JP2004067449A - Foam stabilizer for manufacture of autoclaved lightweight concrete - Google Patents
Foam stabilizer for manufacture of autoclaved lightweight concrete Download PDFInfo
- Publication number
- JP2004067449A JP2004067449A JP2002229391A JP2002229391A JP2004067449A JP 2004067449 A JP2004067449 A JP 2004067449A JP 2002229391 A JP2002229391 A JP 2002229391A JP 2002229391 A JP2002229391 A JP 2002229391A JP 2004067449 A JP2004067449 A JP 2004067449A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alc
- present
- foam stabilizer
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明はオートクレーブ養生される軽量気泡コンクリート(オートクレーブ・ライトウエイト・コンクリートの略で以下ALCと略称する)の製造時に使用される気泡安定剤に関するものである。
より詳しくはALC製品をアルミニウム粉末の添加により発泡成形するに際して、微細で均一な球状の独立気泡をALC製品中に含有せしめるために、成形時に発泡をコントロールする目的で使用される気泡安定剤に関するものである。
【0002】
【従来の技術】
従来、ALC製品に気泡を導入する方法は大別して3通りある。
即ち、セメント、石膏及び生石灰、珪酸質物質等を主要原料とする泥状の組成物(以下スラリーと略称する)を作製したのち、
(1)予め起泡剤を使用して発泡させて得た安定化された泡とスラリーを混合するプレフォーム法。
(2)起泡剤を含むスラリー中で撹拌して発泡させるミックスフォーム法。
(3)スラリーにアルミニウム粉末を混合して型枠内で発泡させるアルミ発泡法。
等であり、これらの製造法のうち、本発明の気泡安定剤はアルミニウム発泡法において使用される。
一般的にこのアルミ発泡法により製造されるALCは、高品質な製品が得られるためにALCの製造法として主流となっている。
【0003】
【発明が解決しようとする課題】
然しながら、アルミ発泡法はALC製造時の発泡硬化過程において、気泡を安定化させることが難しく、より高品質なALCを得るために種々の気泡安定剤が試みられている。
従来、アルミ発泡法における気泡安定剤としてはサポニン、水溶性セルロール、ポバール等の保護コロイド、水ガラス、各種界面活性剤等が使用されていたが、これらではアルミニウム粉末の発泡を阻害したり、或いは成形性に悪影響を及ぼすし、スラリーと比重の大きく異なる水素ガスをスラリー中に微細で均一な球状に細かく分散させるには極めて不十分であり、実用的に満足できる気泡安定剤と言えない。
また、例えば特開昭55−158160では有機リン酸エステル化合物を添加する方法、特開昭59−199565ではアルケニルコハク酸の水溶性塩を添加する方法、また、特開平1−100072では水溶性セルロースを添加する方法等が提案されているが、上述のALC製造時の発泡硬化過程において、気泡を安定化させ得るにはまだ不十分であり、更なる改良が求められていた。
【0004】
従って本発明の目的は、ALC製品をアルミニウム粉末の添加により発泡成形するに際して、微細で均一な球状の独立気泡をALC製品中に含有せしめるために、成形時に発泡をコントロールする目的で使用される改良された気泡安定剤を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するため鋭意研究した結果、アルミ発泡法気泡安定剤として優れた添加剤を見出し本発明に到達したものである。
即ち本発明は、炭素数8〜22の飽和または不飽和高級脂肪酸塩(1)10〜50重量%と、下記一般式(A)
RO−(XO)nH (A)
(但し、Rは炭素数8〜22のアルキル基、アルケニル基を示し、Xはエチレン
基および/又はプロピレン基を示し、nは1〜50の整数を示す)
で表わされるポリオキシアルキレンアルキル又はアルケニルエーテル(2)5〜40重量%と、鉱物油(3)10〜85重量%とから成る、3成分を必須成分として含有する混合物からなることを特徴とする、気泡安定性に優れたアルミニウム発泡法軽量気泡コンクリート製造用起泡安定剤及び発泡剤としてアルミニウムを用いる軽量気泡コンクリートの製造方法において、この気泡安定剤を軽量気泡コンクリート原料の無機質に対して0.001〜0.3重量%添加することを特徴とする、アルミニウム発泡法軽量気泡コンクリートの製造方法である。
【0006】
以下本発明を詳細に説明する。
本発明において、炭素数8〜22の飽和または不飽和高級脂肪酸塩(1)を得るための飽和または不飽和高級脂肪酸としてオクチル酸、カプリン酸、ヤシ脂肪酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、オレイン酸、リノール酸、トール油脂肪酸、エルカ酸、ヒマシ油脂肪酸等があげられる。
また、前記飽和または不飽和高級脂肪酸塩(1)を得るためのアルカリ類としては水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアルカノールアミン類、またモルホリン、アミノアルコール、シクロヘキシルアミン等をあげることができるが、効果の点でトリエタノールアミン、モルホリンで中和したオレイン酸、リノール酸、ヒマシ油脂肪酸の飽和または不飽和高級脂肪酸塩が最も好ましい。
【0007】
次に、本発明に係わる一般式(A)
RO−(XO)nH (A)
で表されるアルキレンオキサイド付加型非イオン界面活性剤であるポリオキシアルキレンアルキル又はアルケニルエーテル(2)は、公知の方法によって即ち高級アルコールにアルキレンオキサイドを付加反応せしめて得られる。
本発明のポリオキシアルキレンアルキル又はアルケニルエーテル(2)を得るために使用される高級アルコールは、炭素数8〜22の直鎖又は、分岐鎖高級アルコールであり例示するとデシルアルコール、ラウリルアルコール、セチルアルコール、ステアリルアルコール、オレイルアルコール、ベヘニルアルコール及び2級ドデシルアルコール、2級トリデシルアルコール、2級テトラデシルアルコールなどが挙げられる。
また、アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイドであり、高級アルコールに対するアルキレンオキサイドの付加モル数は、高級アルコール1モルに対しアルキレンオキサイド1〜50モルの範囲であれば良いが、50モルを超えると発泡を阻害する。
好ましい範囲は5〜20モルである。
更にこれらのアルキレンオキサイド付加型非イオン界面活性剤の中で最も好ましいのは炭素数12〜14を有する高級アルコールにエチレンオキサイド5〜10モル付加させたものである。
【0008】
また、本発明に係わる鉱物油(3)としては、石油原油より精製されるパラフィン系炭化水素が主成分のパラフィン基油、ナフテン系炭化水素が主成分のナフテン基油、その両者の中間組成をもつ中間基油等であるが、気泡コントロール性能の点でナフテン基油を使用することが好ましい。
【0009】
本発明に使用される気泡安定剤混合物は、前記3種類の化合物を所定の配合割合で混合して得られるが、その配合比は前記の通り高級脂肪酸塩(1)/ポリオキシアルキレンアルキル又はアルケニルエーテル(2)/鉱物油(3)=10〜50重量%/5〜40重量%/10〜85重量%の範囲であることが必須であるが、特に好ましい有効な配合比は高級脂肪酸塩(1)/ポリオキシアルキレンアルキル又はアルケニルエーテル(2)/鉱物油(3)=20〜40重量%/10〜20重量%/40〜65重量%であり、この場合最も適切な相乗効果を発揮する。
【0010】
本発明の気泡安定剤混合物の添加量は、ALC原料の無機質に対して0.001〜0.3重量%であるが、効果の点で好ましい使用量は0.002〜0.01重量%の範囲である。
0.001重量%未満の添加では本発明の所望の効果が発現しないし、0.3%を超える添加では、特にALC製品中の地割れのような空洞の発生率が増大し、その結果ALCの品質が劣り好ましくない。
【0011】
かくして、本発明に係わる特定の高級脂肪酸塩(1)、ポリオキシアルキレンアルキル又はアルケニルエーテル(2)、鉱物油(3)を特定の配合比率で使用すると、従来のALC製品の品質を遥かに上回る、地割れのような空洞の発生率が少なく且つ密度、乾燥収縮率、圧縮強度が改良されたALC製品を作製できる。
【0012】
本発明のALC用気泡安定剤が優れた効果を発揮する理由について、完全に解明できていないが、本発明の高級脂肪酸塩等の化合物が石灰質原料の水和によって生じるCa++イオンの存在により単分子膜が非解離性の金属石鹸を生成し、その分子間の強い凝集力のため固体膜となるので、安定した強固な気泡膜が成形されることになり、生成した水素ガスを安定に閉じ込め、その気泡どうしが互いに融合し粗大化するのを防ぐとともに、本発明のポリオキシアルキレンアルキル又はアルケニルエーテルおよび鉱物油との相乗効果により、極めて安定・微細な気泡の生成効果につながるものと推定しており、このことが本発明の根幹をなしている。
【0013】
本発明は、その目的を損なわない範囲で混合物の相溶性を向上させるためソルビタン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシアルキレン脂肪酸モノ(ジ)エステル等の界面活性剤を付加成分として添加することができる。
以下、本発明を実施例によって説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。
【0014】
【実施例】
<1>本発明の気泡安定剤の作製例
1.実施例の混合物1
混合容器にオレイン酸トリエタノールアミン塩、ヒマシ油脂肪酸モルホリン塩各15重量部と鉱物油(ナフテン系・20℃粘度46cps)55重量部を仕込み混合する。
これにポリオキシエチレンラウリルエーテル15重量部を加え撹拌混合し本発明の実施例の混合物1を得た。
【0015】
2.実施例の混合物2〜9
実施例の混合物1と同様の方法で表1に示す実施例の混合物(重量%)2〜9を得た。
【0016】
3.比較混合物1〜5
本発明1の混合物と同様の方法で表1に示す本発明外の比較混合物(重量%)1〜5を得た。
【0017】
【表1】
【0018】
A成分−1 ラウリン酸モノエタノールアミン塩
A成分−2 オレイン酸トリエタノールアミン塩
A成分−3 リノール酸モルホリン酸
B成分−1 ポリオキシエチレン(7)ラウリルエーテル
B成分−2 ポリオキシエチレン(9)トリデシルエーテル
B成分−3 ポリオキシエチレン(5)ポリオキシプロピレン(3)セチル
エーテル
C成分−1 ナフテン系鉱物油(20℃粘度 46cps)
C成分−2 パラフィン系鉱物油(20℃粘度 68cps)
D成分−1 オレイン酸
D成分−2 ステアリン酸カルシウム塩
D成分−3 ポリオキシエチレン(60)ラウリルエーテル
A成分1〜3、B成分1〜3、C成分1〜2、は本発明による化合物又は鉱物油を表し、D成分1〜3は比較例の化合物を表す又、有効成分はすべて100%
品として使用した。
【0019】
<2>気泡安定効果の測定
ALCの製造はセメント27.8重量%、生石灰2.9重量%、珪石48.8重量%、石膏2.5重量%、ALCの解砕屑18.0重量%の割合からなる混合物100重量部に水74重量部とアルミニウム粉末0.065重量部と実施例1〜8及び比較例9〜13に示される組成の気泡安定剤をそれぞれ0.001〜0.2重量%加え混練し、このスラリーを予め補強筋が多数垂直にセットされた型枠内に注入した。
スラリーが凝結硬化した後、脱却し、更に180℃、10気圧飽和蒸気圧で5時間のオートクレーブ養生により絶乾状態で密度0.51となるALCを得た。次に気泡状態、地割れのような空洞の発生率、密度、圧縮強度、乾燥収縮率を測定した。
気泡状態はALCの発泡方向の中央部から採取し、切断面を水洗いした後、試験体から30cm離れた位置より肉眼により観察した。
地割れのような空洞の発生率は直径20mm以上の地割れのような空洞があったALCの割合で示した。
密度、圧縮強度、乾燥収縮率の試験方法はJIS−A5416に準拠した。
【0020】
<3>実施例1〜8
前記気泡安定効果の測定法に従い、本発明の化合物1〜9を添加した場合の測定結果を求め、表2に記載したが、本発明の化合物を添加したALCの気泡は細かく均一で外観や強度に優れていた。
【0021】
<4>比較例1〜5
本発明の比較化合物9〜13を添加した場合の測定を実施例と同様な方法で行い結果を表2中に示した。
【0022】
【表2】
【0023】
【発明の効果】
表2に示すように本発明の化合物1〜9はALCスラリーに対し0.001〜0.3重量%添加することにより気泡は微細で均一なものとなり、その結果、地割れのような空洞の発生率を低減して、密度、乾燥収縮率、圧縮強度、曲げ強度等を向上することができた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a foam stabilizer used in the production of lightweight aerated concrete (autoclaved light weight concrete, hereinafter abbreviated as ALC) to be autoclaved.
More specifically, the present invention relates to a foam stabilizer used for controlling foaming at the time of molding in order to include fine and uniform spherical closed cells in the ALC product when foaming the ALC product by adding aluminum powder. It is.
[0002]
[Prior art]
Conventionally, there are roughly three methods for introducing bubbles into ALC products.
That is, after preparing a mud-like composition (hereinafter, abbreviated as slurry) using cement, gypsum, quicklime, siliceous substance, and the like as main raw materials,
(1) A preform method in which a stabilized foam obtained by foaming in advance using a foaming agent and a slurry are mixed.
(2) A mixed foam method in which a foam is stirred and foamed in a slurry containing a foaming agent.
(3) An aluminum foaming method in which aluminum powder is mixed with the slurry and foamed in a mold.
Etc. Among these production methods, the cell stabilizer of the present invention is used in an aluminum foaming method.
In general, ALC produced by the aluminum foaming method has become mainstream as a method for producing ALC because high quality products can be obtained.
[0003]
[Problems to be solved by the invention]
However, in the aluminum foaming method, it is difficult to stabilize the bubbles in the foam hardening process during the production of ALC, and various bubble stabilizers have been tried to obtain higher quality ALC.
Conventionally, saponin, water-soluble cellulose, protective colloids such as poval, water glass, various surfactants and the like have been used as the foam stabilizer in the aluminum foaming method, but these inhibit foaming of the aluminum powder, or It is not enough to adversely affect the moldability and to finely disperse hydrogen gas having a specific gravity greatly different from that of the slurry into fine and uniform spheres in the slurry, and cannot be said to be a practically satisfactory bubble stabilizer.
For example, JP-A-55-158160 discloses a method of adding an organic phosphate compound, JP-A-59-199565 discloses a method of adding a water-soluble salt of alkenyl succinic acid, and JP-A-1-100072 discloses a method of adding a water-soluble cellulose. Has been proposed, but it is still insufficient to stabilize the bubbles in the above-mentioned foaming and curing process during the production of ALC, and further improvement has been demanded.
[0004]
Accordingly, an object of the present invention is to provide an improved ALC product, which is used for foaming control by adding aluminum powder, in order to incorporate fine and uniform spherical closed cells into the ALC product in order to control foaming during molding. To provide an improved foam stabilizer.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found an excellent additive as an aluminum foaming cell stabilizer, and have reached the present invention.
That is, the present invention relates to a saturated or unsaturated higher fatty acid salt having 8 to 22 carbon atoms (1) in an amount of 10 to 50% by weight and the following general formula (A)
RO- (XO) nH (A)
(Where R represents an alkyl group or alkenyl group having 8 to 22 carbon atoms, X represents an ethylene group and / or a propylene group, and n represents an integer of 1 to 50)
Characterized in that the mixture comprises 5 to 40% by weight of a polyoxyalkylene alkyl or alkenyl ether (2) and 10 to 85% by weight of a mineral oil (3) and contains three components as essential components. Aluminum foaming method with excellent cell stability In a method for producing a lightweight cellular concrete using aluminum as a foaming stabilizer and a foaming agent for producing a lightweight cellular concrete, the cell stabilizer is added to the inorganic material of the lightweight cellular concrete in an amount of 0. A method for producing lightweight cellular concrete by the aluminum foaming method, comprising adding 001 to 0.3% by weight.
[0006]
Hereinafter, the present invention will be described in detail.
In the present invention, octylic acid, capric acid, coconut fatty acid, lauric acid, myristic acid, palmitic acid, stearic acid are used as saturated or unsaturated higher fatty acids for obtaining a saturated or unsaturated higher fatty acid salt (1) having 8 to 22 carbon atoms. Acid, behenic acid, oleic acid, linoleic acid, tall oil fatty acid, erucic acid, castor oil fatty acid and the like.
Examples of the alkalis for obtaining the saturated or unsaturated higher fatty acid salt (1) include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkanolamines such as monoethanolamine, diethanolamine and triethanolamine. And morpholine, aminoalcohol, cyclohexylamine, etc., but from the viewpoint of effect, saturated or unsaturated higher fatty acid salts of oleic acid, linoleic acid and castor oil fatty acid neutralized with triethanolamine and morpholine are the most effective. preferable.
[0007]
Next, the general formula (A) according to the present invention
RO- (XO) nH (A)
The polyoxyalkylene alkyl or alkenyl ether (2), which is an alkylene oxide-added nonionic surfactant represented by the formula (1), can be obtained by a known method, that is, by adding an alkylene oxide to a higher alcohol.
