兼系統停止検出処理装置、26は分散型電源6の基本波出力を制御するマイクロコンピュータ構成の主処理部であり、サンプル・ホールド回路22,A/D変換回路24を、注入次数mの電圧,電流の検出と、基本波の電圧,電流の検出とに兼用し、この基本波の電圧,電流の検出に基づき、主処理部26が分散型電源6の基本波の電圧,電流の指令信号を加算部27に出力する。
【0069】
また、演算処理部27が注入周波数の注入電流の指令信号を加算部27に出力する。
【0070】
そして、加算部27により両指令信号が加算合成され、その出力信号で分散型電源6であるインバータ電源が運転され、分散型電源6が基本波の電力と注入電流とを電力系統5に出力する。
【0071】
ところで、前記両形態では高圧系統に適用したが、本発明は、短絡容量が大きい特高系統にも同様に適用することができ、従来はなかった特高系統の自律方式の能動型単独運転検出方法を実現することができる。
【0072】
この場合、特高系統であっても、注入電流量が従来の高圧系統と同程度でよく、系統への注入の影響が極めて少なくなる利点もある。
【0073】
そして、前記両形態において、次数間高調波の注入周波数(注入次数m),注入量及び基準値電圧Vref,判定値bref,設定値bfix等は両形態のものに限られるものではなく、系統条件等に応じて適当に設定してよいのは勿論である。
【0074】
そして、本発明は高圧系統、特高系統を含む種々の電力系統の分散型電源の単独運転検出に適用できる。
【0075】
【発明の効果】
本発明は、以下に記載する効果を奏する。
まず、請求項1の場合、電力系統5に注入する次数間高調波の電流(注入電流)を従来より少なくしても分散型電源が単独運転に移行する系統停止時は、系統電源が切離されて系統5の注入周波数のインピーダンスが大きくなってそのアドミタンスは小さくなり、注入電流に基づく注入周波数の電圧(注入電圧)が系統の注入周波数のバックグランドノイズより十分に大きくなり、注入電流及び注入電圧を確実に計測して系統の注入周波数(注入次数の次数間高調波)のアドミタンス(=注入電流(計測電流)/注入電圧(計測電圧))を確実に演算して検出することができる。
【0076】
一方、分散型電源6が系統電源に連系運転される系統正常時は、系統インピーダンスが小さいため、系統5の注入周波数のアドミタンスは大きくなり、注入電流が少ないと、注入電圧がバックグラウンドノイズのレベル程度に小さくなり、しかも、その計測レベルが変動し、注入電流は計測できても、注入電圧は計測できなくなることから、適当な大きさの検出無効の基準値電圧を設定し、計測電圧が基準値電圧より大きくなるときのみ、計測電圧が有効であるとし、このときにのみ計測電流と計測電圧とから系統5の注入周波数のアドミタンスを検出し、このアドミタンスの変化から分散型電源の単独運転を検出する。
【0077】
したがって、計測電圧が基準値電圧以下のときは、計測電圧を無効として、系統5が正常であるとみなし、分散型電源6の単独運転を誤検出しないようにして、その単独運転を確実に検出することができ、高圧系統の分散型電源の単独運転を、従来より注入電流を少なくして系統5への影響を防止しつつ確実に検出することができる。
【0078】
また、短絡容量が小さい特高系統の分散型電源の単独運転についても、少ない注入電流で確実に検出することができ、従来は存在しなかった自律式の能動型単独運転検出方法を提供することができる。
【0079】
つぎに、請求項2の場合は、電力系統5のアドミタンスの変化が、主にそのサセプタンスに依存することから、注入周波数のアドミタンスとして、そのサセプタンスを検出して請求項1の効果を得ることができる。
【0080】
さらに、請求項3の場合は、次数間高調波の注入系統を分散型電源6から系統5に注入したため、一層の小形化,簡素化を図って検出できる利点がある。
【図面の簡単な説明】
【図1】本発明の実施の形態1が適用される電力系統の単線結線図である。
【図2】図1の分散型電源の単独運転検出のフローチャートである。
【図3】(a)は図1の電力系統の基本波電圧波形図、(b)は同図の電力系統の注入周波数成分の電圧波形図、(c)は同図の電力系統のサセプタンス特性図である。
【図4】本発明の実施の他の形態の一部の単線結線図である。
【符号の説明】
5 電力系統
6 分散型電源
[0001]
BACKGROUND OF THE INVENTION
Disclosed is a distributed power supply that injects a current of interharmonic harmonics of a non-integer multiple frequency of a system fundamental wave into a system, and detects an isolated operation when the system is stopped when the system is operated in an interconnected manner with the system power supply. The present invention relates to an isolated operation detection method.
