JP2004068341A - Bridge superstructure - Google Patents

Bridge superstructure Download PDF

Info

Publication number
JP2004068341A
JP2004068341A JP2002226998A JP2002226998A JP2004068341A JP 2004068341 A JP2004068341 A JP 2004068341A JP 2002226998 A JP2002226998 A JP 2002226998A JP 2002226998 A JP2002226998 A JP 2002226998A JP 2004068341 A JP2004068341 A JP 2004068341A
Authority
JP
Japan
Prior art keywords
concrete
water
less
reducing agents
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226998A
Other languages
Japanese (ja)
Other versions
JP4002153B2 (en
Inventor
Toshimichi Ichinomiya
一宮 利通
Takeyoshi Hishiki
日紫喜 剛啓
Kazunori Takada
高田 和法
Yohei Taira
平 陽兵
Hideki Fujii
藤井 秀樹
Takahiro Watabe
渡部 貴裕
Shuji Yanai
柳井 修司
Kazuto Kamisakoda
上迫田 和人
Chikashi Endo
遠藤 史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002226998A priority Critical patent/JP4002153B2/en
Publication of JP2004068341A publication Critical patent/JP2004068341A/en
Application granted granted Critical
Publication of JP4002153B2 publication Critical patent/JP4002153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct a box girder by using a precast concrete board as a web in bridge superstructure works. <P>SOLUTION: In a bridge superstructure in which the web is installed between a lower floor slab and an upper floor slab and the box girder is constituted, the web is composed of a prestressed concrete board in which a PC steel material is tensioned in the vertical direction, and extremely-stiff strength concrete having 28-day compressive strength in 100 to 180 N/mm<SP>2</SP>is used as the concrete of the prestressed concrete board. Extremely-stiff strength concrete having the self-contraction quantity of 400 μm or less per 1 m in an age of 60 days is used. The PC concrete board is manufactured in a factory or on a site-fabrication yard, the concrete board is carried at a building place and installed at a place correspoding to the web of the box girder and the box girder is constructed by cast-in-placing the lower floor slab and the upper floor slab. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,超高強度コンクリートを用いたPCコンクリート板をウエブとして箱桁を構築する橋梁上部構造に関する。
【0002】
【従来の技術】
下床版と上床版をウエブで繋いで箱桁とする橋梁の上部構造では,ウエブは大きなせん断力を受けるので,これをコンクリートパネルで構成する場合,パネルを厚くする必要がある。
【0003】
しかし,下床版と上床版を現場打ちコンクリートで構築する場合には,コンクリートパネルを薄くして軽くする方が施工性の面でも費用の面でも有利である。だが,箱桁のコンクリートウエブを薄くするには,大きなせん断力に耐える材質でなければならない。
【0004】
従来より,建築の分野では,100〜150N/mm級の超高強度コンクリートの適用実績がある。しかし,土木分野での実績はなく,通常の橋梁上部工において,プレキャスト部材として使用されるウエブに対して超高強度コンクリートを用いた例は少ない。僅かに,粗骨材を含まず,2mm以下の粒子と金属繊維もしくは樹脂系繊維で構成された特殊なセメント系複合材料を使用した実績がある程度である。しかし,この複合材料は強度は高いがコストも高い。前記の建築分野で実績のある圧縮強度100〜150N/mmレベルのコンクリートは自己収縮が大きいので,そのままでは,橋梁上部工のウエブには不適である。
【0005】
【発明が解決しようとする課題】
橋梁上部工のウエブをコンクリートで構成する場合,補強鋼材を増やしてコンクリートによる強度不足を補うこともできるが,ウエブではコンクリートの圧縮破壊が先行するようになるため,ウエブの厚さをあまり薄くできない。このためにコンクリートパネルでウエブを構成するには基本的に無理がある。またプレテンション構造のコンクリートパネルとする場合には,PC鋼材の定着は鋼材とコンクリートの付着によるが,通常は定着のために必要な長さが長くなり,非効率である。
【0006】
したがって,本発明は,このような問題を解決してコンクリートパネルで橋梁上部工のウエブを構成することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は,下床版と上床版の間にウエブを取付けて箱桁を構成する橋梁上部構造において,上下方向にPC鋼材を緊張してなるプレストレストコンクリート板で前記のウエブを構成し,該プレストレストコンクリート板のコンクリートが28日圧縮強度100〜180N/mmの超高強度コンクリートであることを特徴とする。PC鋼材を緊張してなる該PCコンクリート板は,工場または現場製作ヤードで製作し,これを架設場所に運搬して箱桁のウエブにあたる位置に設置し,下床版および上床版を場所打ちすることによって箱桁を構築する。
【0008】
該ウエブに用いるPCコンクリート板の超高強度コンクリートは,材齢60日での自己収縮量が1mあたり400μm以下のものを使用する。このような超高強度コンクリートは,水,セメントを含む結合材,細骨材,最大寸法20mm以下の粗骨材,JIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤を,水セメント比15〜25%,粗骨材量200〜400L/m,空気量3%未満のもとで練り混ぜて作製されたものであり,そのさい,(1) 前記の粗骨材の一部として,吸水率5〜20%,圧壊荷重1000〜2000N,絶乾比重1.4〜2.0の人工骨材を使用する,(2) 膨張材を10〜30Kg/m配合する,或いは(3) 収縮低減剤を,セメントを含む結合材量の1〜4重量%配合する,ことによって作製することができる。
【0009】
【実施の形態】
図1に本発明に従う橋梁上部構造の例を示した。図示のように,この上部構造は,下床版1と上床版2との間の側部にウエブ3を取り付けて箱桁を構築するものであり,下床版1と上床版2は現場打ちコンクリートで形成され,これらの床版内部には内ケーブル4が埋設されると共に,箱桁内部の空洞を利用して外ケーブル5が適宜張りめぐらされる。
【0010】
このような箱桁におけるウエブ3を構成する材料として,本発明では,上下方向にPC鋼材6を緊張してなるプレストレストコンクリート板7(PCコンクリート板という)を使用する。このPCコンクリート板7のコンクリートには自己収縮量の少ない超高強度コンクリート8を用いる。PCコンクリート板7そのものは工場または現場製作ヤードで製作する。これを架設場所に搬入し,所定の位置に設置し,下床版1および上床版2を場所打ちする。
【0011】
PCコンクリート板7の製作に用いる超高強度コンクリート8は,28日圧縮強度100〜180N/mmレベルのものであり,材齢60日での自己収縮量が1mあたり400μm以下,好ましくは300μm以下のものである。
【0012】
以下に,この超高強度コンクリートについて説明する。自己収縮量が少なくて且つ100〜180N/mm級の圧縮強度を示す超高強度コンクリートを得るために,本発明においては,水,セメントを含む結合材(ポルトランドセメントまたはポゾラン系混和材料を含む混合セメント,特殊処理されたシリカフューム等を包含する),細骨材,最大寸法20mm以下の粗骨材,JIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種を,水セメント比15〜25%,粗骨材量200〜400L/mおよび空気量3%未満,の配合を基本とし,この基本配合のもとで,次の手段を採用する。
(1) 粗骨材の一部として,吸水率5〜20%,圧壊荷重1000〜2000N,絶乾比重1.4〜2.0の人工骨材を使用する。
(2) 膨張材を10〜30Kg/m配合する。
(3) 収縮低減剤を単位セメント量(セメントを含む結合材)の1〜4重量%配合する。
【0013】
前記(1) のような物性をもつ人工骨材は,例えば石炭灰と頁岩とを原料とし,これらの粉状体を所定の割合,例えば石炭灰:頁岩=5:5〜7:3の重量比で混合し,水またはバインダーを加えて造粒し,その造粒品を高温(1100℃以上)で焼成し,その焼成条件並びに焼成温度からの冷却過程を適正に調節することによって得ることができる。得られた焼成品はこれを粉砕・分級することによって,細骨材分と粗骨材分とに分別することができる。粗骨材分については最大粒径15mm以下として,本発明の超高強度コンクリートを得るための粗骨材の一部として利用する。
【0014】
コンクリートの自己収縮は,コンクリート内部におけるセメントの水和反応の進行によって細孔空隙中の水が消費され,水面がより細孔径の小さな空隙に移動し,これによって水の表面張力に起因する毛細管張力が増大することによって起こる現象であると説明されている。いわゆる「自己乾燥」が原因である。水セメント比の小さな高強度コンクリートではとくにこれが顕著となり,シリカフューム等を用いて組織を緻密化するとさらに毛細管張力が大きくなり,収縮量も大きくなる。前記(1) のような物性をもつ吸水した人工骨材を用いると,この自己乾燥を低減する作用を果たす。すなわち,人工骨材がコンクリート中の「貯水池」として機能し,水和反応によって消費される水分を補償し,細孔空隙中の乾燥を低減する「セルフキュアリング効果」を発揮することによって,自己収縮や乾燥収縮の低減を図ることができる。
【0015】
前記(1) のような物性をもつ人工骨材の代表的な製造例を挙げると,下記の化学成分をもつ火力発電所副生の石炭灰粗粉(a)と下記の化学成分をもつ頁岩の微粉末(b)とを(a):(b)の重量比がほぼ6:4の割合で混合し,バインダーを加えて造粒したあと,これをロータリキルンで約1100〜1200℃で焼成し,その冷却過程においてほぼ100〜200℃から水中に急冷する。得られた焼成品は粗砕し分級して5mm以下の細骨材分と5〜15mmの粗骨材分とに分別することができる。
(a)石炭灰の化学成分値(質量%)=SiO:約54%,Al :約29%,Fe +FeO:約4.5%,CaO:約3.5%,MgO:約1.0%,強熱減量:約4.7%
(b)頁岩の化学成分値(質量%)=SiO:約70%,Al :約13%,Fe +FeO:約4.2%,CaO:約1.6%,MgO:約1.6%,強熱減量:約5.6%
【0016】
このようにして得られた5〜15mmの粗骨材分は,絶乾比重=1.52,熱間吸水率=15%,JIS Z 8841に従う圧壊荷重=1130Nを示す。ここで,熱間吸水率とは,この人工骨材の焼成過程において100〜200℃から水冷した後,常温状態にて,これを表乾状態で吸水率を測定した値を言う。このものは,細孔半径50〜6000nmにおいて細孔量がほぼ均等に分布しており,累積細孔量(総細孔量)は約110m/gに達する。このことが,低比重でありながら高強度化に寄与し且つ保水性能を高めるのに有効に作用する。同様の原理に従い,原材料の選定と焼成条件の適正な制御を行うことによって,JIS Z 8841に従う圧壊荷重が1000〜2000Nの範囲,絶乾比重が 1.4〜2.0 の範囲,吸水率が5〜20%の範囲にある人工骨材を製造することができ,この人工骨材を用いることによって,自己収縮量が少ない超高強度コンクリートを製造することができる。
【0017】
人工骨材の圧壊荷重が1000N未満では100N/mm以上のコンクリート強度を得ることができず,逆に2000Nを超えるものでは十分な細孔量を確保できなくなり,このために吸水率が低下するので自己収縮量の低減に寄与することができない。したがって,本発明で用いる人工骨材の圧壊荷重は1000〜2000N,好ましくは1200〜1800Nである。また,該人工骨材の絶乾比重が 1.4未満では圧壊荷重1000N以上を確保するのが困難となり,該比重が 2.0を超えると十分な吸水率を確保するのが困難となるので,本発明で用いる人工骨材の絶乾比重は 1.4〜2.0 好ましくは1.50〜1.70であるのがよい。吸水率については5%未満ではコンクリートの自己収縮や乾燥収縮に対する改善効果が十分に現れず,20%を超えると比重 2.0以下で圧壊強度1000N以上を確保するのが困難となるので,本発明で用いる人工骨材の吸水率は5〜20%であるのが好ましい。
【0018】
このような人工骨材を,コンクリート用骨材の一部として,例えば全粗骨材の5〜30重量%として使用し,水セメント比が15〜25%, 全粗骨材量が200〜400L/m,空気量3%未満となるように配合すると共に,化学混和剤としてJIS A 6204に従う減水剤,AE減水剤または高性能AE減水剤の少なくとも1種を使用してコンクリートを練り混ぜることにより,圧縮強度が100〜150N/mmで自己収縮量が1mあたり400μm以下の低収縮超高強度コンクリートが得られる。
【0019】
このコンクリートは,自己収縮量が少ないのでプレストレスのロスを小さくすることができる。したがって,極めて高強度でひび割れ抵抗の強いPCコンクリート板を得ることができ,このPCコンクリート板を用いてウエブを構成することにより,補強鋼材を増やしてウエブ厚みを薄くすることが可能となり,その結果,従来より施工性・経済性に優れた箱桁構造を実現できる。
【0020】
次に,前記(2) の膨張材の配合によって超高強度コンクリートの自己収縮率を低減する場合について説明する。
【0021】
膨張材は,水と反応してエトリンガイトと呼ばれる針状結晶を生成し,これが通常のセメント反応生成物よりも粗な組織を形成するために,見かけの体積が大きくなることを利用してコンクリートを膨張させるものである。本発明においてはこの膨張材による膨張効果で超高強度コンクリートの自己収縮量を補償するものであり,前述の超高強度コンクリートの基本配合,すなわち,水,セメントを含む結合材(ポルトランドセメントまたはポゾラン系混和材料を含む混合セメント,特殊処理されたシリカフューム等を包含する),細骨材,最大寸法20mm以下の粗骨材,JIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種を,水セメント比15〜25%,粗骨材量200〜400L/m,空気量3%未満のもとで練り混ぜするさいに,市販の膨張材を10〜30Kg/mの量で添加することによって,この超高強度コンクリートの自己収縮量を1mあたり400μm以下,好ましくは350μm以下にすることができることがわかった。
【0022】
市販の膨張材としては,例えばデンカ株式会社製の商品名パワーCSA,パワーCSA type R等が挙げられる。
【0023】
前記(3) の収縮低減剤の配合によって超高強度コンクリートの自己収縮率を低減する場合について説明すると,収縮低減剤は細孔中の水の表面張力を低減する効果をもち,これが収縮の原因となる毛細管張力を低減させることによって,自己収縮や乾燥収縮を低減する効果を発揮する。本発明においては,前述の超高強度コンクリートの基本配合,すなわち,水,セメントを含む結合材(ポルトランドセメントまたはポゾラン系混和材料を含む混合セメント,特殊処理されたシリカフューム等を包含する),細骨材,最大寸法20mm以下の粗骨材,JIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種を,水セメント比15〜25%,粗骨材量200〜400L/m,空気量3%未満のもとで練り混ぜするさいに,市販の収縮低減剤を,セメントを含む結合材の1〜4重量%配合することによって,この超高強度コンクリートの自己収縮量を1mあたり400μm以下,好ましくは350μm以下にすることができることがわかった。
【0024】
市販の収縮低減剤としては,例えば太平洋マテリアル株式会社製の商品名テトラガードAS21等が使用できる。
【0025】
このように,膨張材または収縮低減剤を適量配合することによって,前記(1) と場合と同様に,自己収縮量が少ないのでプレストレスのロスを小さくすることができる。したがって,極めて高強度でひび割れ抵抗の強いPCコンクリート板を得ることができ,このPCコンクリート板を用いてウエブを構成することにより,補強鋼材を増やしてウエブ厚みを薄くすることが可能となり,その結果,従来より施工性・経済性に優れた箱桁構造を実現できる。
【0026】
前記の吸水率5〜20%の高強度人工骨材の使用,膨張材または収縮低減剤の配合は,それら単独での適用でもよいが,それらを組合せて適用することもできる。
【0027】
本発明の超高強度コンクリートに用いる結合材としては,ポルトランドセメントのほか,次のような結合材例えば,シリカフューム,フライアッシュ,石炭ガス化フライアッシュ,高炉スラグ微粉末などを使用することができる。
【0028】
本発明の超高強度コンクリートに用いる化学混和剤(JIS A 6204に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種)としては,ポリカルボン酸系,ポリエーテル系,ナフタレン系,メラミンスルホン酸系,アミノスルホン酸系等のものが使用できるが,とくにポリカルボン酸系もしくはポリエーテル系のものが好ましい。また,その助剤として消泡剤を使用することができる。
【0029】
【発明の効果】
以上説明したように,本発明によると,超高強度PCコンクリート板を箱桁のウエブとしたものであるから,箱桁の施工が容易化し且つコストも安価となる。したがって,橋梁上部工の施工性および経済性の両面でこれまでのものにはない実用的な効果を発揮できる。
【図面の簡単な説明】
【図1】本発明に従う橋梁上部構造の箱桁の例を示す一部切欠斜視図である。
【符号の説明】
1 下床版
2 上床版
3 ウエブ
4 内ケーブル
5 外ケーブル
6 PC鋼材
7 PCコンクリート板
8 超高強度コンクリート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bridge superstructure for constructing a box girder using a PC concrete plate using ultra-high strength concrete as a web.
[0002]
[Prior art]
In the superstructure of a bridge in which the lower slab and the upper slab are connected by a web and a box girder is used, the web is subjected to a large shearing force. Therefore, when this is constructed of concrete panels, the panels need to be thickened.
[0003]
However, when the lower slab and the upper slab are constructed from cast-in-place concrete, making the concrete panels thinner and lighter is advantageous in terms of both workability and cost. However, in order to make the concrete web of the box girder thin, it must be made of a material that can withstand large shear forces.
[0004]
Conventionally, in the field of architecture, there is an application experience of 100~150N / mm 2 class of ultra-high-strength concrete. However, there is no experience in the field of civil engineering, and there are few examples of using ultra-high-strength concrete for webs used as precast members in ordinary bridge superstructures. There is some experience of using a special cement-based composite material that does not contain coarse aggregate and is composed of particles of 2 mm or less and metal fibers or resin fibers. However, this composite material has high strength but high cost. Since compressive strength 100~150N / mm 2 level concrete proven in the construction field of the self-shrinkage is large, it is as it is unsuitable for web bridge superstructure.
[0005]
[Problems to be solved by the invention]
When the web of the bridge superstructure is made of concrete, it is possible to increase the reinforcing steel material to compensate for the lack of strength due to concrete, but the web cannot be made too thin because the compressive failure of the concrete precedes. . Therefore, it is basically impossible to construct a web with concrete panels. When a concrete panel having a pretension structure is used, the anchoring of the PC steel depends on the adhesion between the steel and the concrete. However, the length required for anchoring is usually long, which is inefficient.
[0006]
Therefore, an object of the present invention is to solve such a problem and to construct a web for a bridge superstructure by using concrete panels.
[0007]
[Means for Solving the Problems]
The present invention relates to a bridge superstructure in which a web is attached between a lower slab and an upper slab to form a box girder, wherein the web is formed of a prestressed concrete plate in which a PC steel material is tensioned in a vertical direction. wherein the concrete of the concrete plate is a ultra-high strength concrete of 28 days compressive strength 100~180N / mm 2. The PC concrete plate made by tensioning PC steel is manufactured in a factory or on-site production yard, transported to the erection place, installed at the position corresponding to the web of the box girder, and cast the lower slab and the upper slab in place. By building a box girder.
[0008]
The ultra-high-strength concrete of the PC concrete plate used for the web has a self-shrinkage at a material age of 60 days of 400 μm or less per m. Such ultra-high-strength concrete includes water, cement-containing binders, fine aggregates, coarse aggregates having a maximum dimension of 20 mm or less, water reducing agents in accordance with JIS A 6204 “Chemical admixture for concrete”, AE water reducing agents or high-performance The AE water reducing agent is produced by mixing with a water cement ratio of 15 to 25%, a coarse aggregate amount of 200 to 400 L / m 3 , and an air amount of less than 3%. As a part of the coarse aggregate, an artificial aggregate having a water absorption of 5 to 20%, a crushing load of 1,000 to 2,000 N, and a specific gravity of 1.4 to 2.0 is used. (2) The expanding material is 10 to 30 kg / m 3 , or (3) a shrinkage reducing agent in an amount of 1 to 4% by weight of the binder including cement.
[0009]
Embodiment
FIG. 1 shows an example of a bridge superstructure according to the present invention. As shown in the figure, this superstructure is to construct a box girder by attaching a web 3 to the side between the lower slab 1 and the upper slab 2, and the lower slab 1 and the upper slab 2 are cast in place. The inner cables 4 are buried in the inside of these floor slabs, and the outer cables 5 are routed appropriately by utilizing the cavities inside the box girders.