The higher alcohol used for obtaining the polyoxyalkylene alkyl or alkenyl ether (2) of the present invention is a straight chain or branched chain higher alcohol having 8 to 22 carbon atoms, such as decyl alcohol, lauryl alcohol, and cetyl alcohol. , Stearyl alcohol, oleyl alcohol, behenyl alcohol and secondary dodecyl alcohol, secondary tridecyl alcohol, secondary tetradecyl alcohol and the like.
Examples of the alkylene oxide include ethylene oxide and propylene oxide, and the number of moles of the alkylene oxide added to the higher alcohol may be in the range of 1 to 50 moles of the alkylene oxide to 1 mole of the higher alcohol, but exceeds 50 moles. And inhibit foaming.
A preferred range is from 5 to 20 moles.
Further, among these alkylene oxide-added nonionic surfactants, the most preferred are those obtained by adding 5 to 10 mol of ethylene oxide to a higher alcohol having 12 to 14 carbon atoms.
[0008]
The mineral oil (3) according to the present invention includes a paraffinic base oil mainly composed of paraffinic hydrocarbons refined from petroleum crude oil, a naphthenic base oil mainly composed of naphthenic hydrocarbons, and an intermediate composition of both. Although it is an intermediate base oil, it is preferable to use a naphthene base oil from the viewpoint of bubble control performance.
[0009]
The foam stabilizer mixture used in the present invention is obtained by mixing the above three kinds of compounds at a predetermined compounding ratio, and the compounding ratio is as described above, higher fatty acid salt (1) / polyoxyalkylenealkyl or alkenyl. It is essential that the ratio of ether (2) / mineral oil (3) = 10 to 50% by weight / 5 to 40% by weight / 10 to 85% by weight, but a particularly preferred effective compounding ratio is higher fatty acid salt ( 1) / polyoxyalkylene alkyl or alkenyl ether (2) / mineral oil (3) = 20-40% by weight / 10-20% by weight / 40-65% by weight, in which case the most appropriate synergistic effect is exhibited. .
[0010]
The addition amount of the foam stabilizer mixture of the present invention is 0.001 to 0.3% by weight based on the inorganic material of the ALC raw material. Range.
The addition of less than 0.001% by weight does not bring about the desired effects of the present invention, and the addition of more than 0.3% increases the incidence of cavities such as cracks, especially in ALC products. Poor quality and not preferred.
[0011]
Thus, when the specific higher fatty acid salt (1), the polyoxyalkylene alkyl or alkenyl ether (2), and the mineral oil (3) according to the present invention are used in a specific compounding ratio, the quality of the conventional ALC product far exceeds. An ALC product having a low density of voids such as ground cracks and improved density, drying shrinkage, and compressive strength can be produced.
[0012]
Although the reason why the foam stabilizer for ALC of the present invention exerts an excellent effect has not been completely elucidated, the compound such as a higher fatty acid salt of the present invention is simply simulated by the presence of Ca ++ ions generated by hydration of calcareous raw materials. The molecular film produces a non-dissociative metal soap and becomes a solid film due to the strong cohesion between the molecules, so a stable and strong bubble film is formed and the generated hydrogen gas is stably confined. It is presumed that, while preventing the bubbles from fusing with each other and becoming coarse, the synergistic effect with the polyoxyalkylene alkyl or alkenyl ether of the present invention and the mineral oil leads to an extremely stable and fine bubble generating effect. And this forms the basis of the present invention.
[0013]
In the present invention, a surfactant such as a sorbitan fatty acid ester, a sorbitol fatty acid ester, or a polyoxyalkylene fatty acid mono (di) ester can be added as an additional component in order to improve the compatibility of the mixture without impairing the purpose. .
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples as long as the gist is not exceeded.
[0014]
【Example】
<1> Production Example of Cell Stabilizer of the Present Invention Mixture 1 of Example
15 parts by weight of oleic acid triethanolamine salt and 15 parts by weight of castor oil fatty acid morpholine salt and 55 parts by weight of a mineral oil (naphthenic, viscosity at 20 ° C. 46 cps) are charged and mixed in a mixing vessel.
To this, 15 parts by weight of polyoxyethylene lauryl ether was added, followed by stirring and mixing to obtain a mixture 1 according to an example of the present invention.
[0015]
2. Mixtures 2-9 of Examples
In the same manner as in the mixture 1 of the example, mixtures (% by weight) of the examples shown in Table 1 were obtained.
[0016]
3. Comparative mixtures 1-5
In the same manner as the mixture of the present invention 1, comparative mixtures (% by weight) 1 to 5 shown in Table 1 were obtained.
[0017]
[Table 1]
[0018]
A component-1 Monoethanolamine salt of lauric acid A component-2 Triethanolamine salt of oleic acid A component-3 Linoleic acid morpholinic acid B component-1 Polyoxyethylene (7) lauryl ether B component-2 Polyoxyethylene (9) Tridecyl ether B component-3 Polyoxyethylene (5) polyoxypropylene (3) cetyl ether C component-1 Naphthenic mineral oil (viscosity at 20 ° C, 46 cps)
Component C-2 paraffin mineral oil (viscosity 68cps at 20 ℃)
D component-1 Oleic acid D component-2 Calcium stearate salt D component-3 Polyoxyethylene (60) lauryl ether A components 1-3, B components 1-3, and C components 1-2 are compounds or minerals according to the present invention. Represents an oil, and D components 1 to 3 represent the compounds of the comparative examples.
Used as a product.
[0019]
<2> Measurement of bubble stabilizing effect ALC was manufactured by using 27.8% by weight of cement, 2.9% by weight of quicklime, 48.8% by weight of silica stone, 2.5% by weight of gypsum, and 18.0% by weight of crushed ALC debris. 74 parts by weight of water, 0.065 parts by weight of aluminum powder, and 0.001 to 0.2 parts by weight of a foam stabilizer having the composition shown in Examples 1 to 8 and Comparative Examples 9 to 13 per 100 parts by weight of the mixture having the above ratios % And kneaded, and this slurry was poured into a mold in which a large number of reinforcing bars were previously set vertically.
After the slurry had set and hardened, it was removed and further subjected to autoclave curing at 180 ° C. and 10 atmospheres saturated vapor pressure for 5 hours to obtain ALC having a density of 0.51 in a completely dry state. Next, the bubble state, the rate of occurrence of voids such as cracks, density, compressive strength, and drying shrinkage were measured.
The bubble state was collected from the center of the ALC in the foaming direction, the cut surface was washed with water, and then visually observed from a position 30 cm away from the specimen.
The rate of occurrence of cavities such as cracks was indicated by the percentage of ALC having cavities such as cracks having a diameter of 20 mm or more.
The test methods for density, compressive strength, and drying shrinkage were based on JIS-A5416.
[0020]
<3> Examples 1 to 8
According to the method for measuring the bubble stabilizing effect, the measurement results when the compounds 1 to 9 of the present invention were added were obtained and described in Table 2. The bubbles of the ALC to which the compound of the present invention was added were fine and uniform, and the appearance and strength were Was excellent.
[0021]
<4> Comparative Examples 1 to 5
The measurement in the case where the comparative compounds 9 to 13 of the present invention were added was performed in the same manner as in the example, and the results are shown in Table 2.
[0022]
[Table 2]
[0023]
【The invention's effect】
As shown in Table 2, by adding 0.001 to 0.3% by weight of the compounds 1 to 9 of the present invention to the ALC slurry, bubbles become fine and uniform, and as a result, cavities such as ground cracks are generated. By reducing the rate, the density, the drying shrinkage rate, the compressive strength, the bending strength and the like could be improved.