[0002]
[Prior art]
Conventionally, distributed power sources such as consumer photovoltaic power generation devices and fuel cell devices are connected to a system power supply by being connected to, for example, a 6.6 KV high voltage system or a higher voltage extra high voltage (extra high) system. .
[0003]
And when the system is shut down when the circuit breaker is opened due to a system fault, etc., the system power supply disappears and the distributed power source shifts from the grid operation to the single operation. May occur.
[0004]
Therefore, it is necessary to quickly disconnect the distributed power source from the system and disconnect it when the system is stopped.
[0005]
Conventionally, for example, a customer having a distributed power source is synchronized with the fundamental wave in order to detect a system stop due to a system fault or the like on the customer side (hereinafter referred to as a customer side) quickly and reliably. Injecting harmonics of the mth order (m is a band decimal number) of non-integer multiples of the fundamental frequency of the system, and measuring the harmonics of the order m of the system's injection order on the customer side. Based on the above, there has been proposed a method for detecting the isolated operation of a distributed power source that detects the admittance of inter-order harmonics of the injection order m of the system and detects the system stop from the change in the magnitude (absolute value) (for example, JP, 10-248168, A).
[0006]
In order to prevent isolated operation (with reverse power flow) of a distributed power source connected to an extra high system, the "Distributed Power System Interconnection Technical Guidelines, JEAG 9701-2001" (published by the NEC Association) As described, a so-called other-type transfer blocking device is used.
[0007]
This transfer interruption device is formed by connecting the transfer receiving device on the customer side etc. via the communication line to the transfer transmitting device on the substation side, and when a system fault occurs, the transfer is transferred from the transfer transmitter via the communication line. An accident notification signal is sent to the receiving device, and the receiving device detects a system stoppage.
[0008]
[Problems to be solved by the invention]
In the conventional detection method, the voltage of the order of injection m of the system is reliably detected by causing sufficient voltage distortion so as not to be affected by the background noise of the system. It is necessary to inject waves.
[0009]
Then, according to various experiments, harmonics between orders that do not exist originally exist as background noise of about 0.01% of the fundamental voltage in the system, so that dispersion from the change in the admittance of the injection order m of the system In order to detect the isolated operation of the power source, it is necessary to inject harmonics between orders to cause distortion of about 0.05% in the system.
[0010]
In order to cause the distortion of about 0.05%, a particularly large current injection is required particularly in an extra high system having a very short circuit capacity, and a current injection in an ampere unit is required even in a high voltage system.
[0011]
On the other hand, the other method of the above technical guidelines requires not only a receiving device and a transmitting device, but also a long-distance communication cable between the two devices, and only the customer side detects it. I can't.
[0012]
In this type of isolated operation detection, one of the extremely important issues is to reduce the injection current as much as possible to reduce the influence on the system as much as possible, and to reduce the size and weight of the injection power supply. ing.
[0013]
In addition, the isolated operation of the distributed power supply due to the system stop may be detected from the impedance change of the reciprocal of admittance. In this case, the detected impedance of the injection order m of the system when the system is normal is the short-circuit impedance of the system power supply. The detected impedance of the injection order m of the system when the system is stopped fluctuates depending on the system load, and the difference between the detected impedances when the system is normal and when the system is stopped may not be large.
[0014]
Therefore, it is difficult to reliably determine whether or not the system is stopped from the impedance change of the injection order m of the system, and it is not practical to detect the islanding operation from the change in impedance.
[0015]
The present invention reduces admittance (or its susceptance) of the injection frequency (injection order m) of the system by preventing the erroneous detection due to the background noise of the system while reducing the influence on the system by reducing the amount of injected current as compared with the prior art. It is an object of the present invention to detect isolated operation of a distributed power source reliably from the change in admittance (or susceptance).
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the isolated operation detection method for a distributed power source according to claim 1 injects inter-order harmonics into the system,
Measure the voltage and current of the harmonics between the injection orders of the system,
Calculate and detect the admittance of the harmonics between the orders of injection of the system from the measured voltage and measured current,
An isolated operation detection method for a distributed power source that detects the isolated operation of the distributed power source when the system is stopped from the detected change in admittance,
Reference invalidity voltage for detection-order harmonics that are higher than the background noise of the harmonics of the injection order of the system and lower than the harmonics of the harmonics of the order of injection when the system is stopped. Set as
Compare the measured voltage with the reference voltage,
Only when the measured voltage is greater than the reference voltage, the admittance of the harmonics between orders of the injection order of the system is calculated and detected from the measured voltage and the measured current,
An isolated operation is detected from the detected change in admittance.
[0017]
In this case, even when the interharmonic current (injection current) injected into the system is smaller than the conventional one, the system power supply is disconnected and the injection frequency (injection order m ) Increases the system impedance and decreases the admittance of the injection frequency of the system, so that the voltage (injection voltage) of the injection frequency of the system based on the injection current is sufficiently larger than the background noise, and the injection current and injection voltage are reduced. It is possible to accurately measure and detect the admittance (= injection current (measurement current) / injection voltage (measurement voltage)) of the injection frequency (harmonic between orders of the injection order) of the system with high accuracy.
[0018]
On the other hand, when the distributed power supply is normally connected to the system power supply, the system impedance is small and the admittance of the system injection frequency is large, so if the injection current is small, the injection voltage will be about the background noise level. In addition, since the level is easily changed, even if the injection current can be measured, it is difficult to measure the injection voltage.
[0019]
Therefore, in the present invention, a reference value voltage having an appropriate detection invalidity is set, and it is assumed that the measurement voltage is valid only when the measurement voltage becomes larger than the reference value voltage. The admittance of the injection frequency of the system is detected from the voltage, and the isolated operation of the distributed power source is detected from the change of the admittance.
[0020]
Therefore, when the measured voltage is lower than the reference voltage, the measured voltage can be invalidated so that the system is considered to be normal so that the single operation of the distributed power source is not erroneously detected. About the power supply, it is possible to reliably detect the single operation by reducing the injection current than before, and it is possible to detect the single operation with a small injection current for the distributed power supply of the extra high system having a small short-circuit capacity. It is possible to provide a novel autonomous active detection method for autonomous operation.
[0021]
Then, the susceptance may be detected as the admittance of the injection frequency.
Moreover, the injection current of the interharmonics may be injected into the system from the inverter of the distributed power source.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
(1 form)
First, an embodiment will be described with reference to FIGS.
FIG. 1 is a single line connection diagram of an example of an electric power system. A primary side of one or a plurality of transformers 3 of a substation 2 is connected to a higher level system 1, and a circuit breaker 4 is connected from a secondary side of each transformer 3. Thus, one or a plurality of lower power systems 5 are drawn in a branched manner.
[0023]
For example, in the case of a high voltage system of 6.6 kV, these power systems 5 are a plurality of customer facilities such as a customer facility 7 having a distributed power source 6 and a general customer facility 8 having no distributed power source 6. Is connected.
[0024]
The customer facility 7 to which the present invention is applied is connected to the power system 5 via the circuit breaker 10 of the lead-in line 9 and the load feeder 12 is connected to each load feeder 12 as with other customer facilities. Each load is connected through the transformer 13.
[0025]
Further, a circuit breaker 14 is connected to the load bus 11, a distributed power source 6 is connected to the circuit breaker 14 via a disconnecting switch 15, and a current injection device 16 for inter-order harmonics is connected. The
[0026]
The current injection device 16 is formed by a power supply unit 17 such as an inverter that outputs an inter-order harmonic injection current, and an injection transformer 18 provided between the power supply unit 17 and the load bus 11.
[0027]
Also, a power receiving point transformer 19 and a power receiving point current transformer 20 are provided on the load bus 11 side of the circuit breaker 10 of the lead-in line 9, and voltage and current measurement signals of these three phases are system stop detection processing devices. 21 is supplied to the sample and hold circuit 22.
[0028]
This sample and hold circuit 22 samples and holds the system voltage and both measurement signals by a timing signal of a sampling command of a constant frequency formed by a constant frequency generator such as a crystal oscillator, and the output thereof is the latter stage. It is converted into a digital signal by the A / D conversion circuit 24 and becomes sampling data.
[0029]
The voltage / current sampling data converted into a digital signal by the A / D conversion circuit 24 is supplied to the arithmetic processing unit 25.
[0030]
The processing unit 25 is formed by a microcomputer or the like, and performs a known Fourier transform digital filter operation on both sampling data by the software processing, and the harmonics between orders of injection injected from the current injection device 16 to the power system 5. The wave is extracted and detected, and the occurrence of a system stop that opens the circuit breaker 4 from the change, that is, the occurrence of an independent operation of the distributed power source 6 is monitored and detected.
[0031]
Furthermore, when this isolated operation is detected, a disconnection command is supplied from the arithmetic processing unit 25 to the switch 15, the switch 15 is opened, and the distributed power source 6 is disconnected from the power system 5.
[0032]
By the way, when the system is normal, all of the circuit breakers 4, 10, 14 and the switch 15 are closed, the power of the upper system 1 is supplied to the power system 5, and the power system 5 is in a power supply state.
[0033]
At this time, the distributed power source 6 is operated in conjunction with the power system 5, and the output is consumed in the own facility 7 and the surplus is output to the power system 5 through the lead-in line 9.
[0034]
Further, in the customer facility 7, the power receiving point transformer 19 and the power receiving point current transformer 20 constantly measure the voltage at the power receiving point A and the current flowing in and out of the power receiving point A.
[0035]
In addition, the arithmetic processing unit 25 periodically outputs a start command to the power source unit 17 in synchronization with a timing signal of a constant frequency of the timing command unit 23, and based on this command, the power source unit 17 synchronizes with the timing signal. A harmonic current between non-integer multiples of the system fundamental wave is formed, and this injected current is injected into the power system 5 from the power receiving point A of the customer facility 7 via the transformer 18, the load bus 11, and the lead-in line 9. Is done.
[0036]
At this time, in order to detect and monitor the admittance by distorting the system voltage by about 0.05% of the fundamental wave voltage by the injected current in consideration of the background noise of about 0.01% existing in the power system 5 in the past. The injection current is set to a relatively large current of, for example, about 1 A. However, in the case of this embodiment, the injection current is reduced to such an extent that sufficient voltage distortion is generated when the single operation is generated. To the extent.
[0037]
For this reason, the current injection has little influence on the system 5, and the current injection device 16 and the like are smaller in capacity, smaller and lighter than the conventional device.
[0038]
Based on the injection of the current from the power receiving point A, the measurement signals of the power receiving point transformer 19 and the power receiving point current transformer 20 include the voltage and current of the inter-order harmonic of the injection order m.
[0039]
These measurement signals are sampled and held by the sampling of the sample and hold circuit 22 as described above based on the timing signal of the timing command unit 23.
[0040]
Further, the voltage and current hold outputs are converted into digital signals by the A / D conversion circuit 24, and the sampling data converted into these digital signals are processed by the arithmetic processing unit 25, and the injection order of the system 5 based on the injection current is obtained. The measurement voltage and measurement current of the harmonics between the orders of m are extracted and detected.
[0041]
If these measured voltages and currents are Vih and Iih and the admittance of the injection frequency of the power system 5 viewed from the power receiving point A is Yih, the admittance Yih is detected from the calculation of Yih = Iih / Vih, and the admittance Yih The susceptance bih is obtained from bih = Im (Iih / Vih), where Im is a function indicating an imaginary component.
[0042]
When the distributed power source 6 is connected to the system power source when the system is normal (healthy), the power source impedance of the power system 5 viewed from the power receiving point A is a short-circuit impedance. At this time, the power system viewed from the power receiving point A The admittance Yih and the susceptance bih of the interharmonic harmonic of the injection order of 5 are increased.
[0043]
Next, when the circuit breaker 4 is opened due to the stop of the power system 5 due to a system fault or the like, the power source impedance of the power system 5 seen from the power receiving point A increases from the short-circuit impedance to the open impedance. The admittance Yih and the susceptance bih of the power system 5 become small, and the stop of the power system 5, that is, the independent operation of the distributed power source 6 can be detected from the change of the admittance Yih or the susceptance bih.
[0044]
However, since the injected current Iih is reduced as much as possible, the voltage Vih becomes extremely small particularly when the system is normal, and in some cases, the voltage Vih becomes less than the background noise of the power system 5, so this voltage Vih is used. If the admittance Yih or the susceptance bih is calculated, a false detection occurs.
[0045]
Therefore, in this embodiment, the voltage distortion of the background noise of the injection order m of the electric power system 5 is higher than 0.01% and is as small as possible as much as the voltage distortion of the injection order m at the time of single operation. Specifically, for example, a voltage causing a voltage distortion of 0.02% is set in the arithmetic processing unit 25 as a reference value voltage Vref that is invalid for detection. Specifically, the arithmetic processing unit 25 executes the isolated operation detection flow of FIG.