[0010]
In the present invention, a prestressed concrete plate 7 (referred to as a PC concrete plate) in which a PC steel material 6 is stretched in a vertical direction is used as a material forming the web 3 in such a box girder. As the concrete of the PC concrete plate 7, an ultra-high-strength concrete 8 having a small amount of self-shrinkage is used. The PC concrete plate 7 itself is manufactured in a factory or a production yard. This is carried into the erection place, installed at a predetermined position, and the lower deck 1 and the upper deck 2 are cast in place.
[0011]
Ultrahigh strength concrete 8 for use in the manufacture of PC concrete plate 7 is of a 28 day compressive strength 100~180N / mm 2 level, below 400μm per autogenous shrinkage amount 1m at 60 days the age, preferably 300μm or less belongs to.
[0012]
Hereinafter, this ultra-high strength concrete will be described. For self-shrinkage of obtaining an ultra-high strength concrete showing a less and 100~180N / mm 2 class compressive strength, in the present invention include water, binder containing cement (Portland cement or pozzolanic admixture Mixed cement, specially treated silica fume, etc.), fine aggregate, coarse aggregate having a maximum dimension of 20 mm or less, water reducing agent according to JIS A 6204 "Chemical admixture for concrete", AE water reducing agent or high-performance AE water reducing agent at least one, water-cement ratio 15-25%, coarse aggregate amount 200~400L / m 3 and air content of less than 3%, for a base of formulation, under this basic formulation, the following means is adopted for I do.
(1) As a part of the coarse aggregate, an artificial aggregate having a water absorption of 5 to 20%, a crushing load of 1,000 to 2,000 N, and a specific gravity of absolutely dry of 1.4 to 2.0 is used.
(2) 10 to 30 kg / m 3 of an expanding material is blended.
(3) The shrinkage reducing agent is blended in an amount of 1 to 4% by weight of the unit cement amount (the binder containing cement).
[0013]
The artificial aggregate having the physical properties as described in the above (1) is made of, for example, coal ash and shale, and a powdered material thereof is weighed at a predetermined ratio, for example, coal ash: shale = 5: 5 to 7: 3. The mixture can be obtained by mixing at a ratio, granulating by adding water or a binder, firing the granulated product at a high temperature (1100 ° C. or higher), and appropriately adjusting the firing conditions and the cooling process from the firing temperature. it can. The obtained fired product can be separated into fine aggregate and coarse aggregate by crushing and classifying it. The coarse aggregate is used as a part of the coarse aggregate for obtaining the ultra-high-strength concrete of the present invention with a maximum particle size of 15 mm or less.
[0014]
The self-shrinkage of concrete is caused by the progress of the hydration reaction of cement inside the concrete, which consumes water in the pores and moves the water surface to the pores with smaller pores, thereby causing capillary tension due to the surface tension of water. Is described as a phenomenon caused by the increase. This is due to the so-called “self-drying”. This is particularly noticeable in high-strength concrete with a low water-cement ratio. When the structure is densified using silica fume or the like, the capillary tension further increases, and the amount of shrinkage also increases. When water-absorbed artificial aggregate having the physical properties as described in (1) is used, the effect of reducing this self-drying is achieved. In other words, the artificial aggregate functions as a “reservoir” in the concrete, compensates for the water consumed by the hydration reaction, and exerts a “self-curing effect” to reduce drying in the pore space, thereby achieving a self-curing effect. Shrinkage and drying shrinkage can be reduced.
[0015]
A typical example of the production of artificial aggregate having the above physical properties (1) is as follows: Coal ash coarse powder (a), which is a by-product of a thermal power plant having the following chemical components, and shale having the following chemical components. The powder (b) is mixed at a weight ratio of (a) :( b) of approximately 6: 4, a binder is added, and the mixture is granulated. The mixture is fired at about 1100 to 1200 ° C. in a rotary kiln. Then, in the cooling process, it is rapidly cooled from approximately 100 to 200 ° C. into water. The obtained fired product can be roughly crushed and classified to be separated into a fine aggregate of 5 mm or less and a coarse aggregate of 5 to 15 mm.
(A) Chemical component value (mass%) of coal ash = SiO 2 : about 54%, Al 2 O 3 : about 29%, Fe 2 O 3 + FeO: about 4.5%, CaO: about 3.5%, MgO: about 1.0%, ignition loss: about 4.7%
(B) Chemical component value (mass%) of shale = SiO 2 : about 70%, Al 2 O 3 : about 13%, Fe 2 O 3 + FeO: about 4.2%, CaO: about 1.6%, MgO : About 1.6%, ignition loss: about 5.6%
[0016]
The thus obtained coarse aggregate having a size of 5 to 15 mm has an absolute dry specific gravity of 1.52, a hot water absorption of 15%, and a crushing load of 1130 N according to JIS Z8841. Here, the hot water absorption refers to a value obtained by measuring the water absorption in a process of firing the artificial aggregate from 100 to 200 ° C., and then at room temperature and in a surface dry state. In this product, the pore volume is almost uniformly distributed in the pore radius of 50 to 6000 nm, and the cumulative pore volume (total pore volume) reaches about 110 m 3 / g. This contributes to high strength while having a low specific gravity, and effectively acts to enhance water retention performance. According to the same principle, by selecting the raw materials and properly controlling the firing conditions, the crushing load according to JIS Z8841 is in the range of 1000 to 2000 N, the specific gravity in the absolute dryness is in the range of 1.4 to 2.0, and the water absorption is An artificial aggregate in the range of 5 to 20% can be manufactured, and by using this artificial aggregate, an ultra-high-strength concrete with a small amount of self-shrinkage can be manufactured.
[0017]
If the crushing load of the artificial aggregate is less than 1000 N, concrete strength of 100 N / mm 2 or more cannot be obtained. Conversely, if the crush load exceeds 2000 N, a sufficient amount of pores cannot be secured, and the water absorption rate decreases. Therefore, it cannot contribute to the reduction of the amount of self-shrinkage. Therefore, the crushing load of the artificial aggregate used in the present invention is 1000 to 2000N, preferably 1200 to 1800N. If the specific gravity of the artificial aggregate is less than 1.4, it is difficult to secure a crushing load of 1000 N or more, and if the specific gravity exceeds 2.0, it becomes difficult to secure a sufficient water absorption. The absolute specific gravity of the artificial aggregate used in the present invention is 1.4 to 2.0, preferably 1.50 to 1.70. If the water absorption is less than 5%, the effect of improving concrete shrinkage and drying shrinkage is not sufficiently exhibited. If it exceeds 20%, it is difficult to secure a crushing strength of 1000N or more at a specific gravity of 2.0 or less. The artificial aggregate used in the present invention preferably has a water absorption of 5 to 20%.
[0018]
Such an artificial aggregate is used as a part of the aggregate for concrete, for example, as 5 to 30% by weight of the total coarse aggregate, the water cement ratio is 15 to 25%, and the total coarse aggregate amount is 200 to 400 L. / M 3 , air content is less than 3%, and concrete is mixed with at least one of a water reducing agent according to JIS A 6204, an AE water reducing agent or a high-performance AE water reducing agent as a chemical admixture. As a result, a low-shrink ultrahigh-strength concrete having a compressive strength of 100 to 150 N / mm 2 and a self-shrinkage of 400 μm or less per m can be obtained.
[0019]
Since this concrete has a small amount of self-shrinkage, loss of prestress can be reduced. Therefore, it is possible to obtain a PC concrete plate with extremely high strength and high crack resistance. By constructing the web using this PC concrete plate, it is possible to increase the reinforcing steel material and reduce the web thickness. Thus, a box girder structure that is more excellent in workability and economy than before can be realized.
[0020]
Next, the case where the self-shrinkage rate of the ultra-high-strength concrete is reduced by blending the expanding material of the above (2) will be described.
[0021]
The expansive material reacts with water to form needle-like crystals called ettringite, which form a coarser structure than ordinary cement reaction products. It expands. In the present invention, the expansion effect of the expanding material compensates for the amount of self-shrinkage of the ultra-high-strength concrete, and the basic composition of the ultra-high-strength concrete, that is, the binder containing water and cement (Portland cement or Pozzolan) Mixed cement containing special admixtures, specially treated silica fume, etc.), fine aggregate, coarse aggregate having a maximum dimension of 20 mm or less, water reducing agent according to JIS A 6204 “Chemical admixture for concrete”, AE water reducing agent or When kneading at least one of the high-performance AE water reducing agents with a water-cement ratio of 15 to 25%, a coarse aggregate amount of 200 to 400 L / m 3 , and an air amount of less than 3%, a commercially available expanding agent is used. by adding in an amount of 10 to 30 kg / m 3, the ultra-high strength concrete 400μm per 1m autogenous shrinkage of less, preferably It was found that it is possible to 50μm or less.
[0022]
Examples of commercially available expanding materials include Power CSA and Power CSA type R (trade names) manufactured by Denka Corporation.
[0023]
The case of reducing the self-shrinkage of ultra-high-strength concrete by blending the shrinkage reducing agent of the above (3) will be described. The shrinkage reducing agent has the effect of reducing the surface tension of water in the pores, which is the cause of shrinkage. The effect of reducing self-shrinkage and drying shrinkage is exhibited by reducing the capillary tension. In the present invention, the basic composition of the above-mentioned ultra-high-strength concrete, that is, a binder containing water and cement (including cement mixed with Portland cement or a pozzolan-based admixture, silica fume specially treated, etc.), fine bone Wood, coarse aggregate having a maximum dimension of 20 mm or less, at least one of a water reducing agent according to JIS A 6204 “Chemical admixture for concrete”, an AE water reducing agent or a high-performance AE water reducing agent, with a water cement ratio of 15 to 25% and coarse bone When kneading under a material volume of 200 to 400 L / m 3 and an air volume of less than 3%, a commercially available shrinkage reducing agent is blended in an amount of 1 to 4% by weight of a cement-containing binder to achieve this ultra high content. It has been found that the amount of self-shrinkage of the high-strength concrete can be reduced to 400 μm or less, preferably 350 μm or less per 1 m.
[0024]
As a commercially available shrinkage reducing agent, for example, Tetra Guard AS21 (trade name, manufactured by Taiheiyo Materials Corporation) can be used.
[0025]
In this manner, by adding an appropriate amount of the expanding material or the shrinkage reducing agent, the self-shrinkage amount is small and the loss of prestress can be reduced as in the case of (1). Therefore, it is possible to obtain a PC concrete plate with extremely high strength and high crack resistance. By constructing a web using this PC concrete plate, it is possible to increase the reinforcing steel material and reduce the web thickness. Thus, a box girder structure that is more excellent in workability and economy than before can be realized.
[0026]
The use of the high-strength artificial aggregate having a water absorption of 5 to 20% and the blending of the expanding agent or the shrinkage reducing agent may be applied alone or in combination.
[0027]
As the binder used for the ultra-high strength concrete of the present invention, besides Portland cement, the following binders such as silica fume, fly ash, coal gasification fly ash, blast furnace slag fine powder and the like can be used.
[0028]
The chemical admixture (at least one of a water reducing agent according to JIS A 6204, an AE water reducing agent or a high-performance AE water reducing agent) used in the ultra-high strength concrete of the present invention includes polycarboxylic acid type, polyether type, naphthalene type and melamine. Sulfonic acids, aminosulfonic acids and the like can be used, but polycarboxylic acids and polyethers are particularly preferred. In addition, an antifoaming agent can be used as an auxiliary.
[0029]
【The invention's effect】
As described above, according to the present invention, since the ultrahigh-strength PC concrete plate is used as the web of the box girder, the construction of the box girder is facilitated and the cost is reduced. Therefore, it is possible to exhibit practical effects that have not been achieved in the past in terms of both workability and economical efficiency of the bridge superstructure.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing an example of a box girder of a bridge superstructure according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lower slab 2 Upper slab 3 Web 4 Inner cable 5 Outer cable 6 PC steel material 7 PC concrete board 8 Ultra high strength concrete

Claims (5)

下床版と上床版の間にウエブを取付けて箱桁を構成する橋梁上部構造において,上下方向にPC鋼材を緊張してなるプレストレストコンクリート板で前記のウエブを構成し,該プレストレストコンクリート板のコンクリートが28日圧縮強度100〜180N/mmの超高強度コンクリートであることを特徴とする橋梁上部構造。In a bridge superstructure in which a web is attached between a lower slab and an upper slab to form a box girder, the web is composed of a prestressed concrete plate formed by tensioning a PC steel material in a vertical direction, and the concrete of the prestressed concrete plate is bridge superstructure, characterized in that but an ultra high strength concrete of 28 days compressive strength 100~180N / mm 2. 超高強度コンクリートは,材齢60日での自己収縮量が1mあたり400μm以下のものである請求項1に記載の橋梁上部構造。The bridge superstructure according to claim 1, wherein the ultra-high-strength concrete has a self-shrinkage at a material age of 60 days of 400 µm or less per m. 超高強度コンクリートは,水,セメントを含む結合材,細骨材,最大寸法20mm以下の粗骨材およびJIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種を,水セメント比15〜25%,粗骨材量200〜400L/m, 空気量3%未満のもとで練り混ぜて作製されたものであり,そのさい,前記の粗骨材の一部として,吸水率5〜20%,圧壊荷重1000〜2000N,絶乾比重1.4〜2.0の人工骨材を使用したものである請求項1または2に記載の橋梁上部構造。Ultra-high-strength concrete includes water, cement-containing binders, fine aggregates, coarse aggregates having a maximum dimension of 20 mm or less, and water reducing agents in accordance with JIS A 6204 "Chemical admixture for concrete", AE water reducing agents or high-performance AE water reducing agents. At least one of the above is kneaded with a water cement ratio of 15 to 25%, a coarse aggregate amount of 200 to 400 L / m 3 , and an air amount of less than 3%. The bridge upper part according to claim 1 or 2, wherein artificial aggregate having a water absorption of 5 to 20%, a crushing load of 1000 to 2000 N, and a specific gravity of 1.4 to 2.0 is used as a part of the aggregate. Construction. 超高強度コンクリートは,水,セメントを含む結合材,細骨材,最大寸法20mm以下の粗骨材およびJIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種を,水セメント比15〜25%,粗骨材量200〜400L/m,空気量3%未満のもとで練り混ぜて作製されたものであり,そのさい,さらに膨張材を10〜30Kg/m配合したものである請求項1または2に記載の橋梁上部構造。Ultra-high-strength concrete includes water, cement-containing binders, fine aggregates, coarse aggregates having a maximum dimension of 20 mm or less, and water reducing agents in accordance with JIS A 6204 "Chemical admixture for concrete", AE water reducing agents or high-performance AE water reducing agents. At least one of the following is mixed under a water cement ratio of 15 to 25%, a coarse aggregate amount of 200 to 400 L / m 3 , and an air amount of less than 3%. The bridge superstructure according to claim 1 or 2, wherein 10 to 30 kg / m3 is blended. 超高強度コンクリートは,水,セメントを含む結合材,細骨材,最大寸法20mm以下の粗骨材およびJIS A 6204「コンクリート用化学混和剤」に従う減水剤, AE減水剤または高性能AE減水剤の少なくとも1種を,水セメント比15〜25%,粗骨材量200〜400L/m,空気量3%未満のもとで練り混ぜて作製されたものであり,そのさい,さらに収縮低減剤を, セメントを含む結合材量の1〜4重量%配合したものである請求項1または2に記載の橋梁上部構造。Ultra-high-strength concrete includes water, cement-containing binders, fine aggregates, coarse aggregates having a maximum dimension of 20 mm or less, and water reducing agents in accordance with JIS A 6204 "Chemical admixture for concrete", AE water reducing agents or high-performance AE water reducing agents. At least one of the following is kneaded under a water-cement ratio of 15 to 25%, a coarse aggregate amount of 200 to 400 L / m 3 , and an air amount of less than 3%, thereby further reducing shrinkage. The bridge superstructure according to claim 1 or 2, wherein the agent is mixed with 1 to 4% by weight of the binder including cement.
JP2002226998A 2002-08-05 2002-08-05 Bridge superstructure Expired - Fee Related JP4002153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226998A JP4002153B2 (en) 2002-08-05 2002-08-05 Bridge superstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226998A JP4002153B2 (en) 2002-08-05 2002-08-05 Bridge superstructure

Publications (2)

Publication Number Publication Date
JP2004068341A true JP2004068341A (en) 2004-03-04
JP4002153B2 JP4002153B2 (en) 2007-10-31

Family

ID=32014153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226998A Expired - Fee Related JP4002153B2 (en) 2002-08-05 2002-08-05 Bridge superstructure

Country Status (1)

Country Link
JP (1) JP4002153B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003054A1 (en) * 2003-07-04 2005-01-13 Kajima Corporation Method for reducing autogeneous shrinkage of super high strength concrete
JP2007032212A (en) * 2005-07-29 2007-02-08 Taisei Corp Ribbed floor slab and on-water structure
CN103614967A (en) * 2013-11-29 2014-03-05 上海市政建设有限公司 Stiff framework and method for constructing bridge tower column by means of same
CN109468943A (en) * 2018-10-17 2019-03-15 华南理工大学 The anti-ejection system of vertical prestressed reinforcement and its construction method with function of seismic resistance
KR102263272B1 (en) * 2020-08-14 2021-06-14 (주)주성이앤씨 Bridge variable thickness girder for flood disaster prevention and construction method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106894344B (en) * 2017-01-25 2019-12-10 中铁大桥局第七工程有限公司 Space variable curved surface inclined tower column multilayer reinforcing steel bar mounting and positioning device and construction method thereof
CN110205947A (en) * 2019-07-06 2019-09-06 中铁二十五局集团第五工程有限公司 A kind of overline bridge steel box girder construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003054A1 (en) * 2003-07-04 2005-01-13 Kajima Corporation Method for reducing autogeneous shrinkage of super high strength concrete
JP2007032212A (en) * 2005-07-29 2007-02-08 Taisei Corp Ribbed floor slab and on-water structure
CN103614967A (en) * 2013-11-29 2014-03-05 上海市政建设有限公司 Stiff framework and method for constructing bridge tower column by means of same
CN103614967B (en) * 2013-11-29 2015-09-30 上海市政建设有限公司 A kind of stiff skeleton and utilize it to carry out the method for bridge king-post construction
CN109468943A (en) * 2018-10-17 2019-03-15 华南理工大学 The anti-ejection system of vertical prestressed reinforcement and its construction method with function of seismic resistance
KR102263272B1 (en) * 2020-08-14 2021-06-14 (주)주성이앤씨 Bridge variable thickness girder for flood disaster prevention and construction method thereof

Also Published As

Publication number Publication date
JP4002153B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
Gopalakrishnan et al. The strength and durability of fly ash and quarry dust light weight foam concrete
US10385576B2 (en) Composite insulated plywood, insulated plywood concrete form and method of curing concrete using same
Topçu et al. Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete
Bendapudi et al. Contribution of fly ash to the properties of mortar and concrete
Park et al. Effects of processing and materials variations on mechanical properties of lightweight cement composites
Tanash et al. Potential of recycled powder from clay Brick, sanitary Ware, and concrete waste as a cement substitute for Concrete: An overview
JPH11302056A (en) Low shrinkage, high strength and high flow concrete composition and its hardened body
Gesoglu et al. Properties of ultra-high performance fiber reinforced cementitious composites made with gypsum-contaminated aggregates and cured at normal and elevated temperatures
Ohemeng et al. Alternative cleaner production of masonry mortar from fly ash and waste concrete powder
JPH0361624B2 (en)
Abou Rachied et al. Structural behavior of beams cast using normal and high strength concrete containing blends of ceramic waste powder and blast furnace slag
Vivek et al. Strength and microstructure properties of self-compacting concrete using mineral admixtures. Case study I
JP4002153B2 (en) Bridge superstructure
JP4462854B2 (en) Method for reducing self-shrinkage of ultra high strength concrete
JP2002003249A (en) Cement admixture, cement composition and cement concrete with high flowability
Ali et al. The Influence of Nano-Silica on Some Properties of Light Weight Self-Compacting Concrete Aggregate
Uchikawa Approaches to ecologically benign system in cement and concrete industry
Uniyal et al. Partial Replacement of Cement in Concrete using Ceramic Waste
Elistratkin et al. The Raw Materials Genetic Type Effect on the Water-Reducing Additives Effectiveness
Ahmed et al. Blended metakaolin and waste clay brick powder as source material in sustainable geopolymer concrete
Shekar et al. Selection and implementation of green materials for the sustainable development of a residential layout
JP2004244304A (en) Artificial fired aggregate and method of manufacturing the same
Al-Kerttani et al. Effect of mineral admixture on the properties of engineered cementitious composite
Pooja et al. Recent Advances in Construction of Masonry Structure by Waste Materials
hamid El Semary et al. Effect of using green building masonary mortar on the behaviour of masonary walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees