JP2004068812A - Superpure water pump - Google Patents

Superpure water pump Download PDF

Info

Publication number
JP2004068812A
JP2004068812A JP2003177305A JP2003177305A JP2004068812A JP 2004068812 A JP2004068812 A JP 2004068812A JP 2003177305 A JP2003177305 A JP 2003177305A JP 2003177305 A JP2003177305 A JP 2003177305A JP 2004068812 A JP2004068812 A JP 2004068812A
Authority
JP
Japan
Prior art keywords
flow
cut
pump
rotary shaft
cutoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177305A
Other languages
Japanese (ja)
Inventor
Jun Taga
多賀 潤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003177305A priority Critical patent/JP2004068812A/en
Publication of JP2004068812A publication Critical patent/JP2004068812A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent inconvenience of ion generation, etc. of metal, etc. by contact of a main delivered liquid such as superpure water, etc. by discharging abrasive fine particulates on a sliding part of a pump and effectively avoiding intrusion of the main delivered liquid extremely high in chemical activation and having corrosiveness to the sliding part. <P>SOLUTION: A point to contact the main delivered liquid is processed for corrosion resistance, a first blocking current mechanism to prevent contamination of an abrasive article in the sliding part and a second blocking current mechanism to avoid intrusion of the main delivered liquid high in chemical reaction to a point not processed for corrosion resistance are furnished, the first blocking current mechanism is furnished with a first blocking current channel by a rotation axis and an inner peripheral surface of a rotation axis casing and a discharge part to discharge a first blocking current by the main delivered liquid from a pump space from the first channel, and the second mechanism is furnished with an inactive liquid supply source as the second blocking current and a second blocking current supply port formed in the casing to deliver the second blocking current to the inside of the casing and to join it with the first blocking current through the second channel by the rotation axis and the inner peripheral surface of the casing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は、半導体、液晶等の製造工程等に用いられる極めて高純度の活性液体を移送するための回転型ポンプに関し、詳しくは超純水等の活性液体とポンプ機構の金属部との絶縁により金属イオンをはじめ、その他の微粒子の発生を防止できるようにしたポンプに関するものである。
【0002】
【発明の背景】
半導体の高集積度を実現するには、製造時に使用する各種液体の高純度、特に不純物の含有量を極度に低くする必要がある。半導体製造の洗浄工程で用いられる超純水では、0.1ミクロン単位の微粒子量が問題とされ製品の収率に大きく影響を与える。特に超純水の移送用ポンプにあっては、回転摺動部から発生する摩耗微粒子の発生防止が大きな課題であったが、この課題は本願発明者により、日本国特許第1807169号、米国特許第5131806あるいは特開平3−26897号により解決されている。
【0003】
しかしながら、半導体の高集積度、液晶の高性能化が更に進むにつれ、超純水中の残存金属イオン濃度が大きな問題となって浮上し、今や金属イオンの含有量は1PPT(1兆分の1)以下まで要求されるようになっている。この金属イオンは、ウエット行程中のポンプ、パイプ、バルブ等全ての機器類の接液箇所において超純水の金属に対する溶解挙動により発現するものであり、特に18.20MΩ以上の抵抗値を有する最高度の超純水においては、極めて活発な金属等のイオン溶出が起こるとされている。
【0004】
【発明が解決すべき課題】
上記の不都合を解決するために、ポンプ等の機器において、超純水と接する筒所を4フッ化樹脂によりライニング、またコーティング等を施すこと等も行われているが、ポンプ回転摺動部、シール部は4フッ化樹脂によるライニング等の表面処理は施工不可能である。また、ポンプ回転摺動部、シール部に極めて化学的に安定な高硬度SiC(炭化けい素)を使用しても超純水による溶解挙動を抑止することができない。そして、現在の超純水に更にオゾン(O)、フッ化水素(HF)等を微量含む機能超純水が使用されるようになりつつあり、金属、セラミックスはより大きなケミカルアタックに晒されることになり、前記のポンプ回転摺動部、即ちベアリング部、シール部における接液部の金属セラミックス等の溶出による腐食等の不都合がさらに問題視されるところである。
【0005】
【課題を解決するための手段】
本願発明は、超純水の移送等に使用するポンプにおいて、ポンプ空間と、このポンプ空間で回転する羽根車と、回転駆動源と羽根車を結ぶ回転軸と、ベアリング部およびシール部を有する回転軸ケーシングとを有して主送液に接する箇所に4フッ化樹脂のライニング等による抗腐蝕処理をなして構成するとともに、第2遮断流に接するベアリング部、シール部等の回転摺動部から発生する摩耗微粒子の送液への混入を防止するための第1遮断流機構と、回転軸摺動部における抗腐蝕処理不能箇所へのポンプ空間からの主送液の侵入を阻止するための第2遮断流機構とを具え、
前記第1遮断流機構は、回転軸と回転軸ケーシング内周面により構成される第1遮断流流路と、ポンプ空問から回転軸ケーシング内に一部流入させた主送液による第1遮断流を前記第1遮断流流路から排出するために、回転軸ケーシングにおいて羽根車寄りに設けた排出部と、これに接続する排出路とからなり、
前記第2遮断流機構は、第2遮断流としての潤滑性を有する不活性液体の供給源と、前記第2遮断流をベアリング部、シール部の位置する回転軸ケーシング内に送るとともに回転軸と回転軸ケーシング内周而により構成される第2遮断流流路を介して前記第1遮断流に合流させ、第1遮断流機構の前記排出路から排出するため、回転軸の回転摺動部側端部と前記排出路との問において回転軸ケーシングに形成される第2遮断流供給口と、第2遮断流供給源と第2遮断流供給口との問に設けられる供給路とから構成することにより前記従来の課題を解決しようとするものである。
【0006】
前記ポンプにおいて、第1遮断流機構の排出部は、ポンプの回転軸に互いに逆方向の流れの相会箇所に設けた遮断円板と、これを収納するため回転軸ケーシングに設けた円板室に開口することにより構成する。
【0007】
前記において、流路遮断円板にはラビリンスを形成し、第1・第2遮断流が互いにそれぞれの流路に流入しないようにすることがある。
【0008】
上記いずれかにおいて、回転軸ケーシング内の抗腐蝕処理不能箇所には第2遮断流供給口から流入する不活性液体からなる第2遮断流を常時充填して、第1遮断流流路から侵入する虞のあるケミカルアタック性の強い主送液から絶縁するようにする。
【0009】
【発明の実施形態】
この実施形態に係るポンプにおいて、回転軸ケーシングのベアリング部、シール部等の回転摺動部を除き、主送液(超純水)に接する箇所の表面は前述のように4フッ化樹脂のライニング等による抗腐蝕処理がなされている。第1遮断流機構において、ポンプ空問から回転軸ケーシング内に一部流入される主送液(超純水)による第1遮断流は、回転軸と回転軸ケーシング内周而により構成される第1遮断流流路、これに連続して回転軸ケーシングにおいて羽根車寄りに設けた排出部、この排出部に連結形成される排出路を経て回転軸ケーシング外に流出する。したがって、ベアリング部、シール部等の回転摺動部から発生する摩耗微粒子は、第2遮断流に含まれているが、この第1遮断流に阻まれて回転軸ケーシング内においてポンプ空間方向へ進入することはない。
【0010】
すなわち、第2遮断流機構において、第2遮断流としての超純水に対し潤滑性にとむ通常の不活性液体(水道水等の)は、その供給源から回転軸ケーシング内に送られ回転舳と回転軸ケーシング内周面により構成される第2遮断流流路を経て第1遮断流機椛における排出部へ流れるから、第1遮断流のベアリング部、シール部等の回転摺動部方向への進入は阻止される。また、回転軸ケーシング内に送られた第2遮断流としての不活性液体(水)は、回転軸ケーシング内で、第1遮断流機構とは回転軸の逆の方向すなわちベアリング部、シール部等の回転摺動部方向へ進行する。回転軸ケーシングの末端部すなわち回転摺動部方向の先端部はシール機構で閉鎖されているから、不活性液体(水)はベアリング部、シール部等の回転摺動部を含んで回転軸ケーシング内に充満し第1遮断流(超純水)と回転摺動部とを隔離する。
【0011】
不活性第2遮断流の第2遮断流供給口における圧力及び水量は、第1遮断流より高圧であるが、水量は第1遮断流より常に少量でよく、主として潤滑油の役目と冷却効果を持つ程度とする。回転軸ケーシング内に流入後は第1遮断流量より極めて少量であるので次第に同圧になるよう圧力が低下し、第1遮断流との合流排出時にはそれと同圧となり、したがって第2遮断流が羽根側のポンプ空問に進行流入することはない。
【0012】
第2遮断流を形成する不活性液体(水)の供給は、空気圧、水圧、電力により駆動するダイヤフラム、エアシリンダー駆動プランジャーポンプ等によりなる定量ポンプとするが、適当な水圧を有する水道水も利用できる。また、必要に応じて供給源と回転輔ケーシングとを繋ぐ供給路に、圧力調整弁、流量調整弁、開閉弁等を設けることもある。
【0013】
【発明の実施例】
図面に基づいて、本願発明の実施例を説明する。図1は、本発明に係る回転ポンプの要部を示す断面図である。図2はベアリングBを省略した本発明で、メカニカルシール部の固定環と回転環の位置が逆となっているが附番は図1と同じである。
図において、1はポンプ空間、2はこのポンプ空問1で回転する羽根車、3は回転駆動源Mと羽根車2を結ぶ回転軸、4はベアリング部Bおよびメカニカルシール部Sで固定環、S1回転環S2、を有する回転軸ケーシングである。前記各要素には、ベアリング部Bおよびシール部Sを除き主送液としての超純水に接する箇所に4フッ化樹脂のライニング等による抗腐蝕処理がなされており、太い実線で示されている。
【0014】
5aは、回転軸ケーシング4内周面において羽根車2方向端部とベアリング部Bとの問に形成された円板室で、この円板室5aには回転軸に設けた遮断円板5bが回転可能に収納されている。円板室5aフッ素樹脂製には円板5bの外周部に対応する箇所に第1遮断流機構の排出部5が構成されている。5cは前記円板室5aに連結形成される排出路で流量調節機構5e.5fを設けてある。また、円板室5aにはラビリンス5dが形成されていることもある。
ポンプ空問1側から前記円板室5aまでの問の回転軸3と回転軸ケーシング4内周面との問隙により構成される第1遮断流流路6と、排出部5と、排出路5cとにより第1遮断流機構が構成される。ポンプ空問1から、主送液としての超純水の分流が第1遮断流として第1遮断流流路6、排出部5、排出路5cに流通することにより、ベアリング部Bおよびシール部S方向からの摩耗微粒子を含む液のポンプ空間1への進入は阻止される。
【0015】
また、図において、Tは不活性液体(水)の供給源、pは定量ポンプ、7は回転軸ケーシング4のベアリング部B、シール部Sの中間箇所に・形成された第2遮断流供給口、8はベアリング部Bから前記円板室5aまでの間の回転軸3と回転軸ケーシング4内周面との間隙により構成される第2遮断流流路であり、これらにより第2遮断流機構が構成されている。この第2遮断流機構の位置、具体的には回転軸ケーシング4における第2遮断流供給口の設定位置は、ポンプ空問側を先頭(回転軸ケーシング4)とすると、第1遮断流機構の末端で遮断板の後方でなければならない。かくして、供給源丁からの不活性液体(水)が第2遮断流としてベアリング部B、第2遮断流流路8、前記排出部5、そして排出路5cに流通することにより、第1遮断流機構の排出部5方向からの第1遮断流(超純水)のベアリング部B方向への進入が阻止される。
【0016】
前記のように、第2遮断流は第1遮断流機構の排出部5において第1遮断流と合流して排出路5cから流出することになるが、排出部5を該実施例のように円板室5aと遮断円板5bとにより構成し、さらに円板5bにラビリンスを設ければ、両遮断流が混合しづらく、5bの回転により発生する遠心流となり、それぞれが排出路5cに流出するから、第1遮断流のベアリング郁B方向への進入の阻止にさらに寄与する。
【0017】
第2遮断流としての不活性液体は、通常の水道水でよく、第1遮断流より高圧少量で第2遮断流流路8に定量ポンプにより供給する。このように、第2遮断流は高圧かつ少量のため、排出部5において第1遮断流と同圧となり排出路5cに設けた流量調整弁等を介して系外に放出される。なお、合流した第1遮断流と第2遮断流との構成比は1.5:1程度から場合により50:1,100:1でもよく、主流の第1遮断流量で流れの方向は決定される。総括すれば系内に供給した第2遮断流より大量の排出量を確保することにより本発明は実施されるものである。
【0018】
ポンプ停止時間が長くなると、送液の超純水には接液部の金属セラミックスより発生する摩耗微粒子より金属イオンが発生する。このため、金属イオン等のイオン量がPPTまたはそれ以下の濃度を要求される超高純度の超純水質をポンプ起動直後より得るには、立ち上がり時に汚染されているボンプ系内を大量のフラッシュ超純水により洗浄することが必要となる。しかし、このフラッシングは過大な運転コスト上昇の原因となる。
そこで、本実施例では、ポンプの運転停止後、直ちに第2遮断流機構の動作を停止し、金属、セラミック等の摩耗微粒子を含んだ第2遮断流を停止する一方、主ポンプを再動作させて通常運転時の10/1以下程度の量の第1遮断流を循環させ金属、セラミックスの溶出イオンのポンプ空問への進入防止をさらに確実にする。第2遮断流機構には第2遮断流が充満しているので第1遮断流がベアリング部B方向へ進入する虞はないが、第2遮断流機構も流量を1/2程度にして連続的にあるいは問欠的に動作させてもよい。場合により、第1,第2遮断流路にそれぞれ逆止弁としてのリップシールLSを設けてもよい。
【0019】
要は、ポンプの停止時に発生した金属等のイオンがブラウン運動によりポンプ系内の全体に拡散するのを防ぐため、少量の遮断流を問欠的にまたは連続的に流通させて系内の高純度環境を維持することにある。
【0020】
【発明の効果】
本願発明は以上述べた構成、作用により、回転型ポンプの摺動部で発生した摩耗微粒子を低コストで効卒良く排出するとともに、主送液の摺動部への進入を効果的に阻止し、超純水等の主送液のポンプの摺動部への接触による金属等のイオン発生等の不都合を防止できるという効果がある。
以上は、本発明のシール方式に就いて、メカニカルシール、における固定環がポンプ室内にあり、回転環やスプリングがポンプ室外にある外装型(アウトサイド型)メカニカルシールに就き述べたが、回転環及びスプリングがポンプ室内にある内装型(インサイド型)メカニカルシール機構にも用いられるが殆ど同じものであるので図示説明は省略する。
更に、メカニカルシール以外の回転摺動部シール方式であるグランド、パッキン型、またはリップシール型にも本発明は図面に示す実施要領で有効にそのまま使用できる。
【図面の簡単な説明】
【図1】第1図は本願の断面図
【図2】第2図は第1図のベアリング部を省略した機構の断面図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotary pump for transferring an extremely high-purity active liquid used in a manufacturing process of a semiconductor, a liquid crystal, and the like, and more particularly, to an insulation between an active liquid such as ultrapure water and a metal part of a pump mechanism. The present invention relates to a pump capable of preventing the generation of other fine particles including metal ions.
[0002]
BACKGROUND OF THE INVENTION
In order to achieve a high degree of integration of a semiconductor, it is necessary to extremely reduce the purity of various liquids used in manufacturing, particularly the content of impurities. In ultrapure water used in the cleaning process of semiconductor manufacturing, the amount of fine particles on the order of 0.1 micron is considered to be a problem and greatly affects the product yield. In particular, in the pump for transferring ultrapure water, it was a major problem to prevent the generation of wear fine particles generated from the rotary sliding portion. This problem was solved by the inventor of the present invention in Japanese Patent No. 1807169 and US Pat. No. 5,131,806 or JP-A-3-26897.
[0003]
However, as the degree of integration of semiconductors and the performance of liquid crystal have been further improved, the concentration of residual metal ions in ultrapure water has become a serious problem, and the content of metal ions has now risen to 1 PPT (parts per trillion). ) The following are required. This metal ion is manifested by the dissolving behavior of ultrapure water in the metal at the liquid contact points of all devices such as pumps, pipes, valves, etc. during the wet process, and in particular, has a maximum resistance value of 18.20 MΩ or more. It is said that in ultrapure water, very active ion elution of metals and the like occurs.
[0004]
[Problems to be solved by the invention]
In order to solve the above-mentioned inconveniences, in a device such as a pump, a cylinder place in contact with ultrapure water is lined with tetrafluoride resin, and coating is also performed. Surface treatment such as lining with a tetrafluoride resin cannot be performed on the seal portion. Further, even when extremely hard SiC (silicon carbide), which is extremely chemically stable, is used for the pump rotary sliding portion and the seal portion, the dissolution behavior by ultrapure water cannot be suppressed. In addition, functional ultrapure water containing a small amount of ozone (O 3 ), hydrogen fluoride (HF), etc. is being used in the current ultrapure water, and metals and ceramics are exposed to a larger chemical attack. In other words, inconveniences such as corrosion due to elution of the metal ceramics and the like in the liquid contacting parts in the above-mentioned pump rotating sliding parts, that is, the bearing parts and the seal parts, are to be regarded as further problems.
[0005]
[Means for Solving the Problems]
The present invention relates to a pump used for transferring ultrapure water and the like, which includes a pump space, an impeller rotating in the pump space, a rotating shaft connecting a rotary drive source and the impeller, and a rotating portion having a bearing portion and a seal portion. A portion having a shaft casing and being in contact with the main liquid is subjected to anti-corrosion treatment by lining of tetrafluoride resin or the like, and is rotated from a rotary sliding portion such as a bearing portion and a seal portion in contact with the second cutoff flow. A first cut-off flow mechanism for preventing the generated fine particles from being mixed into the liquid feed, and a first cut-off flow mechanism for preventing entry of the main liquid feed from the pump space into a portion where the anti-corrosion treatment is impossible in the rotating shaft sliding portion. Equipped with two cut-off flow mechanisms,
The first cut-off flow mechanism includes a first cut-off flow passage formed by a rotary shaft and an inner peripheral surface of a rotary shaft casing, and a first cut-off by a main liquid supplied partially into the rotary shaft casing from a pump space. In order to discharge the flow from the first cut-off flow channel, the rotary shaft casing includes a discharge portion provided near the impeller, and a discharge passage connected thereto.
The second cutoff flow mechanism is configured to supply a supply source of an inert liquid having lubricity as a second cutoff flow, and to send the second cutoff flow into a rotary shaft casing in which a bearing unit and a seal unit are located, and rotate the rotary shaft. To join the first cut-off flow through the second cut-off flow passage formed by the inner periphery of the rotary shaft casing and discharge from the discharge passage of the first cut-off flow mechanism, the rotary shaft side of the rotary shaft A second cutoff flow supply port formed in the rotary shaft casing between the end and the discharge path, and a supply path provided between the second cutoff flow supply source and the second cutoff flow supply port. This aims to solve the conventional problem.
[0006]
In the pump, the discharge part of the first cut-off flow mechanism is provided with a cut-off disk provided at a meeting point of flows in directions opposite to each other on a rotary shaft of the pump, and a disk chamber provided on a rotary shaft casing for storing the same. It is constituted by opening.
[0007]
In the above, a labyrinth may be formed on the flow path blocking disk to prevent the first and second blocking flows from flowing into the respective flow paths.
[0008]
In any one of the above, a portion where the anti-corrosion treatment cannot be performed in the rotary shaft casing is always filled with a second cut-off flow made of an inert liquid flowing from a second cut-off flow supply port, and enters through the first cut-off flow passage. It is insulated from the main liquid feed, which has a strong chemical attack property, which is likely to occur.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the pump according to this embodiment, the surface of the portion in contact with the main liquid feed (ultra pure water) is lined with a tetrafluoride resin, as described above, except for the rotary sliding portions such as the bearing portion and the seal portion of the rotary shaft casing. And so on. In the first cut-off flow mechanism, the first cut-off flow due to the main liquid supply (ultra pure water) partially flowing into the rotary shaft casing from the pump space is formed by the rotary shaft and the inner periphery of the rotary shaft casing. The discharge water flows out of the rotary shaft casing through one cut-off flow path, a discharge portion provided in the rotary shaft casing near the impeller, and a discharge path connected to the discharge portion. Therefore, the wear fine particles generated from the rotary sliding portions such as the bearing portion and the seal portion are contained in the second cutoff flow, but are blocked by the first cutoff flow and enter the pump shaft direction in the rotary shaft casing. I will not.
[0010]
That is, in the second cut-off flow mechanism, a normal inert liquid (such as tap water) that lubricates ultrapure water as the second cut-off flow is sent from the supply source into the rotary shaft casing and is rotated. Flows through the second cut-off flow passage constituted by the inner peripheral surface of the rotary shaft casing to the discharge portion of the first cut-off flow device, so that the first cut-off flow flows in the direction of a rotating sliding portion such as a bearing portion or a seal portion. Is blocked. Further, the inert liquid (water) as the second cutoff flow sent into the rotary shaft casing is in the rotary shaft casing in a direction opposite to the rotary shaft with respect to the first cutoff flow mechanism, that is, a bearing portion, a seal portion, and the like. In the direction of the rotary sliding portion. Since the end portion of the rotating shaft casing, that is, the tip in the direction of the rotating sliding portion, is closed by a sealing mechanism, the inert liquid (water) contains the rotating sliding portion such as a bearing portion and a sealing portion inside the rotating shaft casing. To isolate the first cutoff flow (ultra pure water) from the rotary sliding part.
[0011]
The pressure and the amount of water at the second cutoff flow supply port of the inert second cutoff flow are higher than that of the first cutoff flow, but the amount of water may be always smaller than that of the first cutoff flow. It is the extent to have. After flowing into the rotary shaft casing, the pressure is gradually reduced so as to become the same pressure since it is extremely smaller than the first cutoff flow rate, and becomes the same pressure at the time of merging and discharging with the first cutoff flow. It does not flow to the side of the pump.
[0012]
The inert liquid (water) that forms the second cutoff flow is supplied by a fixed amount pump including an air pressure, a water pressure, a diaphragm driven by electric power, an air cylinder driven plunger pump, and the like. Available. If necessary, a pressure regulating valve, a flow regulating valve, an on-off valve and the like may be provided in a supply path connecting the supply source and the rotary casing.
[0013]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a main part of a rotary pump according to the present invention. FIG. 2 shows the present invention in which the bearing B is omitted, and the positions of the fixed ring and the rotating ring of the mechanical seal portion are reversed, but the numbering is the same as in FIG.
In the drawing, 1 is a pump space, 2 is an impeller that rotates in the pump space 1, 3 is a rotating shaft connecting the rotary drive source M and the impeller 2, 4 is a fixed ring with a bearing portion B and a mechanical seal portion S, S1 is a rotating shaft casing having a rotating ring S2. Except for the bearing portion B and the seal portion S, each of the elements has been subjected to anticorrosion treatment by lining or the like of tetrafluoride resin at a portion in contact with ultrapure water as a main liquid, and is indicated by a thick solid line. .
[0014]
Reference numeral 5a denotes a disk chamber formed on the inner peripheral surface of the rotary shaft casing 4 between the end in the direction of the impeller 2 and the bearing portion B. The disk chamber 5a is rotatable with a blocking disk 5b provided on the rotary shaft. It is stored in. The discharge section 5 of the first cut-off flow mechanism is formed at a location corresponding to the outer peripheral portion of the disk 5b made of the fluorocarbon resin in the disk chamber 5a. 5c is a discharge passage connected to the disk chamber 5a and a flow control mechanism 5e. 5f is provided. A labyrinth 5d may be formed in the disk chamber 5a.
A first cut-off flow path 6, which is formed by a gap between the rotary shaft 3 and the inner peripheral surface of the rotary shaft casing 4 between the pump empty space 1 and the disk chamber 5a, a discharge section 5, and a discharge path 5c. These form a first cut-off flow mechanism. From the pump space 1, the branch flow of the ultrapure water as the main liquid flows as the first cutoff flow through the first cutoff flow passage 6, the discharge unit 5, and the discharge passage 5 c, so that the bearing unit B and the seal unit S The liquid containing the wear fine particles from entering the pump space 1 from the direction is prevented.
[0015]
In the drawing, T is a supply source of an inert liquid (water), p is a metering pump, 7 is a second cut-off flow supply port formed at an intermediate portion between the bearing portion B and the seal portion S of the rotary shaft casing 4. , 8 are second cutoff flow passages formed by a gap between the rotary shaft 3 and the inner peripheral surface of the rotary shaft casing 4 between the bearing portion B and the disk chamber 5a. It is configured. The position of the second cut-off flow mechanism, specifically, the setting position of the second cut-off flow supply port in the rotary shaft casing 4 is such that, assuming that the pump idle side is the head (the rotary shaft casing 4), Must be behind the blocking plate at the end. Thus, the inert liquid (water) from the supply source flows as the second cut-off flow through the bearing section B, the second cut-off flow path 8, the discharge section 5, and the discharge path 5c, thereby forming the first cut-off flow. The first cutoff flow (ultra pure water) from the discharge section 5 direction of the mechanism is prevented from entering the bearing section B.
[0016]
As described above, the second cut-off flow merges with the first cut-off flow at the discharge portion 5 of the first cut-off flow mechanism and flows out from the discharge passage 5c. If a labyrinth is provided on the disk 5b, it is difficult for the two cutoff flows to mix, and the centrifugal flow generated by the rotation of the 5b will flow out to the discharge path 5c. This further contributes to preventing the first cutoff flow from entering the bearing space B.
[0017]
The inert liquid serving as the second cutoff flow may be ordinary tap water, and is supplied to the second cutoff flow passage 8 at a higher pressure and a smaller amount than the first cutoff flow by a metering pump. As described above, since the second cutoff flow has a high pressure and a small amount, the second cutoff flow has the same pressure as the first cutoff flow in the discharge section 5 and is discharged out of the system via a flow control valve provided in the discharge path 5c. Note that the composition ratio of the merged first cutoff flow and second cutoff flow may be about 1.5: 1 to 50: 1, 100: 1 depending on the case, and the flow direction is determined by the main flow first cutoff flow. You. In summary, the present invention is implemented by securing a larger discharge amount than the second cutoff flow supplied into the system.
[0018]
When the pump stop time becomes longer, metal ions are generated in the ultrapure water during liquid sending from fine abrasion particles generated from the metal ceramics in the liquid contact part. Therefore, in order to obtain ultrapure ultrapure water quality, which requires a concentration of metal ions or the like equal to or less than PPT, immediately after the start of the pump, a large amount of ultrapure water must be pumped through the contaminated pump system at the time of startup. Cleaning with pure water is required. However, this flushing causes an excessive increase in operating cost.
Therefore, in this embodiment, immediately after the operation of the pump is stopped, the operation of the second cutoff flow mechanism is stopped, and the second cutoff flow including wear fine particles such as metal and ceramic is stopped, while the main pump is restarted. By circulating the first cut-off flow in an amount of about 10/1 or less during normal operation, the prevention of ions eluted from metals and ceramics from entering the pump space is further ensured. Since the second cut-off flow mechanism is full of the second cut-off flow mechanism, there is no danger that the first cut-off flow will enter the bearing portion B direction. Or may be operated intermittently. In some cases, a lip seal LS as a check valve may be provided in each of the first and second shutoff channels.
[0019]
In short, in order to prevent ions such as metals generated when the pump is stopped from diffusing throughout the pump system due to Brownian motion, a small amount of cut-off flow is intermittently or continuously circulated to increase the high pressure inside the system. The purpose is to maintain a pure environment.
[0020]
【The invention's effect】
With the above-described configuration and operation, the present invention effectively and efficiently removes the abrasion fine particles generated in the sliding portion of the rotary pump at low cost and effectively prevents the main liquid from entering the sliding portion. In addition, there is an effect that inconvenience such as generation of ions of metal or the like due to contact of the main liquid such as ultrapure water with the sliding portion of the pump can be prevented.
The above description has been made on the exterior (outside type) mechanical seal in which the fixed ring in the mechanical seal is located in the pump chamber and the rotating ring and the spring are located outside the pump chamber. The spring is also used for an internal (inside) type mechanical seal mechanism in the pump chamber, but it is almost the same, so that the illustration is omitted.
Further, the present invention can be effectively used as it is in a gland, packing type, or lip seal type, which is a rotary sliding part sealing method other than the mechanical seal, according to the embodiment shown in the drawings.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the present application. FIG. 2 is a cross-sectional view of a mechanism in FIG. 1 from which a bearing portion is omitted.

Claims (5)

ポンプ空間と、このポンプ空問で回転する羽根車と、回転駆動源と羽根車を結ぶ回転軸と、ベアリング部およびシール部を有する回転軸ケーシングとを有して主送液に接する箇所に抗腐蝕処理をなした回転型ポンプにおいて、ベアリング部、シール部等の回転摺動部から発生する摩耗微粒子を含む第2遮断流の主送液への混入を防止するための第1遮断流機構と、第2遮断流機構への主送液の侵入を阻止するための第2遮断流路を設け、
前記第1遮断流機構は、回転軸と回転軸ケーシング内周面により構成される第1遮断流流路と、ポンプ空問から回転軸ケーシング内に一部流入させた主送液による第1遮断流を前記第1遮断流流路末端から排出するために、回転軸ケーシングにおいて羽根車寄りに設けた排出部と、これに接続する排出路とからなり、
前記第2遮断流機構は、第2遮断流としてのポンプ接液部に対する不活性液体の供給源と、前記第2遮断流を後部回転軸ケーシング内に送るとともに回転軸と回転軸ケーシング内周面により構成される第2遮断流流路を介して前記第1遮断流に合流させ、第1遮断流機構の前記排出路から排出するため、回転軸の回転摺動部側端部と前記排出路との問において回転軸ケーシングに形成される第2遮断流供給口と、第2遮断流供給源と第2遮断流供給口との問に設けられる供給路と、から構成したことを特徴とするポンプ。
It has a pump space, an impeller that rotates in the space of the pump, a rotary shaft that connects the rotary drive source and the impeller, and a rotary shaft casing that has a bearing portion and a seal portion. A first cut-off flow mechanism for preventing a second cut-off flow containing wear fine particles generated from a rotary sliding portion such as a bearing portion and a seal portion from being mixed into a main liquid supply in a rotary pump subjected to a corrosion treatment; Providing a second blocking flow path for preventing the main liquid supply from entering the second blocking flow mechanism,
The first cut-off flow mechanism includes a first cut-off flow passage formed by a rotary shaft and an inner peripheral surface of a rotary shaft casing, and a first cut-off by a main liquid supplied partially into the rotary shaft casing from a pump space. In order to discharge the flow from the end of the first cut-off flow channel, the rotary shaft casing includes a discharge portion provided near the impeller, and a discharge passage connected to the discharge portion,
The second cutoff flow mechanism includes: a supply source of an inert liquid for a pump wetted portion as a second cutoff flow; a second cutoff flow that is sent into a rear rotary shaft casing; and a rotary shaft and an inner peripheral surface of the rotary shaft casing. To join the first cut-off flow through the second cut-off flow passage constituted by the first cut-off flow mechanism, and to discharge from the discharge passage of the first cut-off flow mechanism. And a supply path provided between the second cut-off flow supply source and the second cut-off flow supply port. pump.
回転軸上を互いに逆方向に流れる端末部の相会点に位置する第1遮断流機構において、排出部はポンプの回転軸に設けた遮断円板とこれを収納するため回転軸ケーシングに設けた円板室と、からなり、第2遮断流はこれの供給口に於いて第1遮断流より高い液圧を有することを特徴とするポンプ。In the first cut-off flow mechanism located at the meeting point of the terminal portions flowing in opposite directions on the rotating shaft, the discharge portion is provided on the rotating shaft casing for storing the blocking disk provided on the rotating shaft of the pump and the pump. A pump comprising: a disc chamber; wherein the second cutoff has a higher hydraulic pressure at its supply port than the first cutoff. 請求項2において、遮断円板にはラビリンスを形成したことを特徴とするポンプ。3. The pump according to claim 2, wherein a labyrinth is formed on the blocking disk. 請求項1ないし3のいずれかにおいて、回転舳ケーシング内の回転摺動部の抗腐蝕処理不能箇所には第2遮断流供給口から流人する不活性液体からなる第2遮断流を常時充填して、第1遮断流流路から侵入する虞のある主送液から絶縁するようにしたことを特徴とするポンプ。The second blocking flow of an inert liquid flowing from the second blocking flow supply port is always filled in a portion of the rotary sliding portion in the rotary sliding portion where the anti-corrosion treatment cannot be performed, according to any one of claims 1 to 3, A pump that is insulated from the main liquid supply that may enter from the first cutoff flow channel. 共用排出口より排出される第1・第2遮断流の混合液量は常に第2遮断流量より多量でその構成比は第2遮断流量1、第1遮断流量は少なくとも1.5以上であること。The mixed liquid volume of the first and second shut-off flows discharged from the common outlet is always larger than the second cut-off flow, the composition ratio is the second cut-off flow 1, and the first cut-off flow is at least 1.5 or more. .
JP2003177305A 2002-06-10 2003-05-20 Superpure water pump Pending JP2004068812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177305A JP2004068812A (en) 2002-06-10 2003-05-20 Superpure water pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002168498 2002-06-10
JP2003177305A JP2004068812A (en) 2002-06-10 2003-05-20 Superpure water pump

Publications (1)

Publication Number Publication Date
JP2004068812A true JP2004068812A (en) 2004-03-04

Family

ID=32032161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177305A Pending JP2004068812A (en) 2002-06-10 2003-05-20 Superpure water pump

Country Status (1)

Country Link
JP (1) JP2004068812A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351109A (en) * 2004-06-08 2005-12-22 Ebara Corp Pump device
JP2008232401A (en) * 2007-03-23 2008-10-02 Kobelco Eco-Solutions Co Ltd Mechanical seal for ozone using installation, and ozone water carrying pump using the same
CN116857220A (en) * 2023-08-04 2023-10-10 丹东顺升机械设备有限公司 Shaft end mechanical sealing device of chemical centrifugal pump
KR102641174B1 (en) * 2023-05-02 2024-02-27 윤홍태 Horizontal pump for semiconductor production
KR102643218B1 (en) * 2023-05-02 2024-03-04 윤홍태 Horizontal pump for semiconductor production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351109A (en) * 2004-06-08 2005-12-22 Ebara Corp Pump device
JP2008232401A (en) * 2007-03-23 2008-10-02 Kobelco Eco-Solutions Co Ltd Mechanical seal for ozone using installation, and ozone water carrying pump using the same
KR102641174B1 (en) * 2023-05-02 2024-02-27 윤홍태 Horizontal pump for semiconductor production
KR102643218B1 (en) * 2023-05-02 2024-03-04 윤홍태 Horizontal pump for semiconductor production
CN116857220A (en) * 2023-08-04 2023-10-10 丹东顺升机械设备有限公司 Shaft end mechanical sealing device of chemical centrifugal pump
CN116857220B (en) * 2023-08-04 2023-12-22 丹东顺升机械设备有限公司 Shaft end mechanical sealing device of chemical centrifugal pump

Similar Documents

Publication Publication Date Title
EP0981000B1 (en) Rotary joint
US8784085B2 (en) Uniaxial eccentric screw pump
US20060198743A1 (en) Pump device
JP2004068812A (en) Superpure water pump
JP2002005365A (en) Multiple flow passage type rotary joint
JP2008267584A (en) Ceramic slide member for pure water
JP2005351109A (en) Pump device
US6315535B1 (en) Screw vacuum pump having valve controlled cooling chambers
EP0959287B1 (en) Rotary joint assembly
JP3781463B2 (en) mechanical seal
JP2918874B1 (en) Mechanical seal and rotary joint for slurry fluid
JPH11303788A (en) Liquid feeding line pump
WO1995008063A1 (en) Dust-free centrifugal pump device
JP2007182782A (en) Pump device
JP2005194989A (en) Rotary pump for highly active liquid
US20210062950A1 (en) Quick connector assembly and device
JP2000161501A (en) Mechanical seal
JP2003201987A (en) Canned motor pump
JP3085539U (en) Shaft seal structure of vacuum pump
JP2007247689A (en) Silicon carbide sliding member for ultrapure water
JP2004263627A (en) Vacuum pump
JP5153826B2 (en) Silicon carbide sliding member for ultrapure water
JP2001304419A (en) Device and method for shaft seal for fluid pump
KR100563459B1 (en) Distributing valve of waste gas treating apparatus for preventing backward flow
US20230112886A1 (en) Fluid introduction module for plasma system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040220

A521 Written amendment

Effective date: 20040312

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20060210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126