JP2004066055A - Apparatus for treating liquid - Google Patents

Apparatus for treating liquid Download PDF

Info

Publication number
JP2004066055A
JP2004066055A JP2002226251A JP2002226251A JP2004066055A JP 2004066055 A JP2004066055 A JP 2004066055A JP 2002226251 A JP2002226251 A JP 2002226251A JP 2002226251 A JP2002226251 A JP 2002226251A JP 2004066055 A JP2004066055 A JP 2004066055A
Authority
JP
Japan
Prior art keywords
liquid
comb
shaped
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002226251A
Other languages
Japanese (ja)
Inventor
Akinori Kawamitsu
川満 昭範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002226251A priority Critical patent/JP2004066055A/en
Publication of JP2004066055A publication Critical patent/JP2004066055A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for treating liquid which suppresses the occurrence of a short circuit current, enables an efficient treatment because of the presence of a field convergence section and is devised reduce power supply capacity. <P>SOLUTION: In the apparatus for treating liquid in which a liquid to be treated is circulated in a liquid treatment passage having at least one pair of electrodes comprising an anode 11 and a cathode 12 and the liquid to be treated is modified by an electric field formed by applying pulse voltage between the one pair of electrodes, the liquid treatment passage is formed as a meandering passage 10 consisting of a plurality of outward passes, inward passage and bent portions, and the above anode 11 and cathode 12 are alternately disposed at the bent portions. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、陽極および陰極からなる少なくとも一対の電極を有する液体処理流路中に被処理液を流通させ、前記一対の電極間にパルス電圧を印加することにより形成された電界により被処理液の改質処理を行なう液体処理装置、特に、電極の構成に関する。
【0002】
【従来の技術】
被処理液体を高電圧に曝すことにより、液体中の物質を物理的、電気化学的に改質処理する液体処理装置、例えば、放電を伴う、あるいは伴わない高電圧パルス電界の印加により、液体中の細胞の細胞膜・細胞壁を破壊し、微生物を殺滅する、あるいは内容物を抽出する液体処理装置や、液体中の有害化学物質の分解、畜産廃水や下水の処理、汚泥の減容化などの処理を行う液体処理装置としては、種々の方式が知られている。
【0003】
例えば、特許第3019052号公報には、「パルス電源から殺菌処理容器部に印加するパルス電圧のパルス幅を100ns未満に設定すると共に、殺菌処理容器部の電極間隔dを、所定の条件を満たすように設定することによって、液状物中での電気抵抗による損失の低減および印加パルス電圧の高効率利用を可能とし、工業生産規模の大流量殺菌処理においても高エネルギー効率かつ低温殺菌処理が可能な液状物の殺菌装置」が開示されている。
【0004】
上記公報に記載された殺菌処理容器部を含む電極構成の実施例は、2枚平板型のものであり、間隔をあけてほぼ平行に相対向する2枚の平板状の電極、即ち高電圧電極および接地電極と、両電極間を電気的に絶縁する環状または筒状の絶縁物とから成る。また、異なる実施例として、円筒状または円柱状の高電圧電極の外側に円環状(リング状)の接地電極を、高電圧電極との間に間隔をあけて同軸状に配置し、この接地電極の左右の両側と高電圧電極との間に2枚の円板状の絶縁物を設けて殺菌処理容器部を形成したものが記載されている。
【0005】
また、特開2002−1340号公報には、「被処理液中に浸漬配置される少なくとも1対の電極間に電圧を印加し、該電極間に30kV/cm以下の電界を形成させ、好ましくは、明細書に記載の所定の条件式を満たす様に印加電圧を制御して電界処理を行なうことにより、殺菌・浄化効率の向上を図った液体処理方法」が開示されている。
【0006】
前記特開2002−1340号公報に記載された電極構成の実施例も、主として前記2枚平板型であるが、同公報には、異なる実施形態に関わり、「第1電極(カソード電極)として円環状電極の組合わせ、或いは網目状円筒電極を使用すれば、電界効率低下の大きな原因となる漏れ電流を電極面積の減少によって抑えることができ、且つ漏れ電流によるジュール熱の発生も抑えられるので、好ましい実施形態として推奨される。」旨記載されている。また、上記円環状電極の組合わせ、或いは網目状円筒電極を用いた場合には、電界が集中する領域があり、これにより効率的な殺菌処理が可能になるといわれている。
【0007】
さらに、特公平6−28566号公報には、「パルス印加時の電界強度が2〜100kV/cm、パルス波形の立上がり時間が20nsec〜1μsec 、パルス波形の幅が100nsec〜1msecである高圧電場パルスを印加する液体状食品の殺菌法において、該液体状食品に乱流による流れの変化を発生させる撹拌作用を与えることを特徴とする液体状食品の殺菌法。」が開示されている。
【0008】
前記特公平6−28566号公報は、電極構成として、一つの処理容器に前記2枚平板型や同心円筒型の電極を備えたもの以外に、「往復状に曲折した流路を有する殺菌槽を用い、液体状食品に流路の曲折部において流れの変化(乱流など)を生じさせ、2枚平板型の一対の電極を、流路の直線部分としての往復部に配設したもの」を開示している。
【0009】
【発明が解決しようとする課題】
ところで、前記従来の液体処理装置においては、下記のような問題があった。
【0010】
前述のように、一つの処理容器に前記2枚平板型や同心円筒型の電極を備えたものや、往復状に曲折した流路を有するものであっても、2枚平板型の一対の電極を、流路の直線部分としての往復部に配設したものは、以下に詳述するように、被処理液体の短絡流が発生し、これが処理効率低減の要因となる問題がある。
【0011】
詳細は本発明との比較において後述する図3(A)は、一つの処理領域内部における被処理液体の流れの模式図を示し、図3(A)において、被処理液体の流れは、短絡流(ア)と乱流(イ)とからなる。
【0012】
被処理液体の処理領域内の滞留時間は、単純なモデルでは処理領域の容積を液体の流量で割ることで計算されるが、実際の流れでは処理領域内は、前述のように乱流状態にある。そのため、被処理液体が、反応に必要な処理時間より短い時間で、処理領域から流出してしまう前記短絡流が発生する。
【0013】
そのため、処理領域の容積を、単純なモデルで計算した容積で設計・製作した場合、例えば、被処理液体の50%以上は、十分な処理時間をえることができない。したがって、一つの処理容器のみで構成される液体処理装置の場合、処理領域の容量を十分に大きくしなければならない。なお、前記特公平6−28566号公報に記載された往復状に曲折した流路を有するものであっても、2枚平板型の一対の電極を、流路の直線部分としての往復部に配設した処理領域は、前記図3(A)のモデルと同等であり、同様の問題がある。
【0014】
また、平板電極を用いる装置において電極間に仕切り板を設ける場合には、短絡流を抑える構造とすることができるが、構造が複雑となるばかりでなく、前記網目状円筒電極を用いた場合のように、電界集中部のある装置に比べて反応効率が悪いため、やはり処理容量を大きくしなければならない点で、十分な構造とはいえない。
【0015】
さらに、平行平板電極の場合には、負荷容量が増大するため、大容量の電源が必要となる。そのため商用化が非常に困難となる問題がある。
【0016】
この発明は、上記従来の問題点に鑑みてなされたもので、この発明の課題は、短絡流の発生を抑え、かつ電界集中部を備えて効率的な処理を可能とし、さらに電源容量の低減を図った液体処理装置を提供することにある。
【0017】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、陽極および陰極からなる少なくとも一対の電極を有する液体処理流路中に被処理液を流通させ、前記一対の電極間にパルス電圧を印加することにより形成された電界により被処理液の改質処理を行なう液体処理装置において、前記液体処理流路を、複数個の往路,復路および曲折部からなる蛇行状流路とし、前記各曲折部に、前記陽極と陰極とを交互に配設してなるものとする(請求項1の発明)。
【0018】
前記構成によれば、液体の処理領域において、最短距離を流れる液体は、最も処理効率の高い高電界形成領域を通過するため、滞留時間が短くても十分な処理が実現できる。一方、最短経路から遠ざかる被処理液体程、電界が集中していない比較的処理効率の悪い領域を通過することとなるが、逆に処理時間が長くなるため、やはり十分な処理が実現できる。これにより、全体的に処理効率が向上し、装置のコンパクト化が図れる。
【0019】
上記請求項1の発明の実施態様としては、下記請求項2ないし5の発明が好ましい。即ち、請求項1に記載の液体処理装置において、前記陽極および陰極をそれぞれU字状の溝を備えた櫛歯状に形成し、前記各櫛歯状電極を180度反転させ、かつ一方の電極の櫛歯先端部と他方の電極のU字状溝根元部とが対面するように、陽極および陰極における櫛歯のピッチを半ピッチずらして対向配置することにより、S字状蛇行流路を形成したものとし、さらに、前記櫛歯状電極の表面は、前記櫛歯の先端部を除いて誘電体により被覆し、前記各曲折部に陽極と陰極とを交互に配設してなるものとする(請求項2の発明)。
【0020】
前記請求項2の発明によれば、請求項1の発明に係る装置が容易に製作できる。また、前記S字状蛇行流路の構成により、乱流の発生が抑制され、処理効率がより向上する。なお、製造方法の詳細については、後述する。
【0021】
さらに、前記請求項2に記載の液体処理装置において、前記誘電体により被覆された櫛歯状電極の表面は、S字状蛇行流路に沿って平行に形成された複数個の溝を備えるものとする(請求項3の発明)。これにより、被処理液の流れは整流され、乱流の発生がさらに抑制され、処理効率がさらに向上する。
【0022】
また、前記請求項3に記載の液体処理装置において、前記複数個の溝は、前記誘電体の被覆層が除去された電極の導電体露出部を備えるものとする(請求項4の発明)。これにより、溝の谷間の導電体露出部が分散電極となるため、処理槽内の全ての領域において電界が非常に弱い領域が発生せず、確実な処理を可能にするとともに、導電体露出部近傍は高電界領域となるため処理効率が向上する。また、導電体露出部が細い縞状に形成されるため、処理容積に対する電極面積は小さい。したがって、単位処理容積あたりの負荷容量は小さく、電源用量を小さく抑えることができる。
【0023】
さらにまた、前記請求項2ないし4のいずれかに記載の液体処理装置において、前記S字状蛇行流路を形成した一対の櫛歯状電極を、被処理液の入口と出口とを有する誘電体のケース内に収納してなるものとする(請求項5の発明)。これにより、構造的にシンプルで、製作が容易な装置が実現できる。
【0024】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。図1は、本発明に関わる液体処理装置の基本的構造を示す模式断面図である。
【0025】
図1において、13は液体処理流路を構成する誘電体で、複数個の往路,復路および曲折部からなる蛇行状流路10を形成している。蛇行状流路10の各曲折部には、陽極11と陰極12とを交互に配設し、陽極11および陰極12との間には電源4を配して、電極間にパルス電圧を印加することにより形成された電界により被処理液の改質処理を行なう構成としている。
【0026】
次に、図2について説明する。図2は請求項2の発明に係る液体処理装置の模式断面図である。
【0027】
図2の液体処理装置は、陽極1および陰極2をそれぞれU字状の溝を備えた櫛歯状に形成し、前記各櫛歯状電極を180度反転させ、かつ一方の電極の櫛歯先端部と他方の電極のU字状溝根元部とが対面するように、陽極1および陰極2における櫛歯のピッチを半ピッチずらして対向配置することにより、S字状蛇行流路10aを形成したものとし、さらに、前記櫛歯状電極の表面は、前記櫛歯の先端部を除いて誘電体3により被覆し、陽極1の櫛歯先端部1bと陰極2の櫛歯先端部2bとを交互に配設している。これにより、図1の実施例に比較して、被処理液の流れがスムーズになる。また、誘電体被覆により形成される電極は、その構成がシンプルとなり、電極の製作が容易となる。電極等の製作手順については後述する。
【0028】
次に、図2の実施例に関し、被処理液の流れや電界との関係ならびに本発明の作用効果等に関して、図3の流れの模式図に基づいて詳述する。図3(A)は、従来装置に関わり、一つの処理領域内部における被処理液体の流れの模式図を示し、図3(B)は、図2の実施例装置に関わる被処理液体の流れの模式図を示す。
【0029】
前述のように、図3(A)においては、短絡流(ア)は、単に入口から出口までの最短経路を通過するのみならず、乱流(イ)における逆流の分、(ア)の流速は早くなる。したがって、このような構造では、乱流による逆流の量が多いほど短絡流の流速は早くなり、押し出し流れモデルで計算される滞留時間を1とした場合、1以下の時間で流出する液体は、50%以上となり、さらに0.5以下の時間で流出する被処理液体は、最悪の場合30%を越えることがある。
【0030】
したがって、図3(A)に示すような構造では、処理領域容積を、押し出し流れモデルで計算された容積の3倍以上とする、あるいは処理領域を3段以上直列に接続した多段構造とする必要があり、処理流量に対し、装置の規模が増大する。
【0031】
これに対して、本発明の構造では、櫛歯状の壁により実質的に多段構造となっており、前記短絡流は阻止され、(ウ)で示す入口から出口までの最短経路においても、1段で、従来方式の数倍の距離を持つ。また、蛇行する部分に曲率を設けていること、さらに、後述する壁面に溝を形成して整流することにより、乱流の発生がほとんどない。したがって前記短絡流はほとんど発生せず、発生してもその流速影響は小さい。さらにまた、図3(A)の電極構成においては、最短経路(ウ)を流れる液体は、最も処理効率の高い高電界形成領域を通過するため、滞留時間が短くても十分な処理が実現できる。
【0032】
次に、図4〜図9に基づき、請求項2ないし5の発明に係る装置の主な製造手順について説明する。
【0033】
まず、両電極を、図4に示す形状に成型する。図4は陽極1を例示し、1aは櫛歯、1bは櫛歯先端部、1cはU字状溝を示す。成型方法は、電極材料や生産規模によって異なるが、例えば、ステンレススティールであれば、厚さ1mm以上の板を金型を用いて成型する方法が好ましい。また、アルミニウムなどを用い、大規模に生産する場合には、押し出し成型を採用することが望ましい。
【0034】
次に、図5に示すように、成型した電極を溶解した誘電体のプール8に浸漬する。誘電体としては、琺瑯、ガラス、プラスチックなど、費用と用途に応じて適切なものを選定する。この際、図5の状態(A)に示すように、櫛歯状電極の先端は、溶解した誘電体に浸漬しないようにする。また、本電極を保持する治具も、この先端部で保持するようにする。
【0035】
プールから引き上げる際には、電極を図5の状態(B)に示すように傾けて、電極の露出部とはしない端部の櫛歯を溶解した誘電体に浸漬させる。引き上げ後、焼結、冷却、乾燥などにより、誘電体を定着させる。
【0036】
その後、図6に示すように、円盤状の砥石5で誘電体の一部を切削し、電極を露出させる。図6の電極を上から見た図を図7に示す。図7において、黒い部分が電極が露出している部分である。図6において、矢印のように切削していくとき、導電体露出部3bが図7および図8に示すように露出する。この加工行程により、導電体露出部3bからなる縞状電極の形成と、図8に示す整流用の溝3aが同時に形成される。
【0037】
最後に、図9に示すように誘電体のケース7に、図2に示した一対の電極1および2を収める。図9において、7aは誘電体ケースの側壁、8は被処理液の入口、9は被処理液の出口を示す。
【0038】
上記によれば、装置の製造方法が簡素となり、量産化が容易となる。なお、前記製造工程において、前述のように誘電体層を削らずに、誘電体層の表面に金属電極を形成する方法によって縞状電極と溝を同時に形成することも可能であるが、この方法で形成した場合には、形成した電極間の領域に、電界強度がほぼゼロとなる領域ができるため、ここを通過する液体は十分な処理を行うことができなくなる。従って、前述の本発明の方法が好適である。
【0039】
【発明の効果】
上記のとおり、この発明によれば、陽極および陰極からなる少なくとも一対の電極を有する液体処理流路中に被処理液を流通させ、前記一対の電極間にパルス電圧を印加することにより形成された電界により被処理液の改質処理を行なう液体処理装置において、前記液体処理流路を、複数個の往路,復路および曲折部からなる蛇行状流路とし、前記各曲折部に、前記陽極と陰極とを交互に配設してなるものとしたので、
短絡流の発生を抑え、かつ電界集中部を備えて効率的な処理を可能とし、さらに電源容量の低減を図ることができる。
【0040】
また、好適な実施態様として、前記陽極および陰極をそれぞれU字状の溝を備えた櫛歯状に形成し、前記各櫛歯状電極を180度反転させ、かつ一方の電極の櫛歯先端部と他方の電極のU字状溝根元部とが対面するように、陽極および陰極における櫛歯のピッチを半ピッチずらして対向配置することにより、S字状蛇行流路を形成したものとし、さらに、前記櫛歯状電極の表面は、前記櫛歯の先端部を除いて誘電体により被覆し、前記各曲折部に陽極と陰極とを交互に配設してなるものとしたことにより、乱流の発生が抑制され、処理効率がより向上するとともに、装置の製作が容易となる。
【図面の簡単な説明】
【図1】本発明に関わる液体処理装置の基本的構造を示す模式的断面図
【図2】図1の装置の好ましい実施態様を示す液体処理装置の模式的断面図
【図3】図2の装置の被処理液の流れについて従来装置と比較して示す模式的説明図
【図4】本発明に係る櫛歯状電極の断面図
【図5】図4の電極に誘電体を被覆する工程の説明図
【図6】誘電体被覆付櫛歯状電極に導電体露出部を備えた溝を形成する工程の説明図
【図7】導電体露出部を備えた溝が形成された誘電体被覆付櫛歯状電極の平面図
【図8】図7における導電体露出部を備えた溝の拡大側断面図
【図9】一対の誘電体被覆付櫛歯状電極を誘電体ケースに収納する工程の説明図
【符号の説明】
1,11:陽極、1a:櫛歯、1b,2b:櫛歯先端部、1c:U字状溝、2,12:陰極、3,13:誘電体、3a:溝、3b:導電体露出部、4:電源、7:誘電体のケース、10:蛇行状流路、10a:S字状蛇行流路。
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a liquid to be processed is caused to flow through a liquid processing channel having at least a pair of electrodes consisting of an anode and a cathode, and the electric field formed by applying a pulse voltage between the pair of electrodes to form the liquid to be processed. The present invention relates to a liquid processing apparatus for performing a reforming process, particularly to a configuration of an electrode.
[0002]
[Prior art]
A liquid processing apparatus for physically and electrochemically reforming a substance in a liquid by exposing the liquid to be processed to a high voltage, for example, by applying a high-voltage pulsed electric field with or without electric discharge to the liquid, Liquid processing equipment that destroys cell membranes and cell walls of cells, kills microorganisms, or extracts contents, decomposes harmful chemicals in liquids, treats livestock wastewater and sewage, and reduces sludge volume. Various types of liquid processing apparatuses are known for performing the processing.
[0003]
For example, Japanese Patent No. 3019052 discloses that "the pulse width of the pulse voltage applied from the pulse power supply to the sterilization container is set to less than 100 ns, and the electrode interval d of the sterilization container is set to satisfy a predetermined condition. By setting to, liquids that can reduce the loss due to electrical resistance in the liquid material and use the applied pulse voltage with high efficiency, and are capable of high energy efficiency and pasteurization even in large-scale sterilization processing on an industrial production scale Disinfection device ".
[0004]
The embodiment of the electrode configuration including the sterilization container described in the above publication is of a two-plate type, and two flat-plate electrodes facing each other substantially in parallel at intervals, ie, high-voltage electrodes. And a ground electrode, and an annular or cylindrical insulator for electrically insulating the two electrodes. As a different embodiment, an annular (ring-shaped) ground electrode is arranged outside the cylindrical or columnar high-voltage electrode and coaxially spaced from the high-voltage electrode. In this publication, two disk-shaped insulators are provided between the left and right sides and the high-voltage electrode to form a sterilization container.
[0005]
Japanese Patent Application Laid-Open No. 2002-1340 discloses that "a voltage is applied between at least one pair of electrodes immersed in a liquid to be treated, and an electric field of 30 kV / cm or less is formed between the electrodes. A liquid treatment method which improves sterilization / purification efficiency by controlling an applied voltage so as to satisfy a predetermined conditional expression described in the specification and performing an electric field treatment ”is disclosed.
[0006]
The embodiment of the electrode configuration described in JP-A-2002-1340 is also mainly of the two-plate type, but the same publication relates to a different embodiment and describes "a first electrode (cathode electrode) as a circle. If a combination of annular electrodes or a mesh cylindrical electrode is used, the leakage current which is a major cause of electric field efficiency reduction can be suppressed by reducing the electrode area, and the generation of Joule heat due to the leakage current can be suppressed, It is recommended as a preferred embodiment. " When a combination of the above annular electrodes or a mesh cylindrical electrode is used, there is a region where an electric field concentrates, and it is said that this enables efficient sterilization treatment.
[0007]
Furthermore, Japanese Patent Publication No. 28566/1994 discloses that a high-voltage electric field pulse having an electric field intensity of 2 to 100 kV / cm, a pulse waveform rising time of 20 nsec to 1 μsec, and a pulse waveform width of 100 nsec to 1 msec is described. In a method of sterilizing a liquid food to be applied, a method of sterilizing a liquid food characterized by imparting a stirring action to generate a change in flow due to turbulence in the liquid food is disclosed. "
[0008]
The Japanese Patent Publication No. 6-28566 discloses that a sterilization tank having a reciprocatingly bent flow path is used as an electrode configuration, in addition to the one having the two-plate or concentric cylindrical electrode in one processing container. A liquid food product in which a change in flow (turbulent flow, etc.) is caused in a bent portion of a flow path, and a pair of two flat-plate electrodes are arranged in a reciprocating portion as a linear portion of the flow path. " Has been disclosed.
[0009]
[Problems to be solved by the invention]
Incidentally, the conventional liquid processing apparatus has the following problems.
[0010]
As described above, even if one processing vessel has the two-plate or concentric cylindrical electrode, or has a reciprocatingly bent channel, a pair of two-plate electrodes Is disposed in the reciprocating portion as a straight portion of the flow path, as described in detail below, there is a problem that a short-circuit flow of the liquid to be processed occurs, which causes a reduction in processing efficiency.
[0011]
FIG. 3A, which will be described later in detail in comparison with the present invention, shows a schematic diagram of the flow of the liquid to be processed in one processing region. In FIG. 3A, the flow of the liquid to be processed is a short-circuit flow. (A) and turbulence (b).
[0012]
The residence time of the liquid to be treated in the processing area is calculated by dividing the volume of the processing area by the flow rate of the liquid in a simple model, but in an actual flow, the processing area is in a turbulent state as described above. is there. Therefore, the short-circuit flow occurs in which the liquid to be processed flows out of the processing area in a time shorter than the processing time required for the reaction.
[0013]
Therefore, when the volume of the processing area is designed and manufactured with a volume calculated by a simple model, for example, 50% or more of the liquid to be processed cannot have a sufficient processing time. Therefore, in the case of a liquid processing apparatus including only one processing container, the capacity of the processing area must be sufficiently large. It should be noted that, even with a reciprocatingly bent channel described in Japanese Patent Publication No. Hei 6-28566, a pair of two-plate electrodes are arranged in a reciprocating portion as a linear portion of the channel. The set processing area is equivalent to the model of FIG. 3A and has the same problem.
[0014]
When a partition plate is provided between electrodes in a device using a flat electrode, a structure that suppresses a short-circuit flow can be used, but not only is the structure complicated, but also a case where the mesh cylindrical electrode is used. As described above, since the reaction efficiency is lower than that of the device having the electric field concentration portion, the structure is not sufficient in that the processing capacity must be increased.
[0015]
Further, in the case of a parallel plate electrode, a large capacity power source is required because the load capacity increases. Therefore, there is a problem that commercialization becomes very difficult.
[0016]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to suppress the occurrence of short-circuit current, provide an electric field concentrating unit, enable efficient processing, and further reduce power supply capacity. It is to provide a liquid processing apparatus aiming at.
[0017]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a method for causing a liquid to be processed to flow through a liquid processing channel having at least a pair of electrodes including an anode and a cathode, and applying a pulse voltage between the pair of electrodes. In a liquid processing apparatus that performs a reforming process on a liquid to be processed by a formed electric field, the liquid processing flow path is a meandering flow path including a plurality of forward paths, return paths, and bent portions. The anode and the cathode are alternately arranged (the invention of claim 1).
[0018]
According to the above configuration, in the liquid processing region, the liquid flowing through the shortest distance passes through the high electric field forming region having the highest processing efficiency, so that sufficient processing can be realized even if the residence time is short. On the other hand, as the liquid to be processed moves away from the shortest path, the liquid passes through a region where the electric field is not concentrated and the processing efficiency is relatively low. On the other hand, the processing time is long, so that sufficient processing can be realized. Thereby, the processing efficiency is improved as a whole, and the apparatus can be made compact.
[0019]
As an embodiment of the first aspect of the present invention, the following second to fifth aspects of the present invention are preferable. That is, in the liquid processing apparatus according to claim 1, the anode and the cathode are each formed in a comb shape having a U-shaped groove, the comb-shaped electrodes are inverted by 180 degrees, and one of the electrodes is formed. The S-shaped meandering flow path is formed by arranging the comb teeth at the anode and the cathode at a half pitch so as to face each other so that the tip of the comb teeth and the base of the U-shaped groove of the other electrode face each other. Further, the surface of the comb-shaped electrode is covered with a dielectric material except for the tip of the comb-teeth, and an anode and a cathode are alternately arranged at each bent portion. (Invention of claim 2).
[0020]
According to the second aspect of the invention, the device according to the first aspect can be easily manufactured. In addition, due to the configuration of the S-shaped meandering channel, the generation of turbulence is suppressed, and the processing efficiency is further improved. The details of the manufacturing method will be described later.
[0021]
3. The liquid processing apparatus according to claim 2, wherein the surface of the comb-shaped electrode covered with the dielectric includes a plurality of grooves formed in parallel along the S-shaped meandering channel. (The invention of claim 3). Thereby, the flow of the liquid to be treated is rectified, the generation of turbulence is further suppressed, and the treatment efficiency is further improved.
[0022]
Further, in the liquid processing apparatus according to the third aspect, the plurality of grooves include a conductor exposed portion of the electrode from which the dielectric coating layer has been removed (the invention of the fourth aspect). As a result, since the exposed portion of the conductor between the valleys of the groove becomes a dispersion electrode, a region in which the electric field is extremely weak does not occur in all the regions in the processing tank, and the processing can be reliably performed. Since the vicinity is a high electric field region, the processing efficiency is improved. Further, since the conductor exposed portion is formed in a thin stripe shape, the electrode area with respect to the processing volume is small. Therefore, the load capacity per unit processing volume is small, and the power supply dose can be kept small.
[0023]
5. The liquid processing apparatus according to claim 2, wherein the pair of comb-shaped electrodes forming the S-shaped meandering flow path includes an inlet and an outlet for the liquid to be processed. (Invention of claim 5). This makes it possible to realize a device that is structurally simple and easy to manufacture.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a basic structure of a liquid processing apparatus according to the present invention.
[0025]
In FIG. 1, reference numeral 13 denotes a dielectric constituting a liquid processing flow path, which forms a meandering flow path 10 including a plurality of forward paths, return paths, and bent portions. Anodes 11 and cathodes 12 are alternately arranged at each bent portion of the meandering flow path 10, a power supply 4 is arranged between the anodes 11 and the cathodes 12, and a pulse voltage is applied between the electrodes. Thus, the liquid to be treated is reformed by the electric field formed thereby.
[0026]
Next, FIG. 2 will be described. FIG. 2 is a schematic sectional view of a liquid processing apparatus according to the second aspect of the present invention.
[0027]
In the liquid processing apparatus shown in FIG. 2, the anode 1 and the cathode 2 are each formed in a comb shape having a U-shaped groove, each of the comb-shaped electrodes is inverted by 180 degrees, and the tip of one of the electrodes is comb-shaped. The S-shaped meandering flow path 10a was formed by shifting the pitch of the comb teeth of the anode 1 and the cathode 2 by half the pitch so that the portion and the base of the U-shaped groove of the other electrode faced each other. Further, the surface of the comb-shaped electrode is covered with a dielectric material 3 except for the tips of the comb teeth, and the comb teeth 1b of the anode 1 and the comb teeth 2b of the cathode 2 are alternately arranged. It is arranged in. Thereby, the flow of the liquid to be treated is smoother than in the embodiment of FIG. Further, the electrode formed by the dielectric coating has a simple configuration, and the electrode can be easily manufactured. The procedure for manufacturing the electrodes and the like will be described later.
[0028]
Next, with respect to the embodiment of FIG. 2, the relationship between the flow of the liquid to be treated and the electric field, the operation and effect of the present invention, and the like will be described in detail based on the schematic diagram of the flow of FIG. FIG. 3A shows a schematic view of a flow of a liquid to be processed in one processing area in relation to the conventional apparatus, and FIG. 3B shows a flow of the liquid to be processed in the apparatus shown in FIG. FIG.
[0029]
As described above, in FIG. 3A, the short-circuit flow (A) not only passes through the shortest path from the inlet to the outlet, but also the reverse flow in the turbulent flow (A) and the flow velocity of (A) Will be faster. Therefore, in such a structure, the larger the amount of backflow due to turbulence, the faster the flow rate of the short-circuit flow, and if the residence time calculated by the extruded flow model is 1, the liquid flowing out in 1 or less time is In the worst case, the amount of the liquid to be treated flowing out in a time of 50% or more and 0.5 or less may exceed 30%.
[0030]
Therefore, in the structure as shown in FIG. 3A, it is necessary to make the processing region volume three times or more the volume calculated by the extrusion flow model, or to have a multistage structure in which three or more processing regions are connected in series. Therefore, the scale of the apparatus increases with respect to the processing flow rate.
[0031]
On the other hand, in the structure of the present invention, the comb-shaped wall has a substantially multi-stage structure, the short-circuit flow is prevented, and even in the shortest path from the inlet to the outlet shown in FIG. It has several times the distance of the conventional method. In addition, since a curvature is provided in a meandering portion, and a groove is formed in a wall surface to be described later to rectify, turbulence hardly occurs. Therefore, the short-circuit current hardly occurs, and even if it does, the influence of the flow velocity is small. Furthermore, in the electrode configuration shown in FIG. 3A, the liquid flowing through the shortest path (c) passes through the high electric field forming region having the highest processing efficiency, so that sufficient processing can be realized even if the residence time is short. .
[0032]
Next, a main manufacturing procedure of the device according to the second to fifth aspects of the present invention will be described with reference to FIGS.
[0033]
First, both electrodes are molded into the shape shown in FIG. FIG. 4 exemplifies the anode 1, wherein 1a is a comb tooth, 1b is a tip of the comb tooth, and 1c is a U-shaped groove. The molding method varies depending on the electrode material and production scale. For example, in the case of stainless steel, a method of molding a plate having a thickness of 1 mm or more using a mold is preferable. In the case where aluminum or the like is used for large-scale production, it is desirable to employ extrusion molding.
[0034]
Next, as shown in FIG. 5, the molded electrode is immersed in a pool 8 of a dissolved dielectric material. As the dielectric, an appropriate one such as enamel, glass, plastic, or the like is selected according to cost and use. At this time, as shown in the state (A) of FIG. 5, the tip of the comb-shaped electrode is not immersed in the dissolved dielectric. A jig for holding the present electrode is also held at this tip.
[0035]
When the electrode is pulled out of the pool, the electrode is tilted as shown in FIG. 5 (B), and the comb teeth at the end of the electrode that are not exposed are immersed in the dissolved dielectric. After the lifting, the dielectric is fixed by sintering, cooling, drying, or the like.
[0036]
Thereafter, as shown in FIG. 6, a part of the dielectric is cut with a disk-shaped grindstone 5 to expose the electrodes. FIG. 7 shows a view of the electrode of FIG. 6 as viewed from above. In FIG. 7, the black portions are portions where the electrodes are exposed. In FIG. 6, when cutting is performed as shown by the arrow, the conductor exposed portion 3b is exposed as shown in FIGS. By this processing step, the formation of the striped electrode composed of the conductor exposed portion 3b and the rectifying groove 3a shown in FIG. 8 are simultaneously formed.
[0037]
Finally, the pair of electrodes 1 and 2 shown in FIG. 2 are placed in a dielectric case 7 as shown in FIG. In FIG. 9, reference numeral 7a denotes a side wall of the dielectric case, 8 denotes an inlet of the liquid to be processed, and 9 denotes an outlet of the liquid to be processed.
[0038]
According to the above, the method of manufacturing the device is simplified, and mass production is facilitated. In the above-mentioned manufacturing process, the striped electrode and the groove can be formed simultaneously by a method of forming a metal electrode on the surface of the dielectric layer without shaving the dielectric layer as described above. In the case of forming by the method, since a region where the electric field intensity becomes almost zero is formed in the region between the formed electrodes, the liquid passing therethrough cannot be sufficiently processed. Therefore, the method of the present invention described above is preferred.
[0039]
【The invention's effect】
As described above, according to the present invention, a liquid to be processed is caused to flow through a liquid processing flow path having at least a pair of electrodes including an anode and a cathode, and a pulse voltage is applied between the pair of electrodes. In a liquid processing apparatus for performing a reforming treatment of a liquid to be processed by an electric field, the liquid processing flow path is a meandering flow path including a plurality of forward paths, return paths, and bent portions, and the anode and the cathode are provided in each of the bent portions. And are arranged alternately,
It is possible to suppress the occurrence of short-circuit current, provide an electric field concentration portion, enable efficient processing, and further reduce power supply capacity.
[0040]
Further, as a preferred embodiment, the anode and the cathode are each formed in a comb shape having a U-shaped groove, the comb-shaped electrodes are inverted by 180 degrees, and a comb tooth tip of one electrode is formed. The S-shaped meandering channel was formed by arranging the comb teeth of the anode and the cathode so as to face each other so as to face the U-shaped groove base of the other electrode by a half pitch. The surface of the comb-shaped electrode is covered with a dielectric material except for the tip of the comb-teeth, and an anode and a cathode are alternately arranged at each of the bent portions, so that turbulent flow is achieved. Is suppressed, the processing efficiency is further improved, and the manufacture of the apparatus is facilitated.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a basic structure of a liquid processing apparatus according to the present invention. FIG. 2 is a schematic sectional view of a liquid processing apparatus showing a preferred embodiment of the apparatus shown in FIG. FIG. 4 is a schematic explanatory view showing the flow of a liquid to be treated in the apparatus in comparison with a conventional apparatus. FIG. 4 is a cross-sectional view of a comb-shaped electrode according to the present invention. FIG. FIG. 6 is an explanatory view of a step of forming a groove having a conductor exposed portion on a comb-shaped electrode with a dielectric covering. FIG. 7 is a diagram showing a process of forming a groove having a conductor exposed portion with a dielectric covering. FIG. 8 is an enlarged side sectional view of a groove provided with a conductor exposed portion in FIG. 7; FIG. 9 is a diagram showing a process of housing a pair of comb-shaped electrodes with a dielectric coating in a dielectric case. Explanation diagram [Explanation of reference numerals]
1, 11: anode, 1a: comb teeth, 1b, 2b: tip of comb teeth, 1c: U-shaped groove, 2, 12: cathode, 3, 13: dielectric, 3a: groove, 3b: exposed conductor , 4: power supply, 7: dielectric case, 10: meandering channel, 10a: S-shaped meandering channel.

Claims (5)

陽極および陰極からなる少なくとも一対の電極を有する液体処理流路中に被処理液を流通させ、前記一対の電極間にパルス電圧を印加することにより形成された電界により被処理液の改質処理を行なう液体処理装置において、
前記液体処理流路を、複数個の往路,復路および曲折部からなる蛇行状流路とし、前記各曲折部に、前記陽極と陰極とを交互に配設してなることを特徴とする液体処理装置。
The liquid to be processed is circulated through a liquid processing channel having at least a pair of electrodes consisting of an anode and a cathode, and the liquid to be processed is reformed by an electric field formed by applying a pulse voltage between the pair of electrodes. In the liquid processing device to be performed,
Wherein the liquid processing flow path is a meandering flow path including a plurality of forward paths, return paths, and bent portions, and the anode and the cathode are alternately arranged in each of the bent portions. apparatus.
請求項1に記載の液体処理装置において、前記陽極および陰極をそれぞれU字状の溝を備えた櫛歯状に形成し、前記各櫛歯状電極を180度反転させ、かつ一方の電極の櫛歯先端部と他方の電極のU字状溝根元部とが対面するように、陽極および陰極における櫛歯のピッチを半ピッチずらして対向配置することにより、S字状蛇行流路を形成したものとし、さらに、前記櫛歯状電極の表面は、前記櫛歯の先端部を除いて誘電体により被覆し、前記各曲折部に陽極と陰極とを交互に配設してなるものとすることを特徴とする液体処理装置。2. The liquid processing apparatus according to claim 1, wherein the anode and the cathode are each formed in a comb shape having a U-shaped groove, the comb-shaped electrodes are inverted by 180 degrees, and the comb of one of the electrodes is formed. The S-shaped meandering channel is formed by disposing the comb teeth at the anode and the cathode at a half pitch so as to face each other so that the tooth tip and the U-shaped groove base of the other electrode face each other. Further, the surface of the comb-shaped electrode is coated with a dielectric material except for the tip of the comb-teeth, and an anode and a cathode are alternately arranged at each bent portion. Characteristic liquid treatment device. 請求項2に記載の液体処理装置において、前記誘電体により被覆された櫛歯状電極の表面は、S字状蛇行流路に沿って平行に形成された複数個の溝を備えることを特徴とする液体処理装置。3. The liquid processing apparatus according to claim 2, wherein the surface of the comb-shaped electrode covered with the dielectric includes a plurality of grooves formed in parallel along the S-shaped meandering channel. Liquid processing equipment. 請求項3に記載の液体処理装置において、前記複数個の溝は、前記誘電体の被覆層が除去された電極の導電体露出部を備えることを特徴とする液体処理装置。4. The liquid processing apparatus according to claim 3, wherein the plurality of grooves include a conductor exposed portion of the electrode from which the dielectric coating layer has been removed. 請求項2ないし4のいずれかに記載の液体処理装置において、前記S字状蛇行流路を形成した一対の櫛歯状電極を、被処理液の入口と出口とを有する誘電体のケース内に収納してなることを特徴とする液体処理装置。5. The liquid processing apparatus according to claim 2, wherein the pair of comb-shaped electrodes forming the S-shaped meandering flow path are placed in a dielectric case having an inlet and an outlet for a liquid to be processed. A liquid processing apparatus characterized by being housed.
JP2002226251A 2002-08-02 2002-08-02 Apparatus for treating liquid Pending JP2004066055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226251A JP2004066055A (en) 2002-08-02 2002-08-02 Apparatus for treating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226251A JP2004066055A (en) 2002-08-02 2002-08-02 Apparatus for treating liquid

Publications (1)

Publication Number Publication Date
JP2004066055A true JP2004066055A (en) 2004-03-04

Family

ID=32013655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226251A Pending JP2004066055A (en) 2002-08-02 2002-08-02 Apparatus for treating liquid

Country Status (1)

Country Link
JP (1) JP2004066055A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131429A1 (en) * 2009-05-12 2010-11-18 ダイキン工業株式会社 Electrical discharge unit for liquid treatment, humidity conditioning apparatus, and water heater
JP2010284635A (en) * 2009-05-12 2010-12-24 Daikin Ind Ltd Electrical discharge unit for liquid treatment and humidity conditioning apparatus
JP2011072906A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Discharge unit for liquid treatment, humidity controller, and water heater
JP2011092920A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Electrical discharge unit for liquid treatment, humidity conditioning apparatus, and water heater
JP2012533070A (en) * 2009-07-10 2012-12-20 ゼネラル・エレクトリック・カンパニイ Electrochemical phase transfer device and method
US9868655B1 (en) 2015-01-21 2018-01-16 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
CN108083455A (en) * 2018-01-30 2018-05-29 浙江大学 A kind of pulling flow type electrochemical softening of water method and apparatus
CN114728821A (en) * 2019-10-15 2022-07-08 哈佛学院院长及董事 Microfluidic system for pulsed electric field sterilization

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131429A1 (en) * 2009-05-12 2010-11-18 ダイキン工業株式会社 Electrical discharge unit for liquid treatment, humidity conditioning apparatus, and water heater
JP2010284635A (en) * 2009-05-12 2010-12-24 Daikin Ind Ltd Electrical discharge unit for liquid treatment and humidity conditioning apparatus
JP4683149B2 (en) * 2009-05-12 2011-05-11 ダイキン工業株式会社 Discharge unit for liquid treatment and humidity control device
AU2010248679B2 (en) * 2009-05-12 2013-08-15 Daikin Industries, Ltd. Liquid treatment discharge unit, humidity control device, and water heater
JP2012533070A (en) * 2009-07-10 2012-12-20 ゼネラル・エレクトリック・カンパニイ Electrochemical phase transfer device and method
US9455055B2 (en) 2009-07-10 2016-09-27 General Electric Company Electrochemical phase transfer devices and methods
JP2011072906A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Discharge unit for liquid treatment, humidity controller, and water heater
JP2011092920A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Electrical discharge unit for liquid treatment, humidity conditioning apparatus, and water heater
US9868655B1 (en) 2015-01-21 2018-01-16 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
CN108083455A (en) * 2018-01-30 2018-05-29 浙江大学 A kind of pulling flow type electrochemical softening of water method and apparatus
CN114728821A (en) * 2019-10-15 2022-07-08 哈佛学院院长及董事 Microfluidic system for pulsed electric field sterilization

Similar Documents

Publication Publication Date Title
JP5670889B2 (en) Tubular electrolysis cell including concentric electrodes and corresponding method
JP2738467B2 (en) Ozone water production equipment
US6178880B1 (en) Integrated modular design of a pulsed electrical field treatment chamber
WO2014077181A1 (en) Water treatment device and water treatment method
US20140054242A1 (en) Liquid treating apparatus and liquid treating method
CN104583131B (en) Liquid treatment apparatus and liquid treatment method
EP0625958A1 (en) Ozone generator having an electrode formed of a mass of helical windings and associated method
CA2599846A1 (en) System for the disinfection of low-conductivity liquids
JP2004066055A (en) Apparatus for treating liquid
CN105002517A (en) Ozone generating electrode, anode production process and ozone generator
US9828261B2 (en) Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
CN104645370A (en) Liquid treatment unit, toilet seat with washer, washing machine, and liquid treatment apparatus
JP2014210222A (en) Liquid treatment apparatus
EP4068336A1 (en) Rapid plasma sterilization device for surfaces of food packaging materials
CN202542934U (en) Dielectric barrier discharge water treatment device
JP2002517072A5 (en)
JP2003071460A (en) Liquid treatment method and apparatus therefor
JP2019526443A (en) Configuration for electrochemical water treatment
KR100381271B1 (en) Ozone Generator with Stripe Type Electrode
KR100278150B1 (en) Multi discharge type high efficiency ozone generator
JP2013180249A (en) Water purification device
JPH0438833Y2 (en)
JPH0421540Y2 (en)
US10425991B2 (en) Pulse energy generator system
CN215194015U (en) Food packaging material surface plasma rapid disinfection device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20031201

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205