JP2004065004A - Heat-insulating material for agricultural and horticultural facility - Google Patents

Heat-insulating material for agricultural and horticultural facility Download PDF

Info

Publication number
JP2004065004A
JP2004065004A JP2002224390A JP2002224390A JP2004065004A JP 2004065004 A JP2004065004 A JP 2004065004A JP 2002224390 A JP2002224390 A JP 2002224390A JP 2002224390 A JP2002224390 A JP 2002224390A JP 2004065004 A JP2004065004 A JP 2004065004A
Authority
JP
Japan
Prior art keywords
heat
resin
agricultural
transmittance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224390A
Other languages
Japanese (ja)
Inventor
Hiromitsu Takeda
武田 広充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002224390A priority Critical patent/JP2004065004A/en
Publication of JP2004065004A publication Critical patent/JP2004065004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Protection Of Plants (AREA)
  • Greenhouses (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-insulating material for agricultural and horticultural facilities used for roof, outer wall material, or the like, for agricultural and horticultural houses, excellent in weather resistance, capable of transmitting visible light to keep required brightness and efficiently blocking near-infrared light and thereby having excellent heat-insulating properties. <P>SOLUTION: This heat-insulating material for agricultural and horticultural facilities is film-like or board-like one. The material has a heat-insulating layer comprising a resin substrate in which a fine-grain heat-insulating filler is dispersed. The heat-insulating filler comprises hexaboride particles of at least one kind of element selected from Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr and Ca. The heat-insulating material has a visible-light transmittance of 30-90%, and a sunshine transmittance of 10-80%. Preferably, the visible light transmittance is ≥10% higher than the sunshine transmittance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、農園芸用ハウスの屋根や外壁等に用いられるフィルム状又はボード状の資材であって、特に断熱効果を有する農園芸施設用断熱資材に関するものである。
【0002】
【従来の技術】
従来、農業用や園芸用のハウスを始めとする農園芸施設には、屋根や外壁等として一般的に樹脂フィルムや樹脂板が使用されている。その代表的な材質としては、塩化ビニル樹脂、ポリエチレン樹脂、ポリエステル樹脂フッ素樹脂等が一般的に使用され、最近では耐候性や紫外線領域の透光性に優れたフッ素樹脂も注目されている。
【0003】
これら農園芸用施設の屋根や外壁等に使用される資材は、その殆どが保温を目的として設計されたものである。しかし、保温の目的は外気の遮断によってほぼ達成される一方、冬季以外においては施設内の温度が高くなり過ぎることを避けるため、屋根や外壁の一部を開閉して温度調整を行う必要があった。
【0004】
そのため、農園芸施設の屋根や外壁等に使用される資材として、農園芸従事者からは断熱性を備えた資材の要求が高まっているが、これを考慮したフィルム状又はボード状の資材は殆ど提供されていない現状である。
【0005】
【発明が解決しようとする課題】
断熱性を考慮した資材として、特開平8−277349号公報には、銅錯体を含有させたポリオレフィン系の樹脂によって高温障害を防止する農業用熱可塑性樹脂フィルムが提案されている。特開平9−330612号公報には、OA機器用の部材として、近赤外線吸収能力を有する色素を樹脂に添加して断熱特性を与える提案がされている。また、特開平6−118228号公報には、光学フィルターとして、銅イオンを含有させた断熱樹脂が提案されている。
【0006】
しかしながら、上記各公報に提案された色素や銅は耐候性が低く、紫外線や熱等による劣化が起こりやすいため、樹脂に含ませて断熱用資材として使用した場合、屋外に長期間暴露されると早期に断熱効果が劣化するという欠点があった。また、色素の場合はブリードが発生しやすいため、樹脂表面が白化して光透過性が極端に低下するという欠点もあった。従って、上記の色素や銅イオンを含む樹脂フィルム等は、特に農園芸施設用資材として長期間屋外で使用する用途には適していなかった。
【0007】
本発明は、このような従来の事情に鑑みてなされたものであり、ハウス等の農園芸施設の屋根や外壁等に用いられるフィルム状又はボード状の資材であって、耐候性に優れると共に、可視光を透過して必要な明るさを保持しながら、近赤外光を効率よく遮蔽することができる、優れた断熱性を備えた農園芸施設用断熱資材を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する農園芸施設用断熱資材は、微粒子状の断熱フィラーが分散した樹脂基材からなる断熱層を備え、該断熱フィラーがY、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれた少なくとも1種の元素の6ホウ化物粒子であることを特徴とする。
【0009】
また、上記本発明の農園芸施設用断熱資材は、可視光透過率が30〜90%であり、日射透過率が10〜80%であって、可視光透過率が日射透過率に比べて10%以上高いことを特徴とする。
【0010】
上記本発明の農園芸施設用断熱資材においては、前記断熱層の樹脂基材がフッ素樹脂又はポリエチレンテレフタレイト(PET)樹脂であることが好ましい。また、上記本発明の農園芸施設用断熱資材は、前記断熱層のみからなる単一のフィルム状又はボード状であるか、若しくは前記断熱層がフィルム状又はボード状の母材表面上又は2枚の母材間にラミネートされているものであって良い。
【0011】
尚、本発明において、上記した各光透過率の値は、建築窓ガラス用フィルムに関するJIS A 5759(1998)(光源:A光)に基づいて測定し、算出したものである。ただし、測定用試料はガラスに貼付せず、フィルム状又はボード状のものをそのまま使用した。また、日射透過率は350〜2100nmの波長域の光に対する透過率であり、本発明において農園芸施設用断熱資材の太陽光線に対する断熱性を評価する指標として使用した。可視光透過率は380〜780nmの波長域の光に対する透過率であり、人間の目に対する明るさを評価する指標として使用した。
【0012】
【発明の実施の形態】
本発明の農園芸施設用断熱資材は、農園芸用ハウス等の屋根や外壁等としての使用に適したフィルム状やボード状(板状)であって、微粒子状の断熱フィラーを分散させた樹脂基材からなる断熱層を備えている。特に、上記断熱フィラーとして、近赤外光を効率良く遮蔽し、優れた断熱性を付与することができる6ホウ化物粒子、具体的にはY、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選択された少なくとも1種の元素の6ホウ化物粒子を用いる。
