JP2004067553A - Angiotensin-converting enzyme-inhibiting peptide - Google Patents

Angiotensin-converting enzyme-inhibiting peptide Download PDF

Info

Publication number
JP2004067553A
JP2004067553A JP2002226829A JP2002226829A JP2004067553A JP 2004067553 A JP2004067553 A JP 2004067553A JP 2002226829 A JP2002226829 A JP 2002226829A JP 2002226829 A JP2002226829 A JP 2002226829A JP 2004067553 A JP2004067553 A JP 2004067553A
Authority
JP
Japan
Prior art keywords
thr
ace
leu
converting enzyme
arg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226829A
Other languages
Japanese (ja)
Other versions
JP4106539B2 (en
Inventor
Kazunori Katayama
片山 員典
Hidetaka Fuchu
府中 英孝
Masaaki Sugiyama
杉山 雅昭
Yukio Kawamura
河村 幸雄
Michio Rokushiya
六車 三治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marudai Food Co Ltd
Original Assignee
Marudai Food Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marudai Food Co Ltd filed Critical Marudai Food Co Ltd
Priority to JP2002226829A priority Critical patent/JP4106539B2/en
Publication of JP2004067553A publication Critical patent/JP2004067553A/en
Application granted granted Critical
Publication of JP4106539B2 publication Critical patent/JP4106539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angiotensin-converting enzyme (ACE)-inhibiting peptide which is expected to have a hypertension-preventing effect as a functional ingredient originating from pork. <P>SOLUTION: The method for producing the angiotensin-converting enzyme (ACE)-inhibiting peptide is characterized by hydrolyzing crude troponin extracted from a pork-originating protein with pepsin. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アンギオテンシン変換酵素阻害剤等として有用なペプチドに関する。
【0002】
【従来の技術】
アンギオテンシン変換酵素(ACE)は主にヒトの血管の内皮細胞、肺、腎臓及び脳に存在する。この酵素は、血管の収縮を引き起こし、血圧を上昇させるために、C末端から2つのアミノ酸(His−Leu)を切断することにより、不活性なアンギオテンシンIを活性なアンギオテンシンIIに変換し得る。したがって、ACEは血圧を上昇させることができる。
【0003】
アンギオテンシン変換酵素阻害剤(ACEI)のACEへの結合はアンギオテンシンIIの生成を減少し得る。ACEIを食品に加えると、高血圧症状を減少させるのにプラスの効果を引き起こすであろう。現在のところ、多くのペプチドがACEの阻害についての効果を有することが知られている。それらは異なったアミノ酸配列と長さを有する。
【0004】
【発明が解決しようとする課題】
従って、本発明は、豚肉由来の機能性成分として、高血圧予防効果が期待されるアンギオテンシン変換酵素(ACE)阻害ペプチドを提供することを主な課題とする。
【0005】
【課題を解決するための手段】
本発明は、豚肉由来の新規なアンギオテンシン変換酵素(ACE)阻害ペプチドを見出した。
【0006】
本発明は、以下の項1〜4の活性ペプチド、並びにアンギオテンシン変換酵素阻害剤およびその製造法に関する。
項1. 以下の2種の少なくとも1種からなるポリペプチド:
Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lys;及び
Arg−Met−Leu−Gly−Gln−Thr−Pro。
項2. 以下の7種の少なくとも1種からなるアンギオテンシン変換酵素阻害剤:
Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lys;
Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr;
Arg−Met−Leu−Gly−Gln−Thr−Pro;
Arg−Met−Leu−Gly−Gln−Thr;
Arg−Met−Leu;
Thr−Pro;及び
Thr−Lys。
項3. トロポニンをペプシンで加水分解することを特徴とするアンギオテンシン変換酵素阻害剤の製造法。
項4. アンギオテンシン変換酵素阻害剤がArg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lysである項3の製造法。
【0007】
【発明の実施の形態】
本発明は、豚肉由来の機能性成分として、高血圧予防効果が期待されるアンギオテンシン変換酵素(ACE)阻害ペプチドに関する。
【0008】
本発明において、豚肉由来のタンパク質から抽出することができる粗精製トロポニンをペプシンで加水分解すると、ACE阻害活性を有するペプチドArg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lys(RMLGQTPTK、以下9merと言う)が生成することが見出された。このペプチドは、骨格筋トロポニンC(Lorkin PA & Lehmann H, FEBS Letter, 153: 81−87,1983)の44−52位由来である。
【0009】
9merの部分構造ペプチドであるArg−Met−Leu−Gly−Gln−Thr−Pro(RMLGQTP、以下7merと言う)、Arg−Met−Leu−Gly−Gln−Thr(RMLGQT)、Arg−Met−Leu(RML)、Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr(RMLGQTPT)、Thr−Pro(TP)及びThr−Lys(TK)もACE阻害活性を有することが分かった。
【0010】
本発明のペプチド9merは豚肉由来のタンパク質から抽出した粗精製トロポニンをペプシンで加水分解することによって得られる。また、ペプチド9merの部分構造ペプチドは、Fmoc固相合成などの公知の方法に従い合成できる。
【0011】
本発明のペプチド9merは、粗精製トロポニンのペプシン加水分解生成物を、イオン交換クロマトグラフィー、ゲルろ過クロマトグラフィー、逆相HPLCなどを組み合わせて精製することにより得られる。
【0012】
本発明のACE阻害ペプチドは、ウサギ肺由来及びウシ肺由来のACEに対して阻害活性を有する。
【0013】
下記実施例において、より具体的に本発明を説明する。
【0014】
【実施例】
以下実施例において測定されたACEに対する50%阻害活性(IC50)は、ウシ肺由来のACEに対するもので、Cushman −Cheungの方法(Biochemical Pharmacology, 20: 1637−1648, 1971)で測定した。
【0015】
実施例1
国産の豚ロース肉から抽出した粗精製トロポニンをペプシンで加水分解した。この粗精製トロポニンのペプシン加水分解物のウシ肺由来のACEに対する50%阻害活性(IC50)は225g/mlであった。未加水分解トロポニンにはACE阻害活性が認められなかったことから、活性の発現はペプシン分解で生じたペプチドに由来することが分かった。
【0016】
該加水分解物をまず、DE53カラム(Whatman International Ltd., Kent, UK) (16 x 150 mm)を用いる陰イオン交換クロマトグラフィーに供した。すなわち、20mMトリス(ヒドロキシメチル)アミノメタン(酢酸でpH 7.5に調整したもの)で該加水分解物をアプライし、同バッファーを含むNaCl水溶液によるグラジェント(0−300 mM)溶出を行った。流速は1.13 ml/分とし、7分毎(7.91 ml)に分画した。この画分をSEP−PAK Plus C18カートリッジ(Waters Co., Milford, MA, USA)を用いて脱塩し、吸着画分を50%アセトニトリルで溶出させて得られた画分を濃縮して、その活性を測定した。ここで得られた活性画分をCosmosil 5C18 AR−II (4.5 x 150mm) (Nacalai Tesque Inc., Kyoto Japan)を用いる逆相(RP)−HPLCに供し、0.1%トリフルオロ酢酸(TFA)を含むアセトニトリルの1−80%のグラジェント溶出(流速0.5ml/分)で分画した。活性画分はさらに、同じカラムで0.1%TFAを含む14%アセトニトリルでイソクラティック溶出(流速0.5ml/分)した。RP−HPLCで得られた活性画分をTSK−gel G2000SWXL (7.8 x 300mm) (Tosoh Co., Tokyo, Japan) を用いるゲル濾過HPLCに供して、20 mMリン酸Na緩衝液(pH 7.0)でイソクラティック溶出(流速0.5ml/分)した。最後に、活性画分をCosmosil 5PE−MS (4.6 x 250mm) (Nacalai Tesque)を用いるRP−HPLCに供し、0.1%TFAを含む12%アセトニトリルでイソクラティック溶出(流速1ml/分)した。いずれの場合も、215nmの吸光度をモニターした。
【0017】
精製で得られた画分のアミノ酸配列を、プロテインシーケンサー(PPSQ−10, Shimadzu Co., Kyoto, Japan)でシーケンス解析した。得られたペプチドは骨格筋トロポニンCの44位から52位にあたるRMLGQTPTK(9mer)であると認められた。これはこれまでに報告のない、新規なACE阻害ペプチドであった。9merのACE阻害活性は34M(35μg/ml)であった。
【0018】
実施例2:9merの部分構造ペプチドの合成
9merの部分構造ペプチドであるRMLGQTPT 、RMLGQTP(7mer)、RMLGQT、RMLG、RML、RM、ML、LG、GQ、QT、TP、PT、TK、PTK及びTPTKをFmoc固相合成法で合成した。これら合成ペプチドのIC50、分子量、及びRP−HPLC(Cosmosil 5C18 AR−II (4.5 x 150mm) (Nacalai Tesque)で0.1% TFAを含むアセトニトリルの1−30%のグラジェント溶出(流速1ml/min))の保持時間(RT)を表1に示す。また、9merのデータも表1に示す。
【0019】
【表1】

Figure 2004067553
【0020】
実施例3:アンギオテンシン変換酵素との反応性
Fujitaら(Journal of Food Science, 65: 564−569, 2000)の方法を参考にして、ペプチド合成した9merおよび7mer(1mg/ml)をそれぞれ、ウシ肺由来ACE(20 mU/ml)と混合し、37℃で20時間まで反応させた。バッファー条件は、通常のACE阻害活性測定と同様とした。反応終了後は、95℃で20分加熱してACEを失活させた。Cosmosil 5C18 AR−II (4.5 x 150mm) (Nacalai Tesque)を用いるRP−HPLCに供し、0.1% TFAを含むアセトニトリルの1−30%のグラジェント溶出(流速0.5ml/min)で分画して分解程度を分析した。また、ACEによる分解産物の同定は、HPLC溶出時間を合成ペプチドと比較することで行った。ペプチド濃度はHPLCピーク面積で算出した。
【0021】
その結果を図1に示す。9merは経時的にゆっくりとACEにより加水分解され、反応60分後には63%の基質が残存していることが示された。一方、7merはACEにより速やかに分解されており、60分後には19%の基質残存率であった。7merのC末端ジペプチドTP、さらにその次のジペプチドGQは急速に遊離していることが認められた。
【0022】
これらの結果から、9merではC末端ジペプチドTKが遊離しにくいために、その後のTPやGQの遊離速度が抑えられているものと考えられた。すなわち、7merはACEの非常に優れた基質である一方、9merはACEによる分解を比較的受けにくい基質であることが分かった。
【0023】
実施例4:消化酵素耐性
経口で摂取したときの有効性を評価するために、消化酵素に対する耐性を検討した。
【0024】
9merの合成品(1 mg/ml)を、それぞれa−キモトリプシン、ペプシン、及びトリプシンと、基質:酵素比100:1で反応させた。バッファーは10 mM トリス−HCl (pH7.5)を使用し、37℃で6時間分解した。反応終了後は、95℃、20分間加熱して酵素を失活させた。Cosmosil 5C18 AR−II (4.5 x 150mm) (Nacalai Tesque)を用いるRP−HPLCに供し、0.1% TFAを含む14%アセトニトリルでイソクラティック溶出(流速0.5ml/min)で分画して分解程度を分析した。ペプチド濃度はHPLCピーク面積で算出した。
【0025】
その結果を表2に示す。37℃、6時間の反応にも関わらず、いずれの酵素でも基質残存率が高く、ペプシンおよびキモトリプシンでは75%、トリプシンでは86%の基質が残存していた。
【0026】
分解物全体のACE阻害活性を測定したところ、未分解ペプチドの活性に近い32−38g/mlのIC50を示し、ACE阻害活性に対する分解産物の寄与率が低いことが分かった(表2)。
【0027】
【表2】
Figure 2004067553
【0028】
【発明の効果】
本発明により、豚肉タンパク質由来の新規なアンギオテンシン変換酵素(ACE)阻害ペプチドを提供することができる。
【0029】
9merは有原らが報告したミオシン由来ペプチド(Meat Science, 57: 319−324,2001)よりも強いACE阻害活性を示し、7merは同等の活性だった。これまでに報告されている動物筋肉食品由来のACE阻害ペプチドは、構造タンパク質であるミオシンやアクチンおよび水溶性タンパク質から見出されていた。本発明のペプチドは、調節タンパク質から見出された初めての例である。
【0030】
ACE阻害活性が比較的強い9merがACEによる加水分解を受けにくいということは、その活性を失いにくいことを意味しており、短期的に有効なACE阻害剤としての利用が期待される。
【0031】
9merのACE阻害活性に対する分解産物の寄与率が低いことから、9merペプチドは消化酵素に対する耐性が比較的高く、経口投与した際に消化管中で消化されにくい可能性が示唆され、インヴィボでの有効性が期待される。
【0032】
一般的にジペプチドもしくはトリペプチドなどの小さなペプチドのみが、腸管から吸収される(Adibi et al. Clinical research, 17: 376, 1969) とされているが、一方では、Pappenheimer et al. (Proceedings of the National Academyof Sciences of the United States of America, 91: 1942−1945, 1994) はオクタペプチドがparacellularlyに腸管から吸収されることを示している。Shimizu et al. (Peptides, 18: 681−687, 1997) は疎水性ノナペプチドが経細胞輸送により上皮細胞を通過することを明らかにしている。さらにSatake et al. (Bioscience, Biotechnology, and Biochemistry, 66: 378−384, 2002)は消化酵素に対する耐性が高く腸管内に長時間滞留するペプチドの場合は、なんらかのトランスポート機能を利用して吸収される可能性を示唆している。これらのことから、本発明による消化耐性のある新規ACE阻害ペプチド9merも腸管から吸収される可能性があると考えられる。すなわち、9merが腸管から吸収されて、ACE阻害剤として有効に機能する可能性が期待される。
【図面の簡単な説明】
【図1】図1は、実施例3のACEとペプチド 9mer(a)及び7mer(b)の反応における、反応時間とペプチド濃度の関係を表すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a peptide useful as an angiotensin converting enzyme inhibitor or the like.
[0002]
[Prior art]
Angiotensin converting enzyme (ACE) is present mainly in human vascular endothelial cells, lung, kidney and brain. This enzyme can convert inactive angiotensin I to active angiotensin II by cleaving two amino acids (His-Leu) from the C-terminus to cause vasoconstriction and increase blood pressure. Thus, ACE can raise blood pressure.
[0003]
Binding of an angiotensin converting enzyme inhibitor (ACEI) to ACE may reduce angiotensin II production. Adding ACEI to food will cause a positive effect in reducing hypertensive symptoms. At present, many peptides are known to have an effect on ACE inhibition. They have different amino acid sequences and lengths.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an angiotensin converting enzyme (ACE) inhibitory peptide, which is expected to have an effect of preventing hypertension, as a functional ingredient derived from pork.
[0005]
[Means for Solving the Problems]
The present invention has found a novel angiotensin converting enzyme (ACE) inhibitory peptide derived from pork.
[0006]
The present invention relates to the following active peptides of items 1 to 4, and an angiotensin converting enzyme inhibitor and a method for producing the same.
Item 1. A polypeptide consisting of at least one of the following two:
Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys; and Arg-Met-Leu-Gly-Gln-Thr-Pro.
Item 2. Angiotensin converting enzyme inhibitors comprising at least one of the following seven:
Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys;
Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr;
Arg-Met-Leu-Gly-Gln-Thr-Pro;
Arg-Met-Leu-Gly-Gln-Thr;
Arg-Met-Leu;
Thr-Pro; and Thr-Lys.
Item 3. A method for producing an angiotensin converting enzyme inhibitor, which comprises hydrolyzing troponin with pepsin.
Item 4. Item 4. The method according to Item 3, wherein the angiotensin converting enzyme inhibitor is Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to an angiotensin converting enzyme (ACE) inhibitory peptide, which is expected to have an effect of preventing hypertension as a functional ingredient derived from pork.
[0008]
In the present invention, when a partially purified troponin that can be extracted from a pork-derived protein is hydrolyzed with pepsin, a peptide having an ACE inhibitory activity, Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys (RMLGQTPTK, (Hereinafter referred to as 9mer). This peptide is from skeletal muscle troponin C (Lorkin PA & Lehmann H, FEBS Letter, 153: 81-87, 1983) at positions 44-52.
[0009]
Arg-Met-Leu-Gly-Gln-Thr-Pro (RMLGQTP, hereinafter referred to as 7mer), Arg-Met-Leu-Gly-Gln-Thr (RMLGQT), Arg-Met-Leu (9-mer partial structure peptide) RML), Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr (RMLGQTPT), Thr-Pro (TP) and Thr-Lys (TK) were also found to have ACE inhibitory activity.
[0010]
The peptide 9mer of the present invention can be obtained by hydrolyzing a crude troponin extracted from a pork-derived protein with pepsin. Further, the partial structural peptide of the peptide 9mer can be synthesized according to a known method such as Fmoc solid phase synthesis.
[0011]
The peptide 9mer of the present invention can be obtained by purifying a pepsin hydrolysis product of partially purified troponin using a combination of ion exchange chromatography, gel filtration chromatography, reverse phase HPLC, and the like.
[0012]
The ACE inhibitory peptide of the present invention has inhibitory activity on ACE derived from rabbit lung and bovine lung.
[0013]
The present invention will be described more specifically in the following examples.
[0014]
【Example】
The 50% inhibitory activity (IC 50 ) on ACE measured in the following examples was on ACE derived from bovine lung, and was measured by the method of Cushman-Cheng (Biochemical Pharmacology, 20: 1637-1648, 1971).
[0015]
Example 1
Crude troponin extracted from domestic pork loin was hydrolyzed with pepsin. The 50% inhibitory activity (IC 50 ) of this crude troponin hydrolyzate of pepsin against bovine lung-derived ACE was 225 g / ml. No ACE inhibitory activity was observed for unhydrolyzed troponin, indicating that the expression of the activity was derived from the peptide generated by pepsin degradation.
[0016]
The hydrolyzate was first subjected to anion exchange chromatography using a DE53 column (Whatman International Ltd., Kent, UK) (16 × 150 mm). That is, the hydrolyzate was applied with 20 mM tris (hydroxymethyl) aminomethane (adjusted to pH 7.5 with acetic acid), and a gradient (0-300 mM) elution was performed with an aqueous NaCl solution containing the same buffer. . The flow rate was 1.13 ml / min, and fractionation was performed every 7 minutes (7.91 ml). This fraction was desalted using a SEP-PAK Plus C18 cartridge (Waters Co., Milford, Mass., USA), and the fraction obtained by eluting the adsorbed fraction with 50% acetonitrile was concentrated. Its activity was measured. The active fraction obtained here was subjected to reverse phase (RP) -HPLC using Cosmosil 5C 18 AR-II (4.5 × 150 mm) (Nacalai Tesque Inc., Kyoto Japan) and 0.1% trifluoroacetic acid. Fractionation was performed by gradient elution of acetonitrile containing (TFA) with 1-80% (flow rate: 0.5 ml / min). The active fraction was further subjected to isocratic elution with the same column and 14% acetonitrile containing 0.1% TFA (flow rate: 0.5 ml / min). The active fraction obtained by RP-HPLC was subjected to gel filtration HPLC using TSK-gel G2000SW XL (7.8 × 300 mm) (Tosoh Co., Tokyo, Japan) to give a 20 mM Na phosphate buffer (pH 7.0), and was subjected to isocratic elution (flow rate: 0.5 ml / min). Finally, the active fraction was subjected to RP-HPLC using Cosmosil 5PE-MS (4.6 × 250 mm) (Nacalai Tesque), isocratic elution with 12% acetonitrile containing 0.1% TFA (flow rate 1 ml / min) )did. In each case, the absorbance at 215 nm was monitored.
[0017]
The amino acid sequence of the fraction obtained by the purification was subjected to sequence analysis using a protein sequencer (PPSQ-10, Shimadzu Co., Kyoto, Japan). The obtained peptide was identified as RMLGQTPTK (9 mer) corresponding to positions 44 to 52 of skeletal muscle troponin C. This was a novel ACE inhibitory peptide that had not been reported before. The ACE inhibitory activity of the 9mer was 34 M (35 μg / ml).
[0018]
Example 2 : Synthesis of 9mer partial structure peptide RMLGQTPT, RMLGQTP (7mer), RMLGQT, RMLG, RML, RM, ML, LG, GQ, QT, TP, PT, TK, PTK and TPTK which are 9mer partial structure peptides Was synthesized by the Fmoc solid phase synthesis method. IC 50 , molecular weight of these synthetic peptides and 1-30% gradient elution of acetonitrile containing 0.1% TFA by RP-HPLC (Cosmosil 5C 18 AR-II (4.5 × 150 mm) (Nacalai Tesque)) The retention time (RT) at a flow rate of 1 ml / min) is shown in Table 1. Table 1 also shows 9-mer data.
[0019]
[Table 1]
Figure 2004067553
[0020]
Example 3 Reactivity with Angiotensin-Converting Enzyme Referring to the method of Fujita et al. (Journal of Food Science, 65: 564-569, 2000), 9-mer and 7-mer (1 mg / ml) synthesized with a peptide were collected from bovine lung, respectively. It was mixed with derived ACE (20 mU / ml) and reacted at 37 ° C for up to 20 hours. The buffer conditions were the same as in the usual measurement of ACE inhibitory activity. After completion of the reaction, ACE was deactivated by heating at 95 ° C for 20 minutes. Cosmosil 5C 18 AR-II (4.5 x 150mm) (Nacalai Tesque) was subjected to RP-HPLC using a 1-30% of gradient elution acetonitrile containing 0.1% TFA (flow rate 0.5 ml / min) And the degree of decomposition was analyzed. The identification of the degradation product by ACE was performed by comparing the HPLC elution time with that of the synthetic peptide. The peptide concentration was calculated from the HPLC peak area.
[0021]
The result is shown in FIG. The 9mer was slowly hydrolyzed by ACE over time, indicating that 63% of the substrate remained after 60 minutes of reaction. On the other hand, 7mer was rapidly decomposed by ACE, and after 60 minutes, the residual ratio of the substrate was 19%. It was found that the 7-mer C-terminal dipeptide TP and the next dipeptide GQ were rapidly released.
[0022]
From these results, it was considered that the C-terminal dipeptide TK was hardly released with the 9-mer, and the subsequent release rate of TP and GQ was suppressed. That is, it was found that 7mer is a very excellent substrate of ACE, while 9mer is a substrate which is relatively hard to be degraded by ACE.
[0023]
Example 4 Digestive Enzyme Resistance To evaluate the efficacy when taken orally, the resistance to digestive enzymes was examined.
[0024]
A 9-mer synthetic product (1 mg / ml) was reacted with a-chymotrypsin, pepsin, and trypsin, respectively, at a substrate: enzyme ratio of 100: 1. As a buffer, 10 mM Tris-HCl (pH 7.5) was used and digested at 37 ° C. for 6 hours. After completion of the reaction, the enzyme was inactivated by heating at 95 ° C. for 20 minutes. Cosmosil 5C 18 subjected to AR-II (4.5 x 150mm) RP-HPLC using a (Nacalai Tesque), minute isocratic elution at 14% acetonitrile containing 0.1% TFA (flow rate 0.5 ml / min) And analyzed the degree of degradation. The peptide concentration was calculated from the HPLC peak area.
[0025]
Table 2 shows the results. Despite the reaction at 37 ° C. for 6 hours, the residual ratio of the substrate was high for all enzymes, and 75% of the substrate remained for pepsin and chymotrypsin and 86% for trypsin.
[0026]
When the ACE inhibitory activity of the whole degraded product was measured, it showed an IC 50 of 32-38 g / ml close to the activity of the undegraded peptide, indicating that the contribution of the degraded product to the ACE inhibitory activity was low (Table 2).
[0027]
[Table 2]
Figure 2004067553
[0028]
【The invention's effect】
According to the present invention, a novel angiotensin converting enzyme (ACE) inhibitory peptide derived from pork protein can be provided.
[0029]
9mer showed stronger ACE inhibitory activity than the myosin-derived peptide (Meat Science, 57: 319-324, 2001) reported by Arihara et al., And 7mer showed equivalent activity. The ACE inhibitory peptides derived from animal muscle foods which have been reported so far have been found from structural proteins such as myosin and actin and water-soluble proteins. The peptides of the present invention are the first examples found from regulatory proteins.
[0030]
The fact that a 9mer having a relatively strong ACE inhibitory activity is less susceptible to hydrolysis by ACE means that it is less likely to lose its activity, and is expected to be used as an effective ACE inhibitor in a short term.
[0031]
The low contribution of the degradation products to the 9-mer ACE inhibitory activity suggests that the 9-mer peptide has relatively high resistance to digestive enzymes and may not be easily digested in the gastrointestinal tract when administered orally. Sex is expected.
[0032]
Generally, only small peptides such as dipeptides or tripeptides are absorbed from the intestinal tract (Adibi et al. Clinical research, 17: 376, 1969), while Pappenheimer et al. (Proceedings of the National Academyof Sciences of the United States of America, 91: 1942-1945, 1994) shows that octapeptide is absorbed from the intestinal tract into paracellularly. Shimizu et al. (Peptides, 18: 681-687, 1997) show that hydrophobic nonapeptides pass through epithelial cells by transcellular transport. Further, Satake et al. (Bioscience, Biotechnology, and Biochemistry, 66: 378-384, 2002) suggest that peptides having high resistance to digestive enzymes and staying in the intestinal tract for a long time may be absorbed using some transport function. are doing. From these facts, it is considered that the novel ACE inhibitory peptide 9mer which is resistant to digestion according to the present invention may also be absorbed from the intestinal tract. That is, it is expected that 9-mer will be absorbed from the intestinal tract and function effectively as an ACE inhibitor.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the reaction time and the peptide concentration in the reaction of ACE of Example 3 with 9-mer (a) and 7-mer (b) peptides.

Claims (4)

以下の2種の少なくとも1種からなるポリペプチド:
Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lys;及び
Arg−Met−Leu−Gly−Gln−Thr−Pro。
A polypeptide consisting of at least one of the following two:
Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys; and Arg-Met-Leu-Gly-Gln-Thr-Pro.
以下の7種の少なくとも1種からなるアンギオテンシン変換酵素阻害剤:
Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lys;
Arg−Met−Leu−Gly−Gln−Thr−Pro−Thr;
Arg−Met−Leu−Gly−Gln−Thr−Pro;
Arg−Met−Leu−Gly−Gln−Thr;
Arg−Met−Leu;
Thr−Pro;及び
Thr−Lys。
Angiotensin converting enzyme inhibitors comprising at least one of the following seven:
Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys;
Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr;
Arg-Met-Leu-Gly-Gln-Thr-Pro;
Arg-Met-Leu-Gly-Gln-Thr;
Arg-Met-Leu;
Thr-Pro; and Thr-Lys.
トロポニンをペプシンで加水分解することを特徴とするアンギオテンシン変換酵素阻害剤の製造法。A method for producing an angiotensin converting enzyme inhibitor, which comprises hydrolyzing troponin with pepsin. アンギオテンシン変換酵素阻害剤がArg−Met−Leu−Gly−Gln−Thr−Pro−Thr−Lysである請求項3の製造法。The method according to claim 3, wherein the angiotensin converting enzyme inhibitor is Arg-Met-Leu-Gly-Gln-Thr-Pro-Thr-Lys.
JP2002226829A 2002-08-05 2002-08-05 Angiotensin converting enzyme inhibitory peptide Expired - Lifetime JP4106539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226829A JP4106539B2 (en) 2002-08-05 2002-08-05 Angiotensin converting enzyme inhibitory peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226829A JP4106539B2 (en) 2002-08-05 2002-08-05 Angiotensin converting enzyme inhibitory peptide

Publications (2)

Publication Number Publication Date
JP2004067553A true JP2004067553A (en) 2004-03-04
JP4106539B2 JP4106539B2 (en) 2008-06-25

Family

ID=32014038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226829A Expired - Lifetime JP4106539B2 (en) 2002-08-05 2002-08-05 Angiotensin converting enzyme inhibitory peptide

Country Status (1)

Country Link
JP (1) JP4106539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230978A (en) * 2006-03-03 2007-09-13 Hokkaido Univ Composition containing pork-original peptide having antifeeding activity
JP2016128435A (en) * 2009-03-31 2016-07-14 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Dipeptides as feed additives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230978A (en) * 2006-03-03 2007-09-13 Hokkaido Univ Composition containing pork-original peptide having antifeeding activity
JP2016128435A (en) * 2009-03-31 2016-07-14 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Dipeptides as feed additives

Also Published As

Publication number Publication date
JP4106539B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
Murakami et al. Structural analysis of a new anti-hypertensive peptide (β-lactosin B) isolated from a commercial whey product
Abubakar et al. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion
Ruiz et al. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion
Motoi et al. Isolation and characterization of angiotensin I‐converting enzyme inhibitory peptides from wheat gliadin hydrolysate
Suetsuna Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic)
Pan et al. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate
Jimsheena et al. Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors: structure–activity relationship
Jung et al. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats
CA2825157C (en) Therapeutic or preventive agent for diabetes
Katayama et al. Purification and characterization of an angiotensin I‐converting enzyme inhibitory peptide derived from porcine troponin C
JP2010520274A (en) Methods for providing ACE inhibitory peptides from whey and the like
Pokora et al. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides
Nakagomi et al. Isolation of Acein-2, a novel angiotensin-I-converting enzyme inhibitory peptide derived from a tryptic hydrolysate of human plasma
Katayama et al. Angiotensin‐I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats
CA2779161A1 (en) Yellow pea seed protein-derived peptides
GB2251435A (en) Opioid peptides derived from wheat proteins
JP4106539B2 (en) Angiotensin converting enzyme inhibitory peptide
JP3893616B2 (en) Angiotensin converting enzyme inhibitor
JP5771522B2 (en) Anti-anxiety agent composition comprising αS1 casein-derived peptide
Nakagomi et al. Properties and human origin of two angiotensin-I-converting enzyme inhibitory peptides isolated from a tryptic hydrolysate of human serum albumin
JP2006347937A (en) Hypotensive peptide derived from protein of meat of domestic animal
Jang et al. Storage stability of the synthetic angiotensin converting enzyme (ACE) inhibitory peptides separated from beef sarcoplasmic protein extracts at different pH, temperature, and gastric digestion
Katayama et al. Peptic hydrolysate of porcine crude myosin has many active fractions inhibiting angiotensin I-converting enzyme
SAKURA et al. Structure-activity relationships of neuromedin UI Contractile activity of dog neuromedin U-related peptides on isolated chicken crop smooth muscle
JPH0616568A (en) Angiotensin converting enzyme inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4106539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term