[0046]
Then, for each measurement interval is set, in step S 1 of the detection flow, three phases of the voltage of the electric power system 5, the sampling time of momentary power system 5 of the measurement signal of the current A / D conversion k of the voltage V (k), obtains a measurement data of the current I (k), running for example regression type DFT calculation in step S 2, for each phase, injection order m represented by equation 1 the following The voltage Vm (k) and current Im (k) at each time point k of the inter-order harmonics are obtained.
[0047]
[Expression 1]
Vm (k) = (2 / N). {Vm (k-1) -V (k-N) + V (k)). X- 1
Im (k) = (2 / N) · {Im (k−1) −I (k−N) + I (k)) × x −1
[0048]
However, N in the equation is a time-series sampling number used for the DFT calculation, and the DFT calculation is performed using the measurement data of the past N samplings.
[0049]
A specific value of N is, for example, the number of 2048 samplings (64 × 32 =) obtained by repeating 64 samplings per period of the fundamental wave over 32 fundamental wave waves of the system.
X is x = exp (j · 2π · m / N).
[0050]
Further, the voltage Vm (k) and the current Im (k) are complex values. The three phases are a phase, b phase, and c phase, and the voltage Vam (k) of each phase a, b, and c obtained from the equation (1). ), based on the Vbm (k), Vcm (k ), current Iam (k), Ibm (k ), Icm (k), in step S 3, for example, from the anti-phase operation of the number of the next second power system 5 A measurement voltage V2m (k) and a measurement current I2m (k) of the injection order m are obtained.
[0051]
[Expression 2]
V2m (k) = (Vam (k) + a · a · Vbm (k) + a · Vcm (k)) / 3
I2m (k) = (Iam (k) + a · a · Ibm (k) + a · Icm (k)) / 3
[0052]
Note that the measurement voltage V2m (k) and the measurement current I2m (k) may be obtained from normal phase calculation, and a is a = exp · (2π / 3)).
[0053]
Then, the process proceeds to step S 4, it compares the set reference value voltage Vref and the measured voltage V2m (k), if V2m (k)> Vref, the process proceeds to step S 5, the power system 5 The susceptance bih (= b2m (k)) of the admittance Ym having the injection order m, for example, is calculated by calculating from the following equation (3). Im is a function indicating an imaginary part (imaginary component).
[0054]
[Equation 3]
bih = b2m (k) = − Im (I2m (k) / V2m (k))
[0055]
Further, the magnitude (absolute value) of the detected susceptance bih (= b2m (k)) is maintained at the settling time T by the steps S 6 and S 7 , and the susceptance determination value bref of the isolated operation detection, for example, 0 .6 (s) or less is monitored and detected.
[0056]
Then, the process proceeds to step S 8 when it continues the settling time of the state of BIH ≦ bref, for example, T = 0.7 seconds, this time, that the transition to the independent operation of the dispersed type power supply 6 by the system outage By detecting this, the circuit breaker 15 is opened by this detection, the distributed power source 6 is disconnected from the power system 5, and the process is terminated.
[0057]
Next, when the system voltage is normal, the measurement voltage V2m (k) is small. If this measurement voltage V2m (k) is equal to or less than the reference value voltage Vref, the amount of injected current is small, and the measurement voltage V2m (k) is accurately determined. It is difficult, and, in most cases, since it is considered that the system normally, the process proceeds from step S 4 to step S 9.
[0058]
Then, shifts in step S 9, the susceptance bih infusion order m in this embodiment (= b2m (k)), the determination value bref larger than the set value Bfix, in step S 6 is fixed to e.g. 1.0 (s) To do.
[0059]
At this time, since the bih (= b2m (k)) ≧ bref, returns from step S 6 to Step S 1, without detecting the islanding operation, starts measuring the next interval.
[0060]
For example, as shown in FIG. 3, is detected the system stop due to opening of the circuit breaker 4 at time t 1, a single distributed power supply 6 when then passed Delta] t (= 0.05 seconds) delay 0.7 seconds When operation is detected, the circuit breaker 15 is opened, and the distributed power source 6 is disconnected from the system, the fundamental voltage of the power system 5 changes as shown in FIG. The measurement voltage Vih (= V2m (k)) of 136 Hz) changes as shown in FIG.
[0061]
Further, based on the measured voltage Vih, during Vih <Vref, the susceptance bih (= b2m (k)) is fixed to the set value bfix (> bref) as shown in FIG. The susceptance bih is not detected from the calculation, and the calculation of the susceptance bih (= b2m (k)) starts from t 1 + ΔT that detects Vih ≧ Vref, and effective detection of the single operation starts.
[0062]
If bih (= b2m (k))> bref continues until t 2 , the isolated operation is detected and the distributed power supply 6 is disconnected. At this time, the fundamental voltage of the power system 5 disappears. To do.
[0063]
Further, by reducing the amount of injected current compared to the conventional case, the voltage Vih at the injection frequency (injection order m) of the power system 5 becomes extremely small when the system is normal, and even if the voltage Vih cannot be measured, the susceptance bih in the meantime. Is fixed to the set value bfix, so that erroneous detection of isolated operation of the distributed power source 6 can be prevented, the amount of injected current is smaller than in the prior art, and the power source unit 17 has a small capacity and a small configuration. Can be reliably detected.
[0064]
Incidentally, in the embodiment, becomes V2m (k) ≦ Vref at Step S 4 in FIG. 2, when the detection voltage Vih (= V2m (k)) becomes difficult, setpoint susceptance bih proceeds to step S 9 After fixing to bfix, the susceptance bih and the determination value bref are formally compared in steps S 6 and S 7. However, in order to simplify the process, V2m (k) ≦ Vref is set in step S 4. becomes immediately returns to step S 1, susceptance BIH, it may be omitted comparison determination bref.
[0065]
Next, in the said form, since the change by the system stop of the admittance Yih of the electric power system 5 mainly depends on the change of the susceptance bih, the independent operation detection of the distributed power source 6 was performed from the change of the susceptance bih. There may also be detected independent operation of the dispersed type power supply 6 from the change in the admittance Yih, in this case, for example, by step S 5 in FIG. 2, the admittance Yih, Yih = I2m (k) / V2m (k ), And in steps S 6 and S 7 , it is determined whether or not the absolute value | Yih | is equal to or greater than the settling time and equal to or less than the set determination value Yref. In step S 4 , V2m (k) if ≦ Vref, may be the admittance Yih set value Yfix (≧ Yref) in step S 9.
[0066]
Note that the reference voltage Vref is specifically determined assuming that the ratio of the resistive load and the inductive load of the system 5 is 6 to 4, and the maximum predicted load of the system 5 is obtained. The background noise may be predicted and set.
[0067]
(Other forms)
Next, another embodiment will be described with reference to FIG.
In the first embodiment, the injection device 16 is provided separately from the distributed power source 6. However, when the distributed power source 6 is an inverter power source or the like, for example, the power supply from the distributed power source 6 is configured as shown in FIG. An injection current may be injected into the system 5, and in this case, the current injection device 16 of FIG. 1 can be omitted.
[0068]
In FIG. 4, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, 21 'denotes a distributed power source operation control / system stop detection processing device provided in place of the detection processing device 21 in FIG. 1, and 26 denotes a distributed type. It is a main processing unit of a microcomputer configuration that controls the fundamental wave output of the power supply 6, and the sample-and-hold circuit 22 and the A / D conversion circuit 24 are used to detect the voltage and current of the injection order m and to detect the fundamental wave voltage and current. The main processing unit 26 outputs the fundamental wave voltage and current command signals of the distributed power source 6 to the adding unit 27 based on the detection of the fundamental wave voltage and current.
[0069]
In addition, the arithmetic processing unit 27 outputs an injection current command signal of the injection frequency to the addition unit 27.
[0070]
Then, both command signals are added and synthesized by the adder 27, and the inverter power source which is the distributed power source 6 is operated by the output signal, and the distributed power source 6 outputs the fundamental wave power and the injected current to the power system 5. .
[0071]
By the way, although applied to a high voltage system in both the above-mentioned forms, the present invention can be applied to an extra high system with a large short-circuit capacity in the same manner, and an autonomous independent operation detection of an extraordinary system of an extra high system that has not existed before. A method can be realized.
[0072]
In this case, even in an extra high system, the amount of injected current may be approximately the same as that of a conventional high voltage system, and there is an advantage that the influence of the injection on the system is extremely reduced.
[0073]
In both the above-described embodiments, the inter-order harmonic injection frequency (injection order m), the injection amount, the reference value voltage Vref, the determination value bref, the set value bfix, and the like are not limited to those in both the forms, and the system conditions Of course, it may be set appropriately according to the above.
[0074]
The present invention can be applied to single operation detection of distributed power sources of various power systems including high voltage systems and extra high systems.
[0075]
【The invention's effect】
The present invention has the following effects.
First, in the case of claim 1, even when the interharmonic current (injection current) injected into the electric power system 5 is less than the conventional one, the system power supply is disconnected when the distributed power supply shifts to the single operation. As a result, the impedance of the injection frequency of the system 5 increases and its admittance decreases, and the voltage (injection voltage) of the injection frequency based on the injection current becomes sufficiently larger than the background noise of the injection frequency of the system. It is possible to reliably measure and detect the admittance (= injection current (measurement current) / injection voltage (measurement voltage)) of the injection frequency (intra-order harmonics of the injection order) of the system.
[0076]
On the other hand, when the distributed power source 6 is normally operated in a system-connected manner with the system power source, the system impedance is small, so that the admittance of the injection frequency of the system 5 is large, and when the injection current is small, the injection voltage becomes the background noise. Even if the measurement level fluctuates and the injection current can be measured, the injection voltage can no longer be measured. Only when the measured voltage is larger than the reference voltage, the measured voltage is valid. Only at this time, the admittance of the injection frequency of the system 5 is detected from the measured current and the measured voltage, and the distributed power supply is operated independently from the change in the admittance. Is detected.
[0077]
Therefore, when the measured voltage is equal to or lower than the reference voltage, the measured voltage is invalidated, the system 5 is regarded as normal, and the isolated operation of the distributed power source 6 is not erroneously detected to reliably detect the isolated operation. In addition, it is possible to reliably detect the single operation of the distributed power source of the high voltage system while reducing the injected current and preventing the influence on the system 5.
[0078]
Also, an autonomous active islanding detection method that does not exist in the past can be reliably detected even with a small injection current even in isolated operation of a distributed power source of an extra high system with a small short-circuit capacity. Can do.
[0079]
Next, in the case of claim 2, since the change in admittance of the electric power system 5 mainly depends on the susceptance, the susceptance is detected as the admittance of the injection frequency, and the effect of claim 1 can be obtained. it can.
[0080]
Further, in the case of claim 3, since the interharmonic injection system is injected from the distributed power source 6 to the system 5, there is an advantage that detection can be performed while further downsizing and simplification.
[Brief description of the drawings]
FIG. 1 is a single-line diagram of a power system to which Embodiment 1 of the present invention is applied.
FIG. 2 is a flowchart for detecting an isolated operation of the distributed power source of FIG. 1;
3A is a fundamental wave voltage waveform diagram of the power system of FIG. 1, FIG. 3B is a voltage waveform diagram of an injection frequency component of the power system of FIG. 1, and FIG. 3C is a susceptance characteristic of the power system of FIG. FIG.
FIG. 4 is a single-line diagram of a part of another embodiment of the present invention.
[Explanation of symbols]
5 Power system 6 Distributed power supply

Claims (3)

系統に次数間高調波を注入し、
系統の注入次数の次数間高調波の電圧,電流を計測し、
計測電圧,計測電流から系統の注入次数の次数間高調波のアドミタンスを演算して検出し、
検出したアドミタンスの変化から系統停止時の分散型電源の単独運転を検出する分散型電源の単独運転検出方法であって、
系統の注入次数の次数間高調波のバックグランドノイズより大きく、かつ、系統停止時の注入次数の次数間高調波の電圧より小さい注入次数の次数間高調波の電圧を、検出無効の基準値電圧として設定し、
前記計測電圧と前記基準値電圧とを比較し、
前記計測電圧が前記基準値電圧より大きいときにのみ、前記計測電圧,前記計測電流から系統の注入次数の次数間高調波のアドミタンスを演算して検出し、
検出したアドミタンスの変化から前記単独運転の検出を行うことを特徴とする分散型電源の単独運転検出方法。
Inject harmonics between orders into the system,
Measure the voltage and current of the harmonics between the injection orders of the system,
Calculate and detect the admittance of the harmonics between the orders of injection of the system from the measured voltage and measured current,
An isolated operation detection method for a distributed power source that detects the isolated operation of the distributed power source when the system is stopped from the detected change in admittance,
Reference invalidity voltage for detection-order harmonics that are higher than the background noise of the harmonics of the injection order of the system and lower than the harmonics of the harmonics of the order of injection when the system is stopped. Set as
Compare the measured voltage with the reference voltage,
Only when the measured voltage is greater than the reference voltage, the admittance of the harmonics between orders of the injection order of the system is calculated and detected from the measured voltage and the measured current,
An isolated operation detection method for a distributed power source, wherein the isolated operation is detected from a detected change in admittance.
注入周波数の次数間高調波のアドミタンスを、前記アドミタンスのサセプタンスとしたことを特徴とする請求項1記載の分散型電源の単独運転検出方法。2. The method for detecting an isolated operation of a distributed power source according to claim 1, wherein the admittance of the interharmonics of the injection frequency is the susceptance of the admittance. 注入次数の次数間高調波の電流を、分散型電源から系統に注入することを特徴とする請求項1又は請求項2記載の分散型電源の単独運転検出方法。The method for detecting an isolated operation of a distributed power supply according to claim 1 or 2, wherein a current of an interharmonic harmonic of the injection order is injected into the system from the distributed power supply.
JP2002227270A 2002-08-05 2002-08-05 Isolated operation detection method for distributed power supply Expired - Lifetime JP3896051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227270A JP3896051B2 (en) 2002-08-05 2002-08-05 Isolated operation detection method for distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227270A JP3896051B2 (en) 2002-08-05 2002-08-05 Isolated operation detection method for distributed power supply

Publications (2)

Publication Number Publication Date
JP2004072863A true JP2004072863A (en) 2004-03-04
JP3896051B2 JP3896051B2 (en) 2007-03-22

Family

ID=32014356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227270A Expired - Lifetime JP3896051B2 (en) 2002-08-05 2002-08-05 Isolated operation detection method for distributed power supply

Country Status (1)

Country Link
JP (1) JP3896051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149119A (en) * 2004-11-22 2006-06-08 Toshiba Mitsubishi-Electric Industrial System Corp Power supply system
JP2012157130A (en) * 2011-01-25 2012-08-16 Chugoku Electric Power Co Inc:The System and method for detecting isolated operation of dispersed power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006149119A (en) * 2004-11-22 2006-06-08 Toshiba Mitsubishi-Electric Industrial System Corp Power supply system
JP4690706B2 (en) * 2004-11-22 2011-06-01 東芝三菱電機産業システム株式会社 Power system
JP2012157130A (en) * 2011-01-25 2012-08-16 Chugoku Electric Power Co Inc:The System and method for detecting isolated operation of dispersed power supply

Also Published As

Publication number Publication date
JP3896051B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US6545885B2 (en) Isolated operation prevention device for distributed power supply and interharmonic detection method
US11522355B2 (en) Method and apparatus for use in earth-fault protection
US20080238215A1 (en) Method, memory media and apparatus for detection of grid disconnect
CN109950862B (en) Self-adaptive current fixed value setting method
US10784677B2 (en) Enhanced utility disturbance monitor
US6326796B1 (en) Harmonic measuring method and a current injection device for harmonic measurement
JP2014117016A (en) Single operation detection device and method, power conditioner and distributed power source system
JP3788212B2 (en) Harmonic detection method between orders
Guha et al. Anti-islanding techniques for Inverter-based Distributed Generation systems-A survey
Khan et al. A communication-free active unit protection scheme for inverter dominated islanded microgrids
CN112636312B (en) Micro-grid protection method based on injected zero-sequence characteristic signal
JP2012163384A (en) Short circuit capacity measuring system
JP3896051B2 (en) Isolated operation detection method for distributed power supply
KR100856715B1 (en) Islanding Detection Method for Microgrid and its Device
JP3367371B2 (en) Device to prevent isolated operation of distributed power supply
US11018497B2 (en) In-phase motor bus transfer
Tsyruk et al. Determination of source fault using fast acting automatic transfer switch
JP3601518B2 (en) Method for detecting isolated operation of distributed power supply
US11043803B2 (en) Reference signal generating method for distance and directional protection elements
JP7131945B2 (en) HARMONIC MEASURING DEVICE, ITS ISLANDING OPERATION DETECTION METHOD USING THE SAME, ISLANDING OPERATION DETECTION DEVICE, AND DISTRIBUTED POWER SUPPLY SYSTEM
JP3367412B2 (en) Device to prevent isolated operation of distributed power supply
JP2001258161A (en) Distributed power supply and power equipment
JP2008029065A (en) Islanding detection system of distributed power supply
JP2003244851A (en) Method of detecting single operation of distributed power source
JP4040800B2 (en) Single operation detector for distributed power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3896051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term