Claims (2)
下記一般式(A)
RO−(XO)nH (A)
(但し、Rは炭素数8〜22のアルキル基、アルケニル基を示し、Xはエチレン
基および/又はプロピレン基を示し、nは1〜50の整数を示す)
で表わされるポリオキシアルキレンアルキル又はアルケニルエーテル(2)5〜40重量%と、鉱物油(3)10〜85重量%とから成る、3成分を必須成分として含有する混合物からなることを特徴とする、アルミニウム発泡法軽量気泡コンクリート製造用気泡安定剤。A saturated or unsaturated higher fatty acid salt having 8 to 22 carbon atoms (1), 10 to 50% by weight;
The following general formula (A)
RO- (XO) nH (A)
(Where R represents an alkyl group or alkenyl group having 8 to 22 carbon atoms, X represents an ethylene group and / or a propylene group, and n represents an integer of 1 to 50)
Characterized in that the mixture comprises 5 to 40% by weight of a polyoxyalkylene alkyl or alkenyl ether (2) and 10 to 85% by weight of a mineral oil (3) and contains three components as essential components. , A foam stabilizer for the production of lightweight foam concrete using the aluminum foam method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229391A JP4171623B2 (en) | 2002-08-07 | 2002-08-07 | A foam stabilizer for the production of lightweight cellular concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002229391A JP4171623B2 (en) | 2002-08-07 | 2002-08-07 | A foam stabilizer for the production of lightweight cellular concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004067449A true JP2004067449A (en) | 2004-03-04 |
JP4171623B2 JP4171623B2 (en) | 2008-10-22 |
Family
ID=32015785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002229391A Expired - Lifetime JP4171623B2 (en) | 2002-08-07 | 2002-08-07 | A foam stabilizer for the production of lightweight cellular concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4171623B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006016219A (en) * | 2004-06-30 | 2006-01-19 | Taiheiyo Material Kk | Cement-based grout composition |
JP2011079687A (en) * | 2009-10-05 | 2011-04-21 | Asahi Kasei Construction Materials Co Ltd | Lightweight foamed concrete |
JP2016056069A (en) * | 2014-09-11 | 2016-04-21 | 住友金属鉱山シポレックス株式会社 | Method for producing water-repellent lightweight foam concrete |
CN114105519A (en) * | 2021-10-14 | 2022-03-01 | 湖南绿生永固新材料有限公司 | Novel aluminum powder foaming agent for autoclaved aerated concrete |
CN116621553A (en) * | 2023-06-08 | 2023-08-22 | 济南轨道交通集团有限公司 | Foam concrete and preparation method thereof |
-
2002
- 2002-08-07 JP JP2002229391A patent/JP4171623B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006016219A (en) * | 2004-06-30 | 2006-01-19 | Taiheiyo Material Kk | Cement-based grout composition |
JP4542837B2 (en) * | 2004-06-30 | 2010-09-15 | 太平洋マテリアル株式会社 | Cement grout composition |
JP2011079687A (en) * | 2009-10-05 | 2011-04-21 | Asahi Kasei Construction Materials Co Ltd | Lightweight foamed concrete |
JP2016056069A (en) * | 2014-09-11 | 2016-04-21 | 住友金属鉱山シポレックス株式会社 | Method for producing water-repellent lightweight foam concrete |
CN114105519A (en) * | 2021-10-14 | 2022-03-01 | 湖南绿生永固新材料有限公司 | Novel aluminum powder foaming agent for autoclaved aerated concrete |
CN116621553A (en) * | 2023-06-08 | 2023-08-22 | 济南轨道交通集团有限公司 | Foam concrete and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4171623B2 (en) | 2008-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101740872B1 (en) | Water-settable composition | |
EP2986581A2 (en) | Surfactant composition for use in gypsum wallboard manufacture | |
EP0640384A1 (en) | Foaming agent | |
JP2000203914A (en) | Composition for improving freezing/thawing durability of masonry unit containing efflorescence inhibitor based on fatty acid | |
JP2021500307A (en) | Disalt as a robust primary surfactant for recycled gypsum-containing calcium sulphate mixture | |
JP2004067449A (en) | Foam stabilizer for manufacture of autoclaved lightweight concrete | |
JP3624008B2 (en) | Air entraining agent for cement composition containing fly ash | |
JP2801258B2 (en) | Foaming agent | |
JPH0645511B2 (en) | Foaming agents and compositions for cellular concrete | |
JP6573435B2 (en) | Admixture for aqueous cement composition and method of air entrainment to mortar or concrete using the same and manufacturing method | |
JP2684399B2 (en) | Admixture composition for AE fly ash concrete | |
JP2018188349A (en) | Additive for hydraulic composition | |
JP2003313059A (en) | Foaming agent for foamed mortar | |
JP6976834B2 (en) | Admixture used for concrete and / or mortar | |
JPH01131041A (en) | Cement additive | |
JP4417081B2 (en) | Foaming agent for hydraulic composition | |
EP1086056A1 (en) | Production of foamed compostions containing gypsum | |
JP2001019517A (en) | Admixture for concrete and mortar | |
JP3993679B2 (en) | Shrinkage reducing agent for cement | |
CN109180054A (en) | A kind of method that sulfonating sugar compounds preparation subtracts jelly | |
JP2619265B2 (en) | Admixture composition for AE fly ash concrete | |
JP6173155B2 (en) | Shrinkage reducing agent for cement composition | |
JP2019105441A (en) | Heat insulation material for heat insulation boxes, and heat insulation box prepared therewith | |
JP2009013017A (en) | Foaming agent for concretes | |
JPH11123324A (en) | Blowing agent for concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040315 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080811 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4171623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130815 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |