JP2004069333A - Wavelength measuring method - Google Patents

Wavelength measuring method Download PDF

Info

Publication number
JP2004069333A
JP2004069333A JP2002225282A JP2002225282A JP2004069333A JP 2004069333 A JP2004069333 A JP 2004069333A JP 2002225282 A JP2002225282 A JP 2002225282A JP 2002225282 A JP2002225282 A JP 2002225282A JP 2004069333 A JP2004069333 A JP 2004069333A
Authority
JP
Japan
Prior art keywords
wavelength
light source
continuous wave
wave light
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002225282A
Other languages
Japanese (ja)
Inventor
Fukuyuki Kuramoto
蔵本 福之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002225282A priority Critical patent/JP2004069333A/en
Publication of JP2004069333A publication Critical patent/JP2004069333A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength measuring method which can realize measurement of a continuous wave light source capable of more precise wavelength measurement, and wavelength measurement of a pulse light source with high precision by measuring indirectly measuring wavelength of the pulse light source, by measuring wavelength difference between the continuous light source and the pulse light source. <P>SOLUTION: In the pulse laser light source, a continuous light source exists in a wavelength band produced in a wavelength conversion process necessary for forming an oscillation wavelength or a final output wavelength. This wavelength measuring method is characterized by measuring the wavelength of the pulse laser by measuring wavelength difference between the wavelength of the pulse laser and the wavelength of the continuous light source from a beat signal, when the pulse laser and the continuous light source having the same wavelength are made to interfere with each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、パルスレーザ装置の高精度波長測定方法に関するものである。
【0002】
【従来の技術】
パルス光源は、可干渉距離の短さと、時間的に離散な強度分布を示すことから連続波光源で一般的に使用される高精度な波長計測を行う事が出来ない。前者に代表される測定方法としては連続波光源を、2つの光束に分岐し、光路長差を付けた後に再び光軸を一致させた際に生じる干渉縞の明暗を、ある光路長差にわたってカウントする事によって波長計測値を得る所謂フリンジスキャン波長計であり、小型の装置で0.1pm以下の高い再現性での波長計測が可能である。後者の代表的な例としては、連続波光源の波長帯に於いて吸収構造を有する物質の吸収線に波長を固定する方法があり、高い絶対精度での波長計測が可能である。
これらの方法を用いることが出来ないパルス光源の波長計測方法としては、空間的な干渉縞を用いてその分布から波長の計測を行うパルス波長計による測定が行われていた。
【0003】
従来のパルス光源の波長計測方法及び波長制御方法について図6を参照しながら説明する。
【0004】
パルス光源51を射出した光束は、ハーフミラー59により干渉計に向かう光路と波長計測器50に向かう光路に分岐される。波面形状等を測定するための干渉計においては、測定波長を正確に管理する事が極めて重要であるため、干渉計による測定時に同時に光源波長の計測を行う必要があるためである。
波長計測器50に入射した光束は凸面ミラー52で反射され光束を広げられた後、凹面ミラー53によって再び反射後平行光束となる。高精度に作成された楔基板からなる所謂フィゾーエタロン54に入射され、多重干渉の効果により、空間的な干渉縞をつくる。前記空間的な干渉縞は、フィゾーエタロン54の後に配置されたラインセンサ55などの受光素子によって撮影される。また、前記光束と同一光路に波長安定化HeNeレーザを導入し、同様の干渉縞の空間分布を計測する。波長の計測はフィゾーエタロンのある場所における光学厚さdとパルス光源とHeNeレーザの干渉縞の間隔から計算される。
【0005】
より高精度化を行う場合には更に、前記フィゾーエタロンの計測と同時に平行基板からなる所謂ファブリペローエタロン56に光束を拡散しながら入射させた際の干渉縞の分布をラインセンサ57で測定することにより測定の精度を高める。この場合にはファブリペローエタロン54によるラフな干渉次数決定を行った後の高精度測定を目的とするため、前記フィゾーエタロン54の10倍程度の光学厚さを有するエタロンが用いられる。この場合も波長安定化HeNeレーザを同一光軸に導入し、得られる干渉縞間隔からフィゾーエタロン間隔の計算を行い、その結果によってパルス光の干渉縞間隔から波長の計算を行う。
【0006】
前記波長計算は波長計測器50に設けられた計算部58によってなされ、通信によって制御コンピュータ60に測定波長値を伝える。
【0007】
制御コンピュータ60では、得られた波長測定値を用い、パルス光源51の波長を所望の値に保つために、パルス光源51中に設けられた回折格子や共振器長を制御するアクチュエータ等の制御を行う事で波長制御を行っていた。
【0008】
【発明が解決しようとする課題】
しかしながら、パルス光源の場合には、空間的な干渉縞間隔から波長計測を行うために、光源の強度変化や指向安定性などの影響を受け易いとともに、受光素子の感度特性などの影響も受け易く、波長計測精度が低いという問題がある。
【0009】
また、波長の絶対値を波長安定化HeNeに依存しているが、HeNe自体の波長絶対精度とともに、波長計の光学調整および、エタロンに使用する硝材の波長分散等により、波長絶対値の信頼性が低い等の問題があった。
【0010】
そこで、本発明は、より高精度な波長計測が可能である連続波光源の測定と共に、連続波光源とパルス光源の波長差を計測することにより、間接的にパルス光源の波長を測定することで高精度なパルス光源の波長計測を実現可能とする波長計測方法を提供することを例示的目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の例示的一側面としての波長測定方法は、発振波長、或いは最終出力波長を作成するために必要な波長変換過程で生成される波長帯に、連続波光源が存在するパルスレーザ光源において、前記パルスレーザと、同一波長の連続波光源を干渉させた際のビート信号により、前記パルスレーザの波長と、前記連続波光源の波長差を計測することで前記パルスレーザの波長を測定することを特徴とする。前記パルスレーザ光源の波長と前記連続波光源の波長差を測定する際に、同時に前記連続波光源の波長計測或いは波長制御を行う事を特徴とする。各パルスの時間的な干渉信号波形における、或るしきい値以上のビート信号の計数を複数パルスについて行い、前記計数値からビート周波数の特定を行うことを特徴とする。各パルスの時間的な干渉信号波形の周波数スペクトルの2つのスペクトルピークの間隔から、ビート周波数の特定を行うことを特徴とする。前記連続波光源として、単一縦モード連続波レーザを用いる事を特徴とする。前記連続波光源を、2つの光束に分岐し、光路長差を付けた後に再び光軸を一致させた際に生じる干渉縞の明暗を、ある光路長差にわたってカウントする事によって波長計測値を得る所謂フリンジスキャン波長計を用いて測定することを特徴とする。前記連続波光源の波長帯域において吸収構造を有するガスセルを透過させ、その透過強度から吸収線に波長を固定する事で連続波光源の波長を計測することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しながら説明する。図1は本発明の実施形態に係るパルス光源波長計測装置を示したものである。
【0013】
基本波長の発振器1から射出した光束は、出力波長へ非線形光学効果によって波長変換を行うために波長変換ユニット3に入射する。基本波長の発振器1はチタンサファイア結晶をレーザ媒質として近赤外領域のパルス光を射出する。前記チタンサファイア結晶の励起にはNdイオンを用いたNd:YAG或いはNd:YLF等による励起光源2を用いる。発振器1は注入光源を用いずに単独で単一縦モード発振が可能なように、回折格子と共振器長を制御するためのアクチュエータを有した所謂改良型リットマン共振器である。この結果、出力スペクトルは狭帯域化され、数mの可干渉距離を実現する。また、発振器1は外部から前記ミラーを駆動することにより発振波長の制御を行う波長制御手段を設けている。改良型リットマン共振器は注入光源を使用しないため、構成が単純であり光源の装置の小型化と信頼性が高められると共に、前記チタンサファイアの有する広利得帯域を用いて波長可変幅を大きく取れる事が利点である。
【0014】
本実施例では出力波長は193nmであり、発振器1から出射した772nmのパルス光束の4倍波を作成することによって発生する。ここで、出力波長は発振器1の波長の正確に1/4倍の値となるため、発振器1の波長を計測することで出力波長、即ち193nmの波長計測が可能となる。
【0015】
まず、基本波長と同一波長で発振可能な連続波光源7を用意する。近赤外領域の連続波光源としては、半導体レーザを用いることが可能である。本実施例では、高精度な波長制御が可能でかつ波長可変帯の広い外部共振器型の半導体レーザを用いる。連続波光源7は、外部から波長を制御する手段として共振器中の回折格子等の波長選択素子を駆動するためのアクチュエータあるいはレーザ媒質である半導体素子への注入電流を変化させるための手段を有している。
【0016】
連続波光源7からの射出光は、ハーフミラー4によって二つに分岐され、一方は連続波光源用波長計5にて波長計測を行うために用い、もう一方の光束は、発振器1からの出力光との波長差を測定するために用いる。ここで、連続波光源用波長計5として、波長計内部で光路を分割し、各々の光路長差を走査した際に生じる2光束の干渉縞の数をカウントする事により波長を特定する波長計を用いる。波長計5による測定再現性は0.1pm以下である。
【0017】
波長計5によって測定された波長値は波長計5のインターフェースを介し、制御コンピュータ10に送信される。
【0018】
ハーフミラー4を反射した光束はファイバ結合器6の片側の入射ファイバへ入射する。ファイバ結合器のもう一方の入射ファイバには、発振器1からの出力を入射する。ファイバ結合器は、2つのファイバ入力を1本の出力ファイバに結合するため、ファイバ結合器からの出力では同一光軸上の2光源の干渉が観察される。ここで2光源は発振器が異なるため、発振器1が射出するパルスごとに、2光束間の位相はランダムであり、したがって時間干渉波形もランダムなものとなる。
【0019】
図2に典型的な時間干渉波形を示す。発振器1における射出パルス幅は10ns程度である。干渉波形はこのパルスが存在する時間のみ発生するため、連続波レーザ同士のビート信号のような完全な正弦波にはならない。発振器1のパルス波形を正規分布で近似する時、図2の干渉波形は次式で表される。
【0020】
【数1】

Figure 2004069333
ここで、発振器1のパルス電場をE10exp(−at^2−iω1t)、連続波光源の電場をE20Exp(−Iω2t)であり、両者の位相差をφ12としている。
【0021】
数式1で表される時間干渉波形は、ファイバ結合器6の出力に設けられた高速光検出器8により、電気信号へと変換される。得られた電気信号は、任意時間中に入力されるある閾値以上の電圧信号の数をカウントするカウンター9によりビートの計数を行う。ここでビートの計数とは、連続波同士のビート周波数検出が、ある時間間隔内に検出されるビートを計数し、単位時間間隔あたりのカウント数を算出するのに対して、1パルスあたりのカウント数を算出することを意味する。
前記した発振器1のパルスと連続波光源の位相差のランダム性により、同一の光周波数差における時間干渉波形もパルスごとにランダムに変化し、結果としてカウント値もばらつく事になる。
【0022】
このばらつきの影響を避けて高精度な測定を行うためには、カウント値のサンプル数を増やして平均化すればよく、図4に示す様に1000パルス程度の平均化で十分な精度のビートカウントを行えるようになる。本実施例の発振器1は5kHzの繰り返し周波数でパルスを生成するため200msec程度の平均時間でよい。
ここで、連続波光源用波長計5により得られた光源2の波長測定値と、発振器1のパルス電場に対する連続波光源の電場の光周波数差から、パルスレーザ装置1乃至3の出力波長を測定する手順について説明する。
1.連続波光源の波長設定
まず、連続波光源7の波長の設定を行う。連続波光源7は発振器1の波長とほぼ同一に設定するが、ビートの計測のため、微小な波長オフセット量を正及び負に与えた値とする。
【0023】
ここで、波長オフセット量としては、発振器1の出力パルス幅においてビート信号が観測できる、即ち一周期以上のビート周波数となる必要性と、高速光検出器8及びカウンター9の帯域制限から光周波数にして数百MHz程度、波長換算で〜1pm程度に設定する。具体的には192.999nmと193.001nmを用いる。また、連続波用波長計5の絶対精度が不十分な場合には、発振器1の波長帯域において吸収構造を有するヨウ素等の吸収線に波長を固定してもよい。この場合には前記設定波長の前後にある2つの吸収線に波長を固定することになる。
2.連続波光源の波長測定及びビートカウント
波長の設定が完了したら、連続波光源用波長計5の計測を開始すると同時に、カウンター9によるビートカウントの積算を行う。この時、カウンター9では計測中の発振器1のパルス数をカウントする。パルス数をカウントするためには励起光源2のQスイッチ等に設けられた同期出力を用いれば良い。また、連続波用波長計5の絶対精度が不十分な場合には、発振器1の波長帯域において吸収構造を有するヨウ素等の吸収線に波長を固定してもよい。1で吸収線へのロックを行った場合には波長計測値としては吸収線の波長値を用いる。
【0024】
測定終了後、連続波光源波長値、ビートカウント積算値、パルスカウント積算値を制御コンピュータに送信する。
3.連続波ダイオードレーザの波長切り替え
1及び2の手順が終了したら再び1の手順を行う。ここで2乃至1に以降する際には連続波光源7の波長オフセットの正負を切り替える。この波長オフセットの切替は、一般の制御におけるディザーに相当し、周波数差の符号を判別するためのものである。
4.レーザ装置1の第1波長の計算
前記した1乃至3の手順により、連続波光源波長値、ビートカウント積算値、パルスカウント積算値のそれぞれがレーザ制御コンピュータに記録される。
【0025】
これらを用いて発振器1の波長λ1は次式で表される。
【0026】
【数2】
Figure 2004069333
ここで各記号はそれぞれ、λ2:連続波光源の正側オフセット波長測定値、λ3:連続波光源の負側オフセット波長測定値、BC(λi):波長λiにおけるビートカウント積算値、PC(λi):λiにおけるパルスカウント積算値、k:ビートカウント対ビート周波数敏感度を表す。
【0027】
kのビートカウント対ビート周波数敏感度は、発振器1の出力、連続波光源出力、カウンターの閾値により変化してしまうため、同一測定条件のもと、予め測定しておく必要がある。測定方法としては、連続波光源をλ2、λ3近傍の複数波長に設定したうえで2の手順を実行し、連続波光源波長の変化量に対するビートカウント値の変化の割合として求めればよい。図3に示したように、敏感度kは発振器1のスペクトル幅より大きなビート周波数の領域ではほぼ直線で表されるため、前述した方法で得られた値を直線でフィッティングすれば精度良く求めることが可能である。
5.発振器1へのフィードバック
手順4で算出したλ1の測定値と、手順1における波長1の設定値の差分を補正するために、制御コンピュータからレーザ装置の波長制御手段へ帰還信号を与える。発振器1では、前記帰還信号により共振器長を変化させ、λ1を補正する。これにより、第1波長から波長変換過程を経て出力される出力波長が設定値に安定化される。
以上の手順1から手順4を繰り返すことにより、波長変換機1からの出力波長を高精度に測定可能であるとともに、その測定結果を下に帰還信号を加える事で設定波長に固定を行う事が可能となる。
【0028】
本発明の第2の実施例として、ビート周波数の特定をその周波数分布から直接特定する方法を示す。本実施例の場合は、平均化が不要のため、単一パルスでの波長測定が可能となる。図4に実施例2の構成を示す。
【0029】
発振器1と連続波光源5の干渉信号を高速受光素子8で電気信号に変換するまでの過程は実施例1と同様であるため省略する。本実施例ではカウンタの変わりに高速のA/D変換器11に前記電気信号を入力する。A/D変換機11に必要な帯域及びサンプリング周波数は、発振器1と連続波光源間で想定される波長差および、算出するビート周波数の大きさによって決定される。
まず、A/D変換器によってデジタル化した信号に対し周波数解析を行う。この方法としては高速いフーリエ変換などの手法を用いればよい。信号のフーリエ変換後の波形は図で示されるように、2つのピークを持つ。電気信号を式1で近似した場合のフーリエ変換が次式であらわされる。
【0030】
【数3】
Figure 2004069333
数式3から分るように、周波数0にピークを持つ分布ははビート信号の包絡線を示す周波数分布であり、もう一方がビートそのものを示す周波数分布となるため、第2のピークの周波数の値を計算する事でビート信号の周波数の計算が可能である。
実測定における制約としては、よく知られているFFTの周波数分解能Δf、及び周波数の最大値fmaxはサンプリング間隔Δtとfmax=1/Δt、Δf=1/(Δt×n)に加え、図の周波数分布の二つのピークが分離できることの条件としては、発振器1の周波数線幅をfwidth、ビート周波数fbeatとして、fbeat>fwidthの必要がある。
【0031】
上記の条件により、ビート周波数の下限値は発振器1の線幅、上限は受光素子の帯域及びA/D変換器のサンプリング周波数によって制限される事になる。本実施例ではこれらを満たす条件として、ビート周波数として出力パルス線幅の5倍程度の値となるように連続波光源の波長λ4を設定する。つまり、連続波光源の設定波長は、発振器1のをλ1、線幅を周波数表記でΔfとして、以下に示す数式に設定を行う。
【0032】
【数4】
Figure 2004069333
測定中は、設定値λ4からのずれ量を連続波光源用波長計によって高精度に測定を行い、その結果と算出されるビート周波数の値により、波長変換ユニット2からの出力波長の算出を行う。ここで、ビート周波数の符号の不確定性は、連続波光源の波長を設定値から既知の少量変化させた際のビート周波数変化を測定することにより判断が可能である。
【0033】
【発明の効果】
本発明によれば、高精度な測定が比較的容易な連続波光源において波長絶対値の測定を行い、パルス光源からの連続波光源との波長差をパルス光源と連続波光源のビート信号から計測することにより、高価かつ大型の分光器等を使用せずに、容易に高精度なパルス光源の波長計測が可能となるとともに、波長計測部も小型で済むため、常時計測の必要のある干渉計用光源などへの組み込みが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す概略図である。
【図2】パルス光源と連続波光源のビート信号を示したグラフである。
【図3】ビートカウントと周波数差の敏感度を示したグラフである。
【図4】本発明の第2の実施の形態を示す概略構成図である。
【図5】ビート信号のスペクトルを示したグラフである。
【図6】従来例を示す概略構成図である。
【符号の説明】
1       発振器
2       励起光源
3       波長変換ユニット
4       ハーフミラー
5       波長計
6       ファイバ結合器
7       連続波光源
8       高速受光素子
9       カウンター
10      制御コンピュータ
11      A/D変換機[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-precision wavelength measuring method for a pulse laser device.
[0002]
[Prior art]
Since the pulse light source has a short coherence distance and a temporally discrete intensity distribution, it cannot perform highly accurate wavelength measurement generally used in a continuous wave light source. As a measurement method typified by the former, a continuous wave light source is split into two light beams, and the light and dark of interference fringes generated when the optical axis is matched again after an optical path length difference is added is counted over a certain optical path length difference. This is a so-called fringe scan wavelength meter that obtains a wavelength measurement value by performing the measurement, and it is possible to measure the wavelength with high reproducibility of 0.1 pm or less using a small device. As a typical example of the latter, there is a method of fixing a wavelength to an absorption line of a substance having an absorption structure in a wavelength band of a continuous wave light source, and wavelength measurement with high absolute accuracy is possible.
As a method of measuring the wavelength of a pulse light source that cannot use these methods, measurement has been performed using a pulse wavelength meter that measures the wavelength from the distribution using spatial interference fringes.
[0003]
A conventional wavelength measurement method and a wavelength control method of a pulse light source will be described with reference to FIG.
[0004]
The light beam emitted from the pulse light source 51 is split by the half mirror 59 into an optical path toward the interferometer and an optical path toward the wavelength measuring device 50. This is because, in an interferometer for measuring a wavefront shape and the like, it is extremely important to accurately manage a measurement wavelength, and thus it is necessary to measure a light source wavelength simultaneously with measurement by an interferometer.
The light beam incident on the wavelength measuring device 50 is reflected by the convex mirror 52 to spread the light beam, and then reflected by the concave mirror 53 again to become a parallel light beam. The light is incident on a so-called Fizeau etalon 54 composed of a wedge substrate formed with high precision, and forms spatial interference fringes by the effect of multiple interference. The spatial interference fringes are photographed by a light receiving element such as a line sensor 55 disposed after the Fizeau etalon 54. In addition, a wavelength-stabilized HeNe laser is introduced into the same optical path as the light flux, and the spatial distribution of the same interference fringes is measured. The measurement of the wavelength is calculated from the optical thickness d at a location of the Fizeau etalon and the interval between the interference fringes of the pulsed light source and the HeNe laser.
[0005]
In the case where higher accuracy is to be obtained, the distribution of interference fringes when a light beam is diffused and incident on a so-called Fabry-Perot etalon 56 formed of a parallel substrate at the same time as the measurement of the Fizeau etalon is measured by a line sensor 57. Increases the accuracy of the measurement. In this case, an etalon having an optical thickness about 10 times that of the Fizeau etalon 54 is used for the purpose of high-precision measurement after rough interference order determination by the Fabry-Perot etalon 54 is performed. Also in this case, a wavelength-stabilized HeNe laser is introduced on the same optical axis, the Fizeau etalon interval is calculated from the obtained interference fringe interval, and the wavelength is calculated from the interference fringe interval of the pulsed light based on the calculation result.
[0006]
The wavelength calculation is performed by the calculation unit 58 provided in the wavelength measuring device 50, and the measured wavelength value is transmitted to the control computer 60 by communication.
[0007]
The control computer 60 uses the obtained wavelength measurement values to control actuators and the like provided in the pulse light source 51 to control the diffraction grating and the resonator length in order to keep the wavelength of the pulse light source 51 at a desired value. By doing so, wavelength control was performed.
[0008]
[Problems to be solved by the invention]
However, in the case of the pulse light source, since the wavelength is measured from the spatial interference fringe interval, it is easily affected by the intensity change of the light source, the directional stability, and the like, and also easily affected by the sensitivity characteristics of the light receiving element. However, there is a problem that the wavelength measurement accuracy is low.
[0009]
Although the absolute value of the wavelength depends on the wavelength stabilized HeNe, the reliability of the absolute value of the wavelength is determined by the optical adjustment of the wavelength meter and the wavelength dispersion of the glass material used for the etalon together with the absolute wavelength accuracy of the HeNe itself. Was low.
[0010]
Therefore, the present invention measures the wavelength of the pulse light source indirectly by measuring the wavelength difference between the continuous wave light source and the pulse light source, together with the measurement of the continuous wave light source that enables more accurate wavelength measurement. It is an exemplary object to provide a wavelength measurement method capable of realizing highly accurate pulse light source wavelength measurement.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a wavelength measuring method according to an exemplary aspect of the present invention provides a continuous wave light source in an oscillation wavelength or a wavelength band generated in a wavelength conversion process necessary for producing a final output wavelength. In the pulse laser light source that exists, the pulse laser and the pulse signal by measuring the wavelength difference between the continuous wave light source and the wavelength of the pulse laser by a beat signal when causing a continuous wave light source of the same wavelength to interfere. It is characterized in that the wavelength of the laser is measured. When the wavelength difference between the pulse laser light source and the continuous wave light source is measured, the wavelength measurement or the wavelength control of the continuous wave light source is performed at the same time. A beat signal having a certain threshold value or more in a temporal interference signal waveform of each pulse is counted for a plurality of pulses, and a beat frequency is specified from the count value. The beat frequency is specified from the interval between two spectral peaks of the frequency spectrum of the temporal interference signal waveform of each pulse. A single longitudinal mode continuous wave laser is used as the continuous wave light source. The continuous wave light source is split into two light beams, the light path of the interference fringe generated when the optical axis is matched again after the optical path length difference is added, and the wavelength measurement value is obtained by counting over a certain optical path length difference. The measurement is performed using a so-called fringe scan wavelength meter. The wavelength of the continuous wave light source is measured by transmitting a gas cell having an absorption structure in the wavelength band of the continuous wave light source and fixing the wavelength to an absorption line based on the transmission intensity.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a pulse light source wavelength measuring device according to an embodiment of the present invention.
[0013]
The light beam emitted from the oscillator 1 having the fundamental wavelength enters the wavelength conversion unit 3 for performing wavelength conversion to an output wavelength by a nonlinear optical effect. The oscillator 1 of the fundamental wavelength emits pulse light in the near infrared region using titanium sapphire crystal as a laser medium. For excitation of the titanium sapphire crystal, an excitation light source 2 using Nd: YAG or Nd: YLF using Nd ions is used. The oscillator 1 is a so-called improved Littman resonator having an actuator for controlling a diffraction grating and a resonator length so that single longitudinal mode oscillation can be performed independently without using an injection light source. As a result, the output spectrum is narrowed, and a coherent distance of several meters is realized. Further, the oscillator 1 is provided with a wavelength control means for controlling the oscillation wavelength by driving the mirror from outside. Since the improved Littman resonator does not use an injection light source, the structure is simple, the size and reliability of the light source device can be improved, and a wide wavelength tunable width can be obtained by using the wide gain band of the titanium sapphire. Is an advantage.
[0014]
In this embodiment, the output wavelength is 193 nm, which is generated by creating a fourth harmonic of a pulse light beam of 772 nm emitted from the oscillator 1. Here, since the output wavelength is exactly に times the wavelength of the oscillator 1, by measuring the wavelength of the oscillator 1, the output wavelength, that is, the wavelength of 193 nm can be measured.
[0015]
First, a continuous wave light source 7 capable of oscillating at the same wavelength as the fundamental wavelength is prepared. As a continuous wave light source in the near infrared region, a semiconductor laser can be used. In the present embodiment, an external resonator type semiconductor laser capable of high-accuracy wavelength control and having a wide wavelength variable band is used. The continuous wave light source 7 has an actuator for driving a wavelength selection element such as a diffraction grating in a resonator or a means for changing an injection current to a semiconductor element which is a laser medium as a means for externally controlling the wavelength. are doing.
[0016]
The emitted light from the continuous wave light source 7 is split into two by the half mirror 4, one of which is used for performing wavelength measurement by the continuous wave light source wavelength meter 5, and the other light flux is output from the oscillator 1. Used to measure the wavelength difference from light. Here, as the continuous wave light source wavelength meter 5, a wavelength meter that divides an optical path inside the wavelength meter and counts the number of interference fringes of two light beams generated when each optical path length difference is scanned to specify the wavelength. Is used. The measurement reproducibility by the wavelength meter 5 is 0.1 pm or less.
[0017]
The wavelength value measured by the wavelength meter 5 is transmitted to the control computer 10 via the interface of the wavelength meter 5.
[0018]
The light beam reflected by the half mirror 4 enters the incident fiber on one side of the fiber coupler 6. The output from the oscillator 1 is incident on the other incident fiber of the fiber coupler. Since the fiber coupler couples two fiber inputs to one output fiber, interference from two light sources on the same optical axis is observed at the output from the fiber coupler. Here, since the two light sources have different oscillators, the phase between the two light beams is random for each pulse emitted from the oscillator 1, so that the time interference waveform is also random.
[0019]
FIG. 2 shows a typical time interference waveform. The emission pulse width in the oscillator 1 is about 10 ns. Since the interference waveform occurs only during the time when this pulse exists, it does not become a complete sine wave like a beat signal between continuous wave lasers. When the pulse waveform of the oscillator 1 is approximated by a normal distribution, the interference waveform in FIG. 2 is expressed by the following equation.
[0020]
(Equation 1)
Figure 2004069333
Here, the pulse electric field of the oscillator 1 is E10exp (−at ^ 2-iω1t), the electric field of the continuous wave light source is E20Exp (−Iω2t), and the phase difference between the two is φ12.
[0021]
The time interference waveform represented by Expression 1 is converted into an electric signal by the high-speed photodetector 8 provided at the output of the fiber coupler 6. The obtained electric signal is beat-counted by a counter 9 which counts the number of voltage signals having a certain threshold value or more input during an arbitrary time. Here, the counting of beats means that the beat frequency detection between continuous waves counts the beats detected within a certain time interval and calculates the number of counts per unit time interval, whereas the count per pulse It means calculating a number.
Due to the randomness of the phase difference between the pulse of the oscillator 1 and the continuous wave light source, the time interference waveform at the same optical frequency difference also changes randomly for each pulse, and as a result, the count value also varies.
[0022]
In order to perform high-precision measurement while avoiding the influence of this variation, it is only necessary to increase the number of samples of the count value and perform averaging, and as shown in FIG. Can be performed. Since the oscillator 1 of the present embodiment generates a pulse at a repetition frequency of 5 kHz, the average time may be about 200 msec.
Here, the output wavelengths of the pulse laser devices 1 to 3 are measured from the measured wavelength of the light source 2 obtained by the wavelength meter 5 for the continuous wave light source and the optical frequency difference between the electric field of the continuous wave light source and the pulse electric field of the oscillator 1. The following describes the procedure.
1. First, the wavelength of the continuous wave light source 7 is set. The wavelength of the continuous wave light source 7 is set to be substantially the same as the wavelength of the oscillator 1, but a small wavelength offset amount is set to a value given positively and negatively for beat measurement.
[0023]
Here, as the wavelength offset amount, the beat signal can be observed in the output pulse width of the oscillator 1, that is, the optical frequency is determined based on the necessity of a beat frequency of one cycle or more and the band limitation of the high-speed photodetector 8 and the counter 9. About several hundred MHz, and about 1 pm in terms of wavelength. Specifically, 192.999 nm and 193.001 nm are used. If the absolute accuracy of the continuous wave wavelength meter 5 is insufficient, the wavelength may be fixed to an absorption line such as iodine having an absorption structure in the wavelength band of the oscillator 1. In this case, the wavelengths are fixed to the two absorption lines before and after the set wavelength.
2. When the measurement of the wavelength of the continuous wave light source and the setting of the beat count wavelength are completed, the measurement by the continuous wave light source wavelength meter 5 is started, and at the same time, the beat count is accumulated by the counter 9. At this time, the counter 9 counts the number of pulses of the oscillator 1 being measured. In order to count the number of pulses, a synchronous output provided in a Q switch or the like of the excitation light source 2 may be used. If the absolute accuracy of the continuous wave wavelength meter 5 is insufficient, the wavelength may be fixed to an absorption line such as iodine having an absorption structure in the wavelength band of the oscillator 1. When locking to the absorption line is performed in step 1, the wavelength value of the absorption line is used as the wavelength measurement value.
[0024]
After the measurement is completed, the continuous wave light source wavelength value, the beat count integrated value, and the pulse count integrated value are transmitted to the control computer.
3. When the procedures for wavelength switching 1 and 2 of the continuous wave diode laser are completed, the procedure 1 is performed again. Here, when switching from 2 to 1, the positive / negative of the wavelength offset of the continuous wave light source 7 is switched. This switching of the wavelength offset corresponds to dither in general control, and is for determining the sign of the frequency difference.
4. Calculation of First Wavelength of Laser Device 1 According to the above-described procedures 1 to 3, each of the continuous wave light source wavelength value, the beat count integrated value, and the pulse count integrated value is recorded in the laser control computer.
[0025]
Using these, the wavelength λ1 of the oscillator 1 is expressed by the following equation.
[0026]
(Equation 2)
Figure 2004069333
Here, each symbol is λ2: the positive offset wavelength measured value of the continuous wave light source, λ3: the negative offset wavelength measured value of the continuous wave light source, BC (λi): the beat count integrated value at the wavelength λi, PC (λi). : Pulse count integrated value at λi, k: beat count versus beat frequency sensitivity.
[0027]
Since the beat count vs. beat frequency sensitivity of k changes depending on the output of the oscillator 1, the output of the continuous wave light source, and the threshold value of the counter, it is necessary to measure in advance under the same measurement conditions. As a measuring method, after setting the continuous wave light source to a plurality of wavelengths in the vicinity of λ2 and λ3, the procedure of 2 may be executed to obtain the ratio of the change of the beat count value to the change amount of the continuous wave light source wavelength. As shown in FIG. 3, the sensitivity k is substantially represented by a straight line in a region of a beat frequency larger than the spectrum width of the oscillator 1, so that the value obtained by the above-described method can be accurately obtained by fitting a straight line. Is possible.
5. In order to correct the difference between the measured value of λ1 calculated in feedback procedure 4 to oscillator 1 and the set value of wavelength 1 in procedure 1, a feedback signal is provided from the control computer to the wavelength control means of the laser device. In the oscillator 1, the resonator length is changed by the feedback signal, and λ1 is corrected. As a result, the output wavelength output from the first wavelength through the wavelength conversion process is stabilized at the set value.
By repeating the above steps 1 to 4, the output wavelength from the wavelength converter 1 can be measured with high accuracy, and the measurement result can be fixed to the set wavelength by adding a feedback signal below. It becomes possible.
[0028]
As a second embodiment of the present invention, a method of directly specifying a beat frequency from its frequency distribution will be described. In the case of the present embodiment, since averaging is not required, wavelength measurement with a single pulse becomes possible. FIG. 4 shows the configuration of the second embodiment.
[0029]
The process of converting the interference signal between the oscillator 1 and the continuous wave light source 5 into an electric signal by the high-speed light receiving element 8 is the same as that in the first embodiment, and thus the description is omitted. In this embodiment, the electric signal is input to the high-speed A / D converter 11 instead of the counter. The band and the sampling frequency required for the A / D converter 11 are determined by the wavelength difference assumed between the oscillator 1 and the continuous wave light source and the magnitude of the calculated beat frequency.
First, frequency analysis is performed on the signal digitized by the A / D converter. As this method, a method such as a fast Fourier transform may be used. The waveform of the signal after the Fourier transform has two peaks as shown in the figure. The Fourier transform when the electric signal is approximated by Expression 1 is expressed by the following expression.
[0030]
[Equation 3]
Figure 2004069333
As can be seen from Equation 3, the distribution having a peak at frequency 0 is a frequency distribution indicating the envelope of the beat signal, and the other is a frequency distribution indicating the beat itself. Is calculated, the frequency of the beat signal can be calculated.
As restrictions in actual measurement, the well-known frequency resolution Δf of FFT and the maximum value fmax of the frequency are obtained in addition to the sampling interval Δt and fmax = 1 / Δt, Δf = 1 / (Δt × n), As a condition that the two peaks of the distribution can be separated, it is necessary that the frequency line width of the oscillator 1 is fwidth and the beat frequency fbeat is fbeat> fwidth.
[0031]
Under the above conditions, the lower limit of the beat frequency is limited by the line width of the oscillator 1, and the upper limit is limited by the band of the light receiving element and the sampling frequency of the A / D converter. In the present embodiment, as a condition satisfying these conditions, the wavelength λ4 of the continuous wave light source is set so that the beat frequency has a value of about five times the output pulse line width. That is, the setting wavelength of the continuous wave light source is set to the following equation, where λ1 is the oscillator 1 and the line width is Δf in frequency notation.
[0032]
(Equation 4)
Figure 2004069333
During the measurement, the amount of deviation from the set value λ4 is measured with high accuracy by a continuous wave light source wavelength meter, and the output wavelength from the wavelength conversion unit 2 is calculated based on the result and the calculated beat frequency value. . Here, the uncertainty of the sign of the beat frequency can be determined by measuring the change in the beat frequency when the wavelength of the continuous wave light source is changed from the set value by a known small amount.
[0033]
【The invention's effect】
According to the present invention, the absolute value of the wavelength is measured in a continuous wave light source that is relatively easy to measure with high accuracy, and the wavelength difference between the pulse light source and the continuous wave light source is measured from the beat signals of the pulse light source and the continuous wave light source. By doing so, it is possible to easily and accurately measure the wavelength of a pulsed light source without using an expensive and large spectroscope, and the interferometer that needs to be constantly measured because the wavelength measurement unit can be small. It can be incorporated into a light source or the like.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first embodiment of the present invention.
FIG. 2 is a graph showing beat signals of a pulse light source and a continuous wave light source.
FIG. 3 is a graph showing the sensitivity between a beat count and a frequency difference.
FIG. 4 is a schematic configuration diagram showing a second embodiment of the present invention.
FIG. 5 is a graph showing a spectrum of a beat signal.
FIG. 6 is a schematic configuration diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oscillator 2 Excitation light source 3 Wavelength conversion unit 4 Half mirror 5 Wavelength meter 6 Fiber coupler 7 Continuous wave light source 8 High-speed light receiving element 9 Counter 10 Control computer 11 A / D converter

Claims (7)

発振波長、或いは最終出力波長を作成するために必要な波長変換過程で生成される波長帯に、連続波光源が存在するパルスレーザ光源において、
前記パルスレーザと、同一波長の連続波光源を干渉させた際のビート信号により、前記パルスレーザの波長と、前記連続波光源の波長差を計測することで前記パルスレーザの波長を測定することを特徴とする波長計測方法。
In a pulse laser light source where a continuous wave light source exists in a wavelength band generated in a wavelength conversion process required for creating an oscillation wavelength or a final output wavelength,
By measuring the wavelength of the pulse laser and the wavelength difference of the continuous wave light source, by measuring the wavelength difference between the pulse laser and the continuous wave light source by a beat signal when causing the continuous wave light source of the same wavelength to interfere with the pulse laser, Characteristic wavelength measurement method.
前記パルスレーザ光源の波長と前記連続波光源の波長差を測定する際に、同時に前記連続波光源の波長計測或いは波長制御を行う事を特徴とする請求項1記載の波長計測方法。2. The wavelength measuring method according to claim 1, wherein when measuring the wavelength difference between the pulse laser light source and the continuous wave light source, the wavelength measurement or the wavelength control of the continuous wave light source is performed at the same time. 各パルスの時間的な干渉信号波形における、或るしきい値以上のビート信号の計数を複数パルスについて行い、前記計数値からビート周波数の特定を行うことを特徴とする請求項1又は2記載の波長計測方法。3. The beat signal according to claim 1, wherein a beat signal of a certain threshold value or more in a temporal interference signal waveform of each pulse is counted for a plurality of pulses, and a beat frequency is specified from the count value. Wavelength measurement method. 各パルスの時間的な干渉信号波形の周波数スペクトルの2つのスペクトルピークの間隔から、ビート周波数の特定を行うことを特徴とする請求項1又は2記載の波長計測方法。3. The wavelength measurement method according to claim 1, wherein a beat frequency is specified based on an interval between two spectrum peaks of a frequency spectrum of a temporal interference signal waveform of each pulse. 前記連続波光源として、単一縦モード連続波レーザを用いる事を特徴とする請求項1乃至4のうちいずれか一項記載の波長計測方法。The wavelength measuring method according to claim 1, wherein a single longitudinal mode continuous wave laser is used as the continuous wave light source. 前記連続波光源を、2つの光束に分岐し、光路長差を付けた後に再び光軸を一致させた際に生じる干渉縞の明暗を、ある光路長差にわたってカウントする事によって波長計測値を得る所謂フリンジスキャン波長計を用いて測定することを特徴とする請求項1乃至5のうちいずれか一項記載の波長計測方法。The continuous wave light source is split into two light fluxes, and the lightness of the interference fringes generated when the optical axis is matched again after the optical path length difference is added is counted over a certain optical path length difference to obtain a wavelength measurement value. The wavelength measurement method according to any one of claims 1 to 5, wherein the measurement is performed using a so-called fringe scan wavelength meter. 前記連続波光源の波長帯域において吸収構造を有するガスセルを透過させ、その透過強度から吸収線に波長を固定する事で連続波光源の波長を計測することを特徴とする請求項1乃至5のうちいずれか一項記載の波長計測方法。The wavelength of the continuous wave light source is measured by transmitting a gas cell having an absorption structure in the wavelength band of the continuous wave light source and fixing the wavelength to an absorption line based on the transmission intensity. The wavelength measurement method according to any one of the preceding claims.
JP2002225282A 2002-08-01 2002-08-01 Wavelength measuring method Pending JP2004069333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225282A JP2004069333A (en) 2002-08-01 2002-08-01 Wavelength measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225282A JP2004069333A (en) 2002-08-01 2002-08-01 Wavelength measuring method

Publications (1)

Publication Number Publication Date
JP2004069333A true JP2004069333A (en) 2004-03-04

Family

ID=32013003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225282A Pending JP2004069333A (en) 2002-08-01 2002-08-01 Wavelength measuring method

Country Status (1)

Country Link
JP (1) JP2004069333A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608808B2 (en) 2006-11-07 2009-10-27 Canon Kabushiki Kaisha Injection-locked pulsed laser with high wavelength stability
US7940458B2 (en) 2004-10-18 2011-05-10 Sony Corporation Laser light source device, hologram apparatus, and method for detecting laser light
JP2014090092A (en) * 2012-10-30 2014-05-15 Mitsutoyo Corp Laser light source device
CN108507686A (en) * 2018-02-02 2018-09-07 北京科益虹源光电技术有限公司 A kind of temperature drift feedback method and device that laser center wavelength measures

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940458B2 (en) 2004-10-18 2011-05-10 Sony Corporation Laser light source device, hologram apparatus, and method for detecting laser light
US7608808B2 (en) 2006-11-07 2009-10-27 Canon Kabushiki Kaisha Injection-locked pulsed laser with high wavelength stability
US7910871B2 (en) 2006-11-07 2011-03-22 Canon Kabushiki Kaisha Injection-locked laser, interferometer, exposure apparatus, and device manufacturing method
JP2014090092A (en) * 2012-10-30 2014-05-15 Mitsutoyo Corp Laser light source device
CN108507686A (en) * 2018-02-02 2018-09-07 北京科益虹源光电技术有限公司 A kind of temperature drift feedback method and device that laser center wavelength measures
CN108507686B (en) * 2018-02-02 2019-09-27 北京科益虹源光电技术有限公司 A kind of the temperature drift feedback method and device of laser center wavelength measurement

Similar Documents

Publication Publication Date Title
RU2371684C2 (en) Method and device for measuring time-domain spectrum of terahertz radiation pulses
JP4793675B2 (en) Distance measuring device
Cui et al. Experimental demonstration of distance measurement with a femtosecond frequency comb laser
CN112526544B (en) Device and method for three-dimensional imaging based on optical frequency comb interferometry
JP2011181691A (en) Pulse laser, optical frequency stabilized laser, measuring device, and measuring method
US6788410B1 (en) Delay time measurement apparatus for optical element
CN107210576A (en) Solid laser system and exposure device laser aid
JP6695912B2 (en) Method for generating laser pulse, spectroscopic method for obtaining spectral response of sample, laser pulse source device, and spectroscopic device
Mei et al. Delay compensated FBG demodulation system based on Fourier domain mode-locked lasers
JP6264547B2 (en) Optical signal generation apparatus, distance measurement apparatus, spectral characteristic measurement apparatus, frequency characteristic measurement apparatus, and optical signal generation method
JP4617434B2 (en) Distance measuring device
EP2149778B1 (en) Multiwavelength interferometric displacement measuring method and apparatus
JP6628030B2 (en) Distance measuring device and method
JP2004069333A (en) Wavelength measuring method
EP2101161A1 (en) Bandwidth-independent method and setup for measuring and stabilizing the carrier-envelope phase drift of laser pulses
JP2012004426A (en) Unmodulated stabilization laser device
CN109696416B (en) Method for measuring gas absorption coefficient based on cavity ring-down technology
CN111174708B (en) Method and device for measuring cavity length of micro-optical resonant cavity
JP3285270B2 (en) Position measuring device
KR20100043463A (en) Terahertz frequency comb fourier transformation spectrometer and spectroscopic method
JPH08101066A (en) Optical spectrum measuring apparatus
JP2006023662A (en) Photoelectric field waveform controlling method and controlling device
Bodermann et al. Wavelength measurements of three iodine lines between 780 nm and 795 nm
JPH06207847A (en) Measuring device for optical fm modulation characteristic
US11598628B1 (en) High dynamic range picometer metrology systems and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Effective date: 20070416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

A131 Notification of reasons for refusal

Effective date: 20070911

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129