JP2004071605A - Arrester and its manufacturing method - Google Patents

Arrester and its manufacturing method Download PDF

Info

Publication number
JP2004071605A
JP2004071605A JP2002224545A JP2002224545A JP2004071605A JP 2004071605 A JP2004071605 A JP 2004071605A JP 2002224545 A JP2002224545 A JP 2002224545A JP 2002224545 A JP2002224545 A JP 2002224545A JP 2004071605 A JP2004071605 A JP 2004071605A
Authority
JP
Japan
Prior art keywords
silicone resin
mold
temperature
lightning arrester
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224545A
Other languages
Japanese (ja)
Inventor
Hironori Suzuki
鈴木 洋典
Fukuo Sano
佐野 福男
Takamichi Tsukui
津久井 貴通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TM HENDEN KIKI TECHNOLOGY KK
Toshiba Corp
Original Assignee
TM HENDEN KIKI TECHNOLOGY KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TM HENDEN KIKI TECHNOLOGY KK, Toshiba Corp filed Critical TM HENDEN KIKI TECHNOLOGY KK
Priority to JP2002224545A priority Critical patent/JP2004071605A/en
Publication of JP2004071605A publication Critical patent/JP2004071605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the apprehension of a polymer arrester that the airtightness of the joint between the internal element and insulating container made of a polymer resin of the arrester drops and moisture infiltrates through the joint and lowers the insulation performance of the arrester. <P>SOLUTION: The internal element of the arrester is coated by molding by injecting a silicone resin into a mold after the element is put in the mold and pressurizing the interior of the mold when the silicone resin is heated to the curing temperature of the resin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛を主成分とする非直線抵抗体を用いた避雷器およびその製造方法に関するもので、特に絶縁容器として樹脂材料(ポリマー樹脂)を用いた避雷器およびその製造方法に関する。
【0002】
【従来の技術】
一般に、送電線や送変電機器などの電力系統に落雷などが生じた場合には系統に異常電圧(雷サージ)が発生し電力機器や設備を損傷破壊する恐れがある。このような異常電圧から電力系統を保護するために、従来より避雷器が用いられている。この避雷器には、正常な電圧下においては絶縁性能を示し、異常電圧が印加された時には低抵抗特性を示す非直線抵抗体が用いられ、電力系統と大地との間に接続される。電力系統に異常電圧が発生した場合は避雷器を通して放電電流が大地に流れ異常電圧を制限する。そして、電圧が正常状態に復帰すると直ちに放電が停止し、避雷器は元の絶縁状態に復帰する。
【0003】
このような避雷器の構成としては従来、酸化亜鉛を主成分とする円板状の非直線抵抗素子を1枚または複数枚積層し、その上下端部に電極を配置して非直線抵抗積層体を構成し、それらの径方向のずれを防ぐために複数本の絶縁ロッドを非直線抵抗積層体周囲に均等配置し、その上下を絶縁ナットで電極に固定し、避雷器の内部要素を構成している。さらにこの内部要素を絶縁容器の中に収納し、内部要素の上端部にバネを介して蓋をすることにより電極を含む非直線抵抗積層体に軸力を付与し、固定している。
【0004】
避雷器の絶縁容器としては、セラミック製のもの、あるいはポリマー樹脂を用いたものがあり、ポリマー樹脂を用いたものは、特にポリマー避雷器と呼ばれている。ポリマー避雷器では非直線抵抗積層体の固定方法としては、絶縁ロッドで押さえる方法のほかに、たとえば、特開平1−255437のように絶縁性のテープで固定する方法や特開平10−55904のように絶縁性の網で固定する方法が提案されている。
【0005】
【発明が解決しようとする課題】
従来のポリマー避雷器は、非直線抵抗体を積層し、絶縁ロッドで固定して構成された避雷器の内部要素をシリコーン樹脂などのポリマー樹脂でモールド被覆してできた絶縁容器の中に収納していた。
【0006】
このような従来のポリマー避雷器では、長期の使用で内部要素と絶縁容器であるポリマー樹脂との接合面の気密性が低下し、この部分から湿気が侵入し、避雷器内に空間があった場合には水分が滞留し、絶縁強度を弱め、避雷器の絶縁性能を低下させる懸念があった。特に、絶縁性のテープ、網形状のもので非直線抵抗体を固定した場合、テープ、網目の重なり部に気泡が形成されやすく絶縁的に問題であった。
【0007】
また、避雷器が大形になるとシリコーン樹脂の量が増え、硬化に時間がかかり、
生産性が低下するいう問題もあった。
本発明は上記の課題を解決して、長期使用によっても気密性が低下することなく、絶縁性能を向上させた避雷器およびその製造方法を得ることを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために請求項1に記載の避雷器の発明は、酸化亜鉛を主成分とした非直線抵抗体を一枚又は複数枚積層し、その両端に電極端子を配置し、絶縁支持体で非直線抵抗体と電極端子とを固定して内部要素を構成し、この内部要素を型の中に置いてシリコーン樹脂でモールド被覆した避雷器において、シリコーン樹脂の硬化温度下で圧縮成形したシリコーン樹脂により内部要素をモールド被覆したことを特徴とする。
この発明によれば、シリコーン樹脂の流動性を保持した状態で内部要素の隙間までシリコーン樹脂を埋め、隙間や気泡の発生を防ぐ。
【0009】
請求項2に記載の避雷器の製造方法の発明は、酸化亜鉛を主成分とした非直線抵抗体を一枚又は複数枚積層し、その両端に電極端子を配置し、絶縁支持体で非直線抵抗体と電極端子とを固定して内部要素を構成し、この内部要素を型の中に置いてシリコーン樹脂でモールド被覆した避雷器の製造方法において、シリコーン樹脂の硬化温度下でシリコーン樹脂を圧縮成形し、モールド被覆したことを特徴とする。
この発明の方法によれば、シリコーン樹脂の流動性を保持した状態で内部要素の隙間までシリコーン樹脂を埋め、隙間や気泡の発生を防ぐ。
【0010】
請求項3に記載の避雷器の製造方法の発明は、請求項2に記載の避雷器の製造方法の発明において、内部要素を型の中に入れ、液状のシリコーン樹脂を型内に注入し、型内を密封した後、型内を加圧高温としてモールド被覆することを特徴とする。
この発明によれば、シリコーン樹脂の流動性を保持した状態で、密封された型内で内部要素の隙間までシリコーン樹脂を埋め、隙間や気泡の発生を防ぐ。
【0011】
請求項4に記載の避雷器の製造方法の発明は、請求項2又は3に記載の避雷器の製造方法の発明において、シリコーン樹脂の注入時に、型を予熱しておくことを特徴とする。
この発明によれば、あらかじめ型が予熱されているので短時間でシリコーン樹脂を硬化させる。
【0012】
請求項5に記載の避雷器の製造方法の発明は、請求項2又は3に記載の避雷器の製造方法の発明において、シリコーン樹脂の注入時に、内部要素を予熱しておくことを特徴とする。
この発明によれば、あらかじめ型が予熱されているので短時間でシリコーン樹脂を硬化させる。
【0013】
請求項6に記載の避雷器の製造方法の発明は、請求項4又は5に記載の避雷器製造方法の発明において、予熱温度をシリコーン樹脂の硬化温度より低い温度としたことを特徴とする。
この発明によれば、あらかじめ型、又は内部要素が予熱されているので短時間でシリコーン樹脂を硬化させる。
【0014】
請求項7に記載の避雷器の製造方法の発明は、請求項2乃至6のいずれかに記載の避雷器の製造方法の発明において、シリコーン樹脂をゲル化させた後型より取出し、シリコーン樹脂の硬化温度より高い温度熱処理することを特徴とする。
この発明によれば、シリコーン樹脂のゴム特性を発現する反応と、接着性を向上する反応とを分けて硬化処理を行う。
【0015】
請求項8に記載の避雷器の製造方法の発明は、請求項4又は5に記載の避雷器の製造方法の発明において、予熱温度を70℃〜130℃の範囲内であることを特徴とする。
この発明によれば、あらかじめ型、又は内部要素が70℃〜130℃の範囲内で予熱されているので短時間でシリコーン樹脂を硬化させる。
【0016】
請求項9に記載の避雷器の製造方法の発明は、請求項7に記載の避雷器の製造方法の発明において、シリコーン樹脂をゲル化させる温度を80℃〜150℃の範囲で行い、その後の熱処理温度を130℃〜180℃の範囲内であることを特徴とする。
この発明によれば、シリコーン樹脂のゴム特性を発現する反応と、接着性を向上する反応とを分けて硬化処理を行う。
【0017】
【発明の実施の形態】
以下本発明の実施の形態について図を参照して説明する。図1において、1は酸化亜鉛を主成分とする材料からなる円板状の非直線抵抗体で、この非直線抵抗体1を1枚又は複数枚積層し、その両端部に当板2a、2bを介して電極3a、3bを配置する。それらの電極3a、3b間を非直線抵抗体1の積層方向に沿ってその周囲に配置された4本のFRP(ガラス繊維強化プラスティク)製の板状の絶縁支持体4でボルト5により連結する。そして図1に示すように少なくとも一方の電極3bにネジ穴6を設け、そこにトメネジ7を螺合し、当板2bをトメネジ7で押すことにより、非直線抵抗体1の積層体を締付け、固定し、避雷器の内部要素8を構成している。
【0018】
このようにして構成された避雷器の内部要素8の周りを流動性の優れたシリコーン樹脂で笠付き形状にモールド被覆を行い絶縁容器9を構成する。9aは絶縁容器9の笠部である。
【0019】
次に上記のように構成された避雷器のシリコーン樹脂にモールド被覆を行う製造方法について説明する。図2に示すように笠付き形状となるような型10内に内部要素8をセットし、液状のシリコーン樹脂11を型10内に注入し、図示しない加熱、加圧装置により型10内の温度をシリコーン樹脂の硬化温度まで上げ、このシリコーン樹脂の硬化温度下で加圧することによりシリコーン樹脂11を硬化させ、笠形状を形成する。
【0020】
以上のような方法で製造した避雷器について、長期信頼性の検証試験として、塩水煮沸試験を行った。試験は、0.1%沸騰塩水中に避雷器本体を42時間以上浸漬し、試験前後の電気的特性の変化を動作開始電圧(DC1mAの電流を流したときの発生電圧)、制限電圧(10kAの雷電流を流したときの発生電圧)の測定で評価した。その結果、試験前後の電気的特性の低下はそれぞれ1%以下であり、良好な結果が得られた。
【0021】
本実施の形態において、耐煮沸特性が良好であった理由は、概略以下のように考えられる。本実施の形態で製造した避雷器では、シリコーン樹脂11を硬化する時に高温下で加圧している。その結果、シリコーン樹脂11が加硫する前の流動性を保持している状態で圧縮成形され、内部要素8の隙間まで、シリコーン樹脂11で埋めることができる。そのため、ポリマー材料に、隙間や気泡などの侵入した水分が滞留する場所がなくなる。さらに、絶縁支持体4を形成するFRPとシリコーン樹脂11との接着性は良くなり、そのため、煮沸水に浸漬しても、電気的特性が低下しなかったと考えられる。
【0022】
次に、本発明の第2の実施の形態について説明する。図2に示すように、第1の実施の形態と同様に内部要素8を作製し、型10の中に置いた後、液状のシリコーン樹脂11を注入する。型10には、シリコーン樹脂11を注入する注入口12と、型10の中の空気を抜く排出口13とが形成されている。シリコーン樹脂11の注入が完了した後、排出口13を閉じ、やや遅れて注入口12も閉じて型10内を密封する。こうすることにより、型10の内圧を上げることができる。その後、型10内の温度をシリコーン樹脂の硬化温度まで上げ、シリコーン樹脂11を硬化させてモールド被覆し、避雷器を製造する。
【0023】
以上のような方法で製造した避雷器について、第1の実施の形態と同様の塩水煮沸試験を行った。その結果、試験前後の電気的特性の低下は、それぞれ1%以下であり、良好な結果が得られた。
【0024】
本実施の形態で、耐煮沸特性が良好であった理由は、概略以下のように考えられる。本実施の形態で製造した避雷器では、構造が単純であり、シリコーン樹脂11を高圧で型内に密封し、加熱成形しているため、ポリマー材料に、隙間や気泡など侵入した水分が滞留する場所がなくなる。さらに、FRPとシリコーン樹脂との接着性は良くなり、そのため、煮沸水に浸漬しても、電気的特性が低下しなかったと考えられる。
【0025】
次に、本発明の第3の実施の形態について説明する。図2に示すように、第1の実施の形態と同様に作製した内部要素8を、あらかじめシリコーン樹脂の硬化温度と同じ温度に予熱した型10の中に置く。その後は、第2の実施の形態と同様に、液状のシリコーン樹脂11を注入し、シリコーン樹脂の硬化温度下で加圧してモールド被覆し、避雷器を製造する。
【0026】
以上のような方法で製造した避雷器について、第1の実施の形態と同様の塩水煮沸試験を行った。その結果、試験前後の電気的特性の低下は、それぞれ1%以下であり、良好な結果が得られた。
【0027】
本実施の形態で、耐煮沸特性が良好であった理由は、第1の実施の形態または第2の実施の形態と同様と考えられる。また、従来は、シリコーン樹脂11の硬化のためには、型10の温度が所定の温度まで上がる必要があるが、本実施の形態では型10を予熱しているため、硬化時間を短縮することができる。型10の予熱温度は、シリコーン樹脂11の硬化温度と同じとしても良いが、硬化温度より、低く設定することも可能である。特に、内部要素8が大型になった場合には硬化温度より低めに設定したほうが望ましい。工業的に硬化時間を短縮するためには型10の予熱温度は、70℃以上にすることが望ましい。また、予熱温度が130℃を越えると、シリコーン樹脂11が型10に接した部分から先に硬化を始めるため、予熱温度は70〜130℃の範囲であることが望ましい。
【0028】
次に、本発明の第4の実施の形態について説明する。図2に示すように、第1の実施の形態と同様に作製した内部要素8を、あらかじめシリコーン樹脂の硬化温度と同じ温度に予熱し、型10の中に置く。その後は、第2の実施の形態と同様に、液状のシリコーン樹脂11を注入し、シリコーン樹脂の硬化温度下で加圧してモールド被覆し、避雷器を製造する。
【0029】
以上のような方法で製造した避雷器について、第1の実施の形態と同様の塩水煮沸試験を行った。その結果、試験前後の電気的特性の低下は、それぞれ1%以下であり、良好な結果が得られた。
【0030】
本実施の形態で、耐煮沸特性が良好であった理由は、概略第1の実施の形態または第2の実施の形態と同様と考えられる。また、内部要素8を予熱しなかった場合、FRPとの接着面での反応の前にシリコーン樹脂自体が硬化を始めてしまうが、内部要素8の予熱を行った場合は、接着面でも硬化反応が開始するためFRPとの接着性が向上する。さらに、従来は、シリコーン樹脂の硬化のためには、型の温度が所定の温度まで上がる必要があるが、内部要素8を予熱しているため、硬化時間を短縮することができる。内部要素8の予熱温度は、シリコーン樹脂の硬化温度と同じとしても良いが、硬化温度より、高く設定することも可能である。その場合、より硬化時間を短縮できる。
【0031】
また逆に、内部要素8の予熱温度は、シリコーン樹脂の硬化温度よりも低く設定することも可能である。特に、内部要素が大型になった場合には硬化温度より低めに設定したほうが、予熱時間が必要以上に長くなることを避けることができ望ましい。工業的に硬化時間を短縮するためには型10の予熱温度は、70℃以上にすることが望ましい。また、予熱温度が130℃を越えると、シリコーン樹脂11が内部要素8に接した部分から先に硬化を始めるため、予熱温度は70℃〜130℃の範囲であることが望ましい。
【0032】
次に、本発明の第5の実施の形態について説明する。図2に示すように、第1の実施の形態と同様に作製した内部要素8を、型10の中に置く。その後は、第2の実施の形態と同様に、液状のシリコーン樹脂11を注入し、型10内の温度をシリコーン樹脂の硬化温度に近い温度まで加熱し、シリコーン樹脂11を加圧する。シリコーン樹脂がゲル化した後さらに、硬化温度より高い温度に型10内の温度を上げ、熱処理を行い、モールド被覆して避雷器を製造する。
【0033】
以上のような方法で製造した避雷器について、第1の実施の形態と同様の塩水煮沸試験を行った。その結果、試験前後の電気的特性の低下は、それぞれ1%以下であり、良好な結果が得られた。
【0034】
本実施の形態で、耐煮沸特性が良好であった理由は、概略以下のように考えられる。シリコーン樹脂11の硬化のためには、高い温度で処理することが望ましいが、反面、型10に触れたシリコーン樹脂11から硬化が始まり、成形時の反応進行にバラツキが生じ、好ましくない。シリコーン樹脂11の硬化反応は、シリコーン樹脂11自体がゲル化してゴム特性を発現する反応と、接着性が向上する反応とからなる。これらの反応を分け、最初は硬化反応の温度を低くすることにより、成形時の反応進行のバラツキを低減し、ゲル化の後、硬化反応の温度を上げ、接着性を向上させることにより、反応のバラツキ、すなわち空洞などの欠陥がなく、接着性も良好な絶縁容器9を得ることができる。
【0035】
本実施の形態では、内部要素8を型10の中に入れたまま、熱処理を行ったが、シリコーン樹脂11のゲル化が終了すれば、形として形成しているため、型10から取出してその後の熱処理をすることもできる。これにより、型10を効率的に利用することができる。
【0036】
シリコーン樹脂11自体がゲル化してゴム特性を発現する反応温度については、80℃未満では、ゲル化が進まず、反応温度が150℃を越えると反応が急速に起こり、成形が悪くなるため、80℃〜150℃の範囲であることが望ましい。その後の熱処理温度については、130℃未満では、反応に長時間かかり、熱処理温度が180℃を越えるとFRPの機械的強度の低下につながるため、130℃〜180℃の範囲であることがが望ましい。
【0037】
【発明の効果】
以上のように本発明によれば、酸化亜鉛を主成分とした非直線抵抗体を一枚又は複数枚積層し、その両端に電極端子を配置し、絶縁支持体で非直線抵抗体と電極端子とを固定して内部要素を構成し、この内部要素を型の中に置いてシリコーン樹脂でモールド被覆した避雷器およびその製造方法において、シリコーン樹脂の硬化温度下でシリコーン樹脂を圧縮成形し、このシリコーン樹脂でモールド被覆するようにしたので、長期の使用によっても気密性が低下することなく、絶縁性能を向上させた避雷器およびその製造方法を得ることができる。
【図面の簡単な説明】
【図1】本発明により製造される避雷器の構造を示す概略断面図。
【図2】本発明の避雷器の製造方法を説明するための概略断面図。
【符号の説明】
1…非直線抵抗体、2a、2b…当板、3a、3b…電極、4…絶縁支持体、5…ボルト、6…ネジ穴、7…トメボルト、8…内部要素、9…絶縁容器、10…型、11…シリコーン樹脂、12…注入口、13…排出口。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lightning arrester using a non-linear resistor mainly composed of zinc oxide and a method for manufacturing the same, and more particularly to a lightning arrester using a resin material (polymer resin) as an insulating container and a method for manufacturing the same.
[0002]
[Prior art]
Generally, when a lightning strike or the like occurs in a power system such as a transmission line or a transmission / substation device, an abnormal voltage (lightning surge) is generated in the system, and there is a possibility that the power device or equipment is damaged and destroyed. In order to protect a power system from such an abnormal voltage, a lightning arrester has been conventionally used. This lightning arrester uses a non-linear resistor that exhibits insulation performance under a normal voltage and exhibits low resistance characteristics when an abnormal voltage is applied, and is connected between the power system and the ground. When an abnormal voltage is generated in the power system, a discharge current flows to the ground through an arrester to limit the abnormal voltage. Then, immediately after the voltage returns to the normal state, the discharge stops, and the lightning arrester returns to the original insulating state.
[0003]
Conventionally, as a structure of such a lightning arrester, one or a plurality of disk-shaped non-linear resistance elements mainly composed of zinc oxide are laminated, and electrodes are arranged at upper and lower ends thereof to form a non-linear resistance laminated body. A plurality of insulating rods are evenly arranged around the non-linear resistance laminated body, and upper and lower portions thereof are fixed to electrodes by insulating nuts to prevent radial displacement thereof, thereby constituting an internal element of the lightning arrester. Further, the internal element is housed in an insulating container, and the upper end of the internal element is covered with a spring via a spring to apply an axial force to the non-linear resistance laminated body including the electrode and fix it.
[0004]
As the insulating container of the lightning arrestor, there are those made of ceramic and those using a polymer resin, and those using a polymer resin are particularly called polymer arresters. In a polymer lightning arrester, as a fixing method of a non-linear resistance laminated body, in addition to a method of holding with an insulating rod, for example, a method of fixing with an insulating tape as in JP-A-1-255437 or a method as in JP-A-10-55904 A method of fixing with an insulating net has been proposed.
[0005]
[Problems to be solved by the invention]
Conventional polymer lightning arresters are constructed by stacking non-linear resistors and fixing them with insulating rods, and house the internal elements of the lightning arrester in an insulating container formed by molding and coating with a polymer resin such as silicone resin. .
[0006]
In such conventional polymer lightning arresters, if the airtightness of the joint surface between the internal element and the polymer resin that is the insulating container deteriorates over a long period of time, moisture will enter from this part, and if there is space inside the lightning arrester There was a concern that moisture would accumulate, weakening the insulation strength and lowering the insulation performance of the lightning arrester. In particular, when the non-linear resistor is fixed with an insulating tape or a mesh, a bubble is easily formed in the overlapping portion of the tape and the mesh, which is a problem in insulation.