【0013】
一般に、農園芸施設用断熱資材においては、断熱の対象は太陽光線の熱エネルギーである。地表に到達する太陽光線は一般に約290〜2100nmの波長域であるといわれ、このうち約380〜780nmの可視光波長領域の光は施設内の明るさを維持し、植物の育成に必要な光である。従って、太陽光線の断熱においては、約780〜2100nmの近赤外光を選択的に効率良く遮蔽又は吸収することにより、断熱性に寄与する材料を選ぶことが好ましい。
【0014】
また、紫外線領域の光については、栽培する植物によって又は受粉に用いる昆虫の種類等によって最適な条件があるが、一般的に290〜320nmの波長域を制御することが要求される。即ち、この波長域の適当量の紫外線を遮蔽することで、害虫や病気による害を抑制する効果があるからである。従来使用されている農業用フィルムは紫外線をある程度遮蔽するものが多く、その条件で品種改良された植物は紫外線を多く必要としない。ただし、大部分の紫外線を遮蔽してしまうと、蜜蜂等による昆虫を用いた受粉が活発に行われなかったり、植物の育成に悪影響を与えたりすることがあるので好ましくない。
【0015】
本発明が断熱フィラーとして用いる上記6ホウ化物粒子の透過スペクトルは、いずれも可視光域の光の透過率が大きく、波長550nm付近に透過のピークを持つ。この透過ピークは人の目の感度が最も大きい波長と一致するため、施設内の明るさを保持するのに有利である。また、波長1000nm付近に大きな吸収があるため、近赤外光を吸収又は遮蔽して、太陽光線の熱エネルギーを効率良く遮断することができる。更に、紫外線吸収は少なく、従って昆虫による受粉活動や植物の生育に悪影響を与えることはない。
【0016】
このように、上記6ホウ化物粒子を断熱フィラーとする本発明の農園芸施設用断熱資材は、太陽光線の近赤外線領域を効率良く遮蔽することで優れた断熱特性があり、同時に波長550nm付近を中心に可視光領域の透過特性が良好であるため、施設内の明るさを十分保持することができる。
【0017】
かかる本発明の農園芸施設用断熱資材では、光学的に可視光域の透過性と近赤外域の吸収性とのバランスが良いことが重要である。即ち、可視光透過率は30〜90%であることが好ましく、60〜90%が更に好ましい。同時に、断熱性の指標である日射透過率は10〜80%であることが好ましく、10〜70%が更に好ましい。加えて、可視光透過率と日射透過率の差は、可視光透過率が日射透過率に比べて10%以上高くなることが好ましい。
【0018】
しかも、本発明の農園芸施設断熱資材は、好ましいことに波長320nm以下の紫外線を透過する特徴があるため、これによって受粉に寄与する蜜蜂等が活発に活動でき、安定した収穫が期待できる。尚、波長290〜320nmの紫外線の透過性は、樹脂基材中への前記6ホウ化物粒子の添加量を調整することによって制御することが可能である。
【0019】
更に紫外線領域の透過率について制御が必要な場合には、紫外線遮蔽用の無機材料、有機材料、有機無機複合材料、例えば、酸化セリウム、酸化チタン、酸化ジルコニウム、酸化亜鉛、ベンゾフェノン系紫外線吸収材等を目的に合わせて添加すれば良い。また、上記無機材料系紫外線吸収材は、紫外線を吸収したとき表面に電子とホールが発生し、これが原因で樹脂基材を劣化させる可能性があるため、その表面を皮膜処理してあるものが望ましい。表面皮膜処理としては、各種カップリング剤、表面改質剤、ゾルゲルシリケート等が代表的であるが、樹脂の劣化を防止する効果が得られれば方法は問わない。
【0020】
上記の6ホウ化物粒子からなる微粒子状の断熱フィラーの粒子径(凝集粒子も含む)は、散乱効果を利用するか否かによって適宜選択することができる。例えば、断熱層の樹脂基材中に分散させた断熱フィラーの粒子径が200nm以下、特に100nm以下の場合には、太陽光線の散乱が極めて小さくなるため、太陽光線は植物や地面に直接到達するようになる。更に、可視光領域の光も殆ど散乱されないため、ハウス等の施設内の状況を外部から観察することが容易であり、施設内から外部状況を確認することもできる。
【0021】
一方、断熱層中に分散された断熱フィラーの粒子径が200nm以上の比較的大きな粒子である場合には、太陽光線の散乱が大きく、施設内の植物や地面に到達する光は散乱され、ハウスの骨組み等の影が植物に与える影響が少なくなる。しかし、同時に可視光領域の光も散乱されるため、施設内を必要な明るさに保持できても、施設内の状況を外部から鮮明に観察することは難しくなる。
【0022】
本発明における6ホウ化物の粒子径を制御する方法は各種あるが、粒子径を小さくする場合には、ボールミル、サンドミル、超音波処理、衝突粉砕、pH制御等の方法があり、これらの方法を湿式法又は乾式法等用途にあわせて選択することができる。特に、粒子径800nm以下の粒子の分散を行う場合には、各種のカップリング剤、分散剤、界面活性剤を使用すると安定した状態で分散させることができ、処理後の分散粒子も安定に保持できる。
【0023】
上記6ホウ化物粒子を分散させた樹脂基材の断熱層を含む本発明の農園芸施設用断熱資材は、従来から農業用ハウス等に屋根や外壁として使用されている態様、即ちフィルム状又はボード状(板状)である。一般的には上記断熱層のみからなる単一なフィルム状又はボード状であるが、別途作製された樹脂やガラス等からなるフィルム状又はボード状の母材表面上又は2枚の母材間に、少なくとも1層の上記断熱層をラミネートした積層構造のものであっても良い。
【0024】
このような各種の形態を有する農園芸施設用断熱資材における断熱層は、断熱フィラーである6ホウ化物粒子を樹脂に練りこみ、これを成形又はコーティングすることによって形成することができる。尚、6ホウ化物粒子を樹脂に練りこむ場合、必要に応じて上記方法で粒子径を制御することが可能である。また、6ホウ化物粒子は熱的にも安定であるため、各種樹脂の融点付近の温度(100〜300℃前後)で混練することが可能である。
【0025】
前記6ホウ化物粒子を混練した樹脂は、例えば、押し出し形成法、インフレーション形成法、溶液流延法、カレンダー法等により、フィルム状又はボード状に成形することができる。尚、このときのフィルム又はボードの厚さは、使用目的に応じて適宜設定することができるが、一般的にフィルムの場合は10〜1000μm、好ましくは20〜500μmの範囲であり、ボードの場合には2〜15mmの範囲とすることが望ましい。また、樹脂中に混練する6ホウ化物粒子の量は、混練及び成形時の操作性等を考慮すると、一般的に樹脂に対して50重量%以下が好ましい。
【0026】
断熱層中における断熱フィラーの含有量は、断熱層の厚さや、必要に応じてラミネートする母材の厚さ、目的とする光学特性及び断熱特性に応じて変えることができる。例えば、CeBは単位重量における断熱効率が高いため、平均分散粒子径(凝集粒子を含む)が約100nm程度のとき、断熱層1m当たりのCeB含有量が0.01g以上で有効な断熱効果が得られる。また、含有量1g/mで約90%の太陽光線の熱エネルギーを吸収又は遮蔽することが可能であるから、夏場の断熱には十分な効果が得られ、しかも冬場の保温効果を考慮するとこれ以上の添加は好ましくない。よって、CeBの含有量は、0.01〜1g/mの範囲とすることが好ましい。ただし、平均分散粒子径が200nm〜800nm程度の比較的大きな粒子の場合には、日射遮蔽効率が悪くなるため、上記使用量の5倍から10倍の程度の量を必要とする可能性がある。
【0027】
断熱層のマトリックスとなる樹脂は、特に限定されるものではなく、用途に合わせて選択可能である。例えば、従来からハウス等に使用されているポリエチレン樹脂、ポリエステル樹脂、軟質塩化ビニル樹脂のほか、低コストで、透明性が高く、汎用性の広い樹脂として、ポリエチレンテレフタレイト(PET)樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂エポキシ樹脂ポリイミド樹脂等を用いることができる。特にPET樹脂は、透明性に優れ、強度が高いため好ましい材料である。
【0028】
また、耐候性や紫外線透過性等を必要とする場合には、樹脂基材としてフッ素樹脂が有効である。ここでフッ素樹脂とは、分子構造中にフッ素を含有する樹脂であればよく、例えば、4フッ化エチレン樹脂、3フッ化エチレン樹脂、2フッ化エチレン樹脂、1フッ化エチレン樹脂等が挙げられ、これらの混合物でも構わない。
【0029】
具体的なフッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(EPE)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(CPTFE)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)等が挙げられる。これらのフッ素樹脂及びその各種変成品等は各種市販されており、必要とする特性に応じて選択使用することが可能である。
【0030】
また、上述した積層構造の農園芸施設用断熱資材は、上記したPET樹脂やフッ素樹脂等からなる既存の樹脂フィルムや樹脂ボード又はガラス板等の母材の片方又は両方の表面上に、前記6ホウ化物粒子を含む断熱層をコーティングして製造することができる。コーティングの方法としては、母材上に均一な塗膜が形成できればよく、例えばバーコート法、グラビヤコート法、スプレーコート法、ディップコート法等を用いることができる。
【0031】
上記コーティング法により母材上に断熱層を形成する場合、断熱フィラーとしての6ホウ化物粒子を保持する樹脂又はバインダーとして、紫外線硬化樹脂を用いることができる。即ち、紫外線硬化樹脂と適当な粒子径の6ホウ化物粒子を混合して液状ないしペースト状とし、母材表面にコーティングし、溶剤を蒸発させた後、紫外線を照射して硬化させることにより断熱層を形成する。更に、紫外線硬化樹脂としてハードコート性の樹脂を使用すれば、表面耐摩耗強度の高い断熱層が得られ、砂埃等が衝突しても傷が付きにくい表面特性を付与することが可能である。このとき樹脂中にSiO微粒子等を添加することにより、更に表面耐摩耗強度を向上させることができる。
【0032】
また、上記のごとく母材上に断熱層をコーティングする場合には、予め母材表面を処理して断熱層との密着性を向上させることが好ましい。この表面処理により、同時に母材表面の濡れ性が改善されてコーティング時のはじきを防止し、均一なコーティングを得ることが容易となる。表面処理方法としては、コロナ処理、スパッタ処理、プライマーコーティング処理等が良く知られている。
【0033】
更に、上記した母材2枚の間に断熱層をラミネートして農園芸施設用断熱資材を形成する場合には、断熱フィラーの6ホウ化物粒子を保持する樹脂又はバインダーとして、上記した各種の樹脂以外にも、ラミネート用の樹脂、例えば塩化ビニルコポリマー等を用いることができる。
【0034】
更にまた、断熱フィラーの6ホウ化物粒子を常温硬化性の樹脂と混合して、既存の農園芸用施設の屋根や外壁の表面にコーティングすることによって断熱層を形成し、既存の農園芸用施設に後から断熱特性を付与することも可能である。
【0035】
このように、目的及び用途に応じて樹脂基材を選定することにより、断熱層のみの単一なフィルム状又はボード状の断熱資材や、断熱層とフィルム状又はボード状の母材とをラミネートした断熱資材を提供することが可能である。
【0036】
尚、樹脂フィルムや樹脂ボード、ガラス板等の表面に、本発明による断熱性フィラーである6ホウ化物粒子を付着させて、施設農業用断熱材とすることも可能である。
【0037】
【実施例】
実施例1
CeB粒子(比表面積30m/g)20重量部、トルエン75重量部、分散剤5重量部を混合し、平均分散粒子径100nmの分散液Aを得た。この分散液Aから真空乾燥機を用いて50℃で溶剤成分を除去し、分散処理したCeBの粉末Aとした。尚、平均分散粒子径は、動的光散乱法を用いた測定装置(大塚電子株式会社製:ELS−800)により測定し、その平均値とした。
【0038】
このCeBの粉末A0.01kgと、ETFE(テトラフルオロエチレン−エチレン共重合体)樹脂8.7kgをVブレンダーにて乾式混合した。その後、ETFE樹脂の溶融温度付近である320℃で十分に密閉混合し、その混合物を320℃にて押し出し成形して、厚さ約50μmのフィルムを形成した。このフィルム中のCeB粒子の含有量は0.13g/mに相当する。
【0039】
得られたフィルム状の断熱資材について、JIS A 5759(1998)(光源:A光)に準拠して光学測定を行い、可視光透過率、日射透過率、及び紫外線領域での光透過率を求めた。ただし、測定用試料はガラスに貼付せず、フィルムそのものを使用した。また、透明性を評価するために、JIS K 7105に基づきヘイズ値を測定した。ヘイズ値は、全透過率に対する拡散透過光の割合であり、この値が高いと人間の目には曇って見える。従って、透明性を要求される窓材などでは、低へイズが望ましい。
【0040】
その結果、上記フィルム状断熱資材の可視光透過率は71%、及び日射透過率は52%であった。可視光透過率と日射透過率の差が19%あり、可視光領域の光を十分透過すると同時に、太陽光線の直接入射光を48%遮蔽することができ、高い断熱効果を有することが分かった。また、紫外線領域の透過率は、波長290nmで28%及び320nmで46%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は4.1%であり、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0041】
比較例1
上記実施例1において、断熱フィラーを添加せず、ETFE樹脂のみを押し出し成形して、厚さ約50μmのフィルムを形成した。得られたフィルムの可視光透過率は89%で可視光領域の光を十分透過しているが、日射透過率も89%であり、太陽光線の直接入射光を約11%しか遮蔽できず、断熱効果が低いことが分かった。尚、紫外線領域の透過率は波長290nmで82%及び320nmで88%であり、またヘイズ値は4.0%であった。
【0042】
実施例2
上記実施例1におけるCeBの粉末A0.005kgと、ETFE樹脂8.7kgとを、Vブレンダーにて乾式混合した。その後、実施例1と同様に、ETFE樹脂の溶融温度付近である320℃で十分に密閉混合を行い、その混合物を320℃にて押出成形して、厚さ約50μmのフィルムを形成した。このフィルム中のCeB粒子の含有量は0.05g/mに相当する。
【0043】
得られたフィルム状の断熱資材を実施例1と同様に評価したところ、可視光透過率は80%及び日射透過率は68%であった。可視光透過率と日射透過率の差が12%あり、可視光領域の光を十分透過すると同時に、太陽光線の直接入射光を32%遮蔽することができ、高い断熱効果を有することが分かった。また、紫外線領域の透過率は、波長290nmで38%及び320nmで48%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は4.0%であって、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0044】
実施例3
上記実施例2において、ETFE樹脂の代わりにポリエチレンテレフタレイト(PET)樹脂を用い、加熱温度をPET樹脂の十分軟化する温度(約300℃)とした以外は、実施例2と同様の方法でフィルムを作製した。このフィルム中のCeB粒子の含有量は実施例2と同じく0.05g/mに相当する。
【0045】
得られたフィルム状の断熱資材を実施例1と同様に評価したところ、可視光透過率は79%及び日射透過率は66%であった。可視光透過率と日射透過率の差が13%あり、可視光領域の光を十分透過すると同時に、太陽光線の直接入射光を約34%遮蔽しており、高い断熱効果を有することが分かった。また、紫外線領域の透過率は、波長290nmで0%及び320nmで32%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は2.8%であり、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0046】
比較例2
上記実施例3において、断熱フィラーを添加せず、PET樹脂のみを押出成形して厚さ約50μmのフィルムを形成した。得られたフィルムの可視光透過率は88%で可視光領域の光を十分透過しているが、日射透過率も88%であり、可視光透過率と日射透過率の差がなく、また太陽光線の直接入射光を約12%しか遮蔽できず、断熱効果が低いことが分かった。また、紫外線領域の透過率は波長290nmで0%及び320nmで52%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は2.2%であり、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0047】
実施例4
GdB粒子(比表面積30m/g)20重量部、トルエン75重量部、分散剤5重量部を混合し、平均分散粒子径100nmの分散液Bを得た。この分散液Bから真空乾燥機を用いて50℃で溶剤成分を除去し、分散処理したGdBの粉末Bとした。尚、平均分散粒子径は、動的光散乱法を用いた測定装置(大塚電子株式会社製:ELS−800)により測定し、その平均値とした。
【0048】
このGdBの粉末B0.01kgと、ETFE樹脂8.7kgをVブレンダーにて乾式混合した。その後、ETFE樹脂の溶融温度付近である320℃で十分に密閉混合し、その混合物を320℃にて押し出し成形して、厚さ約50μmのフィルムを形成した。このフィルム中のGdB粒子の含有量は0.13g/mに相当する。
【0049】
得られた上記フィルム状断熱資材は、可視光透過率が70%及び日射透過率が52%であった。可視光透過率と日射透過率の差が18%あり、可視光領域の光を十分透過すると同時に、太陽光線の直接入射光を48%遮蔽することができ、高い断熱効果を有することが分かった。また、紫外線領域の透過率は、波長290nmで30%及び320nmで48%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は4.2%であり、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0050】
実施例5
PrB粒子(比表面積33m/g)20重量部、トルエン75重量部、分散剤5重量部を混合し、平均分散粒子径100nmの分散液Cを得た。この分散液Cから真空乾燥機を用いて50℃で溶剤成分を除去し、分散処理したPrBの粉末Cとした。尚、平均分散粒子径は、動的光散乱法を用いた測定装置(大塚電子株式会社製:ELS−800)により測定し、その平均値とした。
【0051】
このPrBの粉末C0.01kgと、ETFE樹脂8.7kgをVブレンダーにて乾式混合した。その後、ETFE樹脂の溶融温度付近である320℃で十分に密閉混合し、その混合物を320℃にて押し出し成形して、厚さ約50μmのフィルムを形成した。このフィルム中のPrB粒子の含有量は0.13g/mに相当する。
【0052】
得られた上記フィルム状断熱資材は、その可視光透過率が71%及び日射透過率が53%であった。可視光透過率と日射透過率の差が18%あり、可視光領域の光を十分透過すると同時に、太陽光線の直接入射光を47%遮蔽することができ、高い断熱効果を有することが分かった。また、紫外線領域の透過率は、波長290nmで28%及び320nmで48%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は4.3%で、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0053】
実施例6
実施例1におけるCeB粒子の分散液A10重量部を、ハードコート用紫外線硬化樹脂(固形分100%)100重量部と混練した。得られた液を、予め表面コロナ処理したPET樹脂フィルム(厚さ50μm)上にバーコーターを用いて成膜し、これを70℃で30秒乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させてPET樹脂フィルム上に断熱層を形成した。
【0054】
得られたフィルム状の断熱資材は、CeB粒子がハードコート用紫外線硬化樹脂中に分散した断熱層と、母材であるPET樹脂フィルムとが積層された2層ラミネート構造を有している。また、このフィルム状の断熱資材の断熱層は、厚さが約2μmであり、CeB粒子の含有量は0.08g/mに相当する。
【0055】
得られたフィルム状の断熱資材は、その可視光透過率が77%及び日射透過率が62%であった。可視光透過率と日射透過率の差が15%あり、可視光領域の光を十分透過していると同時に太陽光線の直接入射光を38%遮蔽しており、高い断熱効果を有することが分かった。また、紫外線領域の透過率は、波長290nmで0%及び320nmで34%であり、蜜蜂等が十分活発に受粉を行える範囲であった。更に、ヘイズ値は1.1%であり、内部の状況を外部からも十分確認できる高い透明性を有していた。
【0056】
【発明の効果】
本発明によれば、耐候性に優れていて、内部での作業や植物の育成に必要な可視光域の光を十分透過すると同時に、近赤外光を効率よく吸収又は遮断して、高い断熱性を備えた、フィルム状又はボード状の農園芸施設用断熱資材を提供することができる。しかも、本発明の農園芸施設用断熱資材は、紫外線を適度に透過し又はその透過を制御することができるので、病害虫の発生を制御すると共に、受粉に必要な蜜蜂等の昆虫を十分活発に活動させることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a film-like or board-like material used for a roof or an outer wall of an agricultural and horticultural house, and particularly to an insulating material for an agricultural and horticultural facility having an insulating effect.
[0002]
[Prior art]
BACKGROUND ART Conventionally, in agricultural and horticultural facilities such as agricultural and horticultural houses, resin films and resin plates are generally used as roofs, outer walls, and the like. As typical materials, vinyl chloride resin, polyethylene resin, polyester resin fluororesin, and the like are generally used, and recently, a fluororesin excellent in weather resistance and translucency in an ultraviolet region has attracted attention.
[0003]
Most of the materials used for the roofs and outer walls of these agricultural and horticultural facilities are designed for the purpose of keeping heat. However, while the purpose of heat insulation is almost achieved by shutting off outside air, it is necessary to adjust the temperature by opening and closing part of the roof and outer walls to prevent the temperature inside the facility from becoming too high except during winter. Was.
[0004]
Agricultural and horticultural workers are increasingly demanding materials with thermal insulation as materials used for roofs and outer walls of agricultural and horticultural facilities. It is not currently provided.
[0005]
[Problems to be solved by the invention]
As a material in consideration of heat insulation, Japanese Patent Application Laid-Open No. 8-277349 proposes a thermoplastic resin film for agricultural use in which a polyolefin resin containing a copper complex prevents high-temperature damage. Japanese Patent Application Laid-Open No. 9-330612 proposes, as a member for OA equipment, a method of adding a dye having a near-infrared absorption ability to a resin to give a heat insulating property. Japanese Patent Application Laid-Open No. 6-118228 proposes a heat insulating resin containing copper ions as an optical filter.
[0006]
However, the dyes and coppers proposed in the above publications have low weather resistance and are liable to be degraded by ultraviolet rays or heat, so when used as a heat insulating material in a resin, when exposed to the outdoors for a long period of time. There is a disadvantage that the heat insulating effect deteriorates early. Further, in the case of a dye, bleeding is liable to occur, so that there is a disadvantage that the resin surface is whitened and light transmittance is extremely reduced. Therefore, the above-mentioned resin film containing a dye or copper ion is not suitable for use for a long time outdoors as a material for agricultural and horticultural facilities.
[0007]
The present invention has been made in view of such conventional circumstances, and is a film-shaped or board-shaped material used for a roof or an outer wall of an agricultural or horticultural facility such as a house, and has excellent weather resistance. An object of the present invention is to provide a heat insulating material for an agricultural and horticultural facility having excellent heat insulating properties, which can efficiently shield near-infrared light while transmitting visible light and maintaining necessary brightness.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the heat-insulating material for agricultural and horticultural facilities provided by the present invention includes a heat-insulating layer made of a resin base material in which fine-particle heat-insulating fillers are dispersed, and the heat-insulating filler is Y, Ce, Pr, Nd, It is a hexaboride particle of at least one element selected from Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca.
[0009]
In addition, the heat insulating material for agricultural and horticultural facilities of the present invention has a visible light transmittance of 30 to 90%, a solar transmittance of 10 to 80%, and a visible light transmittance of 10% as compared with the solar transmittance. % Or more.
[0010]
In the heat insulating material for an agricultural and horticultural facility of the present invention, the resin base material of the heat insulating layer is preferably a fluororesin or a polyethylene terephthalate (PET) resin. Further, the heat-insulating material for agricultural and horticultural facilities of the present invention may be a single film or board made of only the heat-insulating layer, or the heat-insulating layer may be on a film- or board-shaped base material surface or two sheets. May be laminated between the base materials.
[0011]
In the present invention, the values of the above-mentioned light transmittances are measured and calculated based on JIS A 5759 (1998) (light source: A light) for architectural window glass films. However, the measurement sample was not affixed to glass, and a film or board was used as it was. The solar transmittance is a transmittance for light in a wavelength range of 350 to 2100 nm, and was used as an index for evaluating the heat insulating property of the heat insulating material for agricultural and horticultural facilities with respect to sunlight in the present invention. The visible light transmittance is a transmittance for light in a wavelength range of 380 to 780 nm, and was used as an index for evaluating brightness to human eyes.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat-insulating material for agricultural and horticultural facilities of the present invention is a resin or film-like or board-like (plate-like) suitable for use as a roof or an outer wall of an agricultural or horticultural house, in which a fine-particle heat-insulating filler is dispersed. A heat insulating layer made of a base material is provided. In particular, as the heat insulating filler, hexaboride particles capable of efficiently shielding near infrared light and imparting excellent heat insulating properties, specifically, Y, Ce, Pr, Nd, Sm, Eu, Gd, Hexaboride particles of at least one element selected from Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca are used.
[0013]
Generally, in thermal insulation materials for agricultural and horticultural facilities, the object of thermal insulation is thermal energy of sunlight. The sunlight reaching the surface of the earth is generally said to be in a wavelength range of about 290 to 2100 nm. Of these, light in the visible light wavelength range of about 380 to 780 nm maintains the brightness in the facility and is necessary for growing plants. It is. Therefore, in heat insulation of sunlight, it is preferable to select a material that contributes to heat insulation by selectively blocking or absorbing near infrared light of about 780 to 2100 nm efficiently.
[0014]
The light in the ultraviolet region has optimal conditions depending on the plant to be cultivated or the kind of insect used for pollination, etc. In general, it is required to control the wavelength region of 290 to 320 nm. That is, shielding an appropriate amount of ultraviolet light in this wavelength range has an effect of suppressing harm caused by pests and diseases. Many of the agricultural films that have been used in the past often block ultraviolet rays to some extent, and plants bred under these conditions do not require much ultraviolet rays. However, if most of the ultraviolet rays are shielded, pollination using insects by a bee or the like may not be actively performed, or may adversely affect the growth of plants, which is not preferable.
[0015]
The transmission spectrum of the hexaboride particles used in the present invention as a heat-insulating filler has a large transmittance of light in the visible light range, and has a transmission peak near a wavelength of 550 nm. This transmission peak coincides with the wavelength at which the sensitivity of the human eye is highest, which is advantageous for maintaining the brightness in the facility. In addition, since there is a large absorption near the wavelength of 1000 nm, near-infrared light can be absorbed or blocked, and the thermal energy of sunlight can be efficiently blocked. Furthermore, the absorption of ultraviolet rays is low, so that pollination activity by insects and plant growth are not adversely affected.
[0016]
As described above, the heat-insulating material for agricultural and horticultural facilities of the present invention using the above-mentioned hexaboride particles as the heat-insulating filler has excellent heat-insulating properties by efficiently shielding the near-infrared region of sunlight, and has a wavelength around 550 nm at the same time. Since the center has good transmission characteristics in the visible light region, the brightness in the facility can be sufficiently maintained.
[0017]
In the heat insulating material for an agricultural and horticultural facility of the present invention, it is important that a good balance between the optical transmittance in the visible light region and the absorption in the near infrared region is obtained. That is, the visible light transmittance is preferably 30 to 90%, more preferably 60 to 90%. At the same time, the solar transmittance, which is an index of heat insulation, is preferably from 10 to 80%, more preferably from 10 to 70%. In addition, the difference between the visible light transmittance and the solar transmittance is preferably such that the visible light transmittance is 10% or more higher than the solar transmittance.
[0018]
Moreover, since the agricultural and horticultural facility heat insulating material of the present invention preferably has a feature of transmitting ultraviolet light having a wavelength of 320 nm or less, bees and the like contributing to pollination can be actively activated, and stable harvest can be expected. The transmittance of ultraviolet rays having a wavelength of 290 to 320 nm can be controlled by adjusting the amount of the hexaboride particles added to the resin substrate.
[0019]
Further, when it is necessary to control the transmittance in the ultraviolet region, an inorganic material for blocking ultraviolet rays, an organic material, an organic-inorganic composite material, for example, cerium oxide, titanium oxide, zirconium oxide, zinc oxide, a benzophenone-based ultraviolet absorber, etc. May be added according to the purpose. In addition, the above-mentioned inorganic material-based ultraviolet absorber generates electrons and holes on the surface when absorbing ultraviolet light, which may cause deterioration of the resin base material. desirable. As the surface film treatment, various coupling agents, surface modifiers, sol-gel silicates, and the like are typical, but any method can be used as long as the effect of preventing deterioration of the resin can be obtained.
[0020]
The particle diameter (including agglomerated particles) of the fine heat insulating filler composed of the above-mentioned hexaboride particles can be appropriately selected depending on whether or not the scattering effect is used. For example, when the particle diameter of the heat-insulating filler dispersed in the resin base material of the heat-insulating layer is 200 nm or less, particularly 100 nm or less, the scattering of the sunlight is extremely small, and the sunlight directly reaches the plants and the ground. Become like Furthermore, since the light in the visible light region is hardly scattered, it is easy to observe the situation inside the facility such as a house from the outside, and the outside situation can be confirmed from inside the facility.
[0021]
On the other hand, when the particle size of the heat-insulating filler dispersed in the heat-insulating layer is a relatively large particle of 200 nm or more, the scattering of sunlight is large, and the light reaching the plants and the ground in the facility is scattered, and the house is scattered. The influence of the shadow of the skeleton on the plants is reduced. However, since the light in the visible light region is also scattered at the same time, it is difficult to clearly observe the situation inside the facility from outside even if the inside of the facility can be maintained at a required brightness.
[0022]
There are various methods for controlling the particle diameter of hexaboride in the present invention. In the case of reducing the particle diameter, there are methods such as ball mill, sand mill, ultrasonic treatment, collision pulverization, pH control and the like. It can be selected according to the application such as a wet method or a dry method. In particular, when dispersing particles having a particle diameter of 800 nm or less, various coupling agents, dispersants, and surfactants can be used to stably disperse, and the dispersed particles after treatment are also stably maintained. it can.
[0023]
The heat-insulating material for agricultural and horticultural facilities of the present invention including a heat-insulating layer of a resin base material in which the above-mentioned 6 boride particles are dispersed is used in a form conventionally used as a roof or an outer wall in an agricultural house or the like, that is, a film or board. Shape (plate shape). In general, it is a single film or board made only of the heat insulating layer, but on the surface of the film or board made of resin or glass separately produced or between two base materials. It may have a laminated structure in which at least one heat insulating layer is laminated.
[0024]
The heat insulating layer in the heat insulating material for agricultural and horticultural facilities having such various forms can be formed by kneading hexaboride particles as a heat insulating filler into a resin, and molding or coating the resin. When the hexaboride particles are kneaded into the resin, the particle size can be controlled by the above method as necessary. Further, since hexaboride particles are thermally stable, they can be kneaded at a temperature near the melting points of various resins (about 100 to 300 ° C.).
[0025]
The resin obtained by kneading the hexaboride particles can be formed into a film or board by, for example, an extrusion forming method, an inflation forming method, a solution casting method, a calendering method, or the like. The thickness of the film or board at this time can be appropriately set according to the purpose of use. Generally, in the case of a film, the thickness is in the range of 10 to 1000 μm, preferably 20 to 500 μm. Is preferably in the range of 2 to 15 mm. The amount of the hexaboride particles kneaded in the resin is generally preferably 50% by weight or less based on the resin in consideration of the operability during kneading and molding.
[0026]
The content of the heat-insulating filler in the heat-insulating layer can be changed according to the thickness of the heat-insulating layer, the thickness of the base material to be laminated as required, the desired optical properties, and the heat-insulating properties. For example, CeB6Since the heat insulating efficiency per unit weight is high, when the average dispersed particle diameter (including agglomerated particles) is about 100 nm, the heat insulating layer 1 m2CeB per hit6When the content is 0.01 g or more, an effective heat insulating effect can be obtained. In addition, the content is 1 g / m2It is possible to absorb or block about 90% of the heat energy of the sunlight with the above method. Therefore, a sufficient effect can be obtained for heat insulation in summer, and further addition is not preferable in view of the heat retaining effect in winter. Therefore, CeB6Is 0.01 to 1 g / m2It is preferable to set it in the range. However, in the case of relatively large particles having an average dispersed particle diameter of about 200 nm to 800 nm, the solar shading efficiency is deteriorated, so that an amount of about 5 to 10 times the above used amount may be required. .
[0027]
The resin used as the matrix of the heat insulating layer is not particularly limited, and can be selected according to the application. For example, polyethylene terephthalate (PET) resin, acrylic resin, etc., in addition to polyethylene resin, polyester resin, and soft vinyl chloride resin conventionally used for houses and the like, and low-cost, highly transparent, and versatile resins. Resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, polyimide resin, or the like can be used. Particularly, PET resin is a preferable material because of its excellent transparency and high strength.
[0028]
In addition, when weather resistance or ultraviolet transmittance is required, a fluororesin is effective as a resin base material. Here, the fluororesin may be a resin containing fluorine in the molecular structure, and examples thereof include a tetrafluoroethylene resin, a trifluoride ethylene resin, a difluoroethylene resin, and a monofluoroethylene resin. Or a mixture thereof.
[0029]
Specific fluororesins include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-hexa Fluoropropylene-perfluoroalkyl vinyl ether copolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (CPTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE), polyvinylidene Fluoride (PVDF), polyvinyl fluoride (PVF) and the like. These fluororesins and various modified products thereof are commercially available, and can be selectively used according to required characteristics.
[0030]
In addition, the above-mentioned heat-insulating material for an agricultural and horticultural facility having a laminated structure is formed on one or both surfaces of a base material such as an existing resin film or a resin board or a glass plate made of the above-mentioned PET resin or fluororesin. It can be manufactured by coating a heat insulating layer containing boride particles. As a coating method, it is sufficient that a uniform coating film can be formed on the base material, and for example, a bar coating method, a gravure coating method, a spray coating method, a dip coating method, or the like can be used.
[0031]
When a heat insulating layer is formed on a base material by the above-mentioned coating method, an ultraviolet curable resin can be used as a resin or binder holding hexaboride particles as a heat insulating filler. That is, a UV-curable resin and 6-boride particles having an appropriate particle diameter are mixed to form a liquid or paste, coated on the surface of a base material, evaporated, and then irradiated with ultraviolet rays to be cured, whereby the heat insulating layer is formed. To form Further, when a hard coat resin is used as the ultraviolet curable resin, a heat insulating layer having a high surface abrasion resistance can be obtained, and it is possible to impart surface characteristics that are hardly damaged even when dust or the like collides. At this time, SiO2By adding fine particles and the like, the surface wear resistance can be further improved.
[0032]
When the heat insulating layer is coated on the base material as described above, it is preferable to improve the adhesion to the heat insulating layer by treating the surface of the base material in advance. By this surface treatment, the wettability of the base material surface is improved at the same time, so that repelling during coating is prevented, and it becomes easy to obtain a uniform coating. As a surface treatment method, corona treatment, sputtering treatment, primer coating treatment and the like are well known.
[0033]
Further, in the case of forming a heat insulating material for an agricultural and horticultural facility by laminating a heat insulating layer between the two base materials described above, various resins described above as a resin or a binder holding hexaboride particles of a heat insulating filler. In addition, a resin for lamination, for example, a vinyl chloride copolymer can be used.
[0034]
Furthermore, the hexaboride particles of the heat-insulating filler are mixed with a room-temperature-curable resin, and the heat-insulating layer is formed by coating the surface of the roof or the outer wall of the existing agricultural and horticultural facility. It is also possible to provide a heat insulating property to the substrate later.
[0035]
Thus, by selecting a resin base material according to the purpose and application, a single film-shaped or board-shaped heat-insulating material having only a heat-insulating layer, or a heat-insulating layer and a film-shaped or board-shaped base material are laminated. It is possible to provide a heat insulating material that has been used.
[0036]
In addition, it is also possible to make hexaboride particles, which are the heat-insulating filler according to the present invention, adhere to the surface of a resin film, a resin board, a glass plate, or the like, to provide a heat-insulating material for facility agriculture.
[0037]
【Example】
Example 1
CeB6Particles (specific surface area 30m2/ G) 20 parts by weight, 75 parts by weight of toluene and 5 parts by weight of a dispersant were mixed to obtain a dispersion A having an average dispersed particle diameter of 100 nm. The solvent component was removed from this dispersion A using a vacuum dryer at 50 ° C.6Of powder A. The average dispersed particle diameter was measured by a measuring device using dynamic light scattering (ELS-800, manufactured by Otsuka Electronics Co., Ltd.), and the average value was used.
[0038]
This CeB6Of powder A and 8.7 kg of ETFE (tetrafluoroethylene-ethylene copolymer) resin were dry-mixed in a V blender. Thereafter, the mixture was sufficiently hermetically mixed at 320 ° C., which is around the melting temperature of the ETFE resin, and the mixture was extruded at 320 ° C. to form a film having a thickness of about 50 μm. CeB in this film6The content of the particles is 0.13 g / m2Is equivalent to
[0039]
The obtained heat insulating material in the form of a film is subjected to optical measurement in accordance with JIS A 5759 (1998) (light source: A light) to determine the visible light transmittance, the solar radiation transmittance, and the light transmittance in the ultraviolet region. Was. However, the measurement sample was not attached to glass, and the film itself was used. In order to evaluate the transparency, the haze value was measured based on JIS K7105. The haze value is the ratio of diffuse transmitted light to the total transmittance, and when this value is high, it appears cloudy to human eyes. Therefore, low haze is desirable for window materials and the like that require transparency.
[0040]
As a result, the visible light transmittance of the film-shaped heat insulating material was 71%, and the solar radiation transmittance was 52%. The difference between the visible light transmittance and the solar transmittance was 19%, and it was found that the film could sufficiently transmit light in the visible light region, and at the same time, shield 48% of the direct incident light of the sunlight, and had a high heat insulating effect. . The transmittance in the ultraviolet region was 28% at a wavelength of 290 nm and 46% at a wavelength of 320 nm, which was within a range where bees and the like could pollinate sufficiently. Further, the haze value was 4.1%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0041]
Comparative Example 1
In Example 1, a film having a thickness of about 50 μm was formed by extruding only the ETFE resin without adding the heat insulating filler. The resulting film has a visible light transmittance of 89%, which allows sufficient transmission of light in the visible light region, but also has a solar transmittance of 89%, and can block only about 11% of direct incident light of sunlight. It turned out that the heat insulation effect was low. The transmittance in the ultraviolet region was 82% at a wavelength of 290 nm and 88% at 320 nm, and the haze value was 4.0%.
[0042]
Example 2
CeB in Embodiment 1 above6Of powder A and 8.7 kg of ETFE resin were dry-mixed using a V blender. Thereafter, similarly to Example 1, the mixture was sufficiently closed and mixed at 320 ° C., which is around the melting temperature of the ETFE resin, and the mixture was extruded at 320 ° C. to form a film having a thickness of about 50 μm. CeB in this film6The content of the particles is 0.05 g / m2Is equivalent to
[0043]
When the obtained heat insulating material in the form of a film was evaluated in the same manner as in Example 1, the visible light transmittance was 80% and the solar radiation transmittance was 68%. The difference between the visible light transmittance and the solar transmittance was 12%, and it was found that the film was capable of sufficiently transmitting light in the visible light region, and at the same time, shielding 32% of the direct incident light of sunlight, thereby having a high heat insulating effect. . The transmittance in the ultraviolet region was 38% at a wavelength of 290 nm and 48% at a wavelength of 320 nm, which was within a range where bees and the like could pollinate sufficiently. Further, the haze value was 4.0%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0044]
Example 3
Example 2 In the same manner as in Example 2, except that polyethylene terephthalate (PET) resin was used instead of the ETFE resin and the heating temperature was set to a temperature (about 300 ° C.) at which the PET resin was sufficiently softened. A film was prepared. CeB in this film6The content of the particles was 0.05 g / m as in Example 2.2Is equivalent to
[0045]
When the obtained heat insulating material in the form of a film was evaluated in the same manner as in Example 1, the visible light transmittance was 79% and the solar radiation transmittance was 66%. The difference between the visible light transmittance and the solar transmittance is 13%, which sufficiently transmits the light in the visible light region, and at the same time, shields about 34% of the direct incident light of sunlight, indicating that it has a high heat insulating effect. . The transmittance in the ultraviolet region was 0% at a wavelength of 290 nm and 32% at a wavelength of 320 nm, and was in a range where bees and the like could pollinate sufficiently and actively. Further, the haze value was 2.8%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0046]
Comparative Example 2
In Example 3, a film having a thickness of about 50 μm was formed by extruding only a PET resin without adding a heat-insulating filler. The resulting film has a visible light transmittance of 88%, which is sufficiently transparent to light in the visible light region, but also has a solar transmittance of 88%, showing no difference between the visible light transmittance and the solar transmittance. It was found that only about 12% of the directly incident light of the light beam could be blocked, and the heat insulation effect was low. The transmittance in the ultraviolet region was 0% at a wavelength of 290 nm and 52% at a wavelength of 320 nm, which was within the range where bees and the like could pollinate sufficiently. Further, the haze value was 2.2%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0047]
Example 4
GdB6Particles (specific surface area 30m2/ G) 20 parts by weight, 75 parts by weight of toluene and 5 parts by weight of a dispersant were mixed to obtain a dispersion B having an average dispersed particle diameter of 100 nm. GdB obtained by removing the solvent component from this dispersion liquid B at 50 ° C. using a vacuum dryer and subjecting to dispersion treatment.6Of powder B. The average dispersed particle diameter was measured by a measuring device using dynamic light scattering (ELS-800, manufactured by Otsuka Electronics Co., Ltd.), and the average value was used.
[0048]
This GdB6Of powder B and 8.7 kg of ETFE resin were dry-mixed in a V blender. Thereafter, the mixture was sufficiently hermetically mixed at 320 ° C., which is around the melting temperature of the ETFE resin, and the mixture was extruded at 320 ° C. to form a film having a thickness of about 50 μm. GdB in this film6The content of the particles is 0.13 g / m2Is equivalent to
[0049]
The obtained film-like heat insulating material had a visible light transmittance of 70% and a solar transmittance of 52%. The difference between the visible light transmittance and the solar light transmittance is 18%, and it is possible to sufficiently transmit light in the visible light region, and at the same time, to shield 48% of the direct incident light of the sunlight, and thus has a high heat insulating effect. . The transmittance in the ultraviolet region was 30% at a wavelength of 290 nm and 48% at a wavelength of 320 nm, and was in a range where bees and the like could pollinate sufficiently. Further, the haze value was 4.2%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0050]
Example 5
PrB6Particles (specific surface area 33m2/ G) 20 parts by weight, 75 parts by weight of toluene and 5 parts by weight of a dispersant were mixed to obtain a dispersion C having an average dispersed particle diameter of 100 nm. The solvent component was removed from this dispersion C at 50 ° C. using a vacuum dryer, and the dispersion was treated with PrB.6Of powder C. The average dispersed particle diameter was measured by a measuring device using dynamic light scattering (ELS-800, manufactured by Otsuka Electronics Co., Ltd.), and the average value was used.
[0051]
This PrB6And 8.7 kg of ETFE resin were dry-mixed using a V blender. Thereafter, the mixture was sufficiently hermetically mixed at 320 ° C., which is around the melting temperature of the ETFE resin, and the mixture was extruded at 320 ° C. to form a film having a thickness of about 50 μm. PrB in this film6The content of the particles is 0.13 g / m2Is equivalent to
[0052]
The obtained film-like heat insulating material had a visible light transmittance of 71% and a solar radiation transmittance of 53%. The difference between the visible light transmittance and the solar light transmittance is 18%, and it is possible to sufficiently transmit the light in the visible light region and to shield 47% of the direct incident light of the sunlight, and it has been found that it has a high heat insulating effect. . The transmittance in the ultraviolet region was 28% at a wavelength of 290 nm and 48% at 320 nm, and was in a range where bees and the like could pollinate sufficiently. Further, the haze value was 4.3%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0053]
Example 6
CeB in Embodiment 1610 parts by weight of the particle dispersion A was kneaded with 100 parts by weight of an ultraviolet-curable resin for hard coating (solid content: 100%). The obtained liquid was formed on a PET resin film (thickness: 50 μm) which had been subjected to a surface corona treatment in advance using a bar coater, and dried at 70 ° C. for 30 seconds to evaporate the solvent. To form a heat insulating layer on the PET resin film.
[0054]
The obtained film-like heat insulating material is made of CeB6It has a two-layer laminate structure in which a heat insulating layer in which particles are dispersed in an ultraviolet-curable resin for hard coat and a PET resin film as a base material are laminated. The heat insulating layer of this film-shaped heat insulating material has a thickness of about 2 μm and is made of CeB.6The content of particles is 0.08 g / m2Is equivalent to
[0055]
The obtained film-shaped heat insulating material had a visible light transmittance of 77% and a solar transmittance of 62%. The difference between the visible light transmittance and the solar transmittance is 15%, and it can transmit light in the visible light region sufficiently, and at the same time, shields 38% of the direct incident light of sunlight, indicating that it has a high heat insulating effect. Was. The transmittance in the ultraviolet region was 0% at a wavelength of 290 nm and 34% at a wavelength of 320 nm, which was within a range where bees and the like could pollinate sufficiently. Further, the haze value was 1.1%, and the film had high transparency so that the inside condition could be sufficiently confirmed from outside.
[0056]
【The invention's effect】
According to the present invention, it is excellent in weather resistance, and at the same time sufficiently transmits light in the visible light range necessary for working inside and growing plants, efficiently absorbing or blocking near-infrared light, and high heat insulation. It is possible to provide a film-shaped or board-shaped heat insulating material for agricultural and horticultural facilities, which has properties. Moreover, the heat insulating material for agricultural and horticultural facilities of the present invention can appropriately transmit ultraviolet rays or control the transmission of ultraviolet rays, thereby controlling the occurrence of pests and sufficiently inactivating insects such as bees necessary for pollination. Can be activated.

Claims (4)

微粒子状の断熱フィラーが分散した樹脂基材からなる断熱層を備え、該断熱フィラーがY、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caから選ばれた少なくとも1種の元素の6ホウ化物粒子であることを特徴とする農園芸施設用断熱資材。A heat-insulating layer comprising a resin base material in which fine-particle heat-insulating fillers are dispersed, wherein the heat-insulating filler is Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, An insulating material for an agricultural and horticultural facility, characterized in that it is hexaboride particles of at least one element selected from Sr and Ca. 可視光透過率が30〜90%であり、日射透過率が10〜80%であって、可視光透過率が日射透過率に比べて10%以上高いことを特徴とする、請求項1に記載の農園芸施設用断熱資材。The visible light transmittance is 30 to 90%, the solar transmittance is 10 to 80%, and the visible light transmittance is at least 10% higher than the solar transmittance. Insulation material for agricultural and horticultural facilities. 前記断熱層の樹脂基材がフッ素樹脂又はポリエチレンテレフタレイト(PET)樹脂であることを特徴とする、請求項1又は2に記載の農園芸施設用断熱資材。The heat insulating material for agricultural and horticultural facilities according to claim 1 or 2, wherein the resin base material of the heat insulating layer is a fluororesin or a polyethylene terephthalate (PET) resin. 前記断熱層のみからなる単一のフィルム状又はボード状であるか、若しくは前記断熱層がフィルム状又はボード状の母材表面上又は2枚の母材間にラミネートされていることを特徴とする、請求項1〜3のいずれかに記載の農園芸施設用断熱資材。It is characterized in that it is in the form of a single film or board consisting only of the heat insulating layer, or that the heat insulating layer is laminated on the surface of the film or board base material or between two base materials. The heat insulating material for agricultural and horticultural facilities according to any one of claims 1 to 3.
JP2002224390A 2002-08-01 2002-08-01 Heat-insulating material for agricultural and horticultural facility Pending JP2004065004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224390A JP2004065004A (en) 2002-08-01 2002-08-01 Heat-insulating material for agricultural and horticultural facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224390A JP2004065004A (en) 2002-08-01 2002-08-01 Heat-insulating material for agricultural and horticultural facility

Publications (1)

Publication Number Publication Date
JP2004065004A true JP2004065004A (en) 2004-03-04

Family

ID=32012356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224390A Pending JP2004065004A (en) 2002-08-01 2002-08-01 Heat-insulating material for agricultural and horticultural facility

Country Status (1)

Country Link
JP (1) JP2004065004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021056A (en) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd Agricultural film
JP2012506794A (en) * 2008-10-28 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Nanoscale IR absorber in multilayer coated moldings
US10018377B2 (en) 2009-03-06 2018-07-10 University Of The Ryukyus Solar light (heat) absorption material and heat absorption/accumulation material and solar light (heat) absorption/control building component using the same
JP2021065162A (en) * 2019-10-24 2021-04-30 Dic株式会社 Plant heat retaining sheet as well as cultivation method for long-stem plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506794A (en) * 2008-10-28 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Nanoscale IR absorber in multilayer coated moldings
US10018377B2 (en) 2009-03-06 2018-07-10 University Of The Ryukyus Solar light (heat) absorption material and heat absorption/accumulation material and solar light (heat) absorption/control building component using the same
JP2012021056A (en) * 2010-07-13 2012-02-02 Asahi Glass Co Ltd Agricultural film
JP2021065162A (en) * 2019-10-24 2021-04-30 Dic株式会社 Plant heat retaining sheet as well as cultivation method for long-stem plant

Similar Documents

Publication Publication Date Title
JP3997728B2 (en) Insulation material for agricultural and horticultural facilities
JP3997887B2 (en) Insulation material for agricultural and horticultural facilities
EP1859674B1 (en) Agro-horticultural soil cover film
KR101669673B1 (en) Wavelength conversion film, film for agricultural use, structure, and composition for forming coating film
Andrady et al. Effects of UV radiation on natural and synthetic materials
JPWO2011149028A1 (en) Wavelength conversion film
JP4507993B2 (en) Agricultural and horticultural soil covering film
CN109263216A (en) A kind of scattering energy saving film that self-adaptive temperature is adjusted
EP1541012B1 (en) Heat insulation material for agricultural and horticultural facility
US20230067651A1 (en) Systems and Methods for UV-Reflective Paints with High Overall Solar Reflectance for Passive Cooling
JP2004065004A (en) Heat-insulating material for agricultural and horticultural facility
JP5429086B2 (en) Agricultural house
KR100881680B1 (en) Heat insulation material for agricultural and horticultural facility
CN205989544U (en) Greenhouse covering film based on polyolefine material
JP2003176393A (en) Fluororesin film and agricultural covering material using the same
JPH09322659A (en) Film for outdoor setup
JPH09323383A (en) Film for outdoor spreading
JPH10250002A (en) Outdoor spreading film
JPH1084788A (en) Film for outdoor spreading
JP7458154B2 (en) heat shield sheet
WO2022091791A1 (en) Wavelength conversion film and light source for plant factories
TW200950965A (en) Sandwich panels with photosynthetically active radiation
EP1517777B1 (en) Radiation screening materials
CN115596319A (en) Architectural structural window with optically transparent self-cooling coating
JPH10250001A (en) Outdoor spreading film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009