JP2004067429A - Method of manufacturing optical fiber - Google Patents

Method of manufacturing optical fiber Download PDF

Info

Publication number
JP2004067429A
JP2004067429A JP2002227857A JP2002227857A JP2004067429A JP 2004067429 A JP2004067429 A JP 2004067429A JP 2002227857 A JP2002227857 A JP 2002227857A JP 2002227857 A JP2002227857 A JP 2002227857A JP 2004067429 A JP2004067429 A JP 2004067429A
Authority
JP
Japan
Prior art keywords
resin
optical fiber
temperature
coating
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002227857A
Other languages
Japanese (ja)
Other versions
JP4115200B2 (en
Inventor
Yasuo Nakajima
中島 康雄
Minoru Saito
斎藤 稔
Mitsunori Okada
岡田 光範
Takashi Suzuki
鈴木 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2002227857A priority Critical patent/JP4115200B2/en
Publication of JP2004067429A publication Critical patent/JP2004067429A/en
Application granted granted Critical
Publication of JP4115200B2 publication Critical patent/JP4115200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of the fluctuation of the outer diameter or the like of a resin layer coated on an optical fiber at the time of drawing with a high speed, and to provide a resin which is used for coating of the optical fiber and has excellent production stability. <P>SOLUTION: Drawing is carried out in a temperature range in which the ratio of the value of the dielectric dissipation factor at the coating resin temperature in the optical fiber drawing process to the value of the dielectric dissipation factor at the dielectric dissipation factor peak temperature at a frequency of 1 Hz of the resin for the coating of the optical fiber becomes ≥0.8. Alternatively, drawing is carried out at a temperature at which the ratio of the value of the dielectric dissipation factor at the coating resin temperature in the optical fiber drawing process to the value of the dielectric dissipation factor at the dielectric dissipation factor peak temperature at a frequency of 1 Hz of the resin for the coating of the optical fiber becomes ≥0.8 and in a range between the temperature in the higher temperature side than the dielectric dissipation factor peak temperature and the dielectric dissipation factor peak temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂被覆光ファイバの製造方法に関する。より詳しくは、高線引速度において、外径変動が少なく、外観に優れた樹脂被覆層を形成することができる樹脂被覆光ファイバの製造方法に関するものである。
【0002】
【従来の技術】
一般に光ファイバは、以下のように作製される。まず、プリフォームをヒーターで加熱溶融して延伸し、所定の径を有する光ファイバ裸線を得る。光ファイバ裸線はコーティングダイスを通過させて、外周に液状樹脂を塗布する。引き続き硬化装置を通過させて、塗布した液状樹脂を硬化させて樹脂被覆層(1次被覆層)を形成させる。
【0003】
液状樹脂の塗布工程では、一定温度に加温された液状樹脂がコーティングダイスへ供給される。通常はさらにもう1層の樹脂被覆層(2次被覆層)を形成して、光ファイバの耐傷性や側圧特性等の機械的強度を向上させている。
【0004】
近年、通信容量の増大とともに光ファイバの使用量が増え、光ファイバの生産量が著しく増加している。対応策としては、線引速度を上げて生産性を向上させる必要がある。ところが、外観不良等の問題が発生する可能性があるので、線引速度を上げることができなかった。そのため、樹脂被覆光ファイバの線引工程において生ずる問題点を早期に解決する必要が生じた。特に、1000m/分以上といった高速線引時においては、この被覆樹脂の外観不良が問題のひとつとなっていた。
【0005】
外観不良というのは、線引時における外径変動や、線引後の光ファイバの1次樹脂被覆層と2次樹脂被覆層の界面に観察される不均一性の問題である。光ファイバの1次樹脂被覆層と2次樹脂被覆層の界面に観察される不均一性というのは、顕微鏡でこの界面を観察した際に、界面が平滑でないために界面の線が真直ぐになっておらず、そのため凸凹状に見える現象のことである。
【0006】
【発明が解決しようとする課題】
上記問題を解決する方法として、例えば、特開平7−33482号公報には、硬化前の誘電損失のピーク温度を、測定周波数を1Hzとしたとき、32℃以下とすることによって、広い線引速度にわたって、温度等を無調節で線引することができ、かつ、偏肉せず、均一な厚みをもった樹脂被覆層を提供できるという技術が開示されている。
【0007】
しかし、上記技術は、線引速度を変えた場合の偏肉に対しては有効であるかもしれないが、一定線引速度における被覆樹脂の外径異常や外観問題といった課題を解決するものではなく、製造安定性を保証するものではなかった。
【0008】
したがって、本発明における課題は、高速線引時において、光ファイバ被覆樹脂層における外径変動や1次樹脂被覆層と2次樹脂被覆層の界面に観察される不均一性といった外観問題を解決し、製造安定性に優れた光ファイバ被覆用樹脂を提供することにある。
【0009】
【課題を解決するための手段】
前記課題を解決するために、本発明の第1の態様は、光ファイバ被覆用樹脂の周波数1Hzにおける誘電正接ピーク温度の誘電正接の値に対する、光ファイバ線引工程の被覆用樹脂温度における誘電正接の値の比が0.8以上に相当する温度範囲内で線引することを特徴とする樹脂被覆光ファイバの製造方法である。
【0010】
本発明の第2の態様は、光ファイバ被覆用樹脂の周波数1Hzにおける誘電正接ピーク温度の誘電正接の値に対する、光ファイバ線引工程の被覆用樹脂温度における誘電正接の値の比が0.8以上に相当する温度であって誘電正接ピーク温度より高温側の温度と、誘電正接ピーク温度との範囲内で線引することを特徴とする樹脂被覆光ファイバの製造方法である。
【0011】
本発明の第3の態様は、前記光ファイバ被覆用樹脂の粘度が0.1〜10Pa・sの範囲内であることを特徴とする樹脂被覆光ファイバの製造方法である。
【0012】
本発明の第4の態様は、前記光ファイバ被覆用樹脂が紫外線硬化樹脂であることを特徴とする樹脂被覆光ファイバの製造方法である。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。本発明者らは、前述の問題を解決するために鋭意検討を行った結果、光ファイバ被覆用樹脂の誘電正接のピーク温度における誘電正接値と、線引工程における樹脂温度の誘電正接値との間に相関を見出し、本発明を完成するにいたった。
【0014】
すなわち、光ファイバ被覆用樹脂の周波数1Hzにおける誘電正接のピーク温度における誘電正接の値に対し、光ファイバ線引工程における被覆用樹脂の温度における誘電正接の値の比が0.8以上の温度範囲内で線引することを特徴とする樹脂被覆光ファイバの製造方法である。
【0015】
本発明にいたった経緯を以下に説明する。ここで、誘電体損失とは、誘電体に交流電場を加えたときに、分子内に存在する双極子は電場に応答して振動するが、周波数が高くなると双極子の振動が電場に追随できなくなり、ずれ(摩擦のようなもの)を生じて、エネルギーが熱として損失する現象またはその量をいう。
【0016】
そして、その大きさは、複素誘電率の実数部ε’と虚数部ε”の比で計算され、誘電正接tanδ(=ε”/ε’)で表わされる。
【0017】
複素誘電率は、電束密度Dと電場Eとの比で定義され、電束密度Dの変化に位相的遅れがある場合、次式のように表される。
ε=D/E=ε’−iε”
ただし、ε’、ε”は実数である。
【0018】
さらに、角振動数をω、損失角をδとして、
E=Eexp(iωt)、D=Dexp(ωt−δ)
と表せば、
ε’=(D/E)cosδ、ε”=(D/E)sinδ
となる。
【0019】
誘電正接は、ε”/ε’=tanδで定義される値であって、温度や周波数によって変化する。
【0020】
本発明に係る樹脂の誘電率(ε’)と誘電損失係数(ε”)の測定方法の例について図6、7を用いて説明する。測定方式としては、図6に示したパラレルプレート方式のバルク測定や、図7に示したプレーナーサブストレートに一対のくし型電極をデザインしたフリンジフィールド測定がある。
【0021】
誘電率(ε’)と誘電損失係数(ε”)は、図6においては、未効果の樹脂61を電極62の間にはさみ込み、接触させた2つの電極に交流電圧73を励起し、そのレスポンスとして正弦波電流を測定する方法によるものである。
【0022】
また、図7においては、例えば、電極間の隙間を100μmとした場合、この間隔以上の厚みとなるように、例えば、未効果の樹脂71を膜厚200μm以上に塗布した後、接触させた2つの電極に交流電圧73を励起し、そのレスポンスとして正弦波電流を測定する方法によるものである。
【0023】
ここで励起周波数、電極面積、電極間の距離が既知のとき、レスポンスの位相と振幅の変化は基本的な誘電体特性である誘電率(ε’)と誘電損失(ε”)に変換することができる。
【0024】
図5に、一定周波数における誘電体損失の温度特性の一例を示した。横軸を温度、左側の縦軸を誘電率(ε’)と誘電損失係数(ε”)、右側の縦軸を誘電正接tanδとした場合、誘電正接は上に凸の極大値をもった曲線となる。そして、その誘電正接が最大となる温度をピーク温度と呼ぶ。
【0025】
本発明では、この誘電正接のピーク温度における誘電正接値と製造安定性との相関について、その理由は明確ではないが、数々の試験を行ったところ誘電正接の値の変化が大きいような温度範囲では、製造安定性がよくないことがわかった。
【0026】
すなわち、本発明では、原料樹脂、添加剤の種類やその配合比を適宜選択して、周波数1Hzにおける誘電正接のピーク温度における誘電正接の値に対する、光ファイバの線引工程の被覆用樹脂温度における誘電正接の値の比を0.8以上とした温度範囲内で線引きすると好ましい結果を得られることが分かった。この温度範囲内では、高速線引時でも製造安定性が良好で、外観問題が発生しない樹脂被覆光ファイバを得ることができる。
【0027】
図2に基づいて、実施の形態例を説明する。図2の縦軸は、1例の樹脂について測定したtanδと温度との関係を示したものである。測定値はなだらかな曲線を示しており、極大点の温度は40℃であり、tanδの値は9.5である。本発明では、このtanδの値に0.8を乗じた値、すなわち7.6に相当する温度に該当する範囲内で樹脂の被覆を行う。すなわち、15℃〜65℃の範囲で実施すれば良い。この温度範囲内で光ファイバの被覆を行えば本発明の目的を達成できる。
【0028】
また、本発明では、周波数1Hzにおける誘電正接ピーク温度の誘電正接の値に対する、光ファイバ線引工程の被覆用樹脂温度における誘電正接の値の比が0.8以上に相当する温度であって誘電正接ピーク温度より高温側の温度と、誘電正接ピーク温度との範囲内で線引すると、さらに好ましい結果を得られることが分かった。この温度範囲内では、高速線引時でも製造安定性が良好で、外観問題が発生しない樹脂被覆光ファイバを得ることができる。
【0029】
すなわち、図2の例を用いて引き続いて説明すると。誘電正接のピーク温度40℃から15℃の間で被覆する場合には樹脂粘度が高くなるためにガラスファイバへの塗布性が悪くなる。そのため、誘電正接のピーク温度40℃から65℃の間で被覆することが望ましい。ただし、温度が65℃近くになると粘度が低下してくるという問題点がある。
【0030】
また、65℃を超えると粘度が下がり過ぎて塗布する厚みの変動が大きくなって好ましくない。従って、光ファイバ線引工程の被覆用樹脂温度における誘電正接の値の比が0.8以上に相当する温度であって誘電正接ピーク温度より高温側の温度と、誘電正接ピーク温度との範囲内で線引することが望ましい。
【0031】
ところで、本発明の光ファイバ被覆用樹脂に用いる原料樹脂は、特に限られるものではなく、光ファイバの被覆用に一般的に用いられる樹脂でよい。すなわち、紫外線などの光や熱等で硬化する樹脂が好適に用いられる。具体的には、紫外線硬化型ウレタン樹脂、紫外線硬化型(メタ)アクリレート樹脂、紫外線硬化型シリコーン樹脂、紫外線硬化型エポキシ樹脂等や、それらの共重合体および混合物等といった光硬化性樹脂が用いられる。
【0032】
また、本発明の光ファイバ被覆用樹脂の粘度は特に限定されないが、0.1〜10Pa・sの範囲内であることが好ましい。これより低くても高くてもガラスファイバへの塗布性が悪くなるため、寸法安定性が低下する。
【0033】
【実施例】
以下に、本発明の光ファイバ製造方法について実施例により詳しく説明する。図1に示したような線引き装置を用いた。すなわち、プリフォーム11をヒーター12で加熱溶融して延伸し、外径が125μmの光ファイバ裸線13を得た。光ファイバ裸線13はコーティングダイス14を通過させて、紫外線硬化樹脂15を塗布した。引き続き、紫外線照射装置16を通過させて塗布した液状樹脂を硬化させた。そして、樹脂被覆層(1次被覆層)を形成させて樹脂被覆光ファイバ18を得た。なお、線引速度は1500m/分で行った。
【0034】
2次被覆層を形成する場合は、1次被覆層の場合と同様に、外径測定器の下に、さらに、コーティングダイスと紫外線照射装置と2次被覆層用紫外線硬化樹脂用タンクを設けることによって行えばよい。
【0035】
紫外線硬化樹脂は、紫外線硬化樹脂タンク19からコーティングダイス14に供給した。樹脂被覆光ファイバ18の外径変動は、外径測定器17を用いて測定した。光ファイバの樹脂被覆層における一次被覆層と二次被覆層の界面は顕微鏡にて観察した。以下に実施例と比較例の説明する。結果については、図4としての表1にまとめて示した。
【0036】
(実施例1)
光ファイバ被覆用樹脂(樹脂A)の誘電正接測定結果を図2に示した。樹脂Aの周波数1Hzにおける誘電正接のピーク温度は40℃である。また、誘電正接のピーク温度の40℃における誘電正接値(tanδ)に対する比が0.8以上となる誘電正接値(tanδ)の温度は15℃〜65℃である。従って、この特性を備えた紫外線硬化型樹脂を用い、樹脂の温度を40℃として線引を行った。
【0037】
(実施例2)
実施例1と同様に、光ファイバ被覆用樹脂(樹脂A)の周波数1Hzにおける誘電正接のピーク温度が40℃で、誘電正接のピーク温度における誘電正接値に対する比が0.8となる温度が65℃である紫外線硬化型樹脂を用いた。ただし、樹脂の温度を60℃として線引を行った。
【0038】
(実施例3)
光ファイバ被覆用樹脂(樹脂B)の誘電正接測定結果を図3に示した。樹脂Bの周波数1Hzにおける誘電正接のピーク温度が35℃である。また、誘電正接のピーク温度の35℃における誘電正接値(tanδ)に対する比が0.8以上となる誘電正接値(tanδ)の温度は20℃〜50℃である。この特性を備えた紫外線硬化型樹脂を用いて、樹脂の温度を35℃として線引を行った。
【0039】
(実施例4)
実施例3と同様に、光ファイバ被覆用樹脂(樹脂B)の周波数1Hzにおける誘電正接のピーク温度が35℃で、誘電正接のピーク温度における誘電正接値に対する比が0.8となる温度が50℃である紫外線硬化型樹脂を用いた。ただし、樹脂の温度を50℃として線引を行った。
【0040】
(比較例1)
光ファイバ被覆用樹脂(樹脂A)の周波数1Hzにおける誘電正接のピーク温度が40℃で、誘電正接のピーク温度における誘電正接値に対する比が0.8となる温度が65℃である紫外線硬化型樹脂を用いた。ただし、樹脂の温度を70℃とし、範囲を超えた温度で線引を行った。
【0041】
(比較例2)
光ファイバ被覆用樹脂(樹脂B)の周波数1Hzにおける誘電正接のピーク温度が35℃で、誘電正接のピーク温度における誘電正接値に対する比が0.8となる温度が50℃である紫外線硬化型樹脂を用いた。ただし、樹脂の温度を55℃とし、範囲を超えた温度で線引を行った。
【0042】
【発明の効果】
本発明の光ファイバ製造方法によれば、例えば1000〜2000m/分といった高速線引時おいても、光ファイバ被覆樹脂層の外観や製造安定性にすぐれた光ファイバ被覆用樹脂を得ることができる。詳しくは、本発明の光ファイバ被覆用樹脂は、周波数1Hzで測定した誘電正接のピーク温度における誘電正接値に対し、光ファイバ線引工程における被覆用樹脂の温度の誘電正接値との比を0.8以上とすることによって達成される。
【図面の簡単な説明】
【図1】光ファイバの線引装置の一例である。
【図2】樹脂Aの誘電正接測定結果である。
【図3】樹脂Bの誘電正接測定結果である。
【図4】図4として示した表1である、実施例、比較例結果の一覧表である。
【図5】誘電率、誘電体損失と誘電正接を説明する図である。
【図6】パラレルプレート方式のバルク測定方法の略図である
【図7】プレーナーサブストレートに一対のくし型電極をデザインしたフリンジフィールド測定方法を示した略図である。
【符号の説明】
11 プリフォーム
12 ヒーター
13 光ファイバ裸線
14 コーティングダイス
15 紫外線硬化樹脂
16 紫外線照射装置
17 外径測定器
18 樹脂被覆光ファイバ
19 紫外線硬化樹脂液用タンク
61 未硬化の樹脂
62 プレート型電極
71 未硬化の樹脂
72 くし型電極
73 交流電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a resin-coated optical fiber. More specifically, the present invention relates to a method for producing a resin-coated optical fiber which can form a resin-coated layer having a small outer diameter variation and an excellent appearance at a high drawing speed.
[0002]
[Prior art]
Generally, an optical fiber is manufactured as follows. First, the preform is heated and melted by a heater and stretched to obtain a bare optical fiber having a predetermined diameter. The bare optical fiber is passed through a coating die to apply a liquid resin to the outer periphery. Subsequently, the resin is passed through a curing device to cure the applied liquid resin to form a resin coating layer (primary coating layer).
[0003]
In the step of applying the liquid resin, the liquid resin heated to a certain temperature is supplied to the coating die. Usually, another resin coating layer (secondary coating layer) is further formed to improve the mechanical strength of the optical fiber such as scratch resistance and lateral pressure characteristics.
[0004]
In recent years, the usage of optical fibers has increased with the increase in communication capacity, and the production of optical fibers has increased significantly. As a countermeasure, it is necessary to increase the drawing speed to improve productivity. However, the draw speed could not be increased because problems such as poor appearance may occur. Therefore, it is necessary to solve a problem occurring in a step of drawing a resin-coated optical fiber at an early stage. In particular, at the time of high-speed drawing such as 1000 m / min or more, poor appearance of the coating resin has been one of the problems.
[0005]
The appearance defect is a problem of an outer diameter fluctuation at the time of drawing or a non-uniformity observed at an interface between the primary resin coating layer and the secondary resin coating layer of the optical fiber after drawing. The non-uniformity observed at the interface between the primary resin coating layer and the secondary resin coating layer of the optical fiber is that when this interface is observed with a microscope, the interface line is straight because the interface is not smooth. This is a phenomenon that looks uneven.
[0006]
[Problems to be solved by the invention]
As a method for solving the above problem, for example, Japanese Patent Application Laid-Open No. 7-33482 discloses a wide drawing speed by setting the peak temperature of dielectric loss before curing to 32 ° C. or less when the measurement frequency is 1 Hz. A technique has been disclosed in which a resin coating layer having a uniform thickness can be provided without being adjusted in temperature and the like and without uneven thickness.
[0007]
However, the above technique may be effective for uneven thickness when the drawing speed is changed, but it does not solve problems such as abnormal outer diameter and appearance problem of the coating resin at a constant drawing speed. However, it did not guarantee production stability.
[0008]
Therefore, an object of the present invention is to solve appearance problems such as outer diameter fluctuation in an optical fiber coating resin layer and non-uniformity observed at an interface between a primary resin coating layer and a secondary resin coating layer during high-speed drawing. Another object of the present invention is to provide an optical fiber coating resin having excellent production stability.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a method for forming a dielectric tangent at a coating resin temperature in an optical fiber drawing process with respect to a dielectric tangent value of a dielectric tangent peak temperature at a frequency of 1 Hz of an optical fiber coating resin. Is drawn within a temperature range corresponding to a value of 0.8 or more.
[0010]
According to a second aspect of the present invention, the ratio of the value of the dielectric loss tangent at the coating resin temperature in the optical fiber drawing process to the value of the dielectric loss tangent at the dielectric loss tangent peak temperature at a frequency of 1 Hz of the optical fiber coating resin is 0.8. A method for producing a resin-coated optical fiber, characterized in that drawing is performed within a range between a temperature corresponding to the above and higher than the dielectric loss tangent peak temperature and a dielectric tangent peak temperature.
[0011]
A third aspect of the present invention is a method for producing a resin-coated optical fiber, wherein the viscosity of the resin for coating an optical fiber is in the range of 0.1 to 10 Pa · s.
[0012]
A fourth aspect of the present invention is a method for producing a resin-coated optical fiber, wherein the resin for coating an optical fiber is an ultraviolet curable resin.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. The present inventors have conducted intensive studies to solve the above-described problems, and as a result, the dielectric loss tangent value at the peak temperature of the dielectric loss tangent of the resin for optical fiber coating, and the dielectric loss tangent value of the resin temperature in the drawing step. A correlation was found between them, and the present invention was completed.
[0014]
That is, the ratio of the value of the dielectric tangent at the temperature of the coating resin in the optical fiber drawing process to the value of the dielectric tangent at the peak temperature of the dielectric tangent at a frequency of 1 Hz of the optical fiber coating resin is 0.8 or more. This is a method for producing a resin-coated optical fiber, characterized by drawing inside.
[0015]
The background to the present invention will be described below. Here, the dielectric loss means that when an AC electric field is applied to the dielectric, the dipole present in the molecule vibrates in response to the electric field, but as the frequency increases, the vibration of the dipole can follow the electric field. It refers to the phenomenon or the amount of energy that is lost and lost as energy by causing a shift (such as friction).
[0016]
The magnitude is calculated by the ratio between the real part ε ′ and the imaginary part ε ″ of the complex permittivity, and is represented by a dielectric tangent tan δ (= ε ″ / ε ′).
[0017]
The complex permittivity is defined by the ratio between the electric flux density D and the electric field E. When the change in the electric flux density D has a phase delay, it is expressed by the following equation.
ε = D / E = ε′−iε ″
Here, ε ′ and ε ″ are real numbers.
[0018]
Further, assuming that the angular frequency is ω and the loss angle is δ,
E = E 0 exp (iωt) , D = D 0 exp (ωt-δ)
Then
ε ′ = (D 0 / E 0 ) cos δ, ε ″ = (D 0 / E 0 ) sin δ
It becomes.
[0019]
The dielectric loss tangent is a value defined by ε ″ / ε ′ = tan δ, and changes with temperature and frequency.
[0020]
An example of a method for measuring the dielectric constant (ε ′) and the dielectric loss coefficient (ε ″) of the resin according to the present invention will be described with reference to FIGS. 6 and 7. As the measurement method, the parallel plate method shown in FIG. There are bulk measurement and fringe field measurement in which a pair of comb-shaped electrodes are designed on the planar substrate shown in FIG.
[0021]
In FIG. 6, the dielectric constant (ε ′) and the dielectric loss coefficient (ε ″) are such that an ineffective resin 61 is sandwiched between the electrodes 62 and an AC voltage 73 is excited between the two contacted electrodes. This is based on a method of measuring a sinusoidal current as a response.
[0022]
In FIG. 7, for example, when the gap between the electrodes is set to 100 μm, for example, an ineffective resin 71 is applied to a thickness of 200 μm or more so as to have a thickness equal to or more than this gap, and then contacted. This is based on a method of exciting an AC voltage 73 to one electrode and measuring a sinusoidal current as a response.
[0023]
Here, when the excitation frequency, electrode area, and distance between electrodes are known, changes in the phase and amplitude of the response are converted into the basic dielectric properties of dielectric constant (ε ') and dielectric loss (ε "). Can be.
[0024]
FIG. 5 shows an example of the temperature characteristic of the dielectric loss at a constant frequency. When the horizontal axis is temperature, the left vertical axis is the dielectric constant (ε ′) and the dielectric loss coefficient (ε ″), and the right vertical axis is the dielectric loss tangent tanδ, the dielectric loss tangent is a curve having a convex maximum value. The temperature at which the dielectric loss tangent is maximized is called the peak temperature.
[0025]
In the present invention, for the correlation between the dielectric loss tangent value at the peak temperature of the dielectric loss tangent and the manufacturing stability, the reason is not clear, but after conducting a number of tests, a temperature range where the change in the value of the dielectric loss tangent is large is large. It was found that the production stability was not good.
[0026]
That is, in the present invention, the type of the raw material resin, the additive, and the compounding ratio thereof are appropriately selected, and the value of the dielectric tangent at the peak temperature of the dielectric tangent at a frequency of 1 Hz is compared with the value of the coating resin temperature in the optical fiber drawing step. It was found that favorable results could be obtained by drawing within a temperature range in which the ratio of the dielectric loss tangents was 0.8 or more. Within this temperature range, it is possible to obtain a resin-coated optical fiber that has good production stability even at the time of high-speed drawing and does not cause any appearance problem.
[0027]
An embodiment will be described with reference to FIG. The vertical axis of FIG. 2 shows the relationship between tan δ and temperature measured for one example of the resin. The measured value shows a gentle curve, the temperature at the maximum point is 40 ° C., and the value of tan δ is 9.5. In the present invention, the resin is coated within a range corresponding to a value obtained by multiplying the value of tan δ by 0.8, that is, a temperature corresponding to 7.6. That is, it is sufficient to carry out in a range of 15 ° C. to 65 ° C. The object of the present invention can be achieved by coating the optical fiber within this temperature range.
[0028]
Further, in the present invention, the ratio of the value of the dielectric loss tangent at the coating resin temperature in the optical fiber drawing step to the value of the dielectric loss tangent at the dielectric loss tangent peak temperature at a frequency of 1 Hz is a temperature corresponding to 0.8 or more. It was found that a more favorable result could be obtained by drawing a line within the range between the temperature higher than the tangent peak temperature and the dielectric tangent peak temperature. Within this temperature range, it is possible to obtain a resin-coated optical fiber that has good production stability even at the time of high-speed drawing and does not cause any appearance problem.
[0029]
That is, the description will be continued with reference to the example of FIG. In the case of coating at a peak dielectric loss tangent between 40 ° C. and 15 ° C., the resin viscosity is high, so that the coating property on the glass fiber is poor. Therefore, it is desirable to coat at a peak temperature of the dielectric loss tangent between 40 ° C. and 65 ° C. However, there is a problem that the viscosity decreases when the temperature approaches 65 ° C.
[0030]
On the other hand, if the temperature exceeds 65 ° C., the viscosity is too low, and the variation in the thickness to be applied is undesirably large. Accordingly, the ratio of the value of the dielectric loss tangent at the coating resin temperature in the optical fiber drawing step is a temperature corresponding to 0.8 or more, and the temperature higher than the dielectric loss tangent peak temperature and the dielectric loss tangent peak temperature are within the range. It is desirable to draw with.
[0031]
Incidentally, the raw material resin used for the resin for coating an optical fiber of the present invention is not particularly limited, and may be a resin generally used for coating an optical fiber. That is, a resin that is cured by light such as ultraviolet light or heat is preferably used. Specifically, a photocurable resin such as an ultraviolet-curable urethane resin, an ultraviolet-curable (meth) acrylate resin, an ultraviolet-curable silicone resin, an ultraviolet-curable epoxy resin, or a copolymer or a mixture thereof is used. .
[0032]
The viscosity of the resin for coating an optical fiber of the present invention is not particularly limited, but is preferably in the range of 0.1 to 10 Pa · s. If it is lower or higher than this, the applicability to the glass fiber deteriorates, and the dimensional stability decreases.
[0033]
【Example】
Hereinafter, the method for producing an optical fiber of the present invention will be described in more detail with reference to examples. A drawing apparatus as shown in FIG. 1 was used. That is, the preform 11 was heated and melted by the heater 12 and stretched to obtain a bare optical fiber 13 having an outer diameter of 125 μm. The bare optical fiber 13 was passed through a coating die 14 and an ultraviolet curable resin 15 was applied. Subsequently, the liquid resin applied by passing through the ultraviolet irradiation device 16 was cured. Then, a resin-coated optical fiber 18 was obtained by forming a resin-coated layer (primary coating layer). The drawing speed was 1500 m / min.
[0034]
When the secondary coating layer is formed, similarly to the case of the primary coating layer, a coating die, an ultraviolet irradiation device, and a tank for the ultraviolet curing resin for the secondary coating layer are further provided below the outer diameter measuring device. Can be done by
[0035]
The ultraviolet curable resin was supplied from the ultraviolet curable resin tank 19 to the coating die 14. The outer diameter fluctuation of the resin-coated optical fiber 18 was measured using the outer diameter measuring device 17. The interface between the primary coating layer and the secondary coating layer in the resin coating layer of the optical fiber was observed with a microscope. Hereinafter, examples and comparative examples will be described. The results are summarized in Table 1 as FIG.
[0036]
(Example 1)
FIG. 2 shows the measurement results of the dielectric loss tangent of the resin for coating the optical fiber (resin A). The peak temperature of the dielectric loss tangent of the resin A at a frequency of 1 Hz is 40 ° C. The temperature of the dielectric loss tangent (tan δ) at which the ratio of the peak temperature of the dielectric loss tangent to the dielectric loss tangent (tan δ) at 40 ° C. becomes 0.8 or more is 15 ° C. to 65 ° C. Therefore, using an ultraviolet curable resin having the above characteristics, drawing was performed at a resin temperature of 40 ° C.
[0037]
(Example 2)
As in Example 1, the peak temperature of the dielectric loss tangent of the resin for coating the optical fiber (resin A) at a frequency of 1 Hz is 40 ° C., and the temperature at which the ratio of the dielectric loss tangent to the dielectric loss tangent value at the peak temperature is 0.8 is 65. An ultraviolet curable resin having a temperature of ° C. was used. However, drawing was performed at a resin temperature of 60 ° C.
[0038]
(Example 3)
FIG. 3 shows the measurement result of the dielectric loss tangent of the resin for coating the optical fiber (resin B). The peak temperature of the dielectric loss tangent of the resin B at a frequency of 1 Hz is 35 ° C. The temperature of the dielectric loss tangent (tan δ) at which the ratio of the peak temperature of the dielectric loss tangent to the dielectric loss tangent (tan δ) at 35 ° C. becomes 0.8 or more is 20 ° C. to 50 ° C. Using an ultraviolet-curable resin having this property, drawing was performed at a resin temperature of 35 ° C.
[0039]
(Example 4)
As in Example 3, the peak temperature of the dielectric loss tangent of the resin for coating the optical fiber (resin B) at a frequency of 1 Hz is 35 ° C., and the temperature at which the ratio of the dielectric loss tangent to the dielectric loss tangent value at the peak temperature is 0.8 is 50. An ultraviolet curable resin having a temperature of ° C. was used. However, drawing was performed at a resin temperature of 50 ° C.
[0040]
(Comparative Example 1)
UV curable resin having a peak temperature of a dielectric tangent of 40 ° C. at a frequency of 1 Hz of the resin for coating an optical fiber (resin A) and a temperature of 65 ° C. at which the ratio of the dielectric tangent at the peak temperature of the dielectric tangent to 0.8 is 0.8 ° C. Was used. However, the temperature of the resin was set to 70 ° C., and the drawing was performed at a temperature outside the range.
[0041]
(Comparative Example 2)
UV curable resin having a dielectric tangent peak temperature of 35 ° C. at a frequency of 1 Hz of the optical fiber coating resin (resin B) and a temperature of 50 ° C. at which the ratio of the dielectric tangent value at the dielectric tangent peak temperature to 0.8 is 0.8 ° C. Was used. However, the temperature of the resin was 55 ° C., and the drawing was performed at a temperature outside the range.
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the optical fiber manufacturing method of this invention, the optical fiber coating resin excellent in the external appearance and manufacturing stability of an optical fiber coating resin layer can be obtained even at the time of high-speed drawing of 1000-2000 m / min. . Specifically, the resin for coating an optical fiber of the present invention has a ratio of the dielectric tangent value of the temperature of the coating resin in the optical fiber drawing process to the dielectric loss tangent value at the peak temperature of the dielectric tangent measured at a frequency of 1 Hz of 0. .8 or more.
[Brief description of the drawings]
FIG. 1 is an example of an optical fiber drawing apparatus.
FIG. 2 shows the results of dielectric loss tangent measurement of resin A.
FIG. 3 shows the results of dielectric loss tangent measurement of resin B.
FIG. 4 is a list of results of Examples and Comparative Examples, which is Table 1 shown in FIG.
FIG. 5 is a diagram illustrating a dielectric constant, a dielectric loss, and a dielectric loss tangent.
FIG. 6 is a schematic view of a bulk measurement method using a parallel plate method. FIG. 7 is a schematic view showing a fringe field measurement method in which a pair of comb-shaped electrodes is designed on a planar substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Preform 12 Heater 13 Optical fiber bare wire 14 Coating die 15 Ultraviolet curing resin 16 Ultraviolet irradiation device 17 Outer diameter measuring device 18 Resin coated optical fiber 19 Ultraviolet curing resin liquid tank 61 Uncured resin 62 Plate electrode 71 Uncured Resin 72 Comb electrode 73 AC power supply

Claims (4)

光ファイバ被覆用樹脂の周波数1Hzにおける誘電正接ピーク温度の誘電正接の値に対する、光ファイバ線引工程の被覆用樹脂温度における誘電正接の値の比が0.8以上に相当する温度範囲内で線引することを特徴とする樹脂被覆光ファイバの製造方法。The ratio of the value of the dielectric loss tangent at the coating resin temperature in the optical fiber drawing process to the value of the dielectric loss tangent of the dielectric loss tangent peak temperature at a frequency of 1 Hz of the optical fiber coating resin is within a temperature range corresponding to 0.8 or more. A method for producing a resin-coated optical fiber, comprising: 光ファイバ被覆用樹脂の周波数1Hzにおける誘電正接ピーク温度の誘電正接の値に対する、光ファイバ線引工程の被覆用樹脂温度における誘電正接の値の比が0.8以上に相当する温度であって誘電正接ピーク温度より高温側の温度と、誘電正接ピーク温度との範囲内で線引することを特徴とする請求項1記載の樹脂被覆光ファイバの製造方法。The ratio of the dielectric loss tangent value at the coating resin temperature in the optical fiber drawing process to the dielectric loss tangent value at the dielectric tangent peak temperature at a frequency of 1 Hz of the optical fiber coating resin is a temperature corresponding to 0.8 or more and The method for producing a resin-coated optical fiber according to claim 1, wherein the drawing is performed within a range between a temperature higher than the tangent peak temperature and a dielectric tangent peak temperature. 前記光ファイバ被覆用樹脂の粘度が0.1〜10Pa・sの範囲内であることを特徴とする請求項1または2記載の樹脂被覆光ファイバの製造方法。The method for producing a resin-coated optical fiber according to claim 1, wherein the viscosity of the resin for coating an optical fiber is in a range of 0.1 to 10 Pa · s. 前記光ファイバ被覆用樹脂が紫外線硬化樹脂であることを特徴とする請求項1〜3のいずれかに1項に記載の樹脂被覆光ファイバの製造方法。The method for producing a resin-coated optical fiber according to any one of claims 1 to 3, wherein the resin for coating an optical fiber is an ultraviolet curable resin.
JP2002227857A 2002-08-05 2002-08-05 Optical fiber manufacturing method Expired - Fee Related JP4115200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227857A JP4115200B2 (en) 2002-08-05 2002-08-05 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227857A JP4115200B2 (en) 2002-08-05 2002-08-05 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2004067429A true JP2004067429A (en) 2004-03-04
JP4115200B2 JP4115200B2 (en) 2008-07-09

Family

ID=32014758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227857A Expired - Fee Related JP4115200B2 (en) 2002-08-05 2002-08-05 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4115200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718414A (en) * 2012-06-18 2012-10-10 长飞光纤光缆有限公司 Method and device for automatically controlling temperature of optical fiber coatings in wiredrawing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718414A (en) * 2012-06-18 2012-10-10 长飞光纤光缆有限公司 Method and device for automatically controlling temperature of optical fiber coatings in wiredrawing process
WO2013189264A1 (en) * 2012-06-18 2013-12-27 长飞光纤光缆有限公司 Method and device for automatically controlling temperature of optical fiber coatings in wiredrawing process

Also Published As

Publication number Publication date
JP4115200B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US20060074164A1 (en) Structured composite dielectrics
RU2632184C2 (en) Antiicing cover for powerline
JP2004046194A (en) Manufacturing method for optical compensator
US20160133352A1 (en) Insulating heat-conductive sheet
Liu et al. Hydrophobic surface modification of polymethyl methacrylate by two-dimensional plasma jet array at atmospheric pressure
CN105093360A (en) Anti-glare blue-light barrier film and preparation method thereof
CN108646341A (en) A kind of large scale nano surface axial direction photon structure microcavity and its preparation method and application based on single mode optical fiber
JP4115200B2 (en) Optical fiber manufacturing method
KR101666550B1 (en) with controllable surface anchoring energy and Method for fabricating and Manufacturing device for
TWI453232B (en) Alignment layer material, alignment layer, birefringent liquid crystal film and manufacturing method thereof
JP2016066435A (en) Bus bar and method for manufacturing bus bar
CN111032570B (en) Black powder and method for producing same
JP2859796B2 (en) Optical fiber coating resin
JP3084702B2 (en) Glass fiber for optical transmission
CN108919540A (en) Method and apparatus for manufacturing liquid crystal display device
EP3498471B1 (en) Method of consolidating a wound body
KR20170071158A (en) Insulated wire and its manufacturing method
JP3675884B2 (en) Optical fiber manufacturing method
KR100642378B1 (en) A device for decreasing pmd by changing pressure around optical fiber and apparatus for making an optical fiber having low polarization mode dispersion by using the same
JPH02212338A (en) Production of optical fiber
WO2024043329A1 (en) Insulated wire and production method therefor
Cui et al. Enhanced surface performance of insulating ceramic by plasma polymerization with nanosecond-pulse dielectric barrier discharge: Insight into the effect of the repetition frequency
JPS63195144A (en) Production of optical fiber
WO2012144005A1 (en) Plastic-clad optical fiber core and optical fiber cable
JP2968680B2 (en) Optical fiber manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees