JP2004063375A - Overhung color-coding mask infinitesimal deformation evaluation method - Google Patents

Overhung color-coding mask infinitesimal deformation evaluation method Download PDF

Info

Publication number
JP2004063375A
JP2004063375A JP2002222683A JP2002222683A JP2004063375A JP 2004063375 A JP2004063375 A JP 2004063375A JP 2002222683 A JP2002222683 A JP 2002222683A JP 2002222683 A JP2002222683 A JP 2002222683A JP 2004063375 A JP2004063375 A JP 2004063375A
Authority
JP
Japan
Prior art keywords
measurement
mask
deformation
height
color identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222683A
Other languages
Japanese (ja)
Inventor
Tsunero Oki
大木 恒郎
Yuichi Fukushima
福島 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002222683A priority Critical patent/JP2004063375A/en
Publication of JP2004063375A publication Critical patent/JP2004063375A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method with a high quantitative accuracy for evaluating an infinitesimal deformation which can be a cause for an image display failure in a manufacturing process of a cathode-ray tube using an overhung color-coding mask. <P>SOLUTION: With the overhung color-coding mask infinitesimal deformation evaluation method, a device for a three-dimensional precision measurement has a laser dislocation measurement unit system with a height-direction measurement accuracy of ±1.5 μm or less. A height of the infinitesimal deformation of a mask body is measured by a three-dimensional shape precision measurement measured by a control of repeatedly measuring either a programming control procedure by an exclusive or a multipurpose progamming language or a manual measurement procedure before a molding assembly, the measurement value is numerically represented as a precipitous degree of the device, and an advisability of using the mask is judged by the precipitous degree. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、表示画面の曲率が大きな、完全もしくは疑似平面を有する、家庭用テレビ、もしくは汎用コンピュータ用、医療表示用などの高精細モニターに用いられる陰極線管で使用される架張型色識別マスクにおいて、マスクの原材料である圧延材がもともと持つ変形、あるいはフォトリソグラフィー及び腐蝕による微細加工工程、さらに陰極線管製造工程に至るまでの輸送及び取り扱いによって生じ、画像表示不良を引き起こす原因となる可能性を持ったマスクの微小変形を、成形組み立て前のマスク単体での三次元形状精密測定によって平坦度又は急峻度として数値表現し、基準を設けて使用の可否判定を可能とする評価方法であって、架張型の色識別マスク微小変形評価方法に関する。
【0002】
【従来の技術】
液晶ディスプレイ、プラズマディスプレイ等の平面ディスプレイの台頭が進む中、陰極線管、いわゆるブラウン管もまた大型化平面化が進んでいる。
【0003】
従来からあるプレス成形型の色識別マスク(いわゆるシャドウマスク)を使用する陰極線管の場合、プレス成形によって画面上下方向及び左右方向、すなわち球面又は疑似球面の一部となるようにマスクを成形し、前記陰極線管内において形状を固定維持させている。この方式ではマスクが平面に近づくにつれて落下強度や耐振動強度などが低下してしまい、マスク板厚を厚くするなどの強度向上対策が必要となる。しかしマスクが厚くなると腐蝕による加工において高精細化が困難になる。また特に大型平面管の場合、画面端部やコーナー部での電子ビーム入射角のマージンが少なくなるため熱膨張による色ズレが起こしやすくなり、現状ではアンバー(36%Ni−Fe)やこれに数%のCoを加えたスーパーアンバーなどの低熱膨張合金を使わざるを得ない。これら低熱膨張合金の価格は安価なマスクに用いられる低炭素軟鋼の数倍であり、強度向上のための板厚アップもあわせて大幅なコストアップを引き起こしてしまう。これらの理由でプレス型色識別マスクを用いる方式は、平面化大型化に非常に不利と言える。平面化大型化において、問題を抱えている
【0004】
一方架張型色識別マスクでは大きく2つのタイプがある。一つは電子ビームの通る孔がスダレ、すなわち細いテープ状になっていて隣との間にブリッジの存在しないタイプで一般にアパーチャグリルと呼ばれる。もう一つは孔形状がスロット、あるいはこれに類似した形状で、隣との間にブリッジが存在する架張型マスクタイプである。これら架張型色識別マスクは、上下方向にマスクを架張し、張力を保持した状態でフレームに固定される。故に左右方向では丸みを帯び、上下方向は直線、すなわち円筒の一部に近い形状となっている。マスクの形状保持はフレームに固定された際の張力によってなされるため、画面左右方向の丸みは形状維持には直接影響が無く、曲率を大きくしやすいのでプレス型に比べて平面化の点で有利である。しかしマスクの形状を張力で保持するため、フレームに強度が求められ、太く重量の大きなものとなる。従って低熱膨張合金のような、高機能ではあるが高価な材料が事実上使用できず、安価な低炭素軟鋼を使わざるを得ないと言う材料面での制約を受ける。しかし低炭素軟鋼を用いた場合、熱膨張によるドーミング、これによる色ズレが問題となる。
【0005】
アパーチャグリルはもともとこの問題が考慮されたものであり、上下方向の熱膨張は架張されていて影響はなく、また横方向の膨張も細いテープが並んだ構造では互いに独立しているため、ドーミングは生じない。ただし独立したテープは非常に振動しやすく、テレビの音響でも振動してしまう。これを抑制するため、アパーチャグリルでは画面上の左右横方向に細いダンパー線を走らせ、これに常にテープが接触するように張力を調整し、振動しないようにしている。このダンパー線は高精細表示を行った場合に見えてしまい画質面に悪影響を与えている。また常にダンパー線にテープが接触するようにするためには左右方向にはある程度の丸みが必要であり、曲率の制約を受けるため、完全平面にすることは出来ない。
【0006】
孔形状がスロットタイプの色識別マスクでも熱膨張の問題を解決するため、実際は完全なスロット形状ではなく、縦方向に数個から10数個程度連続的にスロット間のブリッジを切断して数10μm程度隙間を設けた切断ブリッジを用いている。このため画面横方法での自由度が増し、熱膨張が起こってもドーミングは起こらず、色ズレなどの画像表示不良は生じない。また切断ブリッジの存在によりアパーチャグリルのような全くブリッジのないタイプに比べて上下方向での混色が遙かに少なく、同時に画面が振動しにくいためアパーチャグリルのようなダンパー線は不要で、より完全平面に近い構造をとることが出来る。
【0007】
このように切断ブリッジを有する架張型色識別マスクを用いるタイプの陰極線管は、プレスタイプやアパーチャグリルタイプに比べても平面化や画質面においても有利な点が多いが、一方で切断ブリッジの存在によって数個から10数個おきに存在する切断されていないブリッジ、すなわち実ブリッジに応力が集中し、変形しやすくなり、マスク製造の難度は上がっている。マスク製造時、原材料となる薄い圧延材はコイル状に巻かれており、これを駆動ロール等で挟んで回転したり、軌道を変えるためロールを抱かせたりして一定のテンションをかけて送りながらフォトリソ工程、腐蝕加工等を連続処理している。この時、ロールに微小変形部があったり、異物が付着していれば実ブリッジを変形させてしまうし、元の圧延材がもともと完全にまっすぐではないため幅方向でテンションの不均一が生じ、これも実ブリッジに不均一な応力を集中させてしまい変形の原因となる。さらに腐蝕加工が済み、断裁された後の検査工程でも、検査項目が多く完全機械化が出来ない現状では検査員の手で取り扱われるため、従来のシャドウマスクやアパーチャグリルでは問題ない取り扱い方でも、ヒューマンエラーによる変形が非常に入りやすい。実ブリッジの変形は架張方向と直交しているため架張による矯正は不可能である。
【0008】
【発明が解決しようとする課題】
微小変形の発生原因は要因がいろいろ考えられるが、定量的かつ適当な評価方法がなく、官能検査による評価しか方法がないため、要因の特定が非常に困難である。例えば材料が元から持つ緩く大きな変形がマスクにも残り、これ自体は架張時に消えてしまい影響がないが、官能検査時に微小変形を目視しにくくしたり、逆に微小変形と見誤らせる要因となっていて、官能検査の精度低下の一因となっている。また検査員間でも評価のバラツキは生じ、同じ検査員でも目視である以上評価にバラツキが生じ、これらのヒューマンエラーも官能検査の精度低下の一因となっている。これらの精度低下は、腐蝕加工での検査収率、陰極線管製造時の収率にも悪影響を及ぼす。
【0009】
本発明は上記課題を解決し、ヒューマンエラーをなくして収率を向上させ、かつ微小変形要因を特定できるだけの、定量的に高い精度を持った評価方法を提供する。
【0010】
【課題を解決するための手段】
本発明は、上述した目的のために以下の手段を用いる。
【0011】
本発明の請求項1に係る発明は、架張型色識別マスクを使用する陰極線管製造工程において、画像表示不良を引き起こす原因となるマスクの微小変形を、成形組み立て前のマスク単体の三次元形状精密測定によって急峻度として数値表現し、該急峻度を用いて、成形組み立て前に、前記マスクの使用の可否判定を可能とする架張型色識別マスク微小変形評価方法である。
【0012】
本発明の請求項2に係る発明は、三次元精密測定を行う装置が、高さ方向測定精度±1.5μm以下のレーザー変位測定装置系を有し、かつ、専用もしくは汎用プログラミング言語による制御可能な、もしくは手動の測定手順を学習又は制御言語で記憶し繰り返し測定が制御可能である、請求項1記載の架張型色識別マスク微小変形評価方法である。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態について図面を用いて説明する。
【0014】
図10(a)は、一般的な架張型色識別マスクの画面部の孔形状である。スロット、すなわち長円形状の孔がフォトリソ及び腐蝕加工で形成されており、全てのブリッジが繋がっている、すなわち実ブリッジ1であるため横方向、すなわち長円形状と直角の方向も各ブリッジに応力が分散するため変形に強い。一方、熱膨張率は架張型色識別マスクに使用される低炭素軟鋼材の場合、11〜12×10^−6/℃にも達し、縦方向は架張されているので膨張は相殺されてしまうが、横方向にドーミングしてしまい、色ずれを生じさせてしまう。
【0015】
そこで、図10(b)に示すような切断ブリッジ2が導入されている。実ブリッジ1は上下隣りの実ブリッジ1の中間付近に横隣の実ブリッジ1が存在するため、熱膨張で実ブリッジ1が伸びてもすぐ隣の切断ブリッジ2の切断幅が若干縮まるだけで相殺され、ドーミングは発生しない。しかし、例えば縦方向に並んだブリッジ10個のうち9個が切断ブリッジ2であるとすると、1つの実ブリッジ1にかかる応力はほぼ10倍となる。実ブリッジ1を太くすれば強度は上がるが画面表示で黒点として視認されやすくなるため太くすることは事実上不可能である。実ブリッジ1の頻度を増やせば応力は分散されるが熱膨張抑制効果は低下する。通常少なくとも7個以上切断ブリッジ2が連続している。一方実ブリッジ1の頻度をより減らせば熱膨張抑制効果はさらに上がるが、1つの実ブリッジ1にかかる応力がさらに増加するため変形しやすくなり、また構造がアパーチャグリルに近づくため耐振動特性が低下する。このため通常切断ブリッジ2は連続20個程度までで、多くても40個以下となっている。ただしマスクのサイズやデザイン、架張条件などによってはこれらの範囲に収まらない場合もある。
【0016】
切断ブリッジ2を有する架張型色識別マスクの微小変形は前述した実ブリッジ部で生じていると推定されるため、三次元的にマスクの形状を測定する場合、画面を水平に横切るようにプロファイルをとればよい。ただし孔があいているため連続して細かく高さ寸法を測定しても孔部分のデータは無駄となり、後で処理を重くするだけなので、孔のない部分をとびとびに測定していく方が好ましい。しかし、実ブリッジ1はブリッジの幅自体が狭く、また隣り合って連続していないため、この点を測定するのは難易度が高く、しかも少し上下方向に測定位置がずれただけでも精度が低下してしまい好ましくない。
【0017】
図11にマスク画面部の横方向腐蝕断面形状を示した。一般に蛍光体塗布側に大孔面が向くように組み立てられ、大孔面の方は腐蝕量が多いため大孔平坦部3は狭くなり、厚さ方向で、大孔平坦部3と小孔平坦部4は非対称となっている。出来るだけ測定ポイントの範囲が大きくし、かつ、孔にかかって精度を落とさないようするには、孔と孔の間の、腐蝕されていない平坦部のうち、小孔平坦部4側の方が幅は広く好適である。
【0018】
従って、測定面は小孔側平坦部4がよく、図3(a)〜(b)に示すように、測長機のステージ5の上に小孔平坦部4側を上に向けて測定対象の架張型の色識別マスク6を載置し、ステージ5上に向き合うように配置した変位計7を移動させながら測定をする。また、測長機の近傍に、情報、及び手順のプログラム等の入力部18と、測長機等を制御、測定値を記録し、演算し、結果を表示する出力部19がある。
【0019】
測長機のステージ5は温度湿度による測定誤差を軽減するため、定温、定湿度のクリーンルームなどに設置されていることが好ましい。また耐振動、及び水平維持のため、油圧、空圧、あるいは磁力等によるショックアブソーバー及びスタビライザー上に設置されていることが望ましい。また陰極線管は平面化と同時に画面の大型化も進んでおり、40インチ近いサイズも存在する。そのようなサイズではマスクの画面部だけでも横1m近くなり、画面部周囲のスカート部を含めれば1mを超えるため、ステージサイズは、1.5×1.5m程度、又はそれ以上が望ましい。ステージ5自身もある程度の平坦性を有していることが望まれる。ただし、マスクの微小変形はステージ5に比べて非常にスケールが小さいため、例えば1.5×1.5mのステージ5において全体に緩やかなカーブがあり、それがセンター−コーナー間の落差で0.5mm程度であれば微小変形の測定に影響はない。ただし、高さ数μm〜数10μmの局所的な突起や異物の存在は測定に多大な悪影響を及ぼすため認められない。
【0020】
架張型色識別マスクの使用対象となっている陰極線管のサイズは一般に大型管であり、20インチ後半もしくはそれ以上である。これらのサイズで家庭用テレビ用の場合、図4(b)に示すように、スロット孔15の横幅は200〜250μmあり、基準点間の横ピッチ16(以下、移動量と記す)は、700μm程度から、場所及びサイズによっては900μmに及ぶため、小孔側平坦部4の幅は500〜650μm程度と考えられる。すなわち、基準点を含む測定範囲17は前記小孔側平坦部4の幅以内のエリアとなる。すなわち、前記測定範囲17内は複数回測定点設ける為測定スポットサイズは500μm以下である必要がある。図4(a)に示すように、このスポットサイズで小孔平坦部4を横方向に横ピッチの移動量16にあわせて変位計7を移動しながら縦横の位置及び高さを測定記憶する。なお、図4は、横方向の測定に限定した図面であり、縦方向は省略した。
【0021】
また、マスク表面は一般にダルメと呼ばれるエンボス加工による凹凸形状が存在し、ダルメが入っていない場合でも母材の表面凹凸が圧延後も若干残るため、やはり完全な平坦ではない。表面粗さRaでは通常0.3〜0.6μm程度あり、局所的な凹凸差では1μmを越えることも多々ある。不良となる微小変形が1μm程度であればそれはダルメ等の表面粗さ形状に埋没してしまうと考えられ、このことから最低でも3〜4μm、あるいは5〜6μmは微小変形の高さがあると考えられる。これらを高精度に測定するには同じ場所を繰り返し測定し、積算して測定誤差を相殺することを前提とすれば、前記位置の測定において、±1.5μmの測定精度が最低あれば必要十分と考えられる。
【0022】
次に、高さを測定する変位計7について説明する。変位計7は、対象が金属である場合渦電流センサーが挙げられる。高さの測定精度が1〜2μm程度の高精度のものも存在するが、精度が保証されるスポットサイズは500μm以下である必要がある。スポットサイズが大きい場合、孔部を避けて渦電流が流れるため抵抗が大きくなり、見かけ上センサーよりも遠く測定されてしまう。CCDカメラによるフォーカシングで直接測定部を観察しながら高さを測定できるセンサーがあるが、これは測定精度が数μm、場合によっては10μm以上になってしまい、積算しても精度が確保できないので不適である。可視レーザー光を用いたレーザー変位計7は、容易に±1.5μm以内の測定精度が得られ、スポットサイズも数10μmであるため、本発明においてはもっとも好適である。なお、スポットサイズが数μm〜10μm未満である場合、ダルメ以外の微小な凹凸を拾ってしまい、かえって測定精度が下がるのである程度の平均化が必要であるため、10μm以上、面積にして100μm^2以上あることが望ましい。一方、小孔平坦部4の幅が500μmに対し、これを超えない範囲で、大きいスポットサイズを用いた測定は、過剰に平均化されてしまい高さの精度がやはり下がってしまう。スポットサイズの上限は100μm前後、10000μm^2程度とするのが望ましい。すなわち、スポットサイズは、10μm〜100μmの範囲内で適宜選択することが好ましい。前記センサーのスポットサイズ及び連続する測定点の移動ピッチは、測定値の精度に影響するため、標準化した手順で科学的に管理する必要がある。
【0023】
縦横方向のセンサー移動精度は平坦幅とスポットサイズの組み合わせにもよるが、10〜100μmの間、数10μmのスポットサイズの場合、±20μm程度は必要と思われる。この精度も高い方がよく、繰り返し測定による積算を前提とした場合で±10μm以下であればより好適である。なお縦横移動を非常に高精度、例えば±1μm以内に制御し、繰り返し高さ測定できるのであればブリッジ幅部分でも測定しても良い。
【0024】
一般的なシャドウマスクの孔のピッチは、縦方向、横方向とも通常可変ピッチになっていて一定ではない。架張型色識別マスクにおいても同様であるが、縦方向、すなわち画面上下方向については直線であるため、ピッチの変化はセンター〜上下端部間で数〜10μm程度であり、大画面のものでも20〜30μm程度である。また横方向のマスクのプロファイルをとる場合、平坦部は上下方向に繋がっているため、このピッチ変動は測定上ほとんど問題にならない。一方、横方向のピッチは変動が大きく、サイズによってはセンター−左右端部間で200μm近くなることもある。横方向は平坦部が孔で区切られて飛び飛びに存在しているため、可変ピッチにあわせて測定ポイントの移動ピッチもあわせていく必要がある。前述した図4(b)に示す移動量16は、例えば可変ピッチの場合、通常陰極線管設計時に行われる腐蝕加工後の形状を想定して詳細に決められた寸法などが与えられる設計図面上に記載した座標位置を採用することもある。前記移動量16の設定方法は、適宜選択することが必要である。
【0025】
測定位置のピッチを手動で変えていくのであればピッチが可変であること自体は問題とならないが、繰り返し測定、積算して平均値を求める事を前提とした場合、繰り返し回数毎のおのおのの測定位置はほぼ同じであることが要求されるため、これを手動で行った場合測定位置のズレによる誤差が大きくなるため精度が低下してしまい不適である。従って自動制御による測定が必要である。
【0026】
自動制御による測定を行うために測定装置がマクロプログラミング機能、すなわち、専用もしくは汎用のプログラミング言語を備え、これら言語によって測定手順を詳細に記述し、それを元に自動測定できる機能を有することが非常に望ましい。図1は、本発明の架張型の色識別マスク微小変形評価方法の一実施例の手順を示すフロー図である。(A)、は予め必要な情報を登録する。(B)は、架張型の色識別マスク毎に検査直前の作業手順である。(C)は、各測定範囲内を変位計7を用いて測定位置と微小変形の高さを測定する。(D)は、前記測定値を統計処理と本発明の急峻率(%)等を所定の手順にしたがって出力する。
【0027】
前記(A)情報登録及び、(B)マスク毎に検査直前の検査手順を説明する。色識別マスクの設計は通常陰極線管設計時に行われ、腐蝕加工後の形状を想定して詳細に決められた寸法などが設計図面として与えられる。孔のピッチが可変である場合、その位置は高次関数やその組み合わせと境界条件によって与えられる場合が多い。この設計図面を元に、色識別マスクの腐蝕加工に用いるフォトリソ版の設計が行われる。版設計では腐蝕加工特性を考慮する必要があるため、可変ピッチを記述した関数が必ずしも元のマスク設計図面の関数と一致するとは限らず、新たな高次関数、及びその組み合わせや境界条件における変曲点を有する場合もある。従って、測定装置の自動測定制御言語では、これら高次関数、条件分岐、相対及び絶対座標での測定位置制御、高さ測定における0点設定動作とそれを基準とした相対高さ測定動作などの記述が可能である必要がある。前記(C)各測定範囲内を測定について説明する。図2に示す測定フロー図に従って測定する。例えば、測定範囲11内は横一直線でn回の測定し、測定開始位置はm回有るマスクの測定フロー図を示している。また前記(D)に示すように、これら制御プログラムをファイルなどの単位として扱い、内部又は外部記憶装置に記憶し、何度でも呼び出して利用できる機能があることが望ましい。
【0028】
測定装置が、手動で行った測定手順、すなわち測定座標、移動量、基準設定、測定値取り込みなどをそのまま記録し、それをファイルなどの単位で記録し再利用を可能とする学習機能を有していることも好適である。また記録した測定手順を複数回繰り返し制御可能である事も好適である。これにより、横方向一列1回のみ手動測定を行うことによって、あとは自動制御による繰り返し測定が可能となる。
【0029】
前述の自動制御による測定で得られた測定値は一時的に記憶装置に記憶され、測定装置の持つ演算回路によって統計処理、グラフ化処理を行い、結果をディスプレイやプリンタ等の出力装置に出力したり、ファイル等の単位で内部又は外部記憶装置に記憶でき、さらにこれを記録媒体やネットワーク回線を介して他の演算装置で再処理したり、出力、利用可能であると好適である。
【0030】
制御及び測定時の縦横高さの座標系には測定装置ステージ5上の絶対的な座標8の他に、測定サンプルをステージにおいた段階で、図5(a)に示すような測定サンプル上の特定の部位を原点にした測定サンプル内での新たな相対的座標系9を設定可能とし、さらに前述の自動制御による測定においても利用可能とする機能を測定装置が有していることが非常に望ましい。これにより、全く同じ設計でかつ製造ロットの異なるサンプルでも、サンプル内の座標系9のみ設定することによって、自動制御測長機能を再利用でき、測定作業の効率を向上させられる。例えば図5(b)に示すように、測定サンプル内に、相対的座標系9上のオリジナル基準点1,及びオリジナル基準点2を設定し、該位置座標を予め情報登録をする。次に、ステージ上に載置し、絶対的な座標8系の座標を用いて、前記オリジナル基準点を測定する。前記オリジナル基準点の位置座標は、前記情報登録と、前記測定値から、サンプル内の座標系9と絶対的な座標8との間で変換が可能となる。
【0031】
図6に示すように、繰り返し測定し、積算後平均値化した数値を元に描いたプロファイル11を示す。全体にわたって大きな歪みプロファイル10が3箇所あり、緩く大きな凸形状は原材料であり、圧延材などがもともと持っていた歪みである。このような緩く大きい歪みは非常になめらかに連続して存在し、マスクをフレームに架張固定する際に引き延ばされて消えてしまうため、問題とはならない。大きな歪み10のスロープに所々存在する数μmから10数μmレベルの凹凸が、画像に悪影響を与え、問題となる微小変形12である。これらの変形は架張方向と直交しており、上下方向の架張によって副次的に発生する横方向の架張は非常に弱いため、これら微小変形12が引き延ばされて矯正されるには至らない。
【0032】
これら微小変形の高さを精密に求めるには緩く大きな歪みのプロファイル10を基準にする必要がある。緩く大きな歪みのプロファイル10が図7に示すような単純な形状であればカーブフィッティングで求まる高次関数を基準にして統計処理を行い、個々の測定位置の微小変形高さ14を求めることが出来る。ただし実際は緩く大きな歪みのプロファイルは、図7(a)に示すようなより複雑な形状を有していることが多く、このような場合は個々の微小変形12に着目して個別にベースライン13を設け、高さ14を求めてもよい。微小変形は高さ、幅とも非常にスケールが小さいため、低次関数ないしは、図7(b)のように直線近似によるベースライン13設定を行い、高さ14を求めても高い精度で測定が可能である。なお、前記ベースライン13は、予め所定の距離を登録し、該距離により前記全体のプロファイル11上に直線近似のベースライン13を設定することも可能である。
【0033】
前述の微小変形高さ14を元に架張型色識別マスクの平坦性を表す数値として下記の数式(1)に急峻率を定義する。
【0034】
p=(h0+h1+...+hn)/L×100 (%)――――(1)
p:急峻率(%)
hn:n個の微小変形高さであり、測定データ
L:横方向の測定長さ、すなわちマスクの画面横幅
【0035】
ここで、急峻率は微小変形の合計高さと測定長さの比、すなわち傾斜を意味する。微小変形の個数が多かったり一つあたりの高さが大きく、その合計高さが大きくなればなるほど傾斜は大きくなり急峻さを増す。なお、微小変形の高さは実績的に数μm〜10μm前後であり、その個数は数個から10数個である。一方、マスクの取り扱いで生じたペコ、折れなどの変形不良は数10μm〜数100μmの高さに達し、微小変形とは区別する必要がある。マスクの取り扱いには物理的接触による応力付加はもちろん、持ち上げたり置く時の衝撃も出来るだけ与えないよう注意するとともに、測定前にこれらの微小変形以外の形状不良がないか確認を行い、もしあればその位置をあらかじめ記録しておき、プロファイルを得た後、対応する凸形状については、急峻率算出に含めないようにする必要がある。
【0036】
前述したように、前記微小変形の高さ(hn)は、実績的に数μm〜10μm前後であり、全部の実測値から微小変形の高さの実測値のみを選別する方法が必要となる。まず、下限値について説明する。マスク表面は一般にダルメと呼ばれるエンボス加工による凹凸形状が存在し、不良となる微小変形がダルメ等の表面粗さ形状に埋没してしまうと考えられ、このことから最低でも3μm〜6μm以下の微小変形の高さ測定値(微小変形高下限値)は除外する必要ががある。また、上限について説明する。マスクの取り扱いにおいて物理的接触により生じたペコ、折れなどの変形不良は数10μm〜数100μmの高さに達し(微小変形高上限値)、該微小変形高上限値は微小変形とは区別する必要がある。微小変形の高さは実績的に数μm〜10μm前後であり、材料等による過去のデータを参考にして、予め前記微小変形高さの下限値、及び上限値を適宜設定する。
【0037】
以上のような方法によって、これまで官能検査という人間の主観が入らざるを得ない評価から、客観的かつ定量的な評価が可能となる。またこの評価方法によって微小変形不良に関する製造品質の管理、安定化、あるいは微小変形不良発生時の要因解析、改善手法開発およびその効果確認が可能となる。
【0038】
【実施例】
以下、本発明を実施例に即して説明する。
【0039】
〈実施例1〉
微小変形による不良が比較的少ないA社低炭素軟鋼を用いた29インチ架張型色識別マスクの小孔側平坦部を上にして、レーザー変位計付きの大型測長機ステージに置き、画面有効部に向かって左下のスロット孔下側頂点を座標原点にし、サンプル内で座標系を決めた。測定位置及び範囲は画面上下中間点、横方向510mmとした。使用したレーザー変位計付き測長機はステージサイズ1.4×1.4m、ステージ平面性はセンター−コーナー間で落差が0.3mm、センサー移動精度は縦横とも±5μm、レーザー変位計の高さ測定精度は±1.5μm、スポットサイズが100×100μmであり、前記センサーの移動ピッチはμmとして、100マクロプログラミング機能、及び手動測定手順記憶機能を兼ね備えている。
【0040】
マスクの横ピッチはセンターで約750μm、端部で約870μmであり、事前に版設計図より関数、諸条件を入手し、これを元にマクロプログラムを作成し、測定を行った。マスク1〜マスク5迄の測定値を統計処理し、プロファイルをグラフ化、ベースラインを求めて個々の微小変形の高さを求め、急峻率を算出した。マスク1のプロファイルを図8に示す。また、同材料同品種他ロットのマスク2〜5を同様に測定し、マスク1の結果をあわせて、個々の微小変形高さと急峻率を下記の表1にまとめた。高さは最低1.8μmから最高14.6μmで、急峻率は0.0042〜0.0089%と、0.01%以下であった。なお、マスク1について手動測定手順記憶機能を用いて同じ場所を測定したところ、同じ結果を得た。
【0041】
【表1】

Figure 2004063375
【0042】
〈実施例2〉
実施例1と同じレーザー変位計付きの大型測長機を用いて、微小変形による不良多いB社低炭素軟鋼を用いた29インチ架張型色識別マスク(マスク6〜マスク8)の微小変形高さを測定した。マスク6のプロファイルを図9に示す。また同材料同品種他ロットのマスク7、8を同様に測定し、マスク6の結果をあわせて下記の表2にまとめた。微小変形高さは最低3.3μmから最高21.8μmで、急峻率は0.0136〜0.0166%と、0.01%以上であった。
【0043】
【表2】
Figure 2004063375
【0044】
【発明の効果】
以上説明したように、本発明の微小変形評価方法においては、微小変形量の絶対値測定と平坦性を客観的に示す急峻率が算出可能となるので、材料銘柄、工程条件等の条件変更により効果項目が容易に明確になって改善が可能となり、収率が大きく向上する。また陰極線管工程投入時の微小変形の合格基準を数値化し決めることが出来るので、出荷品の品質が安定し、顧客からのクレームが減少する。
【図面の簡単な説明】
【図1】本発明の架張型の色識別マスク微小変形評価方法の工程フロー図。
【図2】本発明の架張型の色識別マスク微小変形量の測定フロー図。
【図3】本発明の測長機の概略図で、( a)は正面図であり、(b)は側面図。
【図4】平坦部高さ測定の概略図で、(a)は側断面図であり、(b)は、平面図。
【図5】絶対座標系と相対座標系の概念図で、(a)は、斜視図であり、(b)は、平面図。
【図6】プロファイルの横方向における大きく緩やかな変形と微小変形の概略図。
【図7】プロファイルの横方向におけるベースライン及び微小変形高さの概略図で、(a)は、プロファイルで、(b)は、ベースライン及び微小変形高さ。
【図8】実施例1のA社架張型色識別マスク測定プロファイル。
【図9】実施例2のB社架張型色識別マスク測定プロファイル。
【図10】一般的な架張型色識別マスクの孔形状の平面画であり、(a)は、スロット孔形状を有する架張型色識別マスク、(b)は、切断ブリッジを有する架張型色識別マスク。
【図11】スロット孔の腐蝕断面形状の側断面図。
【符号の説明】
1…実ブリッジ
2…切断ブリッジ
3…大孔平坦部
4…小孔平坦部
5…ステージ
6…架張型色識別マスク
7…変位計
8…ステージ上の絶対座標系
9…測定サンプル上の相対座標系
10…概念上の緩く大きな歪みプロファイル
11…色識別マスク全体のプロファイル
12…微小変形部プロファイル
13…ベースライン
14…微小変形高さ
15…スロット孔
16…(各基準点間の)移動量
17…(各基準点の)測定範囲
18…入力部
19…出力部
20…測定開始位置の高さ
21…高さゼロ校正[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stretched color identification mask used in a cathode-ray tube used in a high-definition monitor such as a home television, a general-purpose computer, and a medical display, which has a large curvature of a display screen and has a perfect or pseudo plane. In the case of the deformation of the rolled material that is the raw material of the mask, or the fine processing process by photolithography and corrosion, the transportation and handling up to the cathode ray tube manufacturing process, the possibility of causing image display defects A small deformation of the mask having, expressed numerically as flatness or steepness by three-dimensional shape precision measurement of the mask alone before forming and assembling, is an evaluation method that enables the useability determination by setting a reference, The present invention relates to a method for evaluating a small deformation of a color identification mask of a bridge type.
[0002]
[Prior art]
With the rise of flat displays such as liquid crystal displays and plasma displays, cathode ray tubes, so-called cathode ray tubes, are also becoming larger and flatter.
[0003]
In the case of a cathode ray tube using a color identification mask of a conventional press molding die (so-called shadow mask), the mask is molded by press molding so as to become a part of the screen in the vertical and horizontal directions, that is, a spherical surface or a pseudo spherical surface, The shape is fixed and maintained in the cathode ray tube. In this method, as the mask approaches a flat surface, the drop strength, the vibration resistance, and the like decrease, and it is necessary to take measures to improve the strength, such as increasing the thickness of the mask. However, when the mask is thick, it becomes difficult to achieve high definition in processing by corrosion. In particular, particularly in the case of a large flat tube, the margin of the incident angle of the electron beam at the screen end or corner is reduced, so that color shift due to thermal expansion is likely to occur. At present, amber (36% Ni-Fe) or a few % Co has to be used with a low thermal expansion alloy such as Super Invar. The cost of these low thermal expansion alloys is several times that of low carbon mild steel used for inexpensive masks, and the cost increases, including the increase in plate thickness for improving strength. For these reasons, the method using the press-type color identification mask can be said to be very disadvantageous for flattening and enlarging. There is a problem in increasing the size of the flat surface
[0004]
On the other hand, there are roughly two types of bridge type color identification masks. One type is a type in which the holes through which the electron beam passes are in the form of a drip, that is, in the form of a thin tape and there is no bridge between adjacent holes, and is generally called an aperture grill. The other is a bridge type mask type in which a hole shape is a slot or a shape similar to this, and a bridge exists between the slot and an adjacent one. These stretch-type color identification masks are fixed to the frame while maintaining the tension by stretching the mask vertically. Therefore, it is rounded in the left-right direction, and the vertical direction is a straight line, that is, a shape close to a part of a cylinder. Since the shape of the mask is maintained by the tension when it is fixed to the frame, the roundness in the horizontal direction of the screen has no direct effect on maintaining the shape, and the curvature is easy to increase, so it is advantageous in terms of planarization compared to the press mold It is. However, since the shape of the mask is held by tension, the frame needs to have high strength and is thick and heavy. Therefore, high-performance but expensive materials such as low-thermal-expansion alloys cannot be practically used, and there is a material limitation that inexpensive low-carbon mild steel must be used. However, when low-carbon mild steel is used, doming due to thermal expansion and color misregistration due to doming become a problem.
[0005]
The aperture grille originally considered this problem.The thermal expansion in the vertical direction is stretched and has no effect, and the expansion in the horizontal direction is independent of each other in a structure with thin tapes, so doming Does not occur. However, independent tapes are very susceptible to vibration, and even the sound of a television. To suppress this, the aperture grill runs a thin damper line in the horizontal direction on the screen, and adjusts the tension so that the tape always contacts the damper line so as not to vibrate. This damper line is visible when high-definition display is performed, and adversely affects image quality. Further, in order for the tape to always contact the damper wire, it is necessary to have a certain degree of roundness in the left-right direction and the curvature is restricted.
[0006]
In order to solve the problem of thermal expansion even if the hole shape is a slot type color identification mask, it is not actually a complete slot shape, but several to ten to several tens of bridges are continuously cut in the vertical direction to cut several tens of μm. A cutting bridge with a certain gap is used. For this reason, the degree of freedom in the horizontal screen method is increased, and even if thermal expansion occurs, doming does not occur, and image display defects such as color shift do not occur. Also, due to the presence of the cutting bridge, there is much less color mixing in the vertical direction than a type without an aperture grill, such as an aperture grill, and at the same time, the screen is less likely to vibrate, so there is no need for a damper wire like an aperture grill, making it more complete A structure close to a plane can be taken.
[0007]
As described above, the cathode ray tube of the type using the bridge type color identification mask having the cutting bridge has many advantages in terms of flattening and image quality as compared with the press type and the aperture grill type. Due to its existence, stress is concentrated on uncut bridges existing every few to several tens, that is, actual bridges, and the bridges are easily deformed, and the difficulty of mask production is increasing. At the time of mask production, the thin rolled material used as the raw material is wound in a coil shape, it is rotated by sandwiching it with a driving roll, etc. Photolithography process, corrosion processing, etc. are continuously processed. At this time, if there is a minute deformation part on the roll or foreign matter adheres, the actual bridge will be deformed, and since the original rolled material is not completely straight from the beginning, tension unevenness occurs in the width direction, This also causes uneven stress to be concentrated on the actual bridge and causes deformation. Furthermore, in the inspection process after corrosion processing and cutting, since there are many inspection items and it can not be completely mechanized, they are handled by inspectors, so even if handling with conventional shadow masks and aperture grills is not a problem, human Deformation due to errors is very likely. Since the deformation of the actual bridge is orthogonal to the stretching direction, it cannot be corrected by stretching.
[0008]
[Problems to be solved by the invention]
Although various factors can be considered as the cause of the micro-deformation, there is no quantitative and appropriate evaluation method, and there is only an evaluation method based on a sensory test. Therefore, it is very difficult to specify the factor. For example, the material's original loose and large deformation remains on the mask and disappears when stretched, which has no effect. This is one of the causes of a decrease in the accuracy of the sensory test. In addition, there is a variation in evaluation among the inspectors, and the same inspector is visually inconsistent in evaluation, and these human errors also contribute to a decrease in the accuracy of the sensory inspection. These reductions in precision also have an adverse effect on the inspection yield in corrosion processing and the yield in cathode ray tube manufacturing.
[0009]
The present invention solves the above-mentioned problems, and provides a quantitatively highly accurate evaluation method capable of eliminating human errors, improving the yield, and specifying a small deformation factor.
[0010]
[Means for Solving the Problems]
The present invention uses the following means for the purpose described above.
[0011]
The invention according to claim 1 of the present invention relates to a three-dimensional shape of a mask before molding and assembling, in a manufacturing process of a cathode ray tube using a stretched color identification mask, which causes a small deformation of the mask causing image display failure. This is a method for evaluating micro-deformation of a stretch-type color identification mask that expresses a numerical value as a steepness by precise measurement and uses the steepness to determine whether or not the mask can be used before forming and assembling.
[0012]
The invention according to claim 2 of the present invention is characterized in that a device for performing three-dimensional precision measurement has a laser displacement measuring device system with a height direction measuring accuracy of ± 1.5 μm or less, and can be controlled by a dedicated or general-purpose programming language. 2. The method for evaluating microscopic deformation of a bridge-type color identification mask according to claim 1, wherein a repetitive measurement is controllable by storing a manual or manual measurement procedure in a learning or control language.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 10A shows a hole shape of a screen portion of a general bridged color identification mask. Slots, that is, oval holes are formed by photolithography and corrosion processing, and all the bridges are connected, that is, the actual bridge 1, so that the lateral direction, that is, the direction perpendicular to the oval shape also applies stress to each bridge. Is resistant to deformation due to dispersion. On the other hand, the coefficient of thermal expansion of a low-carbon mild steel material used for a stretch-type color identification mask reaches as high as 11 to 12 × 10 6 −6 / ° C., and the expansion is canceled because it is stretched in the vertical direction. However, doming occurs in the horizontal direction, causing color misregistration.
[0015]
Therefore, a cutting bridge 2 as shown in FIG. 10B is introduced. The actual bridge 1 has a laterally adjacent real bridge 1 near the middle of the upper and lower adjacent real bridges 1. Therefore, even if the actual bridge 1 is extended due to thermal expansion, the cutting width of the adjacent cutting bridge 2 is only slightly reduced to offset. And doming does not occur. However, if, for example, nine of the ten bridges arranged in the longitudinal direction are the cutting bridges 2, the stress applied to one real bridge 1 becomes almost ten times. If the actual bridge 1 is made thicker, the strength is increased, but it is practically impossible to make it thicker because it is easily recognized as a black spot on the screen display. If the frequency of the actual bridge 1 is increased, the stress is dispersed, but the effect of suppressing thermal expansion is reduced. Usually, at least seven or more cutting bridges 2 are continuous. On the other hand, if the frequency of the actual bridge 1 is further reduced, the effect of suppressing thermal expansion is further increased, but the stress applied to one actual bridge 1 is further increased, so that it is easy to deform, and the structure is closer to the aperture grille, and the vibration resistance is reduced. I do. For this reason, the number of normal cutting bridges 2 is up to about 20 continuously, and at most 40 or less. However, the size may not be within these ranges depending on the size, design, and stretching conditions of the mask.
[0016]
Since it is presumed that the micro-deformation of the bridge-type color identification mask having the cutting bridge 2 occurs at the above-described actual bridge portion, when measuring the shape of the mask three-dimensionally, the profile is set so as to cross the screen horizontally. Should be taken. However, even if the height is measured continuously and finely because the hole is open, the data of the hole part is wasted and the processing is only heavy later, so it is preferable to measure the part without the hole discretely . However, since the actual bridge 1 has a narrow width itself and is not adjacent to each other, it is difficult to measure this point, and even if the measurement position is slightly shifted in the vertical direction, the accuracy is reduced. It is not preferable.
[0017]
FIG. 11 shows a cross-sectional shape of the mask screen portion in the horizontal direction. Generally, the large hole surface is assembled so that the large hole surface faces the phosphor application side, and the large hole surface has a large amount of corrosion, so that the large hole flat portion 3 becomes narrower, and in the thickness direction, the large hole flat portion 3 and the small hole flat portion. The part 4 is asymmetric. In order to increase the range of the measurement points as much as possible and not to reduce the accuracy due to the holes, among the flat portions that are not corroded between the holes, the width of the small hole flat portion 4 side is smaller. Widely suitable.
[0018]
Therefore, the measurement surface is preferably the small hole side flat portion 4, and as shown in FIGS. 3A and 3B, the measurement target is placed on the stage 5 of the length measuring machine with the small hole flat portion 4 side facing upward. Is mounted, and the measurement is performed while moving the displacement meter 7 disposed so as to face the stage 5. In addition, near the length measuring machine, there are an input unit 18 for information and a procedure program and the like, and an output unit 19 for controlling the length measuring machine and the like, recording measured values, calculating, and displaying the results.
[0019]
The stage 5 of the length measuring machine is preferably installed in a constant temperature, constant humidity clean room or the like in order to reduce measurement errors due to temperature and humidity. Further, it is desirable to be installed on a shock absorber and a stabilizer by hydraulic pressure, pneumatic pressure, magnetic force or the like for vibration resistance and horizontal maintenance. In addition, the cathode ray tube has been increasing in size as well as the screen at the same time as flattening, and there is also a size close to 40 inches. In such a size, even the screen portion of the mask alone is close to 1 m in width, and more than 1 m including the skirt portion around the screen portion. Therefore, the stage size is preferably about 1.5 × 1.5 m or more. It is desired that the stage 5 itself has a certain degree of flatness. However, since the scale of the microdeformation of the mask is much smaller than that of the stage 5, for example, the stage 5 having a size of 1.5 × 1.5 m has a gentle curve as a whole. If it is about 5 mm, there is no influence on the measurement of the minute deformation. However, the presence of local protrusions or foreign substances having a height of several μm to several tens μm is not recognized because it has a great adverse effect on the measurement.
[0020]
The size of the cathode ray tube to which the bridge type color identification mask is used is generally a large tube, which is the latter half of 20 inches or more. In the case of a household television having these sizes, as shown in FIG. 4B, the width of the slot hole 15 is 200 to 250 μm, and the horizontal pitch 16 between the reference points (hereinafter, referred to as a movement amount) is 700 μm. The width of the small hole side flat portion 4 is considered to be about 500 to 650 μm, because the width ranges from about 900 μm depending on the location and size. That is, the measurement range 17 including the reference point is an area within the width of the small hole side flat portion 4. That is, the measurement spot size needs to be 500 μm or less in order to provide a plurality of measurement points in the measurement range 17. As shown in FIG. 4A, the position and height in the vertical and horizontal directions are measured and stored at the spot size while moving the displacement meter 7 in the horizontal direction in accordance with the moving amount 16 of the horizontal pitch in the small hole flat portion 4. FIG. 4 is a drawing limited to the measurement in the horizontal direction, and the vertical direction is omitted.
[0021]
In addition, the mask surface generally has an uneven shape due to embossing called "Dalme", and even if no Dalme is present, the surface unevenness of the base material slightly remains after rolling, so that the mask surface is not completely flat. The surface roughness Ra is usually about 0.3 to 0.6 μm, and the local unevenness difference often exceeds 1 μm. If the microdeformation that causes failure is about 1 μm, it is considered that the microdeformation will be buried in the surface roughness shape such as Dalme. From this, at least 3 to 4 μm or 5 to 6 μm indicates that there is a height of microdeformation. Conceivable. In order to measure these at high accuracy, it is necessary and sufficient if the measurement accuracy of ± 1.5 μm is minimum in the measurement of the position, assuming that the same place is repeatedly measured and integrated to cancel the measurement error. it is conceivable that.
[0022]
Next, the displacement meter 7 for measuring the height will be described. The displacement meter 7 includes an eddy current sensor when the object is a metal. Although there is a high-precision height measurement accuracy of about 1 to 2 μm, the spot size for which the accuracy is guaranteed needs to be 500 μm or less. When the spot size is large, eddy current flows avoiding the hole, so that the resistance increases, and the measurement is apparently farther than the sensor. There is a sensor that can measure the height while directly observing the measuring part by focusing with a CCD camera, but this measurement accuracy is several μm, sometimes 10 μm or more. It is. The laser displacement meter 7 using visible laser light is most suitable in the present invention because it can easily obtain a measurement accuracy within ± 1.5 μm and has a spot size of several tens μm. If the spot size is less than several μm to 10 μm, minute irregularities other than the Dalme will be picked up, and the measurement accuracy will be lowered, so that some averaging is required. It is desirable that there be. On the other hand, when the width of the small hole flat portion 4 is not more than 500 μm, the measurement using the large spot size is excessively averaged, and the accuracy of the height is also lowered. It is desirable that the upper limit of the spot size is about 100 μm, about 10,000 μm ^ 2. That is, it is preferable that the spot size is appropriately selected within the range of 10 μm to 100 μm. Since the spot size of the sensor and the moving pitch of the continuous measurement points affect the accuracy of the measured values, it is necessary to scientifically manage the spot size and the standardized procedure.
[0023]
Although the sensor movement accuracy in the vertical and horizontal directions depends on the combination of the flat width and the spot size, it is considered that about ± 20 μm is required for a spot size of 10 to 100 μm or several tens μm. The higher the accuracy, the better, and it is more preferable that the accuracy is ± 10 μm or less on the premise of integration by repeated measurement. In addition, if the vertical and horizontal movements are controlled with very high precision, for example, within ± 1 μm, and the height can be repeatedly measured, the measurement may be performed even at the bridge width portion.
[0024]
The pitch of the holes of a general shadow mask is usually variable in both the vertical and horizontal directions and is not constant. The same applies to the stretched color identification mask. However, since the vertical direction, that is, the vertical direction of the screen is a straight line, the change in pitch is about several to 10 μm between the center and the upper and lower ends, and even for a large screen. It is about 20 to 30 μm. Further, when the profile of the mask in the horizontal direction is taken, the flat portion is connected in the vertical direction, and thus this pitch variation hardly causes a problem in measurement. On the other hand, the pitch in the horizontal direction varies greatly, and may be close to 200 μm between the center and the left and right ends depending on the size. In the horizontal direction, since flat portions are separated by holes and exist at intervals, it is necessary to adjust the moving pitch of the measurement points in accordance with the variable pitch. The movement amount 16 shown in FIG. 4B described above is, for example, in the case of a variable pitch, a dimension determined in detail on the basis of a shape after corrosion processing usually performed at the time of designing a cathode ray tube. The described coordinate position may be adopted. The method of setting the movement amount 16 needs to be appropriately selected.
[0025]
If the pitch of the measurement position is manually changed, it is not a problem that the pitch itself is variable.However, if it is assumed that the measurement is repeated and integrated to obtain the average value, each measurement is performed for each number of repetitions. Since the positions are required to be substantially the same, if this operation is performed manually, an error due to a deviation of the measurement position becomes large, so that the accuracy is deteriorated, which is not suitable. Therefore, measurement by automatic control is necessary.
[0026]
In order to perform measurement under automatic control, it is very important that the measurement device has a macro programming function, that is, a function that can describe the measurement procedure in detail using these languages or a general-purpose programming language, and can automatically perform measurement based on it. Desirable. FIG. 1 is a flow chart showing the procedure of an embodiment of the method for evaluating the micro-deformation of a color-matching mask of the bridge type according to the present invention. (A) registers necessary information in advance. (B) is an operation procedure immediately before the inspection for each of the stretch-type color identification masks. (C) uses the displacement meter 7 to measure the measurement position and the height of minute deformation in each measurement range. (D) Statistical processing of the measured values and the steepness (%) of the present invention are output according to a predetermined procedure.
[0027]
The (A) information registration and (B) the inspection procedure immediately before the inspection for each mask will be described. The design of the color identification mask is usually performed at the time of designing a cathode ray tube, and dimensions and the like determined in detail in consideration of the shape after the corrosion processing are given as design drawings. If the pitch of the holes is variable, the position is often given by higher-order functions, combinations thereof and boundary conditions. Based on this design drawing, a photolithography plate used for the corrosive processing of the color identification mask is designed. Since it is necessary to consider the corrosion processing characteristics in plate design, the function describing the variable pitch does not always match the function of the original mask design drawing, and new higher-order functions and changes in their combinations and boundary conditions It may have a curved point. Therefore, in the automatic measurement control language of the measuring device, these higher-order functions, conditional branches, measurement position control in relative and absolute coordinates, zero point setting operation in height measurement, and relative height measurement operation based on it are used. The description must be possible. (C) Measurement in each measurement range will be described. The measurement is performed according to the measurement flowchart shown in FIG. For example, a measurement flow chart is shown for a mask in which measurement is performed n times in a horizontal straight line within the measurement range 11 and the measurement start position is m times. Further, as shown in (D) above, it is preferable that these control programs be handled as a unit such as a file, stored in an internal or external storage device, and have a function that can be called and used many times.
[0028]
The measuring device has a learning function that records the measurement procedure manually performed, that is, the measurement coordinates, the movement amount, the reference setting, the measurement value capture, and the like, records it in a file or the like, and enables reuse. It is also preferable that It is also preferable that the recorded measurement procedure can be repeatedly controlled a plurality of times. Thus, by performing the manual measurement only once in a row in the horizontal direction, the repeated measurement can be performed by the automatic control.
[0029]
The measured values obtained by the above-described automatic control are temporarily stored in a storage device, and are subjected to statistical processing and graphing processing by an arithmetic circuit of the measuring device, and the results are output to an output device such as a display or a printer. Preferably, the data can be stored in an internal or external storage device in units of files or the like, and can be reprocessed, output, and used by another arithmetic device via a recording medium or a network line.
[0030]
In the coordinate system of the height and width at the time of control and measurement, in addition to the absolute coordinates 8 on the measuring device stage 5, when the measuring sample is placed on the stage, the coordinates on the measuring sample as shown in FIG. It is very important that the measuring apparatus has a function that enables a new relative coordinate system 9 to be set in the measurement sample with a specific portion as the origin, and that can be used in the measurement by the automatic control described above. desirable. Thus, even for samples of exactly the same design but different production lots, by setting only the coordinate system 9 in the sample, the automatic control length measurement function can be reused, and the efficiency of the measurement operation can be improved. For example, as shown in FIG. 5B, an original reference point 1 and an original reference point 2 on a relative coordinate system 9 are set in a measurement sample, and the position coordinates are registered in advance. Next, the original reference point is placed on a stage and the original reference point is measured using the coordinates of the absolute coordinate system 8. The position coordinates of the original reference point can be converted between the coordinate registration 9 in the sample and the absolute coordinates 8 from the information registration and the measured values.
[0031]
As shown in FIG. 6, a profile 11 drawn based on numerical values that are repeatedly measured, averaged after integration, is shown. There are three large strain profiles 10 throughout, and the loose large convex shape is the raw material, which is the strain originally possessed by the rolled material or the like. Such loose and large distortions exist very smoothly and continuously, and when the mask is stretched and fixed to the frame, it is elongated and disappears, so that there is no problem. Irregularities of several [mu] m to several tens [mu] m, which are sometimes present on the slope of the large distortion 10, adversely affect the image and are problematic minute deformations 12. Since these deformations are orthogonal to the stretching direction, and the lateral stretching that is secondary generated by the vertical stretching is very weak, these minute deformations 12 are stretched and corrected. Does not reach.
[0032]
In order to accurately determine the height of these minute deformations, it is necessary to use the profile 10 having a gentle and large strain as a reference. If the profile 10 of the loose and large distortion has a simple shape as shown in FIG. 7, statistical processing is performed based on a higher-order function obtained by curve fitting, and the minute deformation height 14 of each measurement position can be obtained. . However, in practice, the profile of a loose and large strain often has a more complicated shape as shown in FIG. 7A, and in such a case, the individual And the height 14 may be obtained. Since the height and width of the microdeformation are very small in scale, a low-order function or a base line 13 is set by linear approximation as shown in FIG. It is possible. Note that it is also possible to register a predetermined distance in advance for the baseline 13 and to set a linear approximation baseline 13 on the entire profile 11 based on the distance.
[0033]
The steepness ratio is defined in the following equation (1) as a numerical value representing the flatness of the stretched color identification mask based on the above-mentioned minute deformation height 14.
[0034]
p = (h0 + h1 + ... + hn) / L × 100 (%) --- (1)
p: steepness rate (%)
hn: n minute deformation heights, measured data
L: measurement length in the horizontal direction, that is, the width of the mask screen
[0035]
Here, the steepness ratio means the ratio of the total height of the minute deformation to the measured length, that is, the slope. The greater the number of microdeformations or the greater the height per one, the greater the total height, the greater the slope and steepness. The height of the minute deformation is actually about several μm to 10 μm, and the number is several to several tens. On the other hand, deformation defects such as pecking and breaking caused by handling of the mask reach a height of several tens μm to several hundred μm, and need to be distinguished from minute deformation. When handling the mask, care should be taken not only to apply stress due to physical contact, but also to minimize the impact of lifting and placing.Before measurement, confirm that there is no shape defect other than these small deformations. If the position is recorded in advance and a profile is obtained, it is necessary that the corresponding convex shape is not included in the calculation of the steepness ratio.
[0036]
As described above, the height (hn) of the minute deformation is actually about several μm to 10 μm, and a method of selecting only the actual measured height of the minute deformation from all the actually measured values is required. First, the lower limit will be described. It is considered that the mask surface has an irregular shape due to embossing, which is generally called darme, and it is thought that defective minute deformation will be buried in the surface roughness shape such as dalme. Therefore, at least 3 μm to 6 μm or less minute deformation It is necessary to exclude the height measurement value (minimum deformation height lower limit value). The upper limit will be described. Deformation defects such as peko and breakage caused by physical contact in handling the mask reach a height of several tens μm to several hundred μm (small deformation height upper limit), and the fine deformation height upper limit needs to be distinguished from minute deformation. There is. The height of the minute deformation is actually about several μm to 10 μm in actuality, and the lower limit and the upper limit of the minute deformation height are appropriately set in advance with reference to past data on materials and the like.
[0037]
By the above-described method, an objective and quantitative evaluation can be performed from the evaluation in which the subjective evaluation of human beings, which is a sensory test, must be included. In addition, this evaluation method makes it possible to manage and stabilize the manufacturing quality related to the minute deformation defect, or to analyze the factor when the minute deformation defect occurs, develop an improvement method, and confirm the effect.
[0038]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0039]
<Example 1>
A 29-inch stretch-type color discrimination mask made of low-carbon mild steel made by Company A, which has relatively few defects due to micro-deformation, is placed on a large length measuring stage equipped with a laser displacement meter, with the flat part on the small hole side facing up. The lower vertex of the slot hole at the lower left of the part was set as the coordinate origin, and the coordinate system was determined in the sample. The measurement position and range were 510 mm in the horizontal direction and the middle point at the top and bottom of the screen. The measuring machine with laser displacement meter used was a stage size of 1.4 x 1.4m, the stage flatness was 0.3mm between center and corner, the sensor movement accuracy was ± 5μm both vertically and horizontally, and the height of the laser displacement meter The measurement accuracy is ± 1.5 μm, the spot size is 100 × 100 μm, and the moving pitch of the sensor is μm, which has a function of 100 macro programming and a function of storing a manual measurement procedure.
[0040]
The lateral pitch of the mask is about 750 μm at the center and about 870 μm at the end. The functions and various conditions were obtained in advance from the plate design drawing, and a macro program was created based on these to perform measurements. The measured values of the masks 1 to 5 were statistically processed, the profile was graphed, the baseline was determined, the height of each minute deformation was determined, and the steepness ratio was calculated. FIG. 8 shows the profile of the mask 1. In addition, the masks 2 to 5 of the same material and the same kind and other lots were measured in the same manner, and the results of the mask 1 were combined, and the respective minute deformation heights and steepness rates were summarized in Table 1 below. The height was a minimum of 1.8 μm to a maximum of 14.6 μm, and the steepness ratio was 0.0042 to 0.0089%, 0.01% or less. The same result was obtained when the same location was measured for the mask 1 using the manual measurement procedure storage function.
[0041]
[Table 1]
Figure 2004063375
[0042]
<Example 2>
Using the same large measuring machine with a laser displacement meter as in Example 1, the small deformation height of a 29-inch stretch-type color identification mask (mask 6 to mask 8) using low-carbon mild steel of Company B, which has many defects due to small deformation. Was measured. FIG. 9 shows the profile of the mask 6. In addition, the masks 7 and 8 of the same material, the same kind, and other lots were measured in the same manner, and the results of the mask 6 were put together in Table 2 below. The microdeformation height was at least 3.3 μm to at most 21.8 μm, and the steepness ratio was 0.0136 to 0.0166%, which was 0.01% or more.
[0043]
[Table 2]
Figure 2004063375
[0044]
【The invention's effect】
As described above, in the micro-deformation evaluation method of the present invention, the absolute value measurement of the micro-deformation amount and the steepness rate that objectively indicates the flatness can be calculated. The effect items can be easily clarified and improved, and the yield is greatly improved. In addition, since the acceptance criteria of the minute deformation at the time of the cathode ray tube process introduction can be quantified and determined, the quality of the shipped product is stabilized and the number of complaints from customers is reduced.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of a method for evaluating a microscopic deformation of a stretched color identification mask according to the present invention.
FIG. 2 is a flowchart of measurement of the amount of micro-deformation of a stretched color identification mask according to the invention
3A and 3B are schematic views of a length measuring machine according to the present invention, wherein FIG. 3A is a front view and FIG. 3B is a side view.
FIGS. 4A and 4B are schematic diagrams of flat portion height measurement, in which FIG. 4A is a side sectional view and FIG. 4B is a plan view.
5A and 5B are conceptual diagrams of an absolute coordinate system and a relative coordinate system, where FIG. 5A is a perspective view and FIG. 5B is a plan view.
FIG. 6 is a schematic diagram of a large and gentle deformation and a small deformation in the lateral direction of the profile.
FIGS. 7A and 7B are schematic diagrams of a baseline and a small deformation height in the lateral direction of the profile. FIG. 7A is a profile, and FIG. 7B is a baseline and a small deformation height.
FIG. 8 is a measurement profile of a company A type color identification mask of Example 1.
FIG. 9 is a measurement profile of a color identification mask stretched by Company B of Example 2;
FIG. 10 is a plan view of a hole shape of a general bridge type color identification mask, where (a) is a bridge type color identification mask having a slot hole shape, and (b) is a bridge having a cutting bridge. Type color identification mask.
FIG. 11 is a side sectional view of a corrosion sectional shape of a slot hole.
[Explanation of symbols]
1. Actual bridge
2… Cutting bridge
3. Large hole flat part
4 ... Small hole flat part
5 ... stage
6 ... Plate type color identification mask
7. Displacement gauge
8: Absolute coordinate system on stage
9: relative coordinate system on the measurement sample
10. Conceptual loose large distortion profile
11: Profile of the entire color identification mask
12: Profile of minute deformation part
13. Baseline
14: Small deformation height
15 Slot holes
16 ... Moving amount (between each reference point)
17… Measurement range (for each reference point)
18 Input part
19 ... Output section
20: Height of measurement start position
21: Height zero calibration

Claims (2)

架張型色識別マスクを使用する陰極線管製造工程において、画像表示不良を引き起こす原因となるマスクの微小変形を、成形組み立て前のマスク単体の三次元形状精密測定によって急峻度として数値表現し、該急峻度を用いて、成形組み立て前に、前記マスクの使用の可否判定を可能とする架張型色識別マスク微小変形評価方法。In a cathode ray tube manufacturing process using a stretched type color identification mask, minute deformation of the mask causing image display defects is numerically expressed as steepness by three-dimensional shape precise measurement of the mask alone before forming and assembling. A method for evaluating microscopic deformation of a stretch-type color identification mask, which makes it possible to determine whether or not the mask can be used before forming and assembling by using the steepness. 三次元精密測定を行う装置が、高さ方向測定精度±1.5μm以下のレーザー変位測定装置系を有し、かつ、専用もしくは汎用プログラミング言語による制御可能な、もしくは手動の測定手順を学習又は制御言語で記憶し繰り返し測定が制御可能である、請求項1記載の架張型色識別マスク微小変形評価方法。The device that performs three-dimensional precision measurement has a laser displacement measurement device system with a height direction measurement accuracy of ± 1.5 μm or less, and learns or controls the measurement procedure that can be controlled by a dedicated or general-purpose programming language, or that can be controlled manually. 2. The method for evaluating microscopic deformation of a stretched color identification mask according to claim 1, wherein the measurement is stored in a language and can be repeatedly measured.
JP2002222683A 2002-07-31 2002-07-31 Overhung color-coding mask infinitesimal deformation evaluation method Pending JP2004063375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222683A JP2004063375A (en) 2002-07-31 2002-07-31 Overhung color-coding mask infinitesimal deformation evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222683A JP2004063375A (en) 2002-07-31 2002-07-31 Overhung color-coding mask infinitesimal deformation evaluation method

Publications (1)

Publication Number Publication Date
JP2004063375A true JP2004063375A (en) 2004-02-26

Family

ID=31942642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222683A Pending JP2004063375A (en) 2002-07-31 2002-07-31 Overhung color-coding mask infinitesimal deformation evaluation method

Country Status (1)

Country Link
JP (1) JP2004063375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455099B1 (en) * 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
CN112640152A (en) * 2018-09-04 2021-04-09 Lg伊诺特有限公司 Mask for vapor deposition and method for producing same
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455099B1 (en) * 2013-09-13 2014-03-26 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
CN112640152A (en) * 2018-09-04 2021-04-09 Lg伊诺特有限公司 Mask for vapor deposition and method for producing same
CN112640152B (en) * 2018-09-04 2024-03-08 Lg伊诺特有限公司 Mask for vapor deposition and method for producing the same

Similar Documents

Publication Publication Date Title
KR101004473B1 (en) Surface-distortion measuring device and method
US20150228063A1 (en) Pattern Inspecting and Measuring Device and Program
CN110501342B (en) Cheese yarn rod positioning visual detection method
JP5132895B2 (en) A method for correcting distortion of backscattered electron diffraction patterns.
US20090232385A1 (en) Pattern measuring method and pattern measuring device
US8090192B2 (en) Pattern misalignment measurement method, program, and semiconductor device manufacturing method
JP2004063375A (en) Overhung color-coding mask infinitesimal deformation evaluation method
JP2007183231A (en) Method for processing eddy current flaw detection signal
WO2010087149A1 (en) Charged particle beam device
WO2010061516A1 (en) Image formation method and image formation device
JP2011033570A (en) Evaluation method of distortion aberration of optical lens
WO2012029220A1 (en) Management apparatus for semiconductor manufacturing equipment, and computer program
US7200950B2 (en) Process for monitoring measuring device performance
JP5321775B2 (en) Pattern inspection method and pattern inspection apparatus
CN116839490A (en) Thickness gauge with roller positioning function based on double lasers and thickness measuring method thereof
JP6805354B2 (en) Image processing equipment, methods, and charged particle microscope
JP2007019523A (en) Method and equipment for evaluating pattern
WO2021206144A1 (en) Pattern measuring device, method, and program, and pattern inspecting device, method, and program
US20180001419A1 (en) Device for checking a weld bead
JPH10223144A (en) Adjusting method and controlling method for deflection yoke of color cathode-ray tube, combining method of deflection yoke color cathode-ray tube, and color cathode-ray tube for testing
JP5402458B2 (en) Fine pattern measuring method and fine pattern measuring apparatus
KR200157068Y1 (en) Checker for shadow mask frame of cathode ray tube
JPH0927274A (en) Correcting method for use in manufacture of cathode-ray tube
CN116481432A (en) Calibration method of precise image measuring instrument
CN114963929A (en) Simple measuring method for columnar crystal proportion of special-shaped continuous casting billet