[0007]
Also, when the lightning arrester becomes large, the amount of silicone resin increases, and it takes time to cure,
There was also a problem that productivity decreased.
An object of the present invention is to solve the above problems and to obtain a lightning arrester having improved insulation performance without reducing airtightness even after long-term use, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a lightning arrester according to claim 1 is characterized in that one or more non-linear resistors mainly composed of zinc oxide are laminated, and electrode terminals are arranged at both ends thereof, and an insulating support is provided. An internal element is formed by fixing the non-linear resistor and the electrode terminal with the above, and the internal element is placed in a mold, and in a lightning arrester coated with silicone resin, the silicone resin is compression-molded at a curing temperature of the silicone resin. Wherein the inner element is mold-coated.
According to the present invention, the silicone resin is filled up to the gap between the internal elements while maintaining the fluidity of the silicone resin, thereby preventing the formation of gaps and bubbles.
[0009]
The method of manufacturing a lightning arrester according to claim 2 is characterized in that one or more non-linear resistors mainly composed of zinc oxide are laminated, electrode terminals are arranged at both ends thereof, and the non-linear resistance is supported by an insulating support. In a method for manufacturing an arrester in which an internal element is formed by fixing a body and an electrode terminal, and the internal element is placed in a mold and molded with a silicone resin, the silicone resin is compression-molded at a curing temperature of the silicone resin. Characterized by being coated with a mold.
According to the method of the present invention, the silicone resin is filled up to the gap between the internal elements while maintaining the fluidity of the silicone resin, thereby preventing the formation of gaps and bubbles.
[0010]
According to a third aspect of the invention, there is provided a lightning arrester manufacturing method according to the second aspect, wherein the internal element is put into a mold, and a liquid silicone resin is injected into the mold. After sealing the mold, the inside of the mold is pressurized to a high temperature and covered with a mold.
According to the present invention, while maintaining the fluidity of the silicone resin, the silicone resin is filled up to the gap between the internal elements in the sealed mold to prevent the generation of gaps and bubbles.
[0011]
According to a fourth aspect of the present invention, there is provided a method for manufacturing a lightning arrester according to the second or third aspect, wherein the mold is preheated when the silicone resin is injected.
According to this invention, since the mold is preheated in advance, the silicone resin is cured in a short time.
[0012]
According to a fifth aspect of the present invention, there is provided a method for manufacturing a lightning arrester according to the second or third aspect, wherein the internal element is preheated when the silicone resin is injected.
According to this invention, since the mold is preheated in advance, the silicone resin is cured in a short time.
[0013]
The invention of the method for manufacturing an arrester according to claim 6 is characterized in that, in the invention of the method for manufacturing an arrester according to claim 4 or 5, the preheating temperature is lower than the curing temperature of the silicone resin.
According to the present invention, the silicone resin is cured in a short time because the mold or the internal element is preheated in advance.
[0014]
According to a seventh aspect of the present invention, there is provided a method for manufacturing an arrester according to any one of the second to sixth aspects, wherein the silicone resin is gelled, removed from the mold, and cured at a curing temperature of the silicone resin. It is characterized by heat treatment at a higher temperature.
According to the present invention, the curing treatment is performed separately for the reaction for developing the rubber properties of the silicone resin and the reaction for improving the adhesiveness.
[0015]
According to an eighth aspect of the present invention, in the method for manufacturing an arrester according to the fourth or fifth aspect, the preheating temperature is in a range of 70C to 130C.
According to the present invention, the silicone resin is cured in a short time because the mold or the internal element is preheated in the range of 70C to 130C.
[0016]
According to a ninth aspect of the present invention, in the method for manufacturing a lightning arrester according to the seventh aspect, the temperature at which the silicone resin is gelled is set in the range of 80 ° C to 150 ° C, and the heat treatment temperature thereafter. Is in the range of 130 ° C to 180 ° C.
According to the present invention, the curing treatment is performed separately for the reaction for developing the rubber properties of the silicone resin and the reaction for improving the adhesiveness.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a disc-shaped non-linear resistor made of a material containing zinc oxide as a main component, and one or more non-linear resistors 1 are laminated, and two end plates 2a and 2b are provided at both ends thereof. The electrodes 3a and 3b are arranged via the. The electrodes 3a and 3b are connected by bolts 5 with four FRP (glass fiber reinforced plastic) plate-like insulating supports 4 arranged around the non-linear resistor 1 in the laminating direction thereof. I do. Then, as shown in FIG. 1, at least one electrode 3 b is provided with a screw hole 6, a screw 7 is screwed into the screw hole 6, and the pressing plate 2 b is pressed with the screw 7, thereby tightening the laminate of the non-linear resistor 1. It is fixed and constitutes the internal element 8 of the arrester.
[0018]
The insulation container 9 is formed by coating the periphery of the inner element 8 of the lightning arrester configured as described above in a shaded shape with a silicone resin having excellent fluidity. 9a is a cap of the insulating container 9.
[0019]
Next, a description will be given of a manufacturing method for performing mold coating on the silicone resin of the lightning arrester configured as described above. As shown in FIG. 2, the internal element 8 is set in a mold 10 having a hatched shape, a liquid silicone resin 11 is injected into the mold 10, and the temperature in the mold 10 is increased by a heating and pressing device (not shown). Is raised to the curing temperature of the silicone resin, and the silicone resin 11 is cured by applying pressure at the curing temperature of the silicone resin to form a shade shape.
[0020]
For the lightning arrester manufactured by the above method, a salt water boiling test was performed as a long-term reliability verification test. In the test, the lightning arrester body was immersed in 0.1% boiling salt water for 42 hours or more, and the change in electrical characteristics before and after the test was determined by the operation start voltage (voltage generated when a current of 1 mA DC was passed), the limit voltage (10 kA Evaluation was made by measuring the voltage generated when a lightning current was applied. As a result, the decrease in electrical characteristics before and after the test was 1% or less, respectively, and good results were obtained.
[0021]
In the present embodiment, the reason why the boiling resistance is good is considered as follows. In the lightning arrester manufactured in the present embodiment, pressure is applied at a high temperature when the silicone resin 11 is cured. As a result, the silicone resin 11 is compression-molded while maintaining the fluidity before vulcanization, and the gap between the internal elements 8 can be filled with the silicone resin 11. Therefore, there is no place in the polymer material where moisture that has entered such as gaps and air bubbles stays. Further, it is considered that the adhesiveness between the FRP forming the insulating support 4 and the silicone resin 11 was improved, and therefore, the electrical characteristics did not decrease even when immersed in boiling water.
[0022]
Next, a second embodiment of the present invention will be described. As shown in FIG. 2, an internal element 8 is prepared in the same manner as in the first embodiment, placed in a mold 10, and then a liquid silicone resin 11 is injected. The mold 10 has an inlet 12 for injecting the silicone resin 11 and an outlet 13 for removing air from the mold 10. After the injection of the silicone resin 11 is completed, the discharge port 13 is closed, and the injection port 12 is also closed slightly later to seal the inside of the mold 10. By doing so, the internal pressure of the mold 10 can be increased. Thereafter, the temperature in the mold 10 is raised to the curing temperature of the silicone resin, and the silicone resin 11 is cured and coated with a mold, thereby manufacturing an arrester.
[0023]
With respect to the lightning arrester manufactured by the above method, the same salt water boiling test as in the first embodiment was performed. As a result, the decrease in electrical characteristics before and after the test was 1% or less, respectively, and good results were obtained.
[0024]
The reason why the boiling resistance is good in the present embodiment is considered as follows. In the lightning arrester manufactured in the present embodiment, the structure is simple, and the silicone resin 11 is sealed in a mold at high pressure and is heat-molded. Disappears. Further, it is considered that the adhesiveness between the FRP and the silicone resin was improved, and therefore, even when immersed in boiling water, the electrical characteristics did not decrease.
[0025]
Next, a third embodiment of the present invention will be described. As shown in FIG. 2, the internal element 8 manufactured in the same manner as in the first embodiment is placed in a mold 10 preheated to the same temperature as the curing temperature of the silicone resin. Thereafter, as in the second embodiment, the liquid silicone resin 11 is injected, and is press-molded under the curing temperature of the silicone resin to mold-cover, thereby manufacturing a lightning arrester.
[0026]
With respect to the lightning arrester manufactured by the above method, the same salt water boiling test as in the first embodiment was performed. As a result, the decrease in electrical characteristics before and after the test was 1% or less, respectively, and good results were obtained.
[0027]
The reason why the boiling resistance was good in this embodiment is considered to be the same as in the first embodiment or the second embodiment. Further, conventionally, in order to cure the silicone resin 11, it is necessary to raise the temperature of the mold 10 to a predetermined temperature. However, in this embodiment, since the mold 10 is preheated, the curing time may be reduced. Can be. The preheating temperature of the mold 10 may be the same as the curing temperature of the silicone resin 11, but may be set lower than the curing temperature. In particular, when the internal element 8 becomes large, it is desirable to set it lower than the curing temperature. In order to shorten the curing time industrially, the preheating temperature of the mold 10 is desirably 70 ° C. or higher. If the preheating temperature exceeds 130 ° C., the silicone resin 11 starts to cure from the part in contact with the mold 10, so that the preheating temperature is preferably in the range of 70 to 130 ° C.
[0028]
Next, a fourth embodiment of the present invention will be described. As shown in FIG. 2, the internal element 8 manufactured in the same manner as in the first embodiment is preheated to the same temperature as the curing temperature of the silicone resin in advance and placed in the mold 10. Thereafter, as in the second embodiment, the liquid silicone resin 11 is injected, and is press-molded under the curing temperature of the silicone resin to mold-cover, thereby manufacturing a lightning arrester.
[0029]
With respect to the lightning arrester manufactured by the above method, the same salt water boiling test as in the first embodiment was performed. As a result, the decrease in electrical characteristics before and after the test was 1% or less, respectively, and good results were obtained.
[0030]
In this embodiment, the reason why the boiling resistance was good is considered to be substantially the same as in the first embodiment or the second embodiment. If the internal element 8 is not preheated, the silicone resin itself starts to cure before the reaction on the bonding surface with FRP, but if the internal element 8 is preheated, the curing reaction also occurs on the bonding surface. To start, the adhesiveness with FRP is improved. Further, conventionally, in order to cure the silicone resin, it is necessary to raise the temperature of the mold to a predetermined temperature. However, since the internal element 8 is preheated, the curing time can be shortened. The preheating temperature of the internal element 8 may be the same as the curing temperature of the silicone resin, but may be set higher than the curing temperature. In that case, the curing time can be further reduced.
[0031]
Conversely, the preheating temperature of the internal element 8 can be set lower than the curing temperature of the silicone resin. In particular, when the internal components become large, it is desirable to set the temperature lower than the curing temperature because it is possible to prevent the preheating time from becoming unnecessarily long. In order to shorten the curing time industrially, the preheating temperature of the mold 10 is desirably 70 ° C. or higher. If the preheating temperature exceeds 130 ° C., the silicone resin 11 starts to cure from the part in contact with the internal element 8, so that the preheating temperature is preferably in the range of 70 ° C. to 130 ° C.
[0032]
Next, a fifth embodiment of the present invention will be described. As shown in FIG. 2, the internal element 8 manufactured in the same manner as in the first embodiment is placed in a mold 10. Thereafter, as in the second embodiment, the liquid silicone resin 11 is injected, the temperature in the mold 10 is heated to a temperature close to the curing temperature of the silicone resin, and the silicone resin 11 is pressurized. After the silicone resin has gelled, the temperature in the mold 10 is further raised to a temperature higher than the curing temperature, heat treatment is performed, and the mold is coated to manufacture an arrester.
[0033]
With respect to the lightning arrester manufactured by the above method, the same salt water boiling test as in the first embodiment was performed. As a result, the decrease in electrical characteristics before and after the test was 1% or less, respectively, and good results were obtained.
[0034]
The reason why the boiling resistance is good in the present embodiment is considered as follows. In order to cure the silicone resin 11, it is desirable to perform the treatment at a high temperature. However, on the other hand, the curing starts from the silicone resin 11 that has come into contact with the mold 10, and the progress of the reaction at the time of molding varies, which is not preferable. The curing reaction of the silicone resin 11 includes a reaction in which the silicone resin 11 itself gels to exhibit rubber properties and a reaction in which the adhesiveness is improved. By dividing these reactions, firstly, the temperature of the curing reaction is lowered to reduce the variation in the reaction progress during molding, and after gelation, the temperature of the curing reaction is raised to improve the adhesiveness, so that the reaction is improved. Insulating container 9 having no variation, that is, no defects such as cavities, and having good adhesiveness can be obtained.
[0035]
In the present embodiment, the heat treatment was performed while the internal element 8 was kept in the mold 10. However, when the silicone resin 11 was gelled, the silicone resin 11 was formed into a shape. Heat treatment can also be performed. Thereby, the mold 10 can be used efficiently.
[0036]
Regarding the reaction temperature at which the silicone resin 11 itself gels and exhibits rubber properties, gelling does not proceed below 80 ° C., and if the reaction temperature exceeds 150 ° C., the reaction occurs rapidly and molding becomes poor. It is desirable that the temperature be in the range of 150C to 150C. Regarding the subsequent heat treatment temperature, if the temperature is lower than 130 ° C., the reaction takes a long time, and if the heat treatment temperature exceeds 180 ° C., the mechanical strength of the FRP is reduced. .
[0037]
【The invention's effect】
As described above, according to the present invention, one or more non-linear resistors mainly composed of zinc oxide are laminated, electrode terminals are arranged at both ends thereof, and the non-linear resistors and the electrode terminals are placed on an insulating support. The lightning arrester and the method of manufacturing the lightning arrester, in which the internal element is fixed in a mold, and the internal element is placed in a mold and molded with a silicone resin, the compression molding of the silicone resin is performed at a curing temperature of the silicone resin. Since the resin is mold-coated, it is possible to obtain a lightning arrester with improved insulation performance and a method for manufacturing the lightning arrester without deterioration in airtightness even after long-term use.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing the structure of a lightning arrester manufactured according to the present invention.
FIG. 2 is a schematic cross-sectional view for explaining a method for manufacturing a lightning arrester of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Non-linear resistor, 2a, 2b ... This plate, 3a, 3b ... Electrode, 4 ... Insulating support, 5 ... Bolt, 6 ... Screw hole, 7 ... Tome bolt, 8 ... Internal element, 9 ... Insulating container, 10 ... mold, 11 ... silicone resin, 12 ... inlet, 13 ... outlet.

Claims (9)

酸化亜鉛を主成分とした非直線抵抗体を一枚又は複数枚積層し、その両端に電極端子を配置し、絶縁支持体で非直線抵抗体と電極端子とを固定して内部要素を構成し、この内部要素を型の中に置いてシリコーン樹脂でモールド被覆した避雷器において、シリコーン樹脂の硬化温度下で圧縮成形したシリコーン樹脂により内部要素をモールド被覆したことを特徴とする避雷器。One or a plurality of non-linear resistors mainly composed of zinc oxide are laminated, electrode terminals are arranged at both ends thereof, and the non-linear resistors and the electrode terminals are fixed by an insulating support to constitute an internal element. A lightning arrester in which the internal element is placed in a mold and molded with a silicone resin, wherein the internal element is mold-coated with a silicone resin compression-molded at a curing temperature of the silicone resin. 酸化亜鉛を主成分とした非直線抵抗体を一枚又は複数枚積層し、その両端に電極端子を配置し、絶縁支持体で非直線抵抗体と電極端子とを固定して内部要素を構成し、この内部要素を型の中に置いてシリコーン樹脂でモールド被覆した避雷器の製造方法において、シリコーン樹脂の硬化温度下でシリコーン樹脂を圧縮成形し、モールド被覆したことを特徴とする避雷器の製造方法。One or a plurality of non-linear resistors mainly composed of zinc oxide are laminated, electrode terminals are arranged at both ends thereof, and the non-linear resistors and the electrode terminals are fixed by an insulating support to constitute an internal element. A method for manufacturing a lightning arrester, wherein the internal element is placed in a mold and molded with a silicone resin, wherein the silicone resin is compression-molded at a curing temperature of the silicone resin and molded. 内部要素を型の中に入れ、液状のシリコーン樹脂を型内に注入し、型内を密封した後、型内を加圧高温としてモールド被覆することを特徴とする請求項2に記載の避雷器の製造方法。3. The lightning arrester according to claim 2, wherein the inner element is put into a mold, a liquid silicone resin is injected into the mold, the inside of the mold is sealed, and the inside of the mold is pressurized and heated to mold. Production method. シリコーン樹脂の注入時に、型を予熱しておくことを特徴とする請求項2又は3に記載の避雷器の製造方法。The method for manufacturing a lightning arrester according to claim 2 or 3, wherein the mold is preheated when the silicone resin is injected. シリコーン樹脂の注入時に、内部要素を予熱しておくことを特徴とする請求項2又は3に記載の避雷器の製造方法。4. The method for manufacturing a lightning arrester according to claim 2, wherein the internal element is preheated when the silicone resin is injected. 予熱温度をシリコーン樹脂の硬化温度より低い温度としたことを特徴とする請求項4又は5に記載の避雷器製造方法。6. The method for manufacturing an arrester according to claim 4, wherein the preheating temperature is lower than a curing temperature of the silicone resin. シリコーン樹脂をゲル化させた後型より取出し、シリコーン樹脂の硬化温度より高い温度で熱処理することを特徴とする請求項2乃至6のいずれかに記載の避雷器の製造方法。7. The method for manufacturing a lightning arrester according to claim 2, wherein the silicone resin is gelled, removed from the mold, and heat-treated at a temperature higher than the curing temperature of the silicone resin. 予熱温度を70℃〜130℃の範囲内であることを特徴とする請求項4又は5に記載の避雷器の製造方法。The method for manufacturing an arrester according to claim 4 or 5, wherein the preheating temperature is in a range of 70C to 130C. シリコーン樹脂をゲル化させる温度を80℃〜150℃の範囲で行い、その後の熱処理温度を130℃〜180℃の範囲内であることを特徴とする請求項7に記載の避雷器の製造方法。The method for manufacturing a lightning arrester according to claim 7, wherein the temperature at which the silicone resin is gelled is in the range of 80C to 150C, and the subsequent heat treatment temperature is in the range of 130C to 180C.
JP2002224545A 2002-08-01 2002-08-01 Arrester and its manufacturing method Pending JP2004071605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224545A JP2004071605A (en) 2002-08-01 2002-08-01 Arrester and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224545A JP2004071605A (en) 2002-08-01 2002-08-01 Arrester and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004071605A true JP2004071605A (en) 2004-03-04

Family

ID=32012477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224545A Pending JP2004071605A (en) 2002-08-01 2002-08-01 Arrester and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004071605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027671A (en) * 2008-07-15 2010-02-04 Mitsubishi Electric Corp Lightning arrester, and method of manufacturing the same
JP2010199515A (en) * 2009-02-27 2010-09-09 Otowa Denki Kogyo Kk Varistor device and method of manufacturing same
KR102399565B1 (en) * 2021-12-16 2022-05-18 유호전기공업주식회사 Voltage measurement with non-inductive resistor having improved insulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027671A (en) * 2008-07-15 2010-02-04 Mitsubishi Electric Corp Lightning arrester, and method of manufacturing the same
JP2010199515A (en) * 2009-02-27 2010-09-09 Otowa Denki Kogyo Kk Varistor device and method of manufacturing same
KR102399565B1 (en) * 2021-12-16 2022-05-18 유호전기공업주식회사 Voltage measurement with non-inductive resistor having improved insulation

Similar Documents

Publication Publication Date Title
WO2005024855A1 (en) Compound and hollow insulator and manufacturing method thereof
US20190066888A1 (en) Composite Surge Arrester Assembly and Method of Construction
TW382153B (en) Self-compressive surge arrester module and method of making same
US20150340851A1 (en) Manufacturing Process of Molding Stress Control Module for Cross-Linked Polyethylene Insulation Cable Body Terminal
JP2004071605A (en) Arrester and its manufacturing method
US11636960B2 (en) Surge arrester and production method for a surge arrester
CN201289770Y (en) Silastic Composite coating gapless metal oxide arrester
CN112920605A (en) Silicone rubber composite material for bonding polybutylene terephthalate
CN206877774U (en) A kind of Novel lightning arrester core group device
GB2258352A (en) Overvoltage arrester
CN207093756U (en) A kind of cushion seal structure of oil immersion type mutual-inductor inserts
CN107910145A (en) A kind of embedded varistor and its manufacture craft
CN214203342U (en) Composite outer sleeve lightning arrester structure
JPH05159758A (en) Manufacture of sealed lead-acid battery
JP2012099616A (en) Arrester and manufacturing method thereof
JPH06310307A (en) Compact lightning arrester for indoor and outdoor use
JP3969344B2 (en) Manufacturing method of mold vacuum valve
CN102324293B (en) Manufacturing method of full-closed arrester
CN107393666A (en) A kind of Split high pressure series compensation damps MOV
JP2698528B2 (en) Electrical insulator used for non-ceramic insulator housing
KR100445079B1 (en) Method for manufacturing module of polymeric arrester by multispindle filament winding
CN202549524U (en) Positive temperature coefficient (PTC) thermistor with stable performance
KR100551580B1 (en) Method for manufacturing unified polymeric arresters using vacuum injection molding
JPH10295063A (en) Method for resin-impregnation and hardening of electrical apparatus winding
CN114603879B (en) Preparation method of hollow composite insulator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804