JP2004063156A - Nonaqueous solution electrolyte secondary cell - Google Patents

Nonaqueous solution electrolyte secondary cell Download PDF

Info

Publication number
JP2004063156A
JP2004063156A JP2002217221A JP2002217221A JP2004063156A JP 2004063156 A JP2004063156 A JP 2004063156A JP 2002217221 A JP2002217221 A JP 2002217221A JP 2002217221 A JP2002217221 A JP 2002217221A JP 2004063156 A JP2004063156 A JP 2004063156A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
hafnium
electrolyte secondary
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217221A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tachibana
立花 和宏
Takeaki Ogata
尾形 健明
Tatsuo Nishina
仁科 辰夫
Takashi Endo
遠藤 孝志
Hirosuke Sakamoto
坂本 裕輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002217221A priority Critical patent/JP2004063156A/en
Publication of JP2004063156A publication Critical patent/JP2004063156A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a manufacturing problem of a battery short life by decomposing an electrolyte when a coating film is damaged by water infiltrating in a middle of a manufacturing process because in the case of Al usually used for a positive electrode current collection of a Li secondary cell, anticorrosion is not enough because of reaction of the coating film of an Al surface with acid and alkali. <P>SOLUTION: Based on two features found that a precise surface coating film of an Hf is effective in restraining decomposition of an electrolyte in an organic electrolyte including fluorine anion and is an anticorrosion coating film strong against a water solution system, influence of moisture is reduced by covering a good conductive Al metal surface or the like with Hf or its alloy and a Li secondary cell is manufactured with a stable manufacturing condition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水溶液電解液二次電池に関する。特に、遷移金属又は典型金属を含むリチウム複合酸化物を正極活物質とする非水溶液電解液リチウムイオン二次電池に関する。
【0002】
【従来の技術】
リチウム二次電池、とりわけリチウムイオン二次電池は、これまでに知られている多数の電池の中でも、最も新しい電池の一つであり、リチウム二次電池が最初に提言されてから今日に至るまでの間の開発、実用化、普及、及び成長の早さは群を抜いており、目を見張るものがある。いまや、携帯電話を始め、新しい電子機器類には欠かすことのできない電源としての地位が定着しつつある。事実、携帯電話の普及に伴い、その生産量は、急激な増加傾向を示していることは、各種統計から明らかであり、この勢いは、電力の多様化、平準化を求める社会的ニーズとも相俟って、今後ますます発展することはあっても、衰えることはないと思料される。すなわち、電力貯蔵用デバイスとしての位置づけが社会的に広く定着し、その役割はますます高まっていくものと期待されている。
【0003】
現在実用化されているリチウムイオン二次電池の概要は、そのほとんどは、正極集電体としてアルミニウム箔が使用されており、アルミニウム箔にLiCoO、LiNiO、LiMn等のリチウム複合酸化物から選ばれた正極活物質粉末をバインダー/溶媒とともに混合してペースト状にしたものを適宜厚さに塗布、乾燥して正極を得、一方負極も同様に、銅箔にペースト状のカーボンを塗布、乾燥して負極を得ている。こうして得られた両電極は、これを負極、セパレータ(高分子微多孔膜)、正極、セパレータの順に重ね合わせ、これを円筒状にワインデイングし、円筒形構造あるいは角形構造の電池缶に収容し、非水溶液電解液や温度上昇を防ぐ等の安全のため電流を遮断するスイッチ機構等の各種機器、素子類等を組み込み電池としている。
【0004】
ここに、リチウムイオン二次電池に使われる非水溶液電解液は、高誘電率溶媒にリチウムイオン源となる電解質を溶解しているものである。高誘電率溶媒としては、DEC(Diethyl carbonate)、DMC(Dimethyl carbonate)、DME(1,2−Dimethoxyethane)、EC(Ethylene carbonate)、EMC(Ethyl methyl carbonate)、NMP(N−Methyl−2−pyrrolidone)、PC(Propylene carbonate)、GBL(γ−Butyrolactone)等が用いられ、これらを単独で、あるいは例えば、EC/DEC(1:1)V/V%、EC/DMC(1:1)V/V%のように適宜の配合比に混合して使用される。
【0005】
リチウムイオン源となる電解質としては、有機溶媒に対して溶解度の大きいLiPF、LiBF、LiAsF、LiClO、LiCFSO、LiN(CFSO、EtNBF、EtNPF、LiN(SO等が知られ、用いられている。これらの材料は、それぞれイオン伝導率、温度特性、サイクル特性などの点で必ずしも一様ではなく、その何れを選定するかは、設定する電池特性に応じ、あるいは組み合わせる溶媒の種類等によってもその電解液特性は変化するところから、これらを総合して決定される。
【0006】
そして、リチウムイオン二次電池用セパレータとしては、ポリオレフィン微多孔質膜が用いられている。すなわち、ポリエチレン、ポリプロピレンあるいはそれらの組み合わせが用いられている。このセパレータの機能としては、正極、負極両電極間の電気的接触を防止しつつ、充放電中イオンのみを選択的に透過させることが求められてきたが、最近では、電池使用中の事故を防ぐため、万一電極間に異常な短絡や過充放電が生じ、その結果電池が高温に加熱されるような事態となったときに備え、電池が一定の加熱温度に達したときイオンを透過させる孔を自然に溶融し、これによって孔を塞ぎ、イオンの流れを遮断し、以て電流を遮断するいわゆる熱ヒューズとしての働きも奏するように設計されているものも開発、提供されている。
【0007】
以上、非水溶液電解液二次電池としてのリチウムイオン二次電池の概要を紹介したが、前示したようにこの二次電池の正極集電体としてはアルミニウムが使われている。すなわち、充電時の3V以上のアノード分極に耐え、電池の軽量化を図りつつ、前記有機電解液に耐食性を示し、且つ前記有機電解液を分解から保護する絶縁性被膜を生成する金属であることからアルミニウムが広く用いられてきた(特公平4−52592号公報)。
【0008】
特に、電池性能が安定に維持されるためには、集電体及び有機電解質が、材質的に安定し、互いに反応したり、変質しないことが求められている。
そのためには、集電体はその表面に安定緻密な不働体被膜を生成し、この不働体被膜によって有機電解液に対して耐食性を示し、また、有機電解液を分解から保護する絶縁性被膜を生成する金属でなければならない。
【0009】
【解決しようとする課題】
しかし、アルミニウムは両性金属であり、酸やアルカリに用意に侵されてしまう。したがって、正極集電体の製作過程で絶縁性被膜が損傷すると、前記有機電解液の分解を促し、リチウム二次電池の寿命が短くなると言う厄介な問題があり、前処理や正極合剤スラリーの溶媒化などにおいてその使用する薬剤に制限が多かった。例えば、アルミニウムはこれを購入する段階では、その表面に圧延油が付着している状態であり、このままでは電極材料として使用することが出来ない。 すなわち、これを電極材料として使用する際には、脱脂しなければならない。 この圧延油を脱脂するためにはアルカリが用いられるが、そのアルカリ処理によってアルミニウム表面皮膜に除去しがたいピンホール欠陥を作り、正極集電体の絶縁性能を損なってしまうこともある。また正極集電体に正極合材を塗布する工程においては、正極合剤スラリーのバインダの溶媒の水分濃度や溶媒乾燥条件によってアルミニウムの表面皮膜が水酸化物などに変化してしまい、このため正極集電体の絶縁性能を損なってしまうこともある。本発明は、正極集電体としてアルミニウムを使用するにおいては、上記したような問題が多々あり、このためかかる問題が生じない正極集電体材料を提供し、この材料設計によって問題のない非水溶液電解液二次電池を提供しようというものである。
【0010】
【課題を解決するための手段】
上記問題を解決するため、本発明者等は鋭意研究の結果、ハフニウムの緻密な表面皮膜がフッ素アニオンを含む有機電解液(LiPF/PC+DME,LiBF/PC+DMEなど)中で電解液の分解抑制に有効であり、かつ水溶液系に強い耐食性皮膜であるという二つの特徴を持つことを見出し、その研究成果に基づき、上記課題を下記手段により解決した。
すなわち、その第1は、(1)電池正極活物質にLiMnO,LiMn,LiNiO,LiCoO,LiVO,LiV,LiCrO,LiFeO,LiTiO,LiScO,LiYOなどの遷移金属あるいは典型金属を含むリチウム複合酸化物を用い、電解質にLiPFやLiBFなどのフッ素を含むアニオンのリチウム塩を用いた非水溶液二次電池において、正極集電体として、少なくともその外部表面がハフニウム又はハフニウム基合金から成る材料によって構成されている正極集電体であることを特徴とする非水溶液電解液二次電池を構成することによって解決するものである。
【0011】
その第2は、(2)該正極集電体が金属基体を有し、この基体上にハフニウム又はハフニウム合金が蒸着、溶射又はメッキされていることを特徴とする前記(1)項に記載の非水溶液電解液二次電池を構成することによって解決するものである。
【0012】
その第3は、(3)該金属基体がアルミニウムよりなる基体材料より構成されていることを特徴とする前記(1)又は(2)項に記載の非水溶液電解液二次電池を構成することによって解決するものである。
【0013】
その第4は、(4)正極活物質とするリチウム複合酸化物がLiMnO、LiMn、LiNiO、LiCoO、LiV0、LiV、LiCrO、LiFeO、LiTiO、LiScO、LiYOより選ばれる少なくとも1種の遷移金属又は典型金属を含むリチウム複合酸化物であることを特徴とする前記(1)項に記載の非水溶液電解液二次電池を構成することによって解決するものである。
【0014】
その第5は、(5)フッ素を含むアニオンのリチウム塩としてLiPF 、LiBFが用いられることを特徴とする前記(1)項に記載の非水溶液二次電池を構成することによって解決するものである。
【0015】
【発明の実施の形態】
本発明の実施の形態を以下に記載する実験に基づいて説明する。
本発明は、前述したようにハフニウムの緻密な表面皮膜が、フッ素アニオンを含む有機電解液(LiPF/PC+DME,LiBF/PC+DMEなど)中で電解液の分解抑制に有効であり、かつ水溶液系に強い耐食性皮膜であるという二つの特徴を持つことから、ハフニウムやハフニウム合金、あるいはアルミニウムなど導電性のよい金属表面にハフニウムやハフニウム合金を蒸着、溶射または析出などの手段によってメッキしたリチウム二次電池の正極集電体を構成する。
ハフニウムは、アルミニウムと同様にバルブメタルであり、LiPFやLiBFなどの含フッ素アニオンの存在する有機電解液中で、表面に緻密な皮膜を形成する。またその皮膜は高い絶縁性を持ち、電子伝導性の極めて少ない皮膜である。このことは図1に示すハフニウムのLiPF/PC+DME中のボルタモグラムからも確認できる。
【0016】
図1に見られるように有機電解液LiPF/PC+DME中に対峙させたハフニウムと銀の電極間に、ハフニウムを正極として掃引電位を加えると1サイクル目は1.5Vくらいから電極間に流れる電流が急激に増大し、その後はほぼ一定の電流となる。この電流はハフニウム電極の表面に被膜を生成させる作用を行う。電極にかかる電位が5Vに達した後電位が順次減少するように掃引すると、電流は急激に減少する。このようにしてハフニウム電極の表面に被膜を生成されると2サイクル目以降の電位掃引では殆ど電流が流れないことを示している。
このことからハフニウムが、LiPF/PC+DME中において耐食性および電解液分解抑制に対して効果がある数少ない金属であることがわかる。
【0017】
したがって、ハフニウムをリチウム二次電池の正極集電体として用いれば、電解液の分解抑制に極めて効果的である。さらに、ハフニウムは、アルミニウムと異なり、酸には溶けにくく、アルカリ水溶液と加熱しても反応しない特性を持つ。そこで、ハフニウムをリチウム二次電池の正極集電体に用いることにより、正極合材スラリーの溶媒の水溶液を用いてスラリーがアルカリ性になっても集電体が腐食することはない。またハフニウムのコスト削減や機械的加工性の改善のために、アルミニウム基材の表面にハフニウム金属をめっきした正極集電体を用いる方法もある。
このため正極集電体の製作過程で取り込まれる水分の影響を軽減し、安定な製作条件でリチウム二次電池を製作できる。
【0018】
以上は、発明の骨子を専ら正極集体材料に基づいて言及したが、本発明はあくまでも非水溶液電解液二次電池であって、正極集電体以外の要素を備えているものであることは当然のことである。ただ、その開示については、全て従来技術に委ねられているものである。以下に、本発明を理解し、実施しうるよう開示するため、以下に記載する実験を行った。この実験を以て実施例に代えるものである

【0019】
【実施例】
本発明の実施例は、前述したように以下の実験を以て実施例とするものである。
実験;
(電解液の調製);
先ず電解液を調整した。電解液は、電解質としてLiPF、LiBFを使用し、これをDME(1,2−Dimethoxyethane)とPC(Propylene carbonate)との混合溶媒(1:1vol比)に溶解して1mol濃度の電解液を調製した。この調製した電解液300mlに対して、400℃Ar気流中で4時間加熱脱水したモレキュラーシーブ4A(4〜12メッシュ)を30g加えてテフロン(登録商標)瓶中で30分ほど振り混ぜ、水分を吸着脱水し、水分含有量を50ppm以下に保った。電解液中の水分濃度はカールフィッシャー水分計(平沼自動水分測定装置AQV−200)により測定した。
【0020】
(サイクリックボルタモグラム=皮膜絶縁性、耐食性試験);
ビーカーを試験検体の数だけ用意し、各ビーカーの中に上記電解液を入れ、各電解液に測定するハフニウム(以下金属試料という)を各浸漬し、これを一方の電極(試料極)とし、もう一方の電極(対極)には白金電極をセットした。電位の測定基準(参照電極)として銀電極をセットした