JP2004068101A - Thin film formation system, thin film of multinary material and processes for forming the same and examining character of the same - Google Patents

Thin film formation system, thin film of multinary material and processes for forming the same and examining character of the same Download PDF

Info

Publication number
JP2004068101A
JP2004068101A JP2002230247A JP2002230247A JP2004068101A JP 2004068101 A JP2004068101 A JP 2004068101A JP 2002230247 A JP2002230247 A JP 2002230247A JP 2002230247 A JP2002230247 A JP 2002230247A JP 2004068101 A JP2004068101 A JP 2004068101A
Authority
JP
Japan
Prior art keywords
thin film
substrate
composition
substance
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230247A
Other languages
Japanese (ja)
Other versions
JP4080810B2 (en
Inventor
Atsushi Yamamoto
山本 敦史
Takashi Kusano
草野 貴史
Isao Okutomi
奥富 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2002230247A priority Critical patent/JP4080810B2/en
Publication of JP2004068101A publication Critical patent/JP2004068101A/en
Application granted granted Critical
Publication of JP4080810B2 publication Critical patent/JP4080810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system and a process for easily forming a thin film whose composition changes regularly in a surface direction of a substrate. <P>SOLUTION: In the system and the process for forming the thin film of a multinary material, paths through which vaporized materials transfer from evaporation sources 2A, 2B and 2C, which are linear or long in one direction, to the substrate 6 in a vacuum are partially blocked by masking shields 4 to generate gradients of amounts of material flow reaching each position on the substrate. By placing two or more pairs of evaporation sources and masking shields so that composition gradient parts overlap each other, materials having different compositions are simultaneously synthesized on the substrate to form the thin film whose composition regularly changes in the surface direction of the substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜形成装置、多元系物質薄膜形成方法、多元系物質薄膜の特性検査方法及び多元系物質薄膜に関する。
【0002】
【従来の技術】
一般に、既存データの存在しない材料特性又はそれが少ない材料特性を満足する材料組成を決定する際には、候補となる複数の材料成分から成る組成系それぞれにおいて、各成分の有効と推定される範囲において成分量を変化させた個々の試料を試作し評価する作業を繰り返すことによって、最適組成の多元系物質を選定している。
【0003】
ところが、この最適組成の多元系物質を選定する技術にもコンビナトリアルケミストリーの応用が注目されるようになってきている。このコンビナトリアルケミストリーとは、元素や官能基の組合せを利用して系統的、効率的かつ迅速に化合物群(ライブラリー)を合成し、それらの化合物群を迅速に評価することにより、絨毯爆撃的な探索を行い、最適化の速度を飛躍的に向上させようとする技術である。この技術は、固相合成法を利用した自動合成技術の発達しているペプチドや糖化合物の合成に始まり、医薬品の分野の開発において実用的に広く利用されているものである。
【0004】
近年、このコンビナトリアルケミストリー(Combinatorial Chemistry)を無機材料分野に適用し、分子ビームエピタキシーなどの方法で形成した薄膜を利用した材料合成・評価方法が試みられている。この方法では、基板上に異なる物質を順次成膜してゆくことで多元系化合物を作成でき、基板上の複数の限定した領域に異なる多元系化合物を複数形成することにより、基板単位でこれらの化合物を一括評価することができる(特開2001−272342号公報)。
【0005】
【発明が解決しようとする課題】
ところが、上述した従来の最適組成の多元系物質を選定する方法には、次のような問題点があった。
【0006】
まず、上述した各成分量をパラメータとした個々の試料の試作・評価の繰り返しにより最適組成を選定する方法は最も一般的に行われているが、考慮すべき成分数が多いほど、試作と評価の回数が増え、時間がかかる問題点があった。
【0007】
また、特開2001−272342号公報に示されている薄膜を利用する方法では、基板上に薄膜を形成するために、蒸発源の交換、マスクパターンの交換、基板の移動など連動する機構を必要とするため、複雑にして高価な装置を必要とする問題点があった。加えて、この方法では、基板上に配列する薄膜材料の組成にはかならずしも規則性はなく、体系的な材料の試作・評価には適さない問題点あった。
【0008】
本願の発明者らは、真空中において線状又は一方向に長い蒸発源から基板に移動する蒸発物質を基板表面に付着させる際に、蒸発経路上に設置した遮蔽板により蒸発物質の遮蔽することにより基板上の各位置への蒸発物質の到達量に勾配を持たせ、この勾配組成部がオーバーラップするように複数の蒸発源と遮蔽板の対を配置することで、基板上で異なる組成の物質を同時に合成し、基板面方向に規則的な組成変化を持つ薄膜を形成する方法を見出し、さらにこの規則性を利用すれば多元系物質の組成と数々の物理的及び化学的特性との相関を調べることが可能であることも見出した。
【0009】
本発明は、簡便な方法により、基板上の面方向に規則的に組成が変化する薄膜を形成する薄膜形成装置及び多元系物質薄膜形成方法を提供することを目的とする。
【0010】
本発明はまた、基板上の面方向に規則的に組成が変化するように形成された薄膜を、その特徴とする組成分布の規則性を利用して体系的に多元系物質の組成と特性の関連を一括評価する多元系物質薄膜の特性検査方法を提供することを目的とする。
【0011】
本発明はまた、上記の特性検査に供することができる多元物質薄膜を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1の発明の薄膜形成装置は、複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源各々からの物質流の下流側に設置された遮蔽板と、前記遮蔽板の線状又は一方向に長い形状の透孔を通して前記蒸発源から流れてくる物質蒸気をその表面に蒸着する基板とを備え、前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を前記遮蔽板によって遮蔽させ、各蒸発源から基板の表面の対象領域の各位置への物質の到達量に勾配を持たせ、かつ、各蒸発源から基板上への物質到達量の勾配する領域が重複するように前記蒸発源、遮蔽板及び基板を配置したことを特徴とするものである。
【0013】
請求項2の発明の多元系物質薄膜形成方法は、真空中において線状又は一方向に長い蒸発源から基板に移動する蒸発物質を、その経路において遮蔽板により遮蔽することにより基板上の各位置への到達量に勾配を持たせ、この勾配組成部がオーバーラップするように複数の蒸発源と遮蔽板の対を配置することで、基板上で異なる組成の物質を同時に合成し、基板面方向に規則的な組成変化を持つ薄膜を形成することを特徴とするものである。
【0014】
請求項3の発明の多元系物質薄膜形成方法は、複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源からの物質流の下流側に設置された遮蔽板と、前記遮蔽板の透孔を通して前記蒸発源各々から流れてくる金属蒸気をその表面に蒸着する基板とを備えた薄膜形成装置を用いて、前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を遮蔽板によって遮蔽させ、各蒸発源から基板面上の対象領域の各位置への物質の到達量に勾配を持ち、かつ各蒸発源から基板上への物質到達量の勾配する領域が重複するように前記蒸発源、遮蔽板及び基板を配置し、膜厚方向に組成が均質で、かつ、1種類以上の成分で構成される物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜を基板上に形成することを特徴とするものである。
【0015】
この請求項1の発明の薄膜形成装置を用いることにより、あるいは請求項2及び3の発明の多元系物質薄膜形成方法を実施することにより、従来の多元系物質薄膜の基板上への複数形成のように、蒸発源や遮蔽板を移動することなく、簡便に形成できる。そして、このようにして基板上に形成された薄膜の組成は面方向に連続的に変化しているので、多元系物質の組成と特性との関連を体系的に調べるのに極めて有用なものである。
【0016】
上述した請求項1の発明の薄膜形成装置により、あるいは請求項2又は3の発明の多元系物質薄膜形成方法により作成した薄膜の基板上の各位置における組成は、その位置における各蒸発源の遮蔽度と各蒸発源との距離から算出できる。したがって、薄膜の各位置の局所的材料的特性を物理的又は化学的に評価することにより、多元系物質の局所的組成と局所的特性との関係が得られる。この方法を用いれば、従来のように、各組成毎に試料作成と評価を繰り返す必要がなく、基板上に形成された薄膜の各部を一括評価すればよく、組成と特性との相関性を迅速に調べることが可能である。
【0017】
そこで、請求項1の発明の薄膜形成装置を用いて、あるいは請求項2の発明の多元系物質薄膜形成方法で一括合成された薄膜は、組成と特性との相関性を迅速に把握する上で、一括評価することが望ましい。多元系薄膜物質の物理的又は化学的特性を評価する方法には、光線、放射線、電子線、熱流束のいずれかを用い、これらを薄膜上の対象領域に全面照射又は均一に走査し、その結果得られる反射線、透過線・放射線の強度を検出し、評価する方法がある。
【0018】
請求項4〜13の発明の多元系物質薄膜の特性検査方法は、多元系物質の組成と特性との相関性を調べる方法である。そして、そのうちの特に請求項4〜8の発明の多元系物質薄膜の特性検査方法は、多元系薄膜物質の物理的又は化学的特性を一括検出する方法を特徴としている。
【0019】
すなわち、請求項4の発明の多元系物質薄膜の特性検査方法は、請求項2又は3の発明の多元系物質薄膜形成方法により基板上に形成された多元系物質薄膜に対してその表面の各位置における局所的組成を、前記蒸発源、遮蔽板及び基板の相対的な位置関係から幾何学的に算定し、前記薄膜面上の各位置の物理的又は化学的特性を評価することを特徴とするものである。
【0020】
請求項5の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、前記薄膜が放射又は反射する光線、放射線又は電子線の薄膜面上の強度分布を面走査型検出器、線状検出器又は面状検出器により一括検出することを特徴とするものである。
【0021】
請求項6の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、前記薄膜面上の評価対象の領域に光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、前記薄膜及び基板を透過する光線、放射線、電子線の薄膜面上の強度分布を面走査型検出器、線状検出器又は面状検出器により一括検出することを特徴とするものである。
【0022】
請求項7の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜を所定の雰囲気に暴露し、その後、前記薄膜に対して光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、前記薄膜及び基板を透過する光線、放射線、電子線の薄膜面上の強度分布を面走査型検出器、線状検出器又は面状検出器により一括検出することを特徴とするものである。
【0023】
請求項8の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域にX線を走査して均等に照射し、前記薄膜のX線の照射部分から反射されるX線の回折角又は電子線のエネルギー分布を計測することを特徴とするものである。
【0024】
また、請求項4〜8の発明の多元系物質薄膜の検査方法では、基板上に形成された多元系物質薄膜の物理的、化学的特性を一括検出することを特徴とするものであったが、検出した多元系物質薄膜に物理的、化学的特性に基づき種々の評価を実施することができる。請求項9〜13の発明の多元系物質薄膜の特性検査方法は、これらの評価方法を特徴とするものである。
【0025】
すなわち、請求項9の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域にX線を走査して均等に照射し、前記薄膜のX線の照射部分から反射されるX線の回折角又は電子線のエネルギー分布を計測することにより、前記薄膜の表面各部の結晶構造を一括評価することを特徴とするものである。
【0026】
請求項10の発明の多元系物質薄膜の特性検査方法は、透明基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域の全面に熱流束を与え、前記透明基板を通して熱流束を与えた面の反対側の面から放射される赤外線の強度分布を計測することにより、薄膜面上での熱伝導率の分布を一括評価することを特徴とするものである。
【0027】
請求項11の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域に光線を全面照射し又は走査して均等に与え、前記光線の照射部分から反射される光線の薄膜面上での強度分布を計測することにより、薄膜面上での反射率の分布を一括評価することを特徴とするものである。
【0028】
請求項12の発明の多元系物質薄膜の特性検査方法は、透明基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜の評価対象の領域に光線を全面照射し又は走査して均等に与え、前記光線の照射部分を透過する光線の薄膜面上での強度分布を計測することにより、薄膜面上での透過率の分布を一括評価することを特徴とするものである。
【0029】
請求項13の発明の多元系物質薄膜の特性検査方法は、基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜を大気又は酸化性雰囲気下に保持し、前記薄膜の評価対象の領域に電子線を走査して均等に照射し、前記電子線の照射部分から放射される酸素の特性X線の薄膜面上での強度分布を計測することにより、前記多元系物質薄膜の組成と耐酸化性との相関性を調べることを特徴とするものである。
【0030】
基板上に形成した多元系物質薄膜の高温での特性を評価するには、膜内での各成分の拡散を防止するために、予め形成する薄膜を組成領域毎に分割しておく必要がある。
【0031】
請求項14、15の発明は、このような点を配慮し、基板上に独立した薄膜が複数形成できる薄膜形成装置及び多元系物質薄膜形成方法に係るものである。
【0032】
すなわち、請求項14の発明の薄膜形成装置は、複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源各々からの物質流の下流側に設置された遮蔽板と、前記遮蔽板の透孔を通して前記蒸発源から流れてくる物質蒸気をその表面に蒸着する基板と、当該基板の前記蒸発源側の面に設けられた格子状のマスクとを備え、前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を前記遮蔽板によって遮蔽させ、各蒸発源から基板の表面の対象領域の各位置への物質の到達量に勾配を持たせ、各蒸発源から基板上への物質到達量の勾配する領域が重複し、かつ前記マスクによって基板上に独立した薄膜を複数形成するように前記蒸発源、遮蔽板、基板及びマスクを配置したことを特徴とするものである。
【0033】
請求項15の発明の多元系物質薄膜形成方法は、複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源からの物質流の下流側に設置された遮蔽板と、前記遮蔽板の透孔を通して前記蒸発源各々から流れてくる金属蒸気をその表面に蒸着する基板と、当該基板の前記蒸発源側の面に設けられた格子状のマスクとを備えた薄膜形成装置を用いて、前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を遮蔽板によって遮蔽させ、各蒸発源から基板面上の対象領域の各位置への物質の到達量に勾配を持ち、各蒸発源から基板上への物質到達量の勾配する領域が重複し、かつ前記マスクによって基板上に独立した薄膜を複数形成するように前記蒸発源、遮蔽板及び基板を配置し、膜厚方向に組成が均質で、1種類以上の成分で構成される物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有し、かつ基板上に独立した薄膜を複数形成することを特徴とするものである。
【0034】
請求項14の発明の薄膜形成装置、請求項15の発明の多元系物質薄膜形成方法では、基板の蒸発源側の面に格子状のマスクを配することによって、基板上に独立した薄膜を複数形成させることができる。
【0035】
基板上に形成された多元系物質薄膜の高温での特性を評価するのに、組成領域毎に複数の部分に分割されている薄膜に対して実施すれば、膜内での各成分の拡散を防止することができ、組成領域毎の高温特性を正確に調べることができる。
【0036】
請求項16の発明の多元系物質薄膜の特性検査方法は、膜厚方向に組成が均質で、1種類以上の成分で構成される金属物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有し、かつガラス基板上に独立して複数形成された金属成分のみの薄膜の特性を検査するのに、前記ガラス基板及び薄膜を大気又は不活性ガス雰囲気下で昇温して所定の温度とし、前記温度における前記薄膜の輪郭形状の変化を光学的方法で検出して多元系物質の組成と溶融温度との相関性を調べることを特徴とするものである。
【0037】
一般に、ガラスと金属との濡れ性は悪く、この方法により薄膜を昇温すれば、溶融した部分から表面エネルギーの低減のため、輪郭形状が変化し、目視観察により当該組成系の任意の温度における溶融組成領域を判断できる。
【0038】
請求項17の発明の多元系物質薄膜の特性検査方法は、請求項15の多元系物質薄膜形成方法により、第1の基板上に金属成分のみから成り、互いに独立した薄膜を複数形成し、同じパターンのマスクを用い、請求項15の多元系物質薄膜形成方法により、第2の基板上に単一な組成の独立した薄膜を複数形成し、前記第1の基板と第2の基板とをそれらの上に形成された薄膜同士が向き合うように重ね合わせた状態にして、大気又は不活性ガス雰囲気下で昇温して第1の基板上の薄膜の少なくとも一部が溶融する所定の温度に保持した後に冷却し、前記第1、第2の両基板の接合状態を超音波探傷により調べて多元系物質の組成と濡れ性との相関性を調べることを特徴とするものである。
【0039】
複数の独立した領域に分割されている薄膜では、溶融した領域のうち、重ね合わされた相手物質との濡れ性の良好な組成領域において、その分割された領域のほぼ全面において良好な接合状態が観察できる。しかしながら、濡れ性の悪い部分では、非接合部が生じるので、両者の濡れ性の良好な組成領域の把握が容易である。
【0040】
請求項18の発明の薄膜形成装置は、複数の蒸発源と、前記蒸発源各々からの物質流の下流側に設置された遮蔽板と、前記遮蔽板の複数の線状又は一方向に長い透孔を通して前記蒸発源から流れてくる物質蒸気それぞれをその表面に蒸着する基板とを備え、前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を前記遮蔽板によって遮蔽させ、各蒸発源から基板の表面の対象領域の各位置への物質の到達量に勾配を持たせ、かつ、各蒸発源から基板上への物質到達量の勾配する領域が重複するように前記蒸発源、遮蔽板及び基板を配置したことを特徴とするものである。
【0041】
物質の蒸気は、加熱される蒸発元の物質の位置を中心に球状に広がるので、蒸発元の物質を保持する部分が線状又は一方向に長い形状であれば、線状の蒸発源を構成することができるが、蒸発元の物質を保持する容器それ自体が線状又は一方向に長い形状でない場合でも、発生した蒸気が線状又は一方向に長い形状のスリットを通過するように配置されていれば、線状又は一方向に長い蒸発源と同等の多元系物質薄膜を基板上に形成できる。
【0042】
請求項19の発明の多元系物質薄膜は、基板の表面に形成された多元系物質薄膜であって、膜厚方向に組成が均質で、かつ、1種類以上の成分で構成される物質の複数種が、それらの存在割合が当該基板の表面の面方向に連続的に変化する組成分布を有することを特徴とするものである。
【0043】
請求項20の発明の多元系物質薄膜は、基板の表面に形成された多元物質薄膜であって、膜厚方向に組成が均質で、1種類以上の成分で構成される物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有し、かつ当該基板上の複数の独立した区画それぞれに分かれて形成されていることを特徴とするものである。
【0044】
これら請求項18又は19の発明の多元系物質薄膜では、請求項4〜17に記載の特性検査方法を適用して多元系物質の物理的、化学的特性を評価することができる。
【0045】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1は本発明の薄膜形成方法を使用する、2元物質による薄膜形成装置を示している。この薄膜形成装置では、2元物質の蒸発源2A,2Bに対して遮蔽板4を配置し、遮蔽板4の背方に基板6を配置して、蒸発源2A,2Bの物質を蒸発させて遮蔽板4に経て、この遮蔽板4の背方に位置する基板6上の所定の領域(対象領域)に蒸着させる。
【0046】
この図1のように遮蔽板4を配置すると、基板6上の各位置から見える遮蔽されていない蒸発源2A,2Bの長さの割合と蒸発源2A,2Bからの距離に応じて、蒸発源2,2Bから基板6上に到達する物質の量が決まり、各蒸発源2A,2Bからの到達量に応じた組成の薄膜が基板6上の所定の領域(対象領域)に合成、形成される。この各蒸発源2,2Bからの到達量は基板面上の一部又は全面において連続的に変化する。このため、この組成変化領域の重複の仕方に応じて面方向に連続的に組成変化する薄膜が形成できるのである。
【0047】
また、図2に示すように、3つの物質の蒸発源A(2A),B(2B),C(2C)をその長手方向がある点を中心に120°ずつ向きが異なるように配置し、遮蔽板4に設けた三角形の蒸気通過孔40の各辺が蒸発源2A,2B,2C各々の長手方向と直行する方向に配置し、かつ、各蒸発物質の到達量が勾配する基板6上における領域が重複するように遮蔽板4を位置決めすることにより、基板6上の所定の領域に3元系状態図に類似した組成分布を有する薄膜が形成できる。なお、図2に示すように、蒸発源2A,2B,2Cそれぞれには細長いスリット3が設けてあり、このスリット3を通して中の蒸発原材料の蒸気を蒸発させる。
【0048】
この方法は、従来の多元系物質薄膜の基板上への複数形成のように、蒸発源や遮蔽板を移動することなく、多元系物質薄膜を簡便に形成できるといった画期的な特長を有する。また、組成が連続的に変化しているので、多元系物質の組成と特性との関連を体系的に調べるのに極めて有効である。
【0049】
図3は、本発明の発明原理を具体化した薄膜形成装置を示している。この図3及び以下の説明は、説明の簡単化のため、2元物質薄膜形成の場合を示しているが、実際には図2若しくは後述する図4に示した平面配置にして、すべて3元で行う。
【0050】
図3において、1は真空容器、線状の2A,2Bは蒸発源、4は遮蔽板、5は真空排気装置である。また6は蒸着対象である基板、7はこの基板6を加熱するためのヒーターである。8は基板6の前面に置かれたシャッターである。9,10は蒸発源2A,2Bそれぞれに対応した膜厚モニタであり、これらにより成膜速度を単位面積・単位時間当りの原子数換算で確認する。
【0051】
次に、図3の薄膜形成装置を用いた多元系物質薄膜形成法について説明する。薄膜形成は以下の手順で実施する。まず、真空容器1を開け、線状の蒸発源2A,2Bに蒸発元の物質をセットし、遮蔽板4と蒸発源2A,2Bの位置を所定の位置にセットした後、真空容器1を閉じ、真空排気装置5により真空排気を行う。真空容器1の内部は、1×10−4Paより高真空とする。真空度が十分高められた後、基板6をヒーター7で加熱し、水分などの除去を行う。
【0052】
次に、基板6前面のシャッター8を閉じた状態で蒸発源2A,2Bを加熱し、蒸発源2A,2Bにそれぞれ対応した膜厚モニタ9,10により成膜速度を単位面積・単位時間当りの原子数換算で確認する。蒸発源2A,2Bからの成膜速度が等しく、かつ、所定の値となった時点でシャッター8を開け、基板6上の所定の蒸着対象領域への蒸着、成膜を開始する。そして所定量の成膜が完了した時点で再びシャッター8を閉じ、薄膜形成を完了する。
【0053】
蒸発源2A,2B,2Cに収容する原料物質としてA,B,Cを用いて3元物質薄膜を形成した場合、薄膜面上の各位置の組成は蒸発源2A,2B,2C、遮蔽板4及び、基板6の幾何学的な関係から決まる。例えば、図4に示すように蒸発源2A,2B,2Cを正三角形の3辺とする配置にし、原料物質A,B,Cそれぞれを収容して蒸発させると、基板6の表面に形成される薄膜は図5のような分布となる。図5では、薄膜はA物質単独、B物質単独、C物質単独、A−B2元物質合金、A−C2元物質合金、B−C2元物質合金及びA−B−C3元物質合金の形成領域に分かれている。
【0054】
蒸発元の物質が多成分合金であれば、形成される3元物質の組成範囲は、擬似3元組成系となる。例えば、物質Aが成分aのみの純物質、物質Bが成分b−cの2成分合金、物質Cが成分d−e−fの3成分合金であるとすると、形成される前述のA−B−C3元物質合金の組成範囲は、a−(b−c)−(d−e−f)合金擬似3元組成系の範囲となる。ただし、この場合のb−c及びd−e−fの組成比は、B単独領域及びC単独領域における薄膜の組成比に一致する。
【0055】
【実施例】
上述の方法で形成したA−B−C3元系物質薄膜を利用し、多元系物質の組成と特性との相関性を調べた結果を以下の実施例に示す。比較のため同じ組成系において、従来の個別サンプル試作法で多元系物質の組成と特性との相関性を調べた。この方法は、各組成毎に多数のサンプルを個別に作成して、個別に評価する方法である。そして、この個別サンプル試作法と本発明の多元系物質薄膜形成法の両者について、測定点数と試作及び評価に要する時間とを比較した。結果はまとめて表1に記した。
【0056】
【表1】

Figure 2004068101
<実施例1>図6に示すように、基板6上にFe−Cr−Ni合金系で作製した薄膜11の表面上にX線を照射し、検出器12によってX線の回折角に対する強度分布を調べることにより、薄膜11の各部の結晶構造の同定を行った。試料作成には、約2時間を要した。
【0057】
測定個所は、図5に示した3元物質合金領域内の66点であり、基板6を載せた試料ステージ(図示せず)を移動することによって測定点を変えた。この測定に要した時間は80時間であり、合計82時間で結果が得られている。
【0058】
<比較例1>従来の個別サンプル試作法では、66点について作製し、個々の試料の配合に12時間、溶解精製に10時間、切断試料作成に10時間を要した。また測定には、試料セットの時間も含めて200時間を要し、合計232時間が必要であった。
【0059】
<実施例2>図7に示すように、Fe−Cr−Ni合金薄膜11を、赤外線を透過するガラス基板6上に形成し、薄膜11の表面に赤外線を照射し、裏面からの赤外線の放射を、ガラス基板6を介して計測し、薄膜11の各部の裏面温度を基板6の裏面から放射される赤外線の検出によりCCD13で高速に測定し、図8に示すように各部の温度の時間変化を解析することにより、熱伝導率を一括評価した。
【0060】
この実施例2の場合、試料作成には約2時間を要した。測定個所はCCD13のセル数であり、3元物質合金領域内のみでは約5000点で、測定に要した時間は10時間であり、合計12時間で結果が得られた。
【0061】
<比較例2>一方、従来の個別サンプル試作法では、66点の個々の試料の配合に12時間、溶解精製に10時間、切断試料作成に20時間を要し、また、測定には、試料セットの時間も含めて24時間を要し、合計66時間が必要であった。
【0062】
<実施例3>図9に示すように、Al2 3 −MgO−SiO2 三元物質合金薄膜11を基板6上に形成し、薄膜11の表面に可視光線を照射し、反射光の強度をCCD13で高速に測定し、図8に示した実施例2と同様に各部の温度の時間変化を解析することにより、熱伝導率を一括評価した。
【0063】
試料作成には、約2時間を要した。測定個所はCCDのセル数であり、3元物質合金領域内のみでは約5000点で、測定に要した時間は0.1時間であり、合計2.1時間で結果が得られた。
【0064】
<比較例3>一方、従来の個別サンプル試作法では、66点について作製し、個々の試料の配合に12時間、溶解精製に10時間、切断試料作成に20時間を要し、また、測定には、試料セットの時間も含めて3時間を要し、合計45時間が必要であった。
【0065】
<実施例4>図10に示すように、In2 3 −ZnO−SnO2 の三元物質薄膜11を基板6上に形成し、薄膜11の表面に可視光線を照射し、透過光の強度をCCD13で高速に測定し、図8に示した実施例2と同様に各部の温度の時間変化を解析することにより、熱伝導率を一括評価した。
【0066】
試料作成には、約2時間を要した。測定個所はCCD13のセル数であり、3元物質合金領域内のみでは約5000点で、測定に要した時間は0.1時間であり、合計2.1時間で結果が得られた。
【0067】
<比較例4>一方、従来の個別サンプル試作法では、66点について作製し、個々の試料の配合に12時間、溶解精製に10時間、切断試料作成に20時間を要し、また、測定には、試料セットの時間も含めて3時間を要し、合計45時間が必要であった。
【0068】
<実施例5>Fe−Cr−Ni合金系薄膜11を作製した後、大気中で加熱し、600℃に1分間保持した。この薄膜を載せた試料ステージを走査し、薄膜面上の各部に、図11に示すように電子線を照射し、放射される酸素の特性X線の強度分布を検出器12により調べ、図12に示すように薄膜各部の耐酸化性の一括評価を行った。なお、図11において薄膜11の表面の符号15は酸化膜を模式的に示したものである。
【0069】
試料作成には約3時間を要した。測定個所はXMA分析領域のピクセル数であり、3元物質合金領域内のみで約230000点で、測定に要した時間は5時間であり、合計8時間で結果が得られた。
【0070】
<比較例5>一方、従来の個別サンプル試作法では、66点について作製し、個々の試料の配合に12時間、溶解精製に10時間、切断試料作成に10時間、酸化処理に10時間を要し、また、測定には、試料セットの時間も含めて10時間を要し、合計52時間が必要であった。
【0071】
<実施例6>図13に示すようにマスク14を用いて、図14に示すようにセル分割してガラス基板6上にFe−Cr−Ni合金系薄膜11を形成した。このFe−Cr−Ni合金系薄膜11に対して、図15に示すように窒素雰囲気において加熱源16により赤外線加熱しながらCCD13を用いて観察し、図16に模式的に示したような各薄膜の輪郭形状Mの変化を調べ、溶融温度を評価した。
【0072】
試料作成には、約2時間を要した。測定個所は図14の分割数に相当し、3元物質合金領域内の25点であり、測定に要した時間は10時間で、合計12時間で結果が得られた。
【0073】
<比較例6>一方、従来の個別サンプル試作法では、同数の25点について作製し、個々の試料の配合に4時間、溶解精製に10時間、切断試料作成に3時間を要し、また、測定には、試料セットの時間も含めて25時間を要し、合計42時間が必要であった。
【0074】
<実施例7>実施例6と同様に、図13に示したようにマスク14を用いて図14のようにセル分割してガラス基板6A上にAg−Cu−Ni合金系薄膜11Aを形成した。また、これと同様の方法でガラス基板6Bの上にCuの薄膜11Bを形成した。そして、Ag−Cu−Ni合金系薄膜11Aの形成された基板6AとCu薄膜11の形成された基板6Bとを図17のように配置し、窒素雰囲気において870℃まで加熱し、冷却後、超音波探傷により接合状態を調べた。この測定により図18に模式的に示したような結果を得て、薄膜材料とCuとの濡れ性を評価した。
【0075】
試料作成には、約2時間を要した。測定個所は図14の3元物質合金領域内の分割数の25点であり、測定に要した時間は1時間であり合計3時間で結果が得られている。
【0076】
<比較例7>一方、従来の個別サンプル試作法では、同数の25点について作製し、個々の試料の配合に4時間、溶解精製に10時間、切断試料作成に3時間、接合処理に10時間を要し、また、測定には、試料セットの時間も含めて10時間を要し、合計37時間が必要であった。
【0077】
【発明の効果】
以上で述べたように、本発明の多元系物質薄膜形成装置及び方法によれば、基板の表面の面方向に規則的な組成変化を持つ薄膜を形成することができる。
【0078】
また本発明の多元系物質薄膜の特性検査方法によれば、基板の表面に形成された面方向に規則的な組成変化を持つ薄膜を利用することにより、多元系物質の組成と種々の物理的及び化学的特性との相関性を調べることが可能である。
【0079】
また本発明の多元系物質薄膜の特性検査方法によれば、基板の表面の面方向に規則的な組成変化を持つ薄膜を形成し、この薄膜を利用して多元系物質の組成と種々の物理的及び化学的特性との相関性を調べることにより、所定の特性を有する多元系材料の組成の決定を極めて迅速に行うことが可能となる。
【0080】
さらに本発明の多元系物質薄膜によれば、これを特性検査に供することにより、多元系物質の組成と種々の物理的及び化学的特性との相関性を調べることが可能であり、また所定の特性を有する多元系材料の組成の決定を極めて迅速に行うことが可能である。
【図面の簡単な説明】
【図1】本発明の1つの実施の形態の2元物質薄膜形成方法の原理を示す説明図。
【図2】本発明の1つの実施の形態の薄膜形成装置の基板の下から下方を見た平面図。
【図3】本発明の1つの実施の形態の薄膜形成装置の断面図。
【図4】本発明の他の実施の形態の薄膜形成装置の基板の下から下方を見た平面図。
【図5】図4の実施の形態の薄膜形成装置で形成した3元物質薄膜の組成分布を模式的に示した説明図。
【図6】本発明の実施例1の多元系物質の組成と結晶構造との相関性を調べる方法の説明図。
【図7】本発明の実施例2の多元系物質の組成と熱伝導率との相関性を調べる方法の説明図。
【図8】本発明の実施例2における熱伝導率測定における赤外線による温度測定の結果を模式的に示した説明図。
【図9】本発明の実施例3の多元系物質の組成と反射率との相関性を調べる方法の説明図。
【図10】本発明の実施例4の多元系物質の組成と透過率との相関性を調べる方法の説明図。
【図11】本発明の実施例5の多元系物質の組成と耐酸化性との相関性を調べる方法の説明図。
【図12】本発明の実施例5における耐酸化性評価における酸素の特性X線強度測定の結果を模式的に示した説明図。
【図13】本発明の実施例6及び7に利用した薄膜の形成時のマスクと基板との位置関係を示す説明図。
【図14】本発明の実施例6及び7に利用した薄膜を模式敵に示した説明図。
【図15】本発明の実施例6の多元系物質薄膜の輪郭変化を観察する方法を模式的に示した説明図。
【図16】本発明の実施例6の多元系物質の溶融組成領域における薄膜の輪郭変化を模式的に示した説明図。
【図17】本発明の実施例7の多元系物質の濡れ性試験時の多元物質基板と被接合物質基板の配置及び溶融した多元系物質の形状変化を示す説明図。
【図18】本発明の実施例7の多元系物質の濡れ性試験における、溶融組成領域の接合状態の超音波測定の結果を調べる方法の説明図。
【符号の説明】
1 真空容器
2A,2B,2C 蒸発源
3 スリット
4 遮蔽板
5 排気装置
6 基板
7 ヒーター
8 シャッター
9,10 膜厚モニタ
11 薄膜
12 検出器
13 CCD
14 マスク
15 酸化被膜
16 加熱器
40 蒸気通過孔[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin film forming apparatus, a multi-material thin film forming method, a multi-material thin film characteristic inspection method, and a multi-material thin film.
[0002]
[Prior art]
In general, when determining a material composition that satisfies a material property for which no existing data exists or a material property for which there is little existing data, the range in which each component is estimated to be effective in each composition system consisting of a plurality of candidate material components By repeating the process of trial production and evaluation of individual samples in which the amounts of components have been changed in, a multi-component substance having an optimal composition is selected.
[0003]
However, the application of combinatorial chemistry has also attracted attention in the technology for selecting a multi-component substance having the optimum composition. Combinatorial chemistry is a systematic, efficient, and rapid synthesis of compounds (libraries) using combinations of elements and functional groups, and rapid evaluation of those compounds, resulting in a carpet bombing. This is a technique that performs a search to dramatically improve the speed of optimization. This technique is widely used practically in the field of pharmaceuticals, starting with the synthesis of peptides and sugar compounds, for which automated synthesis techniques utilizing solid phase synthesis have been developed.
[0004]
In recent years, there has been attempted a material synthesis / evaluation method using a thin film formed by a method such as molecular beam epitaxy by applying this combinatorial chemistry to the field of inorganic materials. In this method, a multi-component compound can be created by sequentially depositing different substances on a substrate, and by forming a plurality of different multi-component compounds in a plurality of limited regions on the substrate, these multi-component compounds can be formed on a substrate basis. Compounds can be evaluated at once (JP-A-2001-272342).
[0005]
[Problems to be solved by the invention]
However, the above-described conventional method for selecting a multi-component material having an optimum composition has the following problems.
[0006]
First, the most common method is to select the optimum composition by repeating trial production and evaluation of individual samples using the above-mentioned amounts of each component as parameters. This increases the number of times and takes time.
[0007]
In the method using a thin film disclosed in Japanese Patent Application Laid-Open No. 2001-272342, an interlocking mechanism such as exchange of an evaporation source, exchange of a mask pattern, and movement of a substrate is required to form a thin film on a substrate. Therefore, there is a problem that a complicated and expensive device is required. In addition, in this method, the composition of the thin film material arranged on the substrate is not always regular, and there is a problem that it is not suitable for systematic trial production and evaluation of the material.
[0008]
The inventors of the present application require that when a vaporized substance moving from a linear or long evaporation source to a substrate in a vacuum is attached to a substrate surface, the vaporized substance is shielded by a shielding plate provided on an evaporation path. By giving a gradient to the amount of evaporating substance reaching each position on the substrate, and arranging a plurality of pairs of evaporation sources and shielding plates so that this gradient composition part overlaps, different compositions on the substrate We found a method of synthesizing substances simultaneously to form a thin film with a regular composition change in the direction of the substrate surface, and by using this regularity, we could correlate the composition of multi-component substances with various physical and chemical properties. It was also found that it was possible to investigate.
[0009]
An object of the present invention is to provide a thin film forming apparatus and a multi-material thin film forming method for forming a thin film whose composition changes regularly in the surface direction on a substrate by a simple method.
[0010]
The present invention also provides a thin film formed such that the composition changes regularly in the plane direction on the substrate, systematically using the characteristic composition distribution regularity to determine the composition and characteristics of the multi-component material. It is an object of the present invention to provide a method for inspecting the characteristics of a multi-material thin film for collectively evaluating the relation.
[0011]
Another object of the present invention is to provide a multi-material thin film that can be subjected to the above-described property inspection.
[0012]
[Means for Solving the Problems]
The thin film forming apparatus according to claim 1, wherein the plurality of evaporation sources are each linear or long in one direction, a shielding plate installed on a downstream side of a substance flow from each of the evaporation sources, and a line of the shielding plate. A substrate on which the material vapor flowing from the evaporation source is vapor-deposited through a through hole having a shape that is long in one direction, the substrate being formed by connecting four corners of each of the evaporation sources and four corners of a target region on the substrate. A part of the material flow moving from the evaporation source toward the substrate from each evaporation source is shielded by the shielding plate, and the amount of the material reaching each position of the target area on the surface of the substrate from each evaporation source has a gradient. And the evaporation source, the shielding plate, and the substrate are arranged such that regions where the amounts of substances reaching the substrate from the evaporation sources are inclined overlap each other.
[0013]
In the method for forming a multi-material thin film according to the second aspect of the present invention, each position on the substrate is shielded by a shielding plate in a path of the evaporation material moving from the evaporation source which is linear or long in one direction to the substrate in a vacuum. By providing a plurality of pairs of evaporation sources and shields so that the gradient composition overlaps, materials with different compositions can be synthesized simultaneously on the substrate, In addition, a thin film having a regular composition change is formed.
[0014]
The multi-material thin film forming method of the invention according to claim 3, wherein the plurality of evaporation sources are each linear or elongated in one direction, a shielding plate provided downstream of a material flow from the evaporation source, and the shielding plate. Using a thin film forming apparatus having a substrate for depositing metal vapor flowing from each of the evaporation sources on the surface thereof through the through holes, connecting four corners of each of the evaporation sources and four corners of a target region on the substrate. A part of the substance flow moving from each evaporation source toward the substrate in the formed space is shielded by a shielding plate, and the amount of the substance reaching each position of the target area on the substrate surface from each evaporation source has a gradient. The evaporation source, the shielding plate, and the substrate are arranged so that the regions where the amounts of the substances reaching the evaporation from the evaporation sources onto the substrate overlap are overlapped, and the composition is uniform in the film thickness direction, and one or more types of components are provided. A plurality of kinds of substances composed of The multi-material thin film having continuously changing composition distribution in the plane direction of the surface is characterized in that formed on the substrate.
[0015]
By using the thin film forming apparatus according to the first aspect of the present invention, or by implementing the multi-material thin film forming method according to the second and third aspects of the present invention, it is possible to form a plurality of conventional multi-material thin films on a substrate. As described above, it can be easily formed without moving the evaporation source and the shielding plate. And since the composition of the thin film formed on the substrate in this way changes continuously in the plane direction, it is extremely useful for systematically examining the relationship between the composition and properties of the multi-component material. is there.
[0016]
The composition at each position on the substrate of the thin film formed by the thin film forming apparatus according to the first aspect of the present invention or by the method of forming a multi-material thin film according to the second or third aspect of the present invention is obtained by shielding each evaporation source at that position. It can be calculated from the degree and the distance from each evaporation source. Therefore, the relationship between the local composition and the local characteristics of the multi-component material can be obtained by physically or chemically evaluating the local material properties at each position of the thin film. By using this method, it is not necessary to repeat the sample preparation and evaluation for each composition as in the conventional method, and it is sufficient to collectively evaluate each part of the thin film formed on the substrate, and the correlation between the composition and the characteristics can be quickly determined. It is possible to find out.
[0017]
Therefore, a thin film synthesized using the thin film forming apparatus according to the first aspect of the present invention or the multi-material thin film forming method according to the second aspect of the present invention can be used to quickly grasp the correlation between composition and properties. It is desirable to evaluate them all at once. The method of evaluating the physical or chemical properties of a multi-layered thin film material uses light, radiation, electron beam, or heat flux, and irradiates the entire target area on the thin film or scans them uniformly. There is a method of detecting and evaluating the intensity of the resulting reflected ray, transmitted ray and radiation.
[0018]
The method of inspecting the characteristics of a multi-material thin film according to the inventions of claims 4 to 13 is a method of examining the correlation between the composition and the characteristics of the multi-material. In particular, the characteristic inspection method of the multi-component thin film of the inventions according to claims 4 to 8 is characterized by a method of collectively detecting the physical or chemical characteristics of the multi-component thin film material.
[0019]
In other words, the method for inspecting the characteristics of a multi-material thin film according to the fourth aspect of the present invention provides a method for inspecting the properties of a multi-material thin film formed on a substrate by the multi-material thin film forming method of the second or third invention. Local composition at a position is geometrically calculated from the relative positional relationship between the evaporation source, the shielding plate and the substrate, and a physical or chemical property of each position on the thin film surface is evaluated. Is what you do.
[0020]
The method for inspecting characteristics of a multi-material thin film according to the invention of claim 5 is a thin film formed on the surface of the substrate, wherein a plurality of materials having a uniform composition in the film thickness direction and composed of one or more components are used. For the multi-component material thin film having a composition distribution in which the proportion of the species continuously changes in the plane direction of the surface of the substrate, the entire surface is irradiated with one or more of light, radiation, an electron beam, or a heat flux, or Scanning is applied uniformly, and the intensity distribution of the light, radiation or electron beam emitted or reflected by the thin film on the thin film surface is detected collectively by a surface scanning detector, a linear detector or a surface detector. It is assumed that.
[0021]
7. The method for inspecting the characteristics of a multi-material thin film according to claim 6, wherein the thin film formed on the surface of the substrate has a uniform composition in a thickness direction and is composed of a plurality of substances composed of one or more components. For the multi-component material thin film having a composition distribution in which the proportion of the species continuously changes in the plane direction of the surface of the substrate, the entire surface is irradiated with one or more of light, radiation, an electron beam, or a heat flux, or Scan and apply uniformly, and irradiate or scan the entire surface with at least one of light, radiation, electron beam, and heat flux to the area to be evaluated on the thin film surface, or apply evenly, and transmit the thin film and the substrate. The method is characterized in that the intensity distribution of the light, radiation and electron beams on the thin film surface is detected collectively by a surface scanning detector, a linear detector or a planar detector.
[0022]
The method for inspecting the characteristics of a multi-material thin film according to the invention of claim 7 is a thin film formed on a surface of a substrate, wherein a plurality of materials having a uniform composition in a film thickness direction and comprising at least one component are used. Exposing a multi-material thin film having a composition distribution in which the species abundance continuously changes in the plane direction of the surface of the substrate to a predetermined atmosphere, and thereafter applying light, radiation, electron beam, heat flux to the thin film Either one or more of the entire surface is illuminated or uniformly applied by scanning, and a light beam passing through the thin film and the substrate, radiation, an intensity distribution on the thin film surface of the electron beam, a surface scanning type detector, a linear detector or The detection is performed collectively by a planar detector.
[0023]
The method for inspecting the properties of a multi-material thin film according to the invention of claim 8 is a thin film formed on a surface of a substrate, wherein a plurality of materials having a uniform composition in a film thickness direction and composed of one or more components are used. For a multi-material thin film having a composition distribution in which the species abundance continuously changes in the plane direction of the surface of the substrate, the region to be evaluated is uniformly irradiated with X-rays by scanning X-rays. The present invention is characterized in that a diffraction angle of X-rays reflected from a portion irradiated with X-rays or an energy distribution of an electron beam is measured.
[0024]
In the method for inspecting a multi-material thin film according to the fourth to eighth aspects of the present invention, the physical and chemical properties of the multi-material thin film formed on the substrate are collectively detected. In addition, various evaluations can be performed on the detected multi-material thin film based on physical and chemical properties. The characteristic inspection method of the multi-material thin film according to the ninth to thirteenth aspects is characterized by these evaluation methods.
[0025]
That is, the method for inspecting the characteristics of a multi-material thin film according to the ninth aspect of the present invention is a thin film formed on the surface of a substrate, wherein the material has a uniform composition in the thickness direction and is composed of one or more components. For a multi-component material thin film having a composition distribution in which a plurality of types of the composition continuously change in the plane direction of the surface of the substrate, the region to be evaluated is uniformly irradiated with X-rays by scanning X-rays, The present invention is characterized in that the crystal structure of each part of the surface of the thin film is collectively evaluated by measuring a diffraction angle of an X-ray reflected from an irradiated portion of the thin film or an energy distribution of an electron beam.
[0026]
The method for inspecting characteristics of a multi-material thin film according to the invention of claim 10 is a thin film formed on the surface of a transparent substrate, wherein the composition is homogeneous in the film thickness direction and is composed of one or more components. For a multi-material thin film having a composition distribution in which the proportions of a plurality of types continuously change in the plane direction of the surface of the substrate, a heat flux is given to the entire surface of the region to be evaluated, and the heat flux is passed through the transparent substrate. By measuring the intensity distribution of infrared rays radiated from the surface opposite to the surface on which the surface is given, the distribution of thermal conductivity on the thin film surface is collectively evaluated.
[0027]
12. The method for inspecting the characteristics of a multi-material thin film according to claim 11, wherein the thin film formed on the surface of the substrate has a uniform composition in the thickness direction and is composed of a plurality of materials composed of one or more components. For a multi-material thin film having a composition distribution in which the species abundance continuously changes in the plane direction of the surface of the substrate, the entire region is irradiated or scanned with a light beam or given evenly by scanning the region to be evaluated, It is characterized in that the distribution of the reflectance on the thin film surface is collectively evaluated by measuring the intensity distribution on the thin film surface of the light beam reflected from the irradiated portion of the light beam.
[0028]
The method for inspecting the characteristics of a multi-material thin film according to the twelfth aspect of the present invention is a method of inspecting a thin film formed on a surface of a transparent substrate, wherein the composition has a uniform composition in a thickness direction and is composed of one or more components. Irradiation is performed by uniformly irradiating or scanning a light beam over the entire region to be evaluated of the multi-material thin film having a composition distribution in which a plurality of kinds of the composition ratios continuously change in the plane direction of the surface of the substrate, The distribution of the transmittance on the thin film surface is collectively evaluated by measuring the intensity distribution on the thin film surface of the light beam transmitted through the portion.
[0029]
The method for inspecting the characteristics of a multi-material thin film according to the invention of claim 13 is a thin film formed on a surface of a substrate, wherein a plurality of materials having a uniform composition in a film thickness direction and composed of one or more components are used. The multi-substance thin film having a composition distribution in which the abundance of the species continuously changes in the plane direction of the surface of the substrate is held in the air or in an oxidizing atmosphere, and an electron beam is scanned over a region to be evaluated of the thin film. By measuring the intensity distribution of characteristic X-rays on the thin film surface of oxygen emitted from the irradiated portion of the electron beam on the thin film surface, the correlation between the composition of the multi-material thin film and the oxidation resistance is obtained. Is characterized by examining.
[0030]
In order to evaluate the characteristics of a multi-component material thin film formed on a substrate at high temperatures, it is necessary to divide the thin film to be formed in advance for each composition region in order to prevent the diffusion of each component in the film. .
[0031]
The inventions of claims 14 and 15 are directed to a thin film forming apparatus and a multi-material thin film forming method capable of forming a plurality of independent thin films on a substrate in consideration of such points.
[0032]
That is, in the thin film forming apparatus according to the fourteenth aspect of the present invention, there is provided the thin film forming apparatus, wherein a plurality of the evaporation sources are each linear or long in one direction, a shielding plate installed on a downstream side of a substance flow from each of the evaporation sources, A substrate that vapor-deposits a substance vapor flowing from the evaporation source through the through-hole on the surface thereof, and a lattice-shaped mask provided on the surface of the substrate on the side of the evaporation source; and four corners of each of the evaporation sources. A space formed by connecting the four corners of the target area on the substrate is shielded by the shielding plate from a part of the substance flow moving from each evaporation source toward the substrate. A gradient is provided for the amount of the substance reaching each position, the area where the amount of the substance reaches the substrate from each evaporation source is overlapped, and a plurality of independent thin films are formed on the substrate by the mask. Place the evaporation source, shielding plate, substrate and mask It is characterized in.
[0033]
The method of forming a multi-material thin film according to claim 15, wherein the plurality of evaporation sources are each linear or elongated in one direction, a shielding plate provided downstream of a material flow from the evaporation source, and the shielding plate. Using a thin film forming apparatus comprising: a substrate on which the metal vapor flowing from each of the evaporation sources is vapor-deposited through the through holes; and a lattice-shaped mask provided on the surface of the substrate on the evaporation source side. The space formed by connecting the four corners of each of the evaporation sources and the four corners of the target region on the substrate is partially shielded by a shielding plate from a part of the substance flow moving from each evaporation source toward the substrate, and from each evaporation source. There is a gradient in the amount of material reaching each position of the target region on the substrate surface, the region where the amount of material reaching the evaporation from each evaporation source onto the substrate overlaps, and an independent thin film is formed on the substrate by the mask. The evaporation source, the shielding plate and the substrate are formed so as to form a plurality. A plurality of types of substances having a uniform composition in the film thickness direction and composed of one or more components have a composition distribution in which the proportions thereof change continuously in the plane direction of the surface of the substrate. In addition, a plurality of independent thin films are formed on a substrate.
[0034]
In the thin film forming apparatus according to the fourteenth aspect of the present invention and the multi-material thin film forming method according to the fifteenth aspect, a plurality of independent thin films are formed on the substrate by disposing a lattice-shaped mask on the surface of the substrate on the side of the evaporation source. Can be formed.
[0035]
To evaluate the characteristics of a multi-material thin film formed on a substrate at high temperatures, if it is performed on a thin film divided into a plurality of parts for each composition region, the diffusion of each component in the film can be achieved. Thus, the high-temperature characteristics of each composition region can be accurately investigated.
[0036]
17. The method for inspecting characteristics of a multi-component material thin film according to claim 16, wherein a plurality of types of metal materials having a uniform composition in a film thickness direction and composed of one or more components have an abundance ratio of the surface of the substrate. In order to inspect the characteristics of a thin film composed of only a plurality of metal components independently formed on a glass substrate, the glass substrate and the thin film are exposed to the atmosphere or an inert gas. Raising the temperature under a gas atmosphere to a predetermined temperature, detecting a change in the contour shape of the thin film at the temperature by an optical method, and examining the correlation between the composition of the multi-component material and the melting temperature. Things.
[0037]
Generally, the wettability between glass and metal is poor, and if the thin film is heated by this method, the contour shape changes due to the reduction of the surface energy from the melted portion, and the composition at any temperature of the composition system is visually observed. The molten composition region can be determined.
[0038]
The method for inspecting the characteristics of a multi-material thin film according to the seventeenth aspect of the present invention is the same as the multi-material thin film forming method of the fifteenth aspect, wherein a plurality of thin films made of only metal components and independent of each other are formed on the first substrate. 16. A multi-material thin film forming method according to claim 15, wherein a plurality of independent thin films having a single composition are formed on a second substrate by using a pattern mask, and the first substrate and the second substrate are separated from each other. In a state where the thin films formed on the first substrate are superposed so as to face each other, the temperature is raised in the atmosphere or an inert gas atmosphere and maintained at a predetermined temperature at which at least a part of the thin film on the first substrate is melted. After cooling, the bonded state of the first and second substrates is examined by ultrasonic flaw detection to examine the correlation between the composition of the multi-component material and the wettability.
[0039]
In a thin film divided into a plurality of independent regions, in a molten region, in a composition region having good wettability with a superimposed counterpart substance, a favorable bonding state is observed over almost the entire divided region. it can. However, since a non-bonded portion is formed in a portion having poor wettability, it is easy to grasp a composition region having good wettability between the two.
[0040]
In the thin film forming apparatus according to the invention, a plurality of evaporation sources, a shielding plate provided on a downstream side of a substance flow from each of the evaporation sources, and a plurality of linear or unidirectionally long transparent surfaces of the shielding plate. A substrate that vapor-deposits each of the material vapors flowing from the evaporation source through the holes on the surface thereof, and forms a space formed by connecting four corners of each of the evaporation sources and four corners of a target region on the substrate from each of the evaporation sources. A part of the substance flow moving toward the substrate is shielded by the shielding plate, and the amount of the substance reaching each position of the target area on the surface of the substrate from each evaporation source has a gradient, and from each evaporation source. The evaporation source, the shielding plate, and the substrate are arranged so that the regions where the amount of substance reaching the substrate is inclined overlap.
[0041]
Since the vapor of the substance spreads spherically around the position of the substance to be heated, if the portion holding the substance to be evaporated is linear or long in one direction, a linear evaporation source is formed. However, even if the container itself holding the substance to be evaporated is not linear or long in one direction, the generated vapor is arranged so as to pass through the linear or long slit in one direction. Accordingly, a multi-material thin film equivalent to a linear or unidirectionally long evaporation source can be formed on the substrate.
[0042]
The multi-material thin film of the invention according to claim 19 is a multi-material thin film formed on a surface of a substrate, wherein the multi-material thin film has a uniform composition in a thickness direction and is composed of a plurality of materials composed of one or more kinds of components. The species are characterized in that their abundances have a composition distribution that varies continuously in the plane direction of the surface of the substrate.
[0043]
The multi-material thin film of the invention according to claim 20 is a multi-material thin film formed on the surface of the substrate, wherein a plurality of types of materials having a uniform composition in the thickness direction and composed of one or more components are They are characterized in that their abundances have a composition distribution that continuously changes in the plane direction of the surface of the substrate, and are formed separately in a plurality of independent sections on the substrate. .
[0044]
In the multi-material thin film of the invention according to claim 18 or 19, the physical and chemical properties of the multi-material can be evaluated by applying the characteristic inspection method according to claims 4 to 17.
[0045]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an apparatus for forming a thin film using a binary material using the thin film forming method of the present invention. In this thin film forming apparatus, the shielding plate 4 is arranged for the evaporation sources 2A and 2B of the binary material, the substrate 6 is arranged behind the shielding plate 4, and the materials of the evaporation sources 2A and 2B are evaporated. After passing through the shielding plate 4, vapor deposition is performed on a predetermined region (target region) on the substrate 6 located behind the shielding plate 4.
[0046]
When the shielding plate 4 is arranged as shown in FIG. 1, the evaporation source 2A, 2B which is not shielded from each position on the substrate 6 and the distance from the evaporation source 2A, 2B depend on the length ratio and the distance from the evaporation source 2A, 2B. The amount of the substance reaching the substrate 6 from the substrates 2 and 2B is determined, and a thin film having a composition according to the amount of the evaporation from the evaporation sources 2A and 2B is synthesized and formed in a predetermined region (target region) on the substrate 6. . The amount reached from each of the evaporation sources 2 and 2B continuously changes over a part or the entire surface of the substrate. Therefore, it is possible to form a thin film whose composition continuously changes in the plane direction according to the manner in which the composition change areas overlap.
[0047]
Further, as shown in FIG. 2, the evaporation sources A (2A), B (2B), and C (2C) of the three substances are arranged so that their directions differ by 120 ° about a certain point in the longitudinal direction. Each side of the triangular vapor passage hole 40 provided in the shielding plate 4 is arranged in a direction orthogonal to the longitudinal direction of each of the evaporation sources 2A, 2B, and 2C, and on the substrate 6 where the amount of each evaporated substance is inclined. By positioning the shielding plate 4 so that the regions overlap, a thin film having a composition distribution similar to the ternary phase diagram can be formed in a predetermined region on the substrate 6. As shown in FIG. 2, each of the evaporation sources 2A, 2B and 2C is provided with an elongated slit 3, through which the vapor of the evaporation raw material is evaporated.
[0048]
This method has an epoch-making feature that, unlike the conventional formation of a plurality of multi-material thin films on a substrate, a multi-material thin film can be easily formed without moving an evaporation source or a shielding plate. Further, since the composition is continuously changing, it is extremely effective for systematically examining the relationship between the composition and properties of the multi-component material.
[0049]
FIG. 3 shows a thin film forming apparatus embodying the principle of the present invention. Although FIG. 3 and the following description show the case of forming a binary material thin film for simplification of the description, in actuality, all the three-dimensional materials are arranged in the plane arrangement shown in FIG. 2 or FIG. Do with.
[0050]
In FIG. 3, 1 is a vacuum vessel, 2A and 2B are evaporation sources, 4 is a shielding plate, and 5 is a vacuum exhaust device. Reference numeral 6 denotes a substrate to be deposited, and reference numeral 7 denotes a heater for heating the substrate 6. Reference numeral 8 denotes a shutter placed on the front surface of the substrate 6. Reference numerals 9 and 10 denote film thickness monitors corresponding to the evaporation sources 2A and 2B, respectively, which are used to confirm the film formation rate in terms of the number of atoms per unit area and unit time.
[0051]
Next, a multi-material thin film forming method using the thin film forming apparatus of FIG. 3 will be described. The thin film is formed by the following procedure. First, the vacuum vessel 1 is opened, the substance to be evaporated is set in the linear evaporation sources 2A and 2B, the positions of the shielding plate 4 and the evaporation sources 2A and 2B are set at predetermined positions, and then the vacuum vessel 1 is closed. Then, vacuum evacuation is performed by the vacuum evacuation device 5. The inside of the vacuum vessel 1 is 1 × 10 -4 Vacuum higher than Pa. After the degree of vacuum is sufficiently increased, the substrate 6 is heated by the heater 7 to remove moisture and the like.
[0052]
Next, the evaporation sources 2A and 2B are heated while the shutter 8 on the front surface of the substrate 6 is closed, and the film formation rates are measured per unit area and unit time by the film thickness monitors 9 and 10 corresponding to the evaporation sources 2A and 2B. Confirm in terms of the number of atoms. When the film forming speeds from the evaporation sources 2A and 2B are equal and a predetermined value is reached, the shutter 8 is opened, and vapor deposition and film formation on a predetermined vapor deposition target area on the substrate 6 are started. When a predetermined amount of film has been formed, the shutter 8 is closed again to complete the formation of the thin film.
[0053]
When a ternary material thin film is formed using A, B, and C as raw materials contained in the evaporation sources 2A, 2B, and 2C, the composition of each position on the thin film surface is determined by the evaporation sources 2A, 2B, and 2C, and the shielding plate 4 And the geometric relationship of the substrate 6. For example, as shown in FIG. 4, when the evaporation sources 2A, 2B, and 2C are arranged in three sides of a regular triangle, and the raw materials A, B, and C are stored and evaporated, the evaporation sources 2A, 2B, and 2C are formed on the surface of the substrate 6. The thin film has a distribution as shown in FIG. In FIG. 5, the thin film is a formation region of a substance A alone, a substance B alone, a substance C alone, an AB binary material alloy, an AC binary material alloy, a BC binary material alloy, and an ABC ternary material alloy. Divided into
[0054]
If the substance to be evaporated is a multi-component alloy, the composition range of the formed ternary substance is a pseudo ternary composition system. For example, if the substance A is a pure substance of only the component a, the substance B is a two-component alloy of the component bc, and the substance C is a three-component alloy of the component de-ef, the above-mentioned AB formed is formed. The composition range of the -C ternary alloy is the range of the pseudo-ternary composition system of the a- (bc)-(d-ef) alloy. However, the composition ratio of bc and def in this case matches the composition ratio of the thin film in the B-only region and the C-only region.
[0055]
【Example】
The results of examining the correlation between the composition and properties of the multi-component material using the ABC-ternary material thin film formed by the above method are shown in the following examples. For comparison, in the same composition system, the correlation between the composition and properties of the multi-component material was examined by a conventional individual sample trial production method. This method is a method in which a large number of samples are individually prepared for each composition and evaluated individually. The number of measurement points and the time required for trial production and evaluation were compared for both the individual sample trial production method and the multi-material thin film formation method of the present invention. The results are summarized in Table 1.
[0056]
[Table 1]
Figure 2004068101
<Example 1> As shown in FIG. 6, the surface of a thin film 11 made of an Fe—Cr—Ni alloy on a substrate 6 is irradiated with X-rays, and the intensity distribution with respect to the X-ray diffraction angle is detected by a detector 12. Was examined, the crystal structure of each part of the thin film 11 was identified. It took about 2 hours to prepare the sample.
[0057]
The measurement points were 66 points in the ternary material alloy region shown in FIG. 5, and the measurement points were changed by moving a sample stage (not shown) on which the substrate 6 was mounted. The time required for this measurement was 80 hours, and the results were obtained in a total of 82 hours.
[0058]
<Comparative Example 1> In the conventional individual sample trial production method, 66 samples were prepared, and it took 12 hours for blending of each sample, 10 hours for dissolution and purification, and 10 hours for preparation of cut samples. In addition, the measurement required 200 hours including the time for setting the sample, and required a total of 232 hours.
[0059]
<Embodiment 2> As shown in FIG. 7, an Fe—Cr—Ni alloy thin film 11 is formed on a glass substrate 6 that transmits infrared light, the surface of the thin film 11 is irradiated with infrared light, and the emission of infrared light from the back surface is performed. Is measured through the glass substrate 6, and the back surface temperature of each part of the thin film 11 is measured at high speed by the CCD 13 by detecting infrared rays emitted from the back surface of the substrate 6, and as shown in FIG. Was analyzed to evaluate the thermal conductivity at once.
[0060]
In the case of Example 2, it took about 2 hours to prepare a sample. The measurement location was the number of cells of the CCD 13, and the number of cells was about 5000 in the ternary material alloy region alone. The time required for the measurement was 10 hours, and the results were obtained in a total of 12 hours.
[0061]
<Comparative Example 2> On the other hand, in the conventional individual sample trial production method, it took 12 hours to mix 66 individual samples, 10 hours to dissolve and purify, and 20 hours to produce cut samples. It took 24 hours including the time for the set, for a total of 66 hours.
[0062]
<Embodiment 3> As shown in FIG. 2 O 3 -MgO-SiO 2 A ternary material alloy thin film 11 is formed on the substrate 6, the surface of the thin film 11 is irradiated with visible light, and the intensity of the reflected light is measured at high speed by the CCD 13, and the same as in Example 2 shown in FIG. The thermal conductivity was collectively evaluated by analyzing the time change of the temperature.
[0063]
It took about 2 hours to prepare the sample. The measurement location was the number of CCD cells. About 5000 points were found only in the ternary material alloy region, the time required for the measurement was 0.1 hour, and the result was obtained in a total of 2.1 hours.
[0064]
<Comparative Example 3> On the other hand, in the conventional individual sample trial production method, 66 points were prepared, and it took 12 hours to mix individual samples, 10 hours to dissolve and purify, 20 hours to make cut samples, and Required 3 hours including the time for setting the sample, and a total of 45 hours was required.
[0065]
<Embodiment 4> As shown in FIG. 2 O 3 -ZnO-SnO 2 The ternary substance thin film 11 is formed on the substrate 6, the surface of the thin film 11 is irradiated with visible light, the intensity of transmitted light is measured at high speed by the CCD 13, and the same as in Example 2 shown in FIG. The thermal conductivity was collectively evaluated by analyzing the time change of the temperature.
[0066]
It took about 2 hours to prepare the sample. The measurement location was the number of cells of the CCD 13. The number of cells was about 5000 in the ternary material alloy region alone. The time required for the measurement was 0.1 hour, and the result was obtained in a total of 2.1 hours.
[0067]
<Comparative Example 4> On the other hand, in the conventional individual sample trial production method, 66 points were prepared, and it took 12 hours to mix individual samples, 10 hours to dissolve and purify, 20 hours to make cut samples, and to measure. Required 3 hours including the time for setting the sample, and a total of 45 hours was required.
[0068]
<Example 5> After the Fe-Cr-Ni alloy-based thin film 11 was produced, it was heated in the air and kept at 600 ° C for 1 minute. The sample stage on which the thin film is mounted is scanned, and each portion on the thin film surface is irradiated with an electron beam as shown in FIG. As shown in Table 2, the oxidation resistance of each part of the thin film was collectively evaluated. In FIG. 11, reference numeral 15 on the surface of the thin film 11 schematically indicates an oxide film.
[0069]
It took about 3 hours to prepare the sample. The measurement location was the number of pixels in the XMA analysis area. About 230,000 points were found only in the ternary material alloy area, and the time required for the measurement was 5 hours, and the result was obtained in a total of 8 hours.
[0070]
<Comparative Example 5> On the other hand, in the conventional individual sample trial production method, 66 points were prepared, and it took 12 hours to mix individual samples, 10 hours to dissolve and purify, 10 hours to produce cut samples, and 10 hours to oxidize. In addition, the measurement required 10 hours including the time for setting the sample, and required a total of 52 hours.
[0071]
<Embodiment 6> Using a mask 14 as shown in FIG. 13, a cell was divided as shown in FIG. 14 to form an Fe—Cr—Ni alloy thin film 11 on a glass substrate 6. The Fe—Cr—Ni alloy-based thin film 11 was observed using a CCD 13 while heating infrared light from a heating source 16 in a nitrogen atmosphere as shown in FIG. Were examined for changes in the contour shape M, and the melting temperature was evaluated.
[0072]
It took about 2 hours to prepare the sample. The measurement locations corresponded to the number of divisions in FIG. 14, and were 25 points in the ternary material alloy region. The time required for the measurement was 10 hours, and the result was obtained in a total of 12 hours.
[0073]
<Comparative Example 6> On the other hand, in the conventional individual sample trial production method, 25 samples of the same number were prepared, and it took 4 hours to mix individual samples, 10 hours to dissolve and purify, 3 hours to make cut samples, and The measurement required 25 hours including the time for setting the sample, and required a total of 42 hours.
[0074]
<Embodiment 7> Similarly to Embodiment 6, the Ag-Cu-Ni alloy-based thin film 11A was formed on the glass substrate 6A by dividing the cell using the mask 14 as shown in FIG. . Further, a Cu thin film 11B was formed on the glass substrate 6B by the same method as described above. Then, the substrate 6A on which the Ag-Cu-Ni alloy-based thin film 11A is formed and the substrate 6B on which the Cu thin film 11 is formed are arranged as shown in Fig. 17, heated to 870C in a nitrogen atmosphere, cooled, and then cooled. The joined state was examined by ultrasonic flaw detection. By this measurement, the results schematically shown in FIG. 18 were obtained, and the wettability between the thin film material and Cu was evaluated.
[0075]
It took about 2 hours to prepare the sample. The measurement location is 25 points of the division number in the ternary material alloy region in FIG. 14, and the time required for the measurement is 1 hour, and the result is obtained in 3 hours in total.
[0076]
<Comparative Example 7> On the other hand, in the conventional individual sample prototyping method, the same number of 25 points were prepared, and 4 hours for blending individual samples, 10 hours for dissolving and purification, 3 hours for cutting sample preparation, and 10 hours for joining processing. In addition, the measurement required 10 hours including the time for setting the sample, and required a total of 37 hours.
[0077]
【The invention's effect】
As described above, according to the multi-material thin film forming apparatus and method of the present invention, a thin film having a regular composition change in the surface direction of the substrate can be formed.
[0078]
Further, according to the method for inspecting characteristics of a multi-component material thin film of the present invention, the composition of the multi-component material and various physical properties can be improved by utilizing a thin film having a regular composition change in the plane direction formed on the surface of the substrate. And its correlation with chemical properties.
[0079]
According to the method for inspecting the properties of a multi-material thin film of the present invention, a thin film having a regular composition change in the surface direction of the substrate surface is formed, and the composition of the multi-material and various physical properties are utilized by using the thin film. By examining the correlation with the chemical and chemical properties, it is possible to determine the composition of a multi-component material having predetermined properties very quickly.
[0080]
Further, according to the multi-material thin film of the present invention, by subjecting the multi-material thin film to a characteristic test, it is possible to examine the correlation between the composition of the multi-material and various physical and chemical properties. The determination of the composition of a multicomponent material having properties can be made very quickly.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing the principle of a binary material thin film forming method according to one embodiment of the present invention.
FIG. 2 is a plan view of the thin film forming apparatus according to one embodiment of the present invention as viewed from below the substrate.
FIG. 3 is a sectional view of a thin film forming apparatus according to one embodiment of the present invention.
FIG. 4 is a plan view of a thin film forming apparatus according to another embodiment of the present invention as viewed from below a substrate.
5 is an explanatory view schematically showing a composition distribution of a ternary substance thin film formed by the thin film forming apparatus according to the embodiment of FIG. 4;
FIG. 6 is an explanatory diagram of a method for examining the correlation between the composition and the crystal structure of a multi-component substance according to Example 1 of the present invention.
FIG. 7 is an explanatory diagram of a method for examining the correlation between the composition of a multi-component substance and thermal conductivity according to Example 2 of the present invention.
FIG. 8 is an explanatory view schematically showing a result of temperature measurement by infrared rays in the measurement of thermal conductivity in Example 2 of the present invention.
FIG. 9 is an explanatory diagram of a method for examining the correlation between the composition of a multi-component material and the reflectance according to the third embodiment of the present invention.
FIG. 10 is an explanatory diagram of a method for examining the correlation between the composition of a multi-component substance and the transmittance according to Example 4 of the present invention.
FIG. 11 is an explanatory diagram of a method for examining the correlation between the composition of a multi-component substance and oxidation resistance according to Example 5 of the present invention.
FIG. 12 is an explanatory diagram schematically showing the results of oxygen characteristic X-ray intensity measurement in the oxidation resistance evaluation in Example 5 of the present invention.
FIG. 13 is an explanatory diagram showing a positional relationship between a mask and a substrate when forming a thin film used in Examples 6 and 7 of the present invention.
FIG. 14 is an explanatory view schematically showing a thin film used in Examples 6 and 7 of the present invention.
FIG. 15 is an explanatory view schematically showing a method for observing a contour change of a multi-component material thin film according to Example 6 of the present invention.
FIG. 16 is an explanatory view schematically showing a profile change of a thin film in a molten composition region of a multicomponent substance according to Example 6 of the present invention.
FIG. 17 is an explanatory view showing the arrangement of a multi-substance substrate and a substance-to-be-joined substrate and a shape change of a molten multi-substance during a wettability test of a multi-substance according to Example 7 of the present invention.
FIG. 18 is an explanatory diagram of a method of examining the result of ultrasonic measurement of the bonding state in a molten composition region in a wettability test of a multicomponent substance according to Example 7 of the present invention.
[Explanation of symbols]
1 vacuum container
2A, 2B, 2C evaporation source
3 slits
4 Shield plate
5 Exhaust device
6 substrate
7 heater
8 Shutter
9,10 Film thickness monitor
11 Thin film
12 Detector
13 CCD
14 Mask
15 Oxide film
16 heater
40 steam passage hole

Claims (20)

複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源各々からの物質流の下流側に設置され、前記蒸発源各々からの物質量の一部を遮蔽する遮蔽部材と、前記遮蔽部材を通して前記蒸発源各々から流れてくる物質流の残部それぞれをその表面に付着させる基板とを備え、
前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を前記遮蔽部材によって遮蔽させ、各蒸発源から基板の表面の対象領域の各位置への物質の到達量に勾配を持たせ、かつ、各蒸発源から基板上への物質到達量の勾配する領域が重複するように前記蒸発源、遮蔽部材及び基板を配置したことを特徴とする薄膜形成装置。
A plurality of evaporation sources each linearly or unidirectionally long, a shielding member provided downstream of the substance flow from each of the evaporation sources, and shielding a part of the amount of the substance from each of the evaporation sources, and the shielding A substrate that adheres the rest of each of the substance streams flowing from each of the evaporation sources through the member to its surface,
A space formed by connecting the four corners of each of the evaporation sources and the four corners of the target region on the substrate is partially shielded by the shielding member from a part of the substance flow moving from each of the evaporation sources toward the substrate. The evaporation source, the shielding member and the shielding member are provided such that the amount of arrival of the substance at each position of the target area on the surface of the substrate has a gradient, and the area in which the amount of arrival of the substance from each evaporation source onto the substrate is gradient overlaps. A thin film forming apparatus comprising a substrate.
真空中において線状又は一方向に長い、複数の蒸発源各々から基板に向かって移動する蒸発物質各々の一部を遮蔽部材により遮蔽させ、当該蒸発物質各々の残部を基板上の各位置に到達させることによって基板上の各位置への蒸発物質各々の到達量に勾配を持たせ、かつ各蒸発物質の勾配組成部をオーバーラップさせることを特徴とする多元系物質薄膜形成方法。In a vacuum, a part of each evaporating substance moving toward the substrate from each of the plurality of evaporation sources, which is linear or long in one direction, is shielded by a shielding member, and the remainder of each evaporating substance reaches each position on the substrate. A method of forming a thin film of a multi-component material, characterized in that a gradient is given to each amount of evaporating substance reaching each position on the substrate by overlapping, and a gradient composition part of each evaporating substance is overlapped. 複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源からの物質流の下流側に設置され、当該物質流の一部を遮蔽する遮蔽部材と、前記遮蔽部材を通り過ぎてくる前記物質流の残部をその表面に付着させる基板とを備えた薄膜形成装置を用いた多元系物質薄膜形成方法であって、
前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を遮蔽部材によって遮蔽させ、各蒸発源から基板面上の対象領域の各位置への物質の到達量に勾配を持ち、かつ各蒸発源から基板上への物質到達量の勾配する領域が重複するように前記蒸発源、遮蔽部材及び基板を配置し、
膜厚方向に組成が均質で、かつ、1種類以上の成分で構成される物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜を基板上に形成することを特徴とする多元系物質薄膜形成方法。
Each of the plurality of linear or unidirectionally long evaporation sources, a shielding member that is provided downstream of the substance flow from the evaporation source and shields a part of the substance flow, and the shielding member that passes through the shielding member A multi-material thin film forming method using a thin film forming apparatus having a substrate and a substrate for adhering the rest of the material flow to the surface thereof,
A space formed by connecting the four corners of each of the evaporation sources and the four corners of the target region on the substrate is shielded by a shielding member from a part of a substance flow moving from each evaporation source toward the substrate, and the substrate is removed from each evaporation source. The evaporation source, the shielding member, and the substrate are arranged such that the amount of arrival of the substance at each position of the target area on the surface has a gradient, and the area where the amount of arrival of the substance from each evaporation source onto the substrate is overlapped is overlapped. And
A multi-component system in which a plurality of types of substances having a uniform composition in the film thickness direction and composed of one or more components have a composition distribution in which the abundance ratio continuously changes in the plane direction of the surface of the substrate. A method of forming a multi-component material thin film, comprising forming a material thin film on a substrate.
請求項2又は3に記載の多元系物質薄膜形成方法により基板上に形成された多元系物質薄膜に対してその表面の各位置における局所的組成を、前記蒸発源、遮蔽板及び基板の相対的な位置関係から幾何学的に算定し、前記薄膜面上の各位置の物理的又は化学的特性を評価することを特徴とする多元系物質薄膜の特性検査方法。A local composition at each position on the surface of a multi-material thin film formed on a substrate by the multi-material thin film forming method according to claim 2, relative to the evaporation source, the shielding plate, and the substrate. A characteristic inspection method of a multi-material thin film, characterized in that the physical or chemical characteristics of each position on the thin film surface are evaluated by geometrically calculating from various positional relationships. 基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、
前記薄膜が放射又は反射する光線、放射線又は電子線の薄膜面上の強度分布を面走査型検出器、線状検出器又は面状検出器により一括検出することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. For a multi-component material thin film having a changing composition distribution, the entire surface is irradiated with at least one of light, radiation, an electron beam, or a heat flux or is uniformly applied by scanning,
A light beam emitted or reflected by the thin film, an intensity distribution on the thin film surface of the radiation or the electron beam, a surface scanning detector, a linear detector or a planar detector, wherein the multi-material thin film is characterized by being collectively detected by a planar detector. Characteristics inspection method.
基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、
前記薄膜面上の評価対象の領域に光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、
前記薄膜及び基板を透過する光線、放射線、電子線の薄膜面上の強度分布を面走査型検出器、線状検出器又は面状検出器により一括検出することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. For a multi-component material thin film having a changing composition distribution, the entire surface is irradiated with at least one of light, radiation, an electron beam, or a heat flux or is uniformly applied by scanning,
A light beam, a radiation, an electron beam, and one or more of the heat fluxes are uniformly irradiated or scanned over the entire surface of the thin film surface to be evaluated,
A multi-material thin film, characterized in that the intensity distribution on the thin film surface of the light beam, radiation, and electron beam transmitted through the thin film and the substrate is collectively detected by a surface scanning detector, a linear detector, or a planar detector. Characteristics inspection method.
基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜を所定の雰囲気に暴露し、
その後、前記薄膜に対して光線、放射線、電子線、熱流束のいずれか一つ以上を全面照射し又は走査して均等に与え、
前記薄膜及び基板を透過する光線、放射線、電子線の薄膜面上の強度分布を面走査型検出器、線状検出器又は面状検出器により一括検出することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. Exposing a multi-material thin film having a changing composition distribution to a predetermined atmosphere,
Thereafter, the thin film is uniformly irradiated with at least one of light, radiation, electron beam, and heat flux by irradiating or scanning the entire surface,
A multi-material thin film, characterized in that the intensity distribution on the thin film surface of the light beam, radiation, and electron beam transmitted through the thin film and the substrate is collectively detected by a surface scanning detector, a linear detector, or a planar detector. Characteristics inspection method.
基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域にX線を走査して均等に照射し、
前記薄膜のX線の照射部分から反射されるX線の回折角又は電子線のエネルギー分布を計測することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. For a multi-material thin film having a changing composition distribution, a region to be evaluated is scanned uniformly with X-rays,
A characteristic inspection method for a multi-material thin film, comprising measuring a diffraction angle of an X-ray reflected from an irradiated portion of the thin film or an energy distribution of an electron beam.
基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域にX線を走査して均等に照射し、
前記薄膜のX線の照射部分から反射されるX線の回折角又は電子線のエネルギー分布を計測することにより、前記薄膜の表面各部の結晶構造を一括評価することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. For a multi-material thin film having a changing composition distribution, a region to be evaluated is scanned uniformly with X-rays,
A multi-material thin film, wherein the crystal structure of each surface portion of the thin film is collectively evaluated by measuring a diffraction angle of an X-ray reflected from an irradiated portion of the thin film or an energy distribution of an electron beam. Characteristic inspection method.
透明基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域の全面に熱流束を与え、
前記透明基板を通して熱流束を与えた面の反対側の面から放射される赤外線の強度分布を計測することにより、薄膜面上での熱伝導率の分布を一括評価することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of a transparent substrate, the composition of which is homogeneous in the film thickness direction, and the presence ratio of a plurality of substances composed of one or more components is continuous in the plane direction of the surface of the substrate. For a multi-material thin film having a composition distribution that changes to, a heat flux is given to the entire surface of the region to be evaluated,
A multi-component system in which the distribution of thermal conductivity on the thin film surface is collectively evaluated by measuring the intensity distribution of infrared rays emitted from the surface opposite to the surface to which the heat flux is given through the transparent substrate. Inspection method of material thin film.
基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜に対して、その評価対象の領域に光線を全面照射し又は走査して均等に与え、
前記光線の照射部分から反射される光線の薄膜面上での強度分布を計測することにより、薄膜面上での反射率の分布を一括評価することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. For a multi-material thin film having a changing composition distribution, the entire area is irradiated or scanned with a light beam or evenly applied to the region to be evaluated,
A characteristic inspection method for a multi-material thin film, wherein a distribution of reflectance on the thin film surface is collectively evaluated by measuring an intensity distribution on the thin film surface of the light beam reflected from the irradiated portion of the light beam. .
透明基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜の評価対象の領域に光線を全面照射し又は走査して均等に与え、
前記光線の照射部分を透過する光線の薄膜面上での強度分布を計測することにより、薄膜面上での透過率の分布を一括評価することを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of a transparent substrate, the composition of which is homogeneous in the film thickness direction, and the presence ratio of a plurality of substances composed of one or more components is continuous in the plane direction of the surface of the substrate. Irradiate the entire surface of the evaluation target area of the multi-material thin film having a composition distribution that changes to or apply a uniform light beam by scanning,
A characteristic inspection method of a multi-material thin film, wherein a distribution of transmittance on a thin film surface is collectively evaluated by measuring an intensity distribution on a thin film surface of a light beam transmitted through the irradiated portion of the light beam.
基板の表面に形成された薄膜であって、膜厚方向に組成が均質で、かつ1種類以上の成分で構成される物質の複数種の存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有する多元系物質薄膜を大気又は酸化性雰囲気下に保持し、
前記薄膜の評価対象の領域に電子線を走査して均等に照射し、
前記電子線の照射部分から放射される酸素の特性X線の薄膜面上での強度分布を計測することにより、前記多元系物質薄膜の組成と耐酸化性との相関性を調べることを特徴とする多元系物質薄膜の特性検査方法。
A thin film formed on the surface of the substrate, wherein the composition is homogeneous in the film thickness direction, and the presence ratio of a plurality of types of substances composed of one or more components is continuously determined in the surface direction of the substrate surface. A multi-material thin film having a changing composition distribution is held in air or an oxidizing atmosphere,
The region to be evaluated of the thin film is uniformly irradiated by scanning with an electron beam,
By measuring the intensity distribution on the thin film surface of the characteristic X-rays of the oxygen emitted from the irradiated portion of the electron beam, to examine the correlation between the composition of the multi-material thin film and oxidation resistance. Of multi-material thin film characteristics.
複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源各々からの物質流の下流側に設置された遮蔽部材と、前記遮蔽部材の透孔を通して前記蒸発源から流れてくる物質蒸気をその表面に蒸着する基板と、当該基板の前記蒸発源側の面に設けられた格子状のマスクとを備え、
前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を前記遮蔽部材によって遮蔽させ、各蒸発源から基板の表面の対象領域の各位置への物質の到達量に勾配を持たせ、各蒸発源から基板上への物質の到達量の勾配する領域が重複し、かつ前記マスクによって基板上に独立した薄膜を複数形成するように前記蒸発源、遮蔽部材、基板及びマスクを配置したことを特徴とする薄膜形成装置。
A plurality of evaporation sources, each of which is linear or unidirectionally long, a shielding member provided downstream of a substance flow from each of the evaporation sources, and a substance vapor flowing from the evaporation source through a through hole of the shielding member A substrate to be vapor-deposited on the surface thereof, and a lattice-shaped mask provided on the surface of the substrate on the side of the evaporation source,
A space formed by connecting the four corners of each of the evaporation sources and the four corners of the target region on the substrate is partially shielded by the shielding member from a part of the substance flow moving from each of the evaporation sources toward the substrate. A gradient is given to the amount of the substance reaching each position of the target area on the surface of the substrate, the area where the gradient of the amount of the substance reaching the substrate from each evaporation source overlaps, and is independent on the substrate by the mask. A thin film forming apparatus, wherein the evaporation source, the shielding member, the substrate, and the mask are arranged so as to form a plurality of thin films.
複数の各々が線状又は一方向に長い蒸発源と、前記蒸発源からの物質流の下流側に設置された遮蔽部材と、前記遮蔽部材の透孔を通して前記蒸発源各々から流れてくる金属蒸気をその表面に蒸着する基板と、当該基板の前記蒸発源側の面に設けられた格子状のマスクとを備えた薄膜形成装置を用いる多元系物質薄膜形成方法であって、
前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を遮蔽部材によって遮蔽させ、各蒸発源から基板面上の対象領域の各位置への物質の到達量に勾配を持ち、各蒸発源から基板上への物質の到達量の勾配する領域が重複し、かつ前記マスクによって基板上に独立した薄膜を複数形成するように前記蒸発源、遮蔽部材及び基板を配置し、
膜厚方向に組成が均質で、1種類以上の成分で構成される物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有し、かつ基板上に独立した薄膜を複数形成することを特徴とする多元系物質薄膜形成方法。
A plurality of evaporation sources each having a linear or unidirectional length, a shielding member provided downstream of a substance flow from the evaporation source, and metal vapor flowing from each of the evaporation sources through a through hole of the shielding member A multi-material thin film forming method using a thin film forming apparatus comprising a substrate on which the surface is to be deposited, and a lattice-shaped mask provided on the surface of the substrate on the side of the evaporation source,
A space formed by connecting the four corners of each of the evaporation sources and the four corners of the target region on the substrate is shielded by a shielding member from a part of a substance flow moving from each evaporation source toward the substrate, and the substrate is removed from each evaporation source. There is a gradient in the amount of the substance reaching each position of the target area on the surface, the area where the amount of the substance reaching the substrate from each evaporation source is gradient overlaps, and an independent thin film is formed on the substrate by the mask. Arranging the evaporation source, shielding member and substrate to form a plurality,
A plurality of types of substances having a uniform composition in the film thickness direction and composed of one or more types of components have a composition distribution in which the proportions thereof change continuously in the plane direction of the surface of the substrate, and A method of forming a multi-material thin film, comprising forming a plurality of independent thin films thereon.
膜厚方向に組成が均質で、1種類以上の成分で構成される金属物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有し、かつガラス基板上に独立して複数形成された金属成分のみの薄膜の特性を検査する多元系物質薄膜の特性検査方法であって、
前記ガラス基板及び薄膜を大気又は不活性ガス雰囲気下で昇温して所定の温度とし、前記温度における前記薄膜の輪郭形状の変化を光学的方法で検出して多元系物質の組成と溶融温度との相関性を調べることを特徴とする多元系物質薄膜の特性検査方法。
A plurality of types of metal substances having a uniform composition in the film thickness direction and composed of one or more components have a composition distribution in which the abundance ratio continuously changes in the plane direction of the surface of the substrate, and A method for inspecting the characteristics of a multi-material thin film for inspecting the characteristics of a thin film of only a metal component independently formed on a glass substrate,
The temperature of the glass substrate and the thin film is raised to a predetermined temperature in the atmosphere or an inert gas atmosphere, and the change in the contour shape of the thin film at the temperature is detected by an optical method, and the composition and melting temperature of the multicomponent material are determined. A method for inspecting characteristics of a multi-material thin film, characterized by examining a correlation between the materials.
請求項15に記載の多元系物質薄膜形成方法により、第1の基板上に金属成分のみから成り、互いに独立した薄膜を複数形成し、
同じパターンのマスクを用い、請求項15に記載の多元系物質薄膜形成方法により、第2の基板上に単一な組成の独立した薄膜を複数形成し、
前記第1の基板と第2の基板とをそれらの上に形成された薄膜同士が向き合うように重ね合わせた状態にして、大気又は不活性ガス雰囲気下で昇温して第1の基板上の薄膜の少なくとも一部が溶融する所定の温度に保持した後に冷却し、
前記第1、第2の両基板の接合状態を超音波探傷により調べて多元系物質の組成と濡れ性との相関性を調べることを特徴とする多元系物質薄膜の特性検査方法。
The multi-material thin film forming method according to claim 15, wherein a plurality of thin films made of only metal components and independent of each other are formed on the first substrate;
A plurality of independent thin films having a single composition are formed on the second substrate by the method of forming a multi-material thin film according to claim 15 using a mask having the same pattern,
The first substrate and the second substrate are superimposed on each other so that the thin films formed thereon face each other, and the temperature is increased in the atmosphere or an inert gas atmosphere to form a first substrate and a second substrate. Cooling after holding at a predetermined temperature at which at least a part of the thin film is melted,
A method for inspecting characteristics of a thin film of a multi-component material, characterized by examining a bonding state between the first and second substrates by ultrasonic flaw detection to check a correlation between a composition of the multi-component material and wettability.
複数の蒸発源と、前記蒸発源各々からの物質流の下流側に設置された遮蔽部材と、前記遮蔽部材の複数の線状又は一方向に長い透孔を通して前記蒸発源から流れてくる物質蒸気それぞれをその表面に蒸着する基板とを備え、
前記蒸発源各々の四隅と基板上の対象領域の四隅とを結んで形成される空間を各蒸発源から基板に向かって移動する物質流の一部を前記遮蔽部材によって遮蔽させ、各蒸発源から基板の表面の対象領域の各位置への物質の到達量に勾配を持たせ、かつ、各蒸発源から基板上への物質到達量の勾配する領域が重複するように前記蒸発源、遮蔽部材及び基板を配置したことを特徴とする薄膜形成装置。
A plurality of evaporation sources, a shielding member provided on the downstream side of the material flow from each of the evaporation sources, and a material vapor flowing from the evaporation source through a plurality of linear or unidirectionally long through holes of the shielding member. With a substrate for depositing each on its surface,
A space formed by connecting the four corners of each of the evaporation sources and the four corners of the target region on the substrate is partially shielded by the shielding member from a part of the substance flow moving from each of the evaporation sources toward the substrate. The evaporation source, the shielding member and the shielding member are provided such that the amount of arrival of the substance at each position of the target area on the surface of the substrate has a gradient, and the area in which the amount of arrival of the substance from each evaporation source onto the substrate is gradient overlaps. A thin film forming apparatus comprising a substrate.
基板の表面に形成された多元系物質薄膜であって、膜厚方向に組成が均質で、かつ、1種類以上の成分で構成される物質の複数種が、それらの存在割合が当該基板の表面の面方向に連続的に変化する組成分布を有することを特徴とする多元系物質薄膜。A multi-material thin film formed on the surface of a substrate, wherein a plurality of types of materials having a uniform composition in the film thickness direction and composed of one or more types of components are present on the surface of the substrate. 1. A multi-component material thin film having a composition distribution that changes continuously in the plane direction of the multi-component material. 基板の表面に形成された多元物質薄膜であって、膜厚方向に組成が均質で、1種類以上の成分で構成される物質の複数種が、それらの存在割合が前記基板の表面の面方向に連続的に変化する組成分布を有し、かつ当該基板上の複数の独立した区画それぞれに分かれて形成されていることを特徴とする多元系物質薄膜。A multi-material thin film formed on the surface of a substrate, wherein a plurality of kinds of substances composed of one or more components having a uniform composition in a film thickness direction are present in a plane direction on the surface of the substrate. 1. A multi-component material thin film having a composition distribution that continuously changes as described above, and formed separately in a plurality of independent sections on the substrate.
JP2002230247A 2002-08-07 2002-08-07 Characteristic inspection method for multi-element material thin films Expired - Fee Related JP4080810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230247A JP4080810B2 (en) 2002-08-07 2002-08-07 Characteristic inspection method for multi-element material thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230247A JP4080810B2 (en) 2002-08-07 2002-08-07 Characteristic inspection method for multi-element material thin films

Publications (2)

Publication Number Publication Date
JP2004068101A true JP2004068101A (en) 2004-03-04
JP4080810B2 JP4080810B2 (en) 2008-04-23

Family

ID=32016386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230247A Expired - Fee Related JP4080810B2 (en) 2002-08-07 2002-08-07 Characteristic inspection method for multi-element material thin films

Country Status (1)

Country Link
JP (1) JP4080810B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163161A (en) * 2005-12-09 2007-06-28 Nippon Hoso Kyokai <Nhk> Measuring method of oxidation degree, degree of nitriding, thermal conductivity and composition ratio
JP2007239033A (en) * 2006-03-09 2007-09-20 Ulvac Japan Ltd Multi-component thin film deposition apparatus
JP2010048618A (en) * 2008-08-20 2010-03-04 Tokyo Institute Of Technology Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163161A (en) * 2005-12-09 2007-06-28 Nippon Hoso Kyokai <Nhk> Measuring method of oxidation degree, degree of nitriding, thermal conductivity and composition ratio
JP2007239033A (en) * 2006-03-09 2007-09-20 Ulvac Japan Ltd Multi-component thin film deposition apparatus
JP4724576B2 (en) * 2006-03-09 2011-07-13 株式会社アルバック Multi-element thin film forming equipment
JP2010048618A (en) * 2008-08-20 2010-03-04 Tokyo Institute Of Technology Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor

Also Published As

Publication number Publication date
JP4080810B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
Mueller et al. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Isaacs et al. Synchrotron x-ray microbeam diagnostics of combinatorial synthesis
CN109355621B (en) Large-area high-flux composite film synthesizing device and method with controllable proportion
TW200846656A (en) Inspection of small features using X-ray fluorescence
US6592252B2 (en) Method for measuring thermal diffusivity and interface thermal resistance
JPH04337236A (en) Three-dimensional atomic arrangement observing device and method
Kodentsov et al. Diffusion couple technique: a research tool in materials science
JP2004068101A (en) Thin film formation system, thin film of multinary material and processes for forming the same and examining character of the same
Schoeppner et al. Interfacial adhesion of alumina thin films over the full compositional range of ternary fcc alloy films: A combinatorial nanoindentation study
Jablonski et al. Quantitative aspects of ultraviolet photoemission of adsorbed xenon—a review
Moon et al. Combinatorial synthesis of heteroepitaxial, multi-cation, thin-films via pulsed laser deposition coupled with in-situ, chemical and structural characterization
JP2005195353A (en) Sample evaluation method, substrate for evaluation, and substrate forming method for evaluation
Sakurai et al. Neutron visualization of inhomogeneous buried interfaces in thin films
Barnes et al. The kinetics of formation and structure of an underlayer alloy: the Cu (1 0 0)-c (2× 2)–Pd system
JP3676249B2 (en) Crystal observation method and apparatus using X-ray diffraction
JP5489098B2 (en) Drift correction sample for fluorescent X-ray analysis, fluorescent X-ray analysis method using the same, and method for producing the same
Arbab et al. An Arxps Investigation of the Initial Growth of Aluminum Films on the (0001) Face of Sapphire.
JP4755770B2 (en) Substrate rotating / heating apparatus, film forming apparatus using the same, and analyzing apparatus
JP2004151004A (en) Film thickness measuring method for groove sidewall and its device
Hayakawa et al. Ultra trace characterization using an X-ray microprobe at SPring-8 BL39XU
Eba et al. Rapid combinatorial screening by synchrotron X-ray imaging
EP1016863A1 (en) High vacuum xafs measuring instrument
Takahara et al. Elemental analysis of hourly collected air filters with X-ray fluorescence under grazing incidence
Johansson Molecular-Level Investigations of Water-Organic Systems of Atmospheric Relevance
Farrer et al. Texture in solid-state reactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees