JP2004063585A - Electrode material for thermoelectric element and thermoelectric element using same - Google Patents

Electrode material for thermoelectric element and thermoelectric element using same Download PDF

Info

Publication number
JP2004063585A
JP2004063585A JP2002216974A JP2002216974A JP2004063585A JP 2004063585 A JP2004063585 A JP 2004063585A JP 2002216974 A JP2002216974 A JP 2002216974A JP 2002216974 A JP2002216974 A JP 2002216974A JP 2004063585 A JP2004063585 A JP 2004063585A
Authority
JP
Japan
Prior art keywords
thermoelectric
electrode
heat
thermoelectric element
thermoelectric semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002216974A
Other languages
Japanese (ja)
Other versions
JP4309623B2 (en
Inventor
Tomohisa Arai
新井 智久
Takashi Rokutanda
六反田 貴史
Masami Okamura
岡村 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002216974A priority Critical patent/JP4309623B2/en
Publication of JP2004063585A publication Critical patent/JP2004063585A/en
Application granted granted Critical
Publication of JP4309623B2 publication Critical patent/JP4309623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce thermal fatigue of a thermoelectric semiconductor and other constitution members by reducing the thermal stress due to a metal electrode of the thermoelectric element and to suppress decrease in element function and element break due to thermal fatigue by using such an electrode material. <P>SOLUTION: The thermoelectric element 1 is characterized in that an n-type thermoelectric semiconductor and a p-type thermoelectric conductor which are arrayed alternately on a support member 2 are connected in series, by a heat-radiation side electrode 6 and a heat-absorption side electrode 7 joined with their ends across solder layers 8 and 9, respectively. The heat-radiation side electrode 6 and heat-absorption side electrode 7 are each formed of a clad electrode material 13 obtained by cladding the surface of a core material 11 made of a low-thermal-expansion metal material with a low-resistant metal material layer 12. The difference in coefficient of thermal expansion of the clad electrode material 13 from the thermoelectric semiconductor is -30 to +10%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱電半導体を使用した熱電素子に用いられる電極材とそれを用いた熱電素子に関する。
【0002】
【従来の技術】
ビスマス(Bi)−テルル(Te)系、鉄(Fe)−シリサイド(Si)系、コバルト(Co)−アンチモン(Sb)系などの熱電半導体を使用し、そのペルチェ効果もしくはゼーベック効果を利用した熱電素子は、冷却もしくは加熱装置などとして利用されている。例えば、熱電素子は小型・薄型で、かつ液体や気体などの熱媒体(冷媒など)を使用することなく冷却の実施が可能であることから、冷温蔵庫や半導体製造装置の温度制御などを始めとして、各種の分野で冷却装置や加熱装置として使用されており、また最近ではパソコンのCPUの冷却装置としても注目され始めている。また、熱電素子は熱電半導体の温度差による発電素子、すなわちゼーベック効果を用いた発電素子としても利用されている。
【0003】
このような熱電素子は、例えば複数個のN型熱電半導体とP型熱電半導体とを交互に配置し、これら複数個の熱電半導体を一方の端部側に配置される吸熱側電極と他方の端部側に配置される放熱側電極とで直列に接続した構造を有している。このような熱電素子において、交互に配列されたN型熱電半導体とP型熱電半導体に直流電流を流すと、N型熱電半導体からP型熱電半導体に向けて電流が流れる電極(吸熱側電極)側ではペルチェ効果により吸熱が起こり、P型熱電半導体からN型熱電半導体に向けて電流が流れる電極(放熱側電極)側では放熱(発熱)が起こるため、吸熱側に被冷却部材や装置などを配置することで冷却を実施することができる。
【0004】
熱電素子の具体的な構造としては、例えば以下に示すようなπ型構造が知られている(例えば特開平7−321379号公報、特開平11−340527号公報、特開2001−168402公報、特開2001−352107公報など参照)。すなわち、第1の金属電極群が形成されたセラミックス基板などの支持部材を用意し、第1の金属電極群上にそれぞれ複数個のN型熱電半導体とP型熱電半導体とを交互に配置する。N型熱電半導体とP型熱電半導体の上端部側には第2の金属電極群を配置し、最終的に全ての熱電半導体が電気的に直列に接続されるように、各金属電極とN型およびP型熱電半導体とを接合する。このような熱電素子において、各金属電極には大きな電流に耐えられるように、電気抵抗が小さい銅板などが適用されており、さらに比較的板厚が厚いものが用いられている。
【0005】
ところで、上記したようなπ型熱電素子の動作時において、各構成部材(支持部材、金属電極、熱電半導体など)は冷熱サイクルを繰返し受けることになる。熱電素子の各構成材料間には熱膨張差があることから、冷熱サイクルの印加時に熱応力が発生する。さらに、熱電素子は吸熱側と放熱側の熱膨張(伸び)が異なることから、熱電素子全体としてはたわみが生じる。これら構成材料間の熱膨張差に起因する熱応力や素子全体のたわみによって、熱電素子は動作時に熱疲労を受けることになり、この熱疲労により生じる熱電半導体の亀裂や接合界面の剥離、また半田材の亀裂などが抵抗値の増加といった素子性能の劣化原因となっており、さらには素子破壊などの発生原因となっている。
【0006】
【発明が解決しようとする課題】
上述したように、従来の熱電素子においては冷熱サイクルの印加に伴う熱疲労により種々の問題が生じている。具体的には、熱電素子の構成材料のうち銅板などからなる金属電極は、他の構成材料(熱電半導体やセラミックス基板などの支持部材)に比べて熱膨張率が大きいため、金属電極と熱電半導体との接合部や金属電極とセラミックス基板との接合部には大きな熱応力が生じることになる。
【0007】
特に、熱電半導体は脆性材料で機械的強度も低いため、上記した金属電極との熱膨張差に基づく熱応力によって、熱電半導体に疲労亀裂などが生じやすいという問題がある。また、金属電極と熱電半導体との接合部を構成する半田層も疲労強度が低いことから、半田層自体や接合界面にも亀裂、剥離などが生じやすい。同様に、金属電極とセラミックス基板との熱膨張差に基づく熱応力によっても、これらの接合界面に亀裂や剥離などが生じる。
【0008】
熱電素子は複数の熱電半導体を全て直列に接続して構成されているため、金属電極と接合される熱電半導体自体や金属電極と他の構成材料との接合界面などに1箇所でも亀裂や剥離などが生じると、素子全体としての抵抗値が上昇するなどして、熱電素子の素子機能が損なわれることになる。このようなことから、金属電極に起因する熱応力を低減し、これによって熱電素子の性能劣化や素子破壊などを抑制することが強く求められている。
【0009】
本発明はこのような課題に対処するためになされたもので、熱電素子の金属電極に起因する熱応力を低減することによって、熱電半導体や他の構成部材の熱疲労を軽減することを可能にした熱電素子用電極材、さらにはそのような電極材を用いることによって、熱疲労による素子機能の低下や素子破壊の発生を抑制することを可能にした熱電素子を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明の熱電素子用電極材は、請求項1に記載したように、熱電半導体を使用した熱電素子に用いられる電極材であって、低熱膨張金属材料からなるコア材と、前記コア材の表面にクラッドされた低抵抗金属材料層とを具備することを特徴としている。本発明の熱電素子用電極材は請求項2に記載したように、さらに熱電半導体の熱膨張率に対する差が−30%以上で+10%以下の熱膨張率を有することを特徴としている。
【0011】
また、本発明の熱電素子は、請求項3に記載したように、交互に配列されたN型熱電半導体およびP型熱電半導体を有する熱電半導体群と、前記熱電半導体群の一方の端部にそれぞれ接合された吸熱側電極と、前記N型熱電半導体とP型熱電半導体が直列に接続されるように、前記熱電半導体群の他方の端部にそれぞれ接合された放熱側電極とを具備する熱電素子において、前記吸熱側電極および放熱側電極の少なくとも一方は上記した本発明の熱電素子用電極材からなることを特徴としている。
【0012】
本発明においては、低熱膨張金属材料をコア材とし、このコア材の表面に低抵抗金属材料層をクラッドした電極材(クラッド電極材)を、吸熱側電極および放熱側電極の少なくとも一方に適用している。このようなクラッド電極材によれば、コア材としての低熱膨張金属材料に基づいて電極材の熱膨張率を低下させることができる。言い換えると、吸熱側電極や放熱側電極と熱電半導体や他の構成部材との間の熱膨張率の差を低減することができる。これによって、熱電半導体などに加わる熱応力が緩和され、熱電半導体や他の構成部材の熱疲労による亀裂、また接合界面における亀裂、剥離などが抑制されることから、熱電素子の熱サイクルによる機能低下や素子破壊などを抑制することが可能となる。
【0013】
【発明の実施の形態】
以下、本発明を実施するための形態について説明する。
図1は本発明の一実施形態による熱電素子の概略構造を示す断面図であり、図2はその要部を拡大して示す断面図である。これらの図に示す熱電素子1は上下に支持部材2、3を有しており、これら下部支持部材2と上部支持部材3とは対向配置されている。この実施形態の熱電素子1は下部支持部材2側が放熱面、上部支持部材3側が吸熱面とされている。すなわち、下部支持部材2は放熱側支持部材であり、上部支持部材3は吸熱側支持部材である。
【0014】
下部支持部材(放熱側支持部材)2は熱電素子1の構造支持体として機能するものであり、例えばアルミナ基板、窒化アルミニウム基板、窒化珪素基板などの絶縁性のセラミックス基板を用いることが好ましい。上部支持部材3(吸熱側支持部材)には下部支持部材2と同様に絶縁性基板であるセラミックス基板を用いてもよいし、下部支持部材2で素子構造全体を支持可能であれば、上部支持部材3は絶縁性樹脂基板や絶縁性樹脂フィルムなどで構成してもよい。なお、上部支持部材3を絶縁性セラミックス基板で構成し、下部支持部材2を絶縁性樹脂基板や絶縁性樹脂フィルムなどで構成することも可能である。この際、下部支持部材2は省略することができる。
【0015】
上述した下部支持部材2と上部支持部材3との間には、複数のN型熱電半導体4とP型熱電半導体5とが交互に配列されており、これらは素子全体としてはマトリックス状に配置されて熱電半導体群を構成している。言い換えると、熱電半導体群は下部支持部材2の一主面に沿って交互に配列されている。熱電半導体4、5には各種公知の材料を使用することができ、その代表例としてBi−Te系熱電半導体が挙げられる。Bi−Te系熱電半導体としては、BiおよびSbから選ばれる少なくとも1種の元素と、TeおよびSeから選ばれる少なくとも1種の元素を必須元素として含み、さらに必要に応じてI、Cl、Br、Hg、Au、Cuなどの添加元素を含む化合物半導体が知られている。熱電半導体4、5はBi−Te系熱電半導体に限られるものではなく、例えばFe−Si系、Co−Sb系などの各種の熱電半導体を適用することが可能である。
【0016】
複数のN型熱電半導体4およびP型熱電半導体5は、N型熱電半導体4からP型熱電半導体5の方向に、すなわちN型熱電半導体4、P型熱電半導体5、N型熱電半導体4、P型熱電半導体5…の順に直流電流が流れるように、下部支持部材2側に設けられた放熱側電極6と上部支持部材3側に設けられた吸熱側電極7により電気的に直列に接続されている。これら放熱側電極6および吸熱側電極7はそれぞれ複数個で電極群を構成している。
【0017】
すなわち、下部支持部材2の表面には放熱側電極6が複数設けられている。一方、上部支持部材3側には吸熱側電極7が複数配置されている。吸熱側電極7は、隣り合うN型熱電半導体4とP型熱電半導体5とをこの順で電気的に接続する形状を有しており、この熱電半導体4、5の接続順序に基づいて、吸熱側電極7では吸熱が生じる。一方、放熱側電極6は両端部の電極(リード引出し電極)を除いて、隣り合うP型熱電半導体5とN型熱電半導体4とをこの順で電気的に接続する形状を有しており、この熱電半導体5、4の接続順序に基づいて、放熱側電極6では放熱(発熱)が生じる。
【0018】
N型熱電半導体4およびP型熱電半導体5の下側端部(放熱側端部)は、それぞれ半田層8を介して放熱側電極6に接合されている。また、N型熱電半導体4およびP型熱電半導体5の上側端部(吸熱側端部/冷却面)は、同様に半田層9を介して吸熱側電極7に接合されている。このように、隣り合うN型熱電半導体4とP型熱電半導体5とを、それぞれ放熱側電極6と吸熱側電極7とで順に接続することによって、熱電素子1全体として見た場合に、複数のN型熱電半導体4と複数のP型熱電半導体5とが交互に直列接続された構造を形成している。
【0019】
上記したπ型構造の熱電素子1に直流電源10から熱電半導体4、5に直流電流を流すと、ペルチェ効果によって熱電半導体4、5の上端部側では吸熱が起こり、下端部側では放熱が起こる。すなわち、隣り合うN型熱電半導体4からP型熱電半導体5に向けて直流電流が流れる吸熱側電極7では吸熱が生じ、P型熱電半導体5からN型熱電半導体4に向けて直流電流が流れる放熱側電極6では放熱が生じる。従って、熱電素子1の吸熱側に相当する上部支持部材3に被冷却体(冷却する部材、部品、装置など)を当接させることによって、被冷却体から熱を奪って冷却が行われる。被冷却体から奪った熱は熱電素子1の放熱側に相当する下部支持部材2側から放熱される。
【0020】
このような構造を有する熱電素子1において、放熱側電極6および吸熱側電極7は図2や図3に示すように、低熱膨張金属材料からなるコア材11の表面に低抵抗金属材料層12をクラッド(積層・一体化)した電極材13により構成されている。クラッド電極材13の代表的な構造としては図3に示すように、コア材11の両面に低抵抗金属材料層12をクラッドしたサンドイッチ構造が挙げられる。ただし、一般的なサンドイッチ構造の場合、厚さ方向の熱伝導率が低下するため、例えば図4に示すように端部のコア材11を除いた構造、また図5に示すように孔部11aを有するコア材11を用い、孔部11a内に低抵抗金属材料層12を充填した構造などを適用してもよい。これら各クラッド材は一般的な熱間圧延法、爆着法、鋳ぐるみ法などにより作製することができる。
【0021】
上述したようなクラッドメタルからなる電極材13を構成する低抵抗金属材料層12には、熱電素子1の電極6、7としての機能を維持する上で導電率が高い金属材料、具体的には抵抗率が3×10−8Ω・m以下の金属材料を使用する。このような低抵抗(高導電率)の金属材料としては、例えばCuもしくはCu合金、AgもしくはAg合金、AlもしくはAl合金などが挙げられる。ここで、低抵抗金属材料層12の構成材料の熱膨張率は、例えばCuが17×10−6/℃、Agが19×10−6/℃、Alが23×10−6/℃と熱電半導体4、5やセラミックス基板などに比べて大きい。
【0022】
熱膨張率が大きい低抵抗金属材料単独で電極6、7を構成した場合には、熱電半導体4、5やセラミックス基板からなる支持部材(例えば下部支持部材2)との熱膨張差に基づいて、熱電素子に通電して冷熱動作させた際に熱電半導体4、5やセラミックス基板に大きな熱応力が作用する。特に、熱電素子では吸熱側と放熱側の熱膨張量(伸び)が異なり、放熱側には基板面方向に大きな応力が加わる。このような熱応力が熱電半導体4、5や半田層8、9に疲労亀裂を生じさせたり、さらに熱電半導体4、5と半田層8、9との接合界面や電極6、7とセラミックス基板との接合界面に亀裂、剥離などを生じさせる。これらの亀裂や界面剥離は熱電素子の抵抗値の上昇原因となることから、素子性能の低下を招くことになり、さらに亀裂が進展すると熱電素子そのものが破壊してしまう。
【0023】
そこで、この実施形態の熱電素子1においては、上記したような低抵抗金属材料層12を低熱膨張金属材料からなるコア材11の表面にクラッドした電極材(クラッド材)13で、放熱側電極6および吸熱側電極7を構成している。コア材11は上述したような低抵抗金属材料層12を有する電極6、7の熱膨張率を、クラッドメタルからなる電極材13全体として低下させるものであり、これにより電極6、7の熱膨張率を熱電半導体4、5やセラミックス基板からなる支持部材の熱膨張率に近似させることができる。
【0024】
このようなことから、コア材11には平均線膨張率(25〜100℃)が10×10−6/℃以下の低熱膨張金属材料を用いることが好ましい。コア材11の平均線膨張率が大きすぎると、低抵抗金属材料層12とコア材11の体積比(板厚比)にもよるが、電極材(クラッド材)13の熱膨張率を十分に低下させることができないと同時に抵抗率が上昇し、また厚さ方向の熱伝導率が低下する。低熱膨張金属材料の具体例としては、W(平均線膨張率:4.5×10−6/℃)、Mo(平均線膨張率:5.1×10−6/℃)、Ta(平均線膨張率:6.5×10−6/℃)、Zr(平均線膨張率:5.0×10−6/℃)、Nb(平均線膨張率:7.2×10−6/℃)、V(平均線膨張率:8.3×10−6/℃)、低熱膨張Fe基合金などが挙げられる。
【0025】
上記した低熱膨張金属材料のうち、特に低熱膨張Fe基合金は上記したCu、Ag、Alなどからなる低抵抗金属材料層12とのクラッド性に優れることから、クラッド電極材13のコア材11に好適である。低熱膨張Fe基合金としては、インバー合金(例えばFe−36質量%Ni/平均線膨張率:1.2×10−6/℃)、スーパーインバー合金(例えばFe−31質量%Ni−5質量%Co/平均線膨張率:0.5×10−6/℃)、コバール合金(例えばFe−29質量%Ni−17質量%Co/平均線膨張率:4.8×10−6/℃)、42アロイ(Fe−42質量%Ni/平均線膨張率:5.3×10−6/℃)などが挙げられる。
【0026】
また、クラッド電極材13自体の熱膨張率は、熱電半導体4、5の熱膨張率に対する差が−30%から+10%までの範囲内であることが好ましい。ここで、クラッド電極材13と熱電半導体4、5との熱膨張率の差αは、クラッド電極材13の熱膨張率をα、熱電半導体4、5の熱膨張率をαとしたとき、式:α=[(α−α)/α×100(%)]により求められる値を指すものとする。クラッド電極材13と熱電半導体4、5との熱膨張差αが上記した範囲を外れると、熱電素子1に通電して冷熱動作させた際に生じる熱応力を十分に低減することができない。言い換えると、熱膨張差αを30%以内とすることによって、熱電素子1の冷熱動作時に熱電半導体4、5などに生じる熱応力が効果的に抑制され、熱電半導体4、5、半田層8、9、セラミックス基板などの熱疲労を軽減することが可能となる。熱膨張差αは−20%から+10%までの範囲とすることがより好ましい。
【0027】
クラッド電極材13の熱膨張率は、おおよそコア材11と低抵抗金属材料層12の熱膨張率をそれぞれの体積比で加重平均した値となる。従って、電極構成材料の熱膨張率と熱電半導体4、5の熱膨張率を考慮して、クラッド電極材13と熱電半導体4、5との熱膨張差αが上記したような範囲となるように、コア材11と低抵抗金属材料層12の板厚比を適宜選択することが好ましい。ただし、低抵抗金属材料層12の板厚が小さくなりすぎると、電極6、7としての電気特性(導電性など)が低下するため、クラッド電極材13の総板厚に対する低抵抗金属材料層12の板厚の比を30%以上とすることが好ましい。低抵抗金属材料層12の板厚比の上限値は目的とする熱膨張差αに応じて適宜に設定される。クラッド電極材13の総板厚は一般的には0.15〜0.5mm程度が適当である。
【0028】
この実施形態の熱電素子1においては、低熱膨張コア材11と低抵抗金属材料層12とを有するクラッド電極材13で放熱側電極6および吸熱側電極7を構成することによって、各電極6、7と熱電半導体4、5やセラミックス基板からなる支持部材との熱膨張差を減少させている。これによって、上述した熱電素子1に通電して冷熱動作させた際の熱応力が低減されるため、この熱応力に基づく熱電半導体4、5や半田層8、9の疲労亀裂、さらに熱電半導体4、5と半田層8、9との接合界面や熱電半導体4、5とセラミックス基板との接合界面における亀裂、剥離などの発生を有効に抑制することができる。これによって、熱電素子1の熱サイクルによる機能低下や素子破壊などを防ぐことが可能となる。すなわち、熱電素子1の長期信頼性、特に冷熱サイクルが頻繁に付加されるような条件下で使用される熱電素子1の長期信頼性を大幅に高めることができる。
【0029】
なお、上述した実施形態では放熱側電極6および吸熱側電極7の両方にクラッド電極材13を適用した場合について説明したが、本発明はこれに限られるものではなく、放熱側電極6および吸熱側電極7の一方にクラッド電極材13を適用した構造を採用することも可能である。このような素子構造では、熱疲労の軽減効果などが若干低下するものの、両電極にCuの単体電極などを用いた場合に比べて、熱疲労やそれに伴う亀裂発生などを低減することができる。クラッド電極材13は少なくとも熱膨張量が大きい放熱側電極6に適用することが好ましい。
【0030】
上述したような構成を有する熱電素子1は、冷温蔵庫や半導体製造装置の温度制御装置、さらにコンピュータのCPUのような超高集積回路素子やレーザ素子などの高発熱半導体部品の冷却装置など、各種分野における冷却装置に好適に用いられるものである。実使用にあたっては、熱電素子1の吸熱面(吸熱側に相当する上部支持部材3)と被冷却体(各種部材、部品、装置)とを、絶縁状態を維持しながら直接、もしくはシリコーングリースなどを介して接触させることによって、冷却装置などとして機能させることができる。
【0031】
なお、上述した実施形態では熱電素子1の支持部材2、3を熱電半導体4、5の上下両面に配置した構造について説明したが、本発明はこのような構造に限られるものではなく、例えば図6に示すように、素子構造を保持する構造用支持部材14(図1の下部支持部材2が相当する)を、N型熱電半導体4およびP型熱電半導体5の中間位置に配置した熱電素子1に適用することも可能である。この場合には、熱電半導体4、5の上下両面には絶縁性樹脂基板や絶縁性樹脂フィルムなどからなる絶縁部材15、16が配置される。
【0032】
【実施例】
次に、本発明の具体的な実施例について述べる。
【0033】
実施例1
まず、低熱膨張コア材として、種々の板厚のスーパーインバー合金板(平均線膨張率:0.5×10−6/℃)を用意した。このようなスーパーインバー合金板(コア材)の両面に、低抵抗金属材料層として種々の板厚の電気銅板(平均線膨張率:17×10−6/℃)を熱間圧延法によりクラッドし、最終的な板厚が5mmのクラッド電極板(サンドイッチ構造)を複数作製した。
【0034】
次いで、図7に示すように、10mm×20mm×厚さ1.5mmのアルミナセラミックス基板21と上記した各クラッド電極板(形状:5mm×5mm×厚さ0.5mm)とを、それぞれDBC法(銅と酸化銅の共晶温度以上で銅の融点以下の温度に加熱して、ろう材を用いずに直接接合する方法)で接合した。アルミナセラミックス基板21上には、それぞれクラッド構造が同一の2枚のクラッド電極板22a、22bを接合した。
【0035】
上述したアルミナセラミックス基板21に接合した各クラッド電極板22a、22bと、同一構造のクラッド電極板(形状:5mm×5mm×厚さ0.5mm)23とで、3mm角の立方体に加工した2つのBiTe合金(熱電半導体)24、25を挟み込むようにして接合して、それぞれ試験体26を作製した。各クラッド電極板22、23とBiTe合金24、25とは半田(半田層27の厚さは0.01mm)により接合した。各試験体には通電および評価用のリード線28を取り付けた。
【0036】
次に、上述した各試験体26を0℃と80℃に保った不活性溶剤の浴槽に交互に入れ、熱疲労試験を実施した。疲労の進行状況については、セラミックス基板21側のクラッド電極板22a、22b間の抵抗値変化を測定することにより評価し、抵抗値が初期の70%になった時点を疲労寿命とした。図8に疲労寿命の測定結果を示す。なお、図8は各クラッド電極板22、23とBiTe合金24、25の熱膨張差α(前述した式により算出)を横軸とし、縦軸に各試験体26の疲労寿命を示している。
【0037】
図8に示すように、BiTe合金24、25との熱膨張差αが−30%以上+10%以下のクラッド電極板22、23を用いることによって、試験体(熱電素子に相当)26の疲労寿命を大幅に向上させることが可能となる。なお、図8において、熱膨張差αが+28%の試験体はクラッド電極板ではなく、銅の単体板を電極に用いたものである。この熱膨張差αは[(16.6−12.96)/12.95×100=+28%]の式により求めた値である。また、上述したクラッド電極板22、23の低抵抗金属材料層として、電気銅板に代えてAg板およびAl板を用いたクラッド電極板を作製し、同様な熱疲労試験を行ったところ、BiTe合金24、25との熱膨張差αが−30%以上+10%以下のクラッド電極板によれば、同様に良好な結果が得られることを確認した。
【0038】
実施例2、比較例1〜2
上述した試験体26において、BiTe合金に代えて、Bi28at.%−Te57at.%−Sb12at.%−Se3at.%組成のN型熱電半導体24とBi10at.%−Te57at.%−Sb10at.%−Se3at.%組成のP型熱電半導体25を用いて、実際に試験用熱電素子を作製した。なお、各電極22、23には、Bi−Te系熱電半導体との熱膨張差αが−29%のクラッド電極板を使用した。このクラッド電極板の具体的な構成は、総板厚が0.3mm、クラッド材中のコア材の板厚が0.18mm、その両側の銅層の板厚さがそれぞれ0.06mmであり、クラッド材としての熱膨張率は9.2×10−6/℃であった。
【0039】
また、本発明との比較例として、銅の単体電極板を用いた熱電素子(比較例1)とBi−Te系熱電半導体との熱膨張差αが−37%のクラッド電極板を用いた熱電素子(比較例2)をそれぞれ作製した。なお、電極板以外の素子構造については実施例2と同様とした。
【0040】
このようにして得た実施例2および比較例1、2の各試験用熱電素子に通電を繰り返して熱疲労試験を行った。熱疲労試験の具体的な条件は以下の通りである。試験用熱電素子はセラミックス基板21側が放熱側であり、水冷した銅製ブロックを押し付けて強制冷却して常に25℃とした。この状態で電流を流して室温から−40℃の間で熱疲労試験を実施した。その結果、実施例2の試験用熱電素子では1000回以上の熱サイクル(通電サイクル)後においても、抵抗値変化が初期の3%以下であったのに対して、比較例1では50回の熱サイクルの印加により通電不良(寿命)となり、また比較例2では231回の熱サイクルの印加により通電不良(寿命)となった。
【0041】
実施例3〜10
表1に構成を示す各クラッド電極材を用いる以外は、実施例2と同様にしてそれぞれ試験用熱電素子を作製した。これら各試験用熱電素子ついて、実施例2と同様にして熱疲労試験を行った。その結果を表1に併せて示す。表1から明らかなように、各試験用熱電素子はいずれも良好な寿命特性を示した。
【0042】
【表1】

Figure 2004063585
【0043】
【発明の効果】
以上説明したように、本発明の熱電素子用電極材によれば、熱電素子の金属電極に起因する熱応力が低減されるため、熱電半導体や他の構成部材の熱疲労を軽減することができる。そして、このような電極材を用いた本発明の熱電素子によれば、熱疲労による素子機能の低下や素子破壊の発生を大幅に抑制することが可能となる。すなわち、長期信頼性に優れた熱電素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による熱電素子の概略構造を示す断面図である。
【図2】図1に示す熱電素子の要部を拡大して示す断面図である。
【図3】本発明の熱電素子に使用されるクラッド電極材の一構成例を示す断面図である。
【図4】本発明の熱電素子に使用されるクラッド電極材の他の構成例を示す断面図である。
【図5】本発明の熱電素子に使用されるクラッド電極材のさらに他の構成例を示す断面図である。
【図6】本発明の熱電素子の変形例の構造を示す断面図である。
【図7】本発明の実施例で作製した熱疲労試験用試験体(熱電素子)の構成を示す図である。
【図8】本発明の実施例1で作製した熱電素子構造の各試験体の疲労寿命を電極と熱電半導体との熱膨張差に基づいてプロットした図である。
【符号の説明】
1……熱電素子、2……下部支持部材、3……上部支持部材、4……N型熱電半導体、5……P型熱電半導体、6……放電側電極、7……吸熱側電極、10……直流電源、11……低熱膨張コア材、12……低抵抗金属材料層、13……クラッド電極板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode material used for a thermoelectric element using a thermoelectric semiconductor and a thermoelectric element using the same.
[0002]
[Prior art]
A thermoelectric semiconductor such as bismuth (Bi) -tellurium (Te), iron (Fe) -silicide (Si), or cobalt (Co) -antimony (Sb) is used, and a thermoelectric device utilizing its Peltier effect or Seebeck effect is used. The element is used as a cooling or heating device. For example, thermoelectric elements are small and thin and can be cooled without using a heat medium such as liquid or gas (refrigerant). It has been used as a cooling device and a heating device in various fields, and has recently begun to attract attention as a cooling device for a CPU of a personal computer. Further, the thermoelectric element is also used as a power generation element based on a temperature difference between thermoelectric semiconductors, that is, a power generation element using the Seebeck effect.
[0003]
Such a thermoelectric element includes, for example, a plurality of N-type thermoelectric semiconductors and a plurality of P-type thermoelectric semiconductors alternately arranged, and the plurality of thermoelectric semiconductors is arranged on one end side with a heat absorbing side electrode and the other end. It has a structure in which it is connected in series with a heat radiation side electrode arranged on the side of the unit. In such a thermoelectric element, when a direct current is applied to the N-type thermoelectric semiconductor and the P-type thermoelectric semiconductor which are alternately arranged, an electrode (heat-absorbing-side electrode) side on which a current flows from the N-type thermoelectric semiconductor to the P-type thermoelectric semiconductor In this case, heat absorption occurs due to the Peltier effect, and heat dissipation (heat generation) occurs on the electrode (radiation side electrode) side where current flows from the P-type thermoelectric semiconductor to the N-type thermoelectric semiconductor. Therefore, a member to be cooled or a device is arranged on the heat absorption side. By doing so, cooling can be performed.
[0004]
As a specific structure of the thermoelectric element, for example, the following π-type structure is known (for example, JP-A-7-321379, JP-A-11-340527, JP-A-2001-168402, JP 2001-352107 A). That is, a support member such as a ceramic substrate on which the first metal electrode group is formed is prepared, and a plurality of N-type thermoelectric semiconductors and P-type thermoelectric semiconductors are alternately arranged on the first metal electrode group. A second metal electrode group is arranged on the upper end side of the N-type thermoelectric semiconductor and the P-type thermoelectric semiconductor, and each metal electrode is connected to the N-type thermoelectric semiconductor so that all the thermoelectric semiconductors are finally electrically connected in series. And a P-type thermoelectric semiconductor. In such a thermoelectric element, a copper plate or the like having a small electric resistance is applied to each metal electrode so as to withstand a large current, and a relatively thick plate is used.
[0005]
By the way, at the time of the operation of the π-type thermoelectric element as described above, each component (a support member, a metal electrode, a thermoelectric semiconductor, etc.) repeatedly undergoes a cooling / heating cycle. Since there is a difference in thermal expansion between the constituent materials of the thermoelectric element, thermal stress is generated when a cooling cycle is applied. Further, since the thermoelectric element has different thermal expansion (elongation) on the heat absorbing side and the heat radiating side, the entire thermoelectric element bends. The thermoelectric element undergoes thermal fatigue during operation due to the thermal stress caused by the difference in thermal expansion between these constituent materials and the bending of the entire element.The thermal fatigue causes cracks in the thermoelectric semiconductor, peeling of the bonding interface, and soldering. Cracks in the material cause deterioration of element performance such as an increase in resistance value, and further cause element breakage.
[0006]
[Problems to be solved by the invention]
As described above, in the conventional thermoelectric element, various problems occur due to thermal fatigue accompanying the application of the cooling / heating cycle. Specifically, among the constituent materials of the thermoelectric element, a metal electrode made of a copper plate or the like has a larger coefficient of thermal expansion than other constituent materials (support members such as a thermoelectric semiconductor or a ceramic substrate). A large thermal stress is generated at the joint between the metal substrate and the metal electrode and the ceramic substrate.
[0007]
In particular, since the thermoelectric semiconductor is a brittle material and has low mechanical strength, there is a problem that a fatigue crack or the like is easily generated in the thermoelectric semiconductor due to a thermal stress based on a difference in thermal expansion between the thermoelectric semiconductor and the metal electrode. In addition, since the solder layer forming the joint between the metal electrode and the thermoelectric semiconductor also has low fatigue strength, cracks and peeling are likely to occur on the solder layer itself and the joint interface. Similarly, cracks and peeling occur at the joint interface between the metal electrodes and the ceramic substrate due to thermal stress based on the thermal expansion difference.
[0008]
Since the thermoelectric element is constructed by connecting a plurality of thermoelectric semiconductors in series, cracks and peeling may occur even at one place, such as at the thermoelectric semiconductor itself bonded to the metal electrode or at the bonding interface between the metal electrode and other constituent materials. Occurs, the element function of the thermoelectric element is impaired, for example, the resistance value of the entire element increases. For these reasons, there is a strong demand for reducing the thermal stress caused by the metal electrode, thereby suppressing the performance deterioration and the element destruction of the thermoelectric element.
[0009]
The present invention has been made to address such a problem, and by reducing thermal stress caused by metal electrodes of a thermoelectric element, it is possible to reduce thermal fatigue of thermoelectric semiconductors and other components. An object of the present invention is to provide a thermoelectric element for a thermoelectric element, and a thermoelectric element capable of suppressing the deterioration of the element function and the occurrence of element destruction due to thermal fatigue by using such an electrode material.
[0010]
[Means for Solving the Problems]
The electrode material for a thermoelectric element according to the present invention is, as described in claim 1, an electrode material used for a thermoelectric element using a thermoelectric semiconductor, wherein the core material is made of a low thermal expansion metal material, and the surface of the core material is formed. And a low-resistance metal material layer clad with the metal layer. The thermoelectric element electrode material of the present invention is further characterized in that the difference with respect to the coefficient of thermal expansion of the thermoelectric semiconductor is -30% or more and + 10% or less.
[0011]
Further, the thermoelectric element of the present invention has a thermoelectric semiconductor group having an N-type thermoelectric semiconductor and a P-type thermoelectric semiconductor arranged alternately, and one end of the thermoelectric semiconductor group. A thermoelectric element comprising: a joined heat-absorbing electrode; and a heat-dissipating electrode joined to the other end of the thermoelectric semiconductor group so that the N-type thermoelectric semiconductor and the P-type thermoelectric semiconductor are connected in series. Wherein at least one of the heat-absorbing electrode and the heat-radiating electrode is made of the thermoelectric element electrode material of the present invention described above.
[0012]
In the present invention, a low thermal expansion metal material is used as a core material, and an electrode material (clad electrode material) in which a low resistance metal material layer is clad on the surface of the core material is applied to at least one of the heat absorption side electrode and the heat radiation side electrode. ing. According to such a clad electrode material, the coefficient of thermal expansion of the electrode material can be reduced based on the low thermal expansion metal material as the core material. In other words, it is possible to reduce the difference in the coefficient of thermal expansion between the heat-absorbing electrode or the heat-dissipating electrode and the thermoelectric semiconductor or another component. This alleviates the thermal stress applied to the thermoelectric semiconductor, etc., and suppresses cracks due to thermal fatigue of the thermoelectric semiconductor and other components, as well as cracks and delaminations at the bonding interface, thereby deteriorating the function of the thermoelectric element due to thermal cycles. And device destruction can be suppressed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments for carrying out the present invention will be described.
FIG. 1 is a sectional view showing a schematic structure of a thermoelectric element according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view showing a main part thereof. The thermoelectric element 1 shown in these figures has upper and lower support members 2 and 3, and the lower support member 2 and the upper support member 3 are arranged to face each other. In the thermoelectric element 1 of this embodiment, the lower support member 2 side is a heat dissipation surface, and the upper support member 3 side is a heat absorption surface. That is, the lower support member 2 is a heat dissipation side support member, and the upper support member 3 is a heat absorption side support member.
[0014]
The lower support member (radiation side support member) 2 functions as a structural support for the thermoelectric element 1, and it is preferable to use an insulating ceramic substrate such as an alumina substrate, an aluminum nitride substrate, or a silicon nitride substrate. A ceramic substrate, which is an insulating substrate, may be used for the upper support member 3 (heat absorbing side support member) as in the case of the lower support member 2. If the lower support member 2 can support the entire element structure, the upper support member 3 may be used. The member 3 may be formed of an insulating resin substrate, an insulating resin film, or the like. Note that the upper support member 3 may be formed of an insulating ceramic substrate, and the lower support member 2 may be formed of an insulating resin substrate or an insulating resin film. At this time, the lower support member 2 can be omitted.
[0015]
A plurality of N-type thermoelectric semiconductors 4 and P-type thermoelectric semiconductors 5 are alternately arranged between the lower support member 2 and the upper support member 3 described above, and these are arranged in a matrix as a whole element. To form a thermoelectric semiconductor group. In other words, the thermoelectric semiconductor groups are alternately arranged along one main surface of the lower support member 2. Various known materials can be used for the thermoelectric semiconductors 4 and 5, and a typical example thereof is a Bi-Te-based thermoelectric semiconductor. The Bi-Te-based thermoelectric semiconductor includes at least one element selected from Bi and Sb and at least one element selected from Te and Se as essential elements, and further includes I, Cl, Br, and Compound semiconductors containing additional elements such as Hg, Au, and Cu are known. The thermoelectric semiconductors 4 and 5 are not limited to Bi-Te-based thermoelectric semiconductors, and various types of thermoelectric semiconductors such as Fe-Si-based and Co-Sb-based can be used.
[0016]
The plurality of N-type thermoelectric semiconductors 4 and P-type thermoelectric semiconductors 5 are arranged in a direction from the N-type thermoelectric semiconductor 4 to the P-type thermoelectric semiconductor 5, that is, the N-type thermoelectric semiconductor 4, the P-type thermoelectric semiconductor 5, the N-type thermoelectric semiconductor 4, P Are electrically connected in series by a heat radiation side electrode 6 provided on the lower support member 2 and a heat absorption side electrode 7 provided on the upper support member 3 so that a direct current flows in the order of the mold thermoelectric semiconductors 5. I have. Each of the heat radiation side electrode 6 and the heat absorption side electrode 7 constitutes an electrode group by a plurality.
[0017]
That is, a plurality of heat radiation side electrodes 6 are provided on the surface of the lower support member 2. On the other hand, a plurality of endothermic electrodes 7 are arranged on the upper support member 3 side. The heat absorbing side electrode 7 has a shape for electrically connecting the adjacent N-type thermoelectric semiconductors 4 and P-type thermoelectric semiconductors 5 in this order. Endothermic occurs in the side electrode 7. On the other hand, the heat radiation side electrode 6 has a shape for electrically connecting the adjacent P-type thermoelectric semiconductors 5 and N-type thermoelectric semiconductors 4 in this order except for the electrodes (lead extraction electrodes) at both ends. Heat radiation (heat generation) occurs at the heat radiation side electrode 6 based on the connection order of the thermoelectric semiconductors 5 and 4.
[0018]
Lower ends (radiation-side ends) of the N-type thermoelectric semiconductor 4 and the P-type thermoelectric semiconductor 5 are respectively joined to the radiation-side electrodes 6 via the solder layers 8. The upper ends (heat-absorbing end / cooling surface) of the N-type thermoelectric semiconductor 4 and the P-type thermoelectric semiconductor 5 are similarly joined to the heat-absorbing electrode 7 via the solder layer 9. As described above, the adjacent N-type thermoelectric semiconductor 4 and P-type thermoelectric semiconductor 5 are connected in order by the radiation-side electrode 6 and the heat-absorption-side electrode 7, respectively, so that a plurality of thermoelectric elements 1 can be seen. An N-type thermoelectric semiconductor 4 and a plurality of P-type thermoelectric semiconductors 5 are alternately connected in series.
[0019]
When a DC current is passed from the DC power supply 10 to the thermoelectric semiconductors 4 and 5 to the thermoelectric element 1 having the π-type structure, heat is absorbed at the upper ends of the thermoelectric semiconductors 4 and 5 and heat is released at the lower ends by the Peltier effect. . That is, heat absorption occurs at the heat absorbing side electrode 7 through which a DC current flows from the adjacent N-type thermoelectric semiconductor 4 to the P-type thermoelectric semiconductor 5, and heat dissipation at which a DC current flows from the P-type thermoelectric semiconductor 5 to the N-type thermoelectric semiconductor 4. Heat is generated in the side electrode 6. Therefore, by bringing the object to be cooled (a member, a component, a device, or the like to be cooled) into contact with the upper support member 3 corresponding to the heat absorbing side of the thermoelectric element 1, cooling is performed by removing heat from the object to be cooled. The heat taken from the object to be cooled is radiated from the lower support member 2 corresponding to the heat radiation side of the thermoelectric element 1.
[0020]
In the thermoelectric element 1 having such a structure, the heat radiation side electrode 6 and the heat absorption side electrode 7 are provided with a low resistance metal material layer 12 on the surface of a core material 11 made of a low thermal expansion metal material as shown in FIGS. It is composed of a clad (laminated / integrated) electrode material 13. As a typical structure of the clad electrode material 13, as shown in FIG. 3, a sandwich structure in which a low-resistance metal material layer 12 is clad on both surfaces of a core material 11 is exemplified. However, in the case of a general sandwich structure, the thermal conductivity in the thickness direction is reduced. For example, a structure in which the core material 11 at the end is removed as shown in FIG. 4 and a hole 11a as shown in FIG. Alternatively, a structure in which the low resistance metal material layer 12 is filled in the hole portion 11a using the core material 11 having the following may be applied. Each of these clad materials can be manufactured by a general hot rolling method, an explosion bonding method, a casting method, or the like.
[0021]
In the low-resistance metal material layer 12 constituting the electrode material 13 made of the clad metal as described above, a metal material having high conductivity in maintaining the function as the electrodes 6 and 7 of the thermoelectric element 1, specifically, 3 × 10 resistivity -8 Use a metal material of Ω · m or less. Examples of such a low-resistance (high-conductivity) metal material include Cu or a Cu alloy, Ag or an Ag alloy, and Al or an Al alloy. Here, the coefficient of thermal expansion of the constituent material of the low-resistance metal material layer 12 is, for example, 17 × 10 -6 / ° C, Ag 19 × 10 -6 / ° C, Al is 23 × 10 -6 / ° C, which is larger than thermoelectric semiconductors 4, 5 and ceramic substrates.
[0022]
When the electrodes 6 and 7 are made of a low-resistance metal material having a high coefficient of thermal expansion alone, based on a difference in thermal expansion between the thermoelectric semiconductors 4 and 5 and a supporting member (for example, the lower supporting member 2) formed of a ceramic substrate, A large thermal stress acts on the thermoelectric semiconductors 4, 5 and the ceramic substrate when the thermoelectric elements are energized to perform a cooling operation. In particular, in the thermoelectric element, the heat absorption side and the heat radiation side have different amounts of thermal expansion (elongation), and a large stress is applied to the heat radiation side in the substrate surface direction. Such thermal stress causes fatigue cracks in the thermoelectric semiconductors 4 and 5 and the solder layers 8 and 9, and further causes the bonding interface between the thermoelectric semiconductors 4 and 5 and the solder layers 8 and 9 and the electrodes 6 and 7 to the ceramic substrate. Cracks, peeling, etc. occur at the bonding interface of These cracks and interfacial separation cause an increase in the resistance value of the thermoelectric element, which leads to a decrease in element performance, and further cracks destroy the thermoelectric element itself.
[0023]
Therefore, in the thermoelectric element 1 of this embodiment, the electrode material (clad material) 13 in which the low-resistance metal material layer 12 as described above is clad on the surface of the core material 11 made of the low thermal expansion metal material is used. And the heat absorbing side electrode 7. The core material 11 lowers the coefficient of thermal expansion of the electrodes 6 and 7 having the low-resistance metal material layer 12 as described above as a whole of the electrode material 13 made of the clad metal. The coefficient of thermal expansion can be approximated to the coefficient of thermal expansion of a support member made of the thermoelectric semiconductors 4, 5 or a ceramic substrate.
[0024]
For this reason, the core material 11 has an average linear expansion coefficient (25 to 100 ° C.) of 10 × 10 -6 It is preferable to use a metal material having a low thermal expansion of not more than / ° C. If the average linear expansion coefficient of the core material 11 is too large, the thermal expansion coefficient of the electrode material (cladding material) 13 can be sufficiently increased depending on the volume ratio (plate thickness ratio) of the low-resistance metal material layer 12 and the core material 11. At the same time, the resistivity cannot be reduced, the resistivity increases, and the thermal conductivity in the thickness direction decreases. As a specific example of the low thermal expansion metal material, W (average linear expansion coefficient: 4.5 × 10 -6 / ° C), Mo (average coefficient of linear expansion: 5.1 × 10) -6 / ° C), Ta (average coefficient of linear expansion: 6.5 × 10) -6 / ° C), Zr (average coefficient of linear expansion: 5.0 x 10) -6 / ° C), Nb (average coefficient of linear expansion: 7.2 x 10) -6 / ° C), V (average coefficient of linear expansion: 8.3 × 10) -6 / ° C) and a low thermal expansion Fe-based alloy.
[0025]
Among the low thermal expansion metal materials described above, the low thermal expansion Fe-based alloy is particularly excellent in the cladding property with the low resistance metal material layer 12 made of Cu, Ag, Al or the like. It is suitable. As the low thermal expansion Fe-based alloy, an Invar alloy (for example, Fe-36 mass% Ni / average linear expansion coefficient: 1.2 × 10 -6 / ° C), Super Invar alloy (for example, Fe-31% by mass Ni-5% by mass Co / average coefficient of linear expansion: 0.5 × 10 -6 / ° C), Kovar alloy (for example, Fe-29% by mass Ni-17% by mass Co / average coefficient of linear expansion: 4.8 × 10 -6 / Alloy), 42 alloy (Fe-42 mass% Ni / average coefficient of linear expansion: 5.3 x 10) -6 / ° C).
[0026]
Further, the thermal expansion coefficient of the clad electrode material 13 itself is preferably within a range from -30% to + 10% with respect to the thermal expansion coefficients of the thermoelectric semiconductors 4 and 5. Here, the difference α between the thermal expansion coefficients of the clad electrode material 13 and the thermoelectric semiconductors 4 and 5 is represented by α 1 , The coefficient of thermal expansion of the thermoelectric semiconductors 4, 5 is α 2 And the equation: α = [(α 1 −α 2 ) / Α 2 × 100 (%)]. If the thermal expansion difference α between the clad electrode material 13 and the thermoelectric semiconductors 4 and 5 is out of the above range, the thermal stress generated when the thermoelectric element 1 is energized to perform the cooling operation cannot be sufficiently reduced. In other words, by setting the thermal expansion difference α within 30%, the thermal stress generated in the thermoelectric semiconductors 4, 5 and the like during the cooling operation of the thermoelectric element 1 is effectively suppressed, and the thermoelectric semiconductors 4, 5, the solder layer 8, 9. It is possible to reduce thermal fatigue of a ceramic substrate or the like. The thermal expansion difference α is more preferably in the range of −20% to + 10%.
[0027]
The coefficient of thermal expansion of the clad electrode material 13 is a weighted average of the coefficients of thermal expansion of the core material 11 and the low-resistance metal material layer 12 at respective volume ratios. Therefore, the thermal expansion difference α between the clad electrode material 13 and the thermoelectric semiconductors 4 and 5 is set in the above-described range in consideration of the thermal expansion coefficients of the electrode constituent materials and the thermoelectric semiconductors 4 and 5. It is preferable to appropriately select the thickness ratio of the core material 11 and the low-resistance metal material layer 12. However, if the thickness of the low-resistance metal material layer 12 is too small, the electrical characteristics (such as conductivity) of the electrodes 6 and 7 are reduced. Is preferably 30% or more. The upper limit of the thickness ratio of the low-resistance metal material layer 12 is appropriately set according to the target thermal expansion difference α. Generally, the total thickness of the clad electrode material 13 is suitably about 0.15 to 0.5 mm.
[0028]
In the thermoelectric element 1 of this embodiment, the heat radiation side electrode 6 and the heat absorption side electrode 7 are constituted by the clad electrode material 13 having the low thermal expansion core material 11 and the low resistance metal material layer 12, so that the respective electrodes 6, 7 And a thermal expansion difference between the thermoelectric semiconductors 4 and 5 and a support member made of a ceramic substrate. This reduces the thermal stress when the above-described thermoelectric element 1 is energized to perform a cooling operation, so that the thermoelectric semiconductors 4 and 5 and the fatigue cracks of the solder layers 8 and 9 due to the thermal stress and the thermoelectric semiconductor 4 The generation of cracks, peeling, and the like at the bonding interface between the solder layers 8 and 9 and the bonding interface between the thermoelectric semiconductors 4 and 5 and the ceramic substrate can be effectively suppressed. As a result, it is possible to prevent the thermoelectric element 1 from deteriorating its function due to a thermal cycle, breaking the element, and the like. That is, the long-term reliability of the thermoelectric element 1, particularly the long-term reliability of the thermoelectric element 1 used under a condition in which a cooling cycle is frequently added, can be greatly improved.
[0029]
In the embodiment described above, the case where the clad electrode material 13 is applied to both the heat radiation side electrode 6 and the heat absorption side electrode 7 has been described. However, the present invention is not limited to this, and the heat radiation side electrode 6 and the heat absorption side It is also possible to adopt a structure in which the clad electrode material 13 is applied to one of the electrodes 7. In such an element structure, although the effect of reducing thermal fatigue is slightly reduced, thermal fatigue and the occurrence of cracks associated therewith can be reduced as compared with the case where a single electrode of Cu is used for both electrodes. The clad electrode material 13 is preferably applied to at least the heat radiation side electrode 6 having a large thermal expansion.
[0030]
The thermoelectric element 1 having the above-described configuration includes a cold storage and a temperature control device of a semiconductor manufacturing apparatus, and a cooling device for a high heat generation semiconductor component such as an ultra-high integrated circuit element and a laser element such as a CPU of a computer. It is suitably used for cooling devices in various fields. In actual use, the heat-absorbing surface (upper support member 3 corresponding to the heat-absorbing side) of the thermoelectric element 1 and the object to be cooled (various members, parts, devices) are directly or silicone grease while maintaining an insulated state. By contacting through the intermediary, it can function as a cooling device or the like.
[0031]
In the above-described embodiment, the structure in which the support members 2 and 3 of the thermoelectric element 1 are arranged on the upper and lower surfaces of the thermoelectric semiconductors 4 and 5 has been described. However, the present invention is not limited to such a structure. As shown in FIG. 6, a thermoelectric element 1 in which a structural support member 14 (corresponding to the lower support member 2 in FIG. 1) for holding the element structure is arranged at an intermediate position between the N-type thermoelectric semiconductor 4 and the P-type thermoelectric semiconductor 5 It is also possible to apply to. In this case, insulating members 15 and 16 made of an insulating resin substrate, an insulating resin film or the like are arranged on both upper and lower surfaces of the thermoelectric semiconductors 4 and 5.
[0032]
【Example】
Next, specific examples of the present invention will be described.
[0033]
Example 1
First, as a low thermal expansion core material, Super Invar alloy plates of various thicknesses (average coefficient of linear expansion: 0.5 × 10 -6 / ° C). Electro-copper plates of various thicknesses (average coefficient of linear expansion: 17 × 10 4) as low-resistance metal material layers on both surfaces of such a Super Invar alloy plate (core material). -6 / ° C) by a hot rolling method to produce a plurality of clad electrode plates (sandwich structure) having a final plate thickness of 5 mm.
[0034]
Next, as shown in FIG. 7, the alumina ceramic substrate 21 having a size of 10 mm × 20 mm × 1.5 mm and each of the above-mentioned clad electrode plates (shape: 5 mm × 5 mm × thickness 0.5 mm) were respectively subjected to the DBC method ( Heating to a temperature equal to or higher than the eutectic temperature of copper and copper oxide and equal to or lower than the melting point of copper, and directly bonding without using a brazing material). On the alumina ceramic substrate 21, two clad electrode plates 22a and 22b having the same clad structure were joined.
[0035]
Each of the clad electrode plates 22a and 22b bonded to the alumina ceramic substrate 21 and the clad electrode plate (shape: 5 mm × 5 mm × thickness 0.5 mm) 23 having the same structure were processed into a 3 mm square cube. Bi 2 Te 3 The alloys (thermoelectric semiconductors) 24 and 25 were joined so as to sandwich them, and test specimens 26 were produced. Each clad electrode plate 22, 23 and Bi 2 Te 3 The alloys 24 and 25 were joined by solder (the thickness of the solder layer 27 was 0.01 mm). Each test piece was provided with a lead wire 28 for energization and evaluation.
[0036]
Next, the test specimens 26 described above were alternately placed in a bath of an inert solvent maintained at 0 ° C. and 80 ° C. to perform a thermal fatigue test. The progress of fatigue was evaluated by measuring the change in resistance between the clad electrode plates 22a and 22b on the ceramic substrate 21 side, and the time when the resistance became 70% of the initial value was defined as the fatigue life. FIG. 8 shows the measurement results of the fatigue life. FIG. 8 shows each clad electrode plate 22, 23 and Bi 2 Te 3 The horizontal axis indicates the thermal expansion difference α of the alloys 24 and 25 (calculated by the above-described formula), and the vertical axis indicates the fatigue life of each specimen 26.
[0037]
As shown in FIG. 2 Te 3 By using the clad electrode plates 22 and 23 having a thermal expansion difference α of −30% or more and + 10% or less with the alloys 24 and 25, the fatigue life of the test specimen (corresponding to a thermoelectric element) 26 can be greatly improved. It becomes. In FIG. 8, the test piece having a thermal expansion difference α of + 28% is not a clad electrode plate but a single copper plate used as an electrode. This thermal expansion difference α is a value obtained by the equation [(16.6-12.96) /12.95×100=+28%]. In addition, as a low-resistance metal material layer of the above-mentioned clad electrode plates 22 and 23, a clad electrode plate using an Ag plate and an Al plate instead of an electrolytic copper plate was produced, and a similar thermal fatigue test was performed. 2 Te 3 It was also confirmed that good results were obtained by using a clad electrode plate having a thermal expansion difference α between alloys 24 and 25 of −30% or more and + 10% or less.
[0038]
Example 2, Comparative Examples 1-2
In the test piece 26 described above, Bi 2 Te 3 Instead of the alloy, Bi28at. % -Te57at. % -Sb12at. % -Se3at. % N-type thermoelectric semiconductor 24 and Bi10 at. % -Te57at. % -Sb10at. % -Se3at. Using the P-type thermoelectric semiconductor 25 having a composition of 25%, a test thermoelectric element was actually manufactured. For each of the electrodes 22 and 23, a clad electrode plate having a thermal expansion difference α of −29% from that of the Bi—Te-based thermoelectric semiconductor was used. The specific configuration of this clad electrode plate is such that the total plate thickness is 0.3 mm, the plate thickness of the core material in the clad material is 0.18 mm, and the plate thicknesses of the copper layers on both sides thereof are 0.06 mm, Thermal expansion coefficient as cladding material is 9.2 × 10 -6 / ° C.
[0039]
As a comparative example with the present invention, a thermoelectric element using a clad electrode plate having a thermal expansion difference α of −37% between a thermoelectric element using a single electrode plate of copper (Comparative Example 1) and a Bi—Te-based thermoelectric semiconductor was used. Each of the devices (Comparative Example 2) was manufactured. The element structure other than the electrode plate was the same as in Example 2.
[0040]
Each of the test thermoelectric elements of Example 2 and Comparative Examples 1 and 2 thus obtained was subjected to a thermal fatigue test by repeating current supply. The specific conditions of the thermal fatigue test are as follows. In the test thermoelectric element, the ceramic substrate 21 side was the heat radiation side, and a water-cooled copper block was pressed and forcedly cooled to always 25 ° C. In this state, a current was applied to perform a thermal fatigue test between room temperature and -40 ° C. As a result, in the test thermoelectric element of Example 2, the resistance change was 3% or less of the initial value even after 1000 or more thermal cycles (energization cycle), whereas in Comparative Example 1, the change was 50 times. The energization failure (life) was caused by the application of the thermal cycle, and in Comparative Example 2, the energization failure (life) was caused by the application of the 231 heat cycles.
[0041]
Examples 3 to 10
A test thermoelectric element was produced in the same manner as in Example 2 except that each clad electrode material shown in Table 1 was used. For each of these test thermoelectric elements, a thermal fatigue test was performed in the same manner as in Example 2. The results are shown in Table 1. As is clear from Table 1, each of the test thermoelectric elements exhibited good life characteristics.
[0042]
[Table 1]
Figure 2004063585
[0043]
【The invention's effect】
As described above, according to the thermoelectric element electrode material of the present invention, the thermal stress caused by the metal electrode of the thermoelectric element is reduced, so that the thermal fatigue of the thermoelectric semiconductor and other components can be reduced. . According to the thermoelectric element of the present invention using such an electrode material, it is possible to significantly suppress the deterioration of the element function and the occurrence of element destruction due to thermal fatigue. That is, a thermoelectric element having excellent long-term reliability can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a schematic structure of a thermoelectric element according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view showing a main part of the thermoelectric element shown in FIG.
FIG. 3 is a cross-sectional view showing one configuration example of a clad electrode material used in the thermoelectric element of the present invention.
FIG. 4 is a cross-sectional view showing another configuration example of the clad electrode material used in the thermoelectric element of the present invention.
FIG. 5 is a cross-sectional view showing still another configuration example of the clad electrode material used in the thermoelectric element of the present invention.
FIG. 6 is a sectional view showing a structure of a modification of the thermoelectric element of the present invention.
FIG. 7 is a diagram showing a configuration of a test body (thermoelectric element) for a thermal fatigue test manufactured in an example of the present invention.
FIG. 8 is a diagram in which the fatigue life of each test piece of the thermoelectric element structure manufactured in Example 1 of the present invention is plotted based on the thermal expansion difference between the electrode and the thermoelectric semiconductor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... thermoelectric element, 2 ... lower support member, 3 ... upper support member, 4 ... N-type thermoelectric semiconductor, 5 ... P-type thermoelectric semiconductor, 6 ... discharge side electrode, 7 ... heat absorption side electrode, 10 DC power supply 11 Low thermal expansion core material 12 Low resistance metal material layer 13 Clad electrode plate

Claims (3)

熱電半導体を使用した熱電素子に用いられる電極材であって、低熱膨張金属材料からなるコア材と、前記コア材の表面にクラッドされた低抵抗金属材料層とを具備することを特徴とする熱電素子用電極材。An electrode material used for a thermoelectric element using a thermoelectric semiconductor, comprising: a core material made of a low thermal expansion metal material; and a low resistance metal material layer clad on a surface of the core material. Electrode material for device. 請求項1記載の熱電素子用電極材において、
前記電極材の熱膨張率は、前記熱電半導体の熱膨張率に対する差が−30%以上で+10%以下であることを特徴とする熱電素子用電極材。
The electrode material for a thermoelectric element according to claim 1,
The electrode material for a thermoelectric element, wherein a difference between a coefficient of thermal expansion of the electrode material and a coefficient of thermal expansion of the thermoelectric semiconductor is −30% or more and + 10% or less.
交互に配列されたN型熱電半導体およびP型熱電半導体を有する熱電半導体群と、前記熱電半導体群の一方の端部にそれぞれ接合された吸熱側電極と、前記N型熱電半導体とP型熱電半導体が直列に接続されるように、前記熱電半導体群の他方の端部にそれぞれ接合された放熱側電極とを具備する熱電素子において、
前記吸熱側電極および放熱側電極の少なくとも一方は、請求項1または請求項2記載の熱電素子用電極材からなることを特徴とする熱電素子。
A thermoelectric semiconductor group having an N-type thermoelectric semiconductor and a P-type thermoelectric semiconductor arranged alternately; a heat-absorbing electrode joined to one end of the thermoelectric semiconductor group; the N-type thermoelectric semiconductor and the P-type thermoelectric semiconductor Are connected in series, in a thermoelectric element including a heat-radiation-side electrode bonded to the other end of the thermoelectric semiconductor group,
3. A thermoelectric element, wherein at least one of the heat absorption side electrode and the heat radiation side electrode is made of the thermoelectric element electrode material according to claim 1.
JP2002216974A 2002-07-25 2002-07-25 Electrode material for thermoelectric element and thermoelectric element using the same Expired - Fee Related JP4309623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216974A JP4309623B2 (en) 2002-07-25 2002-07-25 Electrode material for thermoelectric element and thermoelectric element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216974A JP4309623B2 (en) 2002-07-25 2002-07-25 Electrode material for thermoelectric element and thermoelectric element using the same

Publications (2)

Publication Number Publication Date
JP2004063585A true JP2004063585A (en) 2004-02-26
JP4309623B2 JP4309623B2 (en) 2009-08-05

Family

ID=31938581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216974A Expired - Fee Related JP4309623B2 (en) 2002-07-25 2002-07-25 Electrode material for thermoelectric element and thermoelectric element using the same

Country Status (1)

Country Link
JP (1) JP4309623B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
JP2006339284A (en) * 2005-05-31 2006-12-14 Toyota Motor Corp Thermoelectric module
JP2006352023A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Thermoelectric module
JP2008091539A (en) * 2006-09-29 2008-04-17 Chubu Electric Power Co Inc Thermoelectric conversion device and thermoelectric conversion apparatus
JP2008523393A (en) * 2004-12-07 2008-07-03 ハネウェル・インターナショナル・インコーポレーテッド Super Invar magnetic return path for high performance accelerometers
JP2009117645A (en) * 2007-11-07 2009-05-28 Showa Denko Kk Electrode for thermoelectric element, and thermoelectric module
DE102011079467A1 (en) * 2011-07-20 2013-01-24 Behr Gmbh & Co. Kg Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
DE102011052565A1 (en) * 2011-08-10 2013-02-14 Vacuumschmelze Gmbh & Co. Kg Thermoelectric module and method for producing a thermoelectric module
JP2017069520A (en) * 2015-10-02 2017-04-06 株式会社リコー Thermoelectric converter
JP2018157136A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Thermoelectric conversion module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416244B (en) * 2004-07-07 2008-08-13 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
GB2416244A (en) * 2004-07-07 2006-01-18 Nat Inst Of Advanced Ind Scien Thermoelectric element and thermoelectric module
JP2008523393A (en) * 2004-12-07 2008-07-03 ハネウェル・インターナショナル・インコーポレーテッド Super Invar magnetic return path for high performance accelerometers
JP2006339284A (en) * 2005-05-31 2006-12-14 Toyota Motor Corp Thermoelectric module
JP4584035B2 (en) * 2005-05-31 2010-11-17 トヨタ自動車株式会社 Thermoelectric module
JP4643371B2 (en) * 2005-06-20 2011-03-02 トヨタ自動車株式会社 Thermoelectric module
JP2006352023A (en) * 2005-06-20 2006-12-28 Toyota Motor Corp Thermoelectric module
JP2008091539A (en) * 2006-09-29 2008-04-17 Chubu Electric Power Co Inc Thermoelectric conversion device and thermoelectric conversion apparatus
JP2009117645A (en) * 2007-11-07 2009-05-28 Showa Denko Kk Electrode for thermoelectric element, and thermoelectric module
DE102011079467A1 (en) * 2011-07-20 2013-01-24 Behr Gmbh & Co. Kg Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
US9837594B2 (en) 2011-07-20 2017-12-05 Mahle International Gmbh Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
DE102011052565A1 (en) * 2011-08-10 2013-02-14 Vacuumschmelze Gmbh & Co. Kg Thermoelectric module and method for producing a thermoelectric module
DE102011052565B4 (en) 2011-08-10 2019-04-18 Vacuumschmelze Gmbh & Co. Kg Thermoelectric module and method for producing a thermoelectric module
JP2017069520A (en) * 2015-10-02 2017-04-06 株式会社リコー Thermoelectric converter
JP2018157136A (en) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JP4309623B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4964009B2 (en) Power semiconductor module
US20180366629A1 (en) Thermoelectric device for high temperature applications
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
TW201725764A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
WO2005124882A1 (en) Thermoelectric conversion module
WO2010050455A1 (en) Thermoelectric module
JPS6038867B2 (en) Isolated semiconductor device
JP5829403B2 (en) Insulating substrate for heat dissipation and manufacturing method thereof
JP5520815B2 (en) Insulating substrate and base for power module
JP5695612B2 (en) Thermoelectric module and method for manufacturing thermoelectric module
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JP2006332443A (en) Thermoelectric conversion module and power generator and cooling device using the same
JP2004031697A (en) Thermoelectric module
JP2003338641A (en) Thermoelectric element
EP2660888A1 (en) Thermoelectric conversion member
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
JP2003174204A (en) Thermoelectric conversion device
JP2003282972A (en) Thermoelectric element
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
JP4005937B2 (en) Thermoelectric module package
JP2005032833A (en) Module type semiconductor device
JP2004235367A (en) Thermoelectric module
JP3588355B2 (en) Thermoelectric conversion module substrate and thermoelectric conversion module
JP2503778B2 (en) Substrate for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R151 Written notification of patent or utility model registration

Ref document number: 4309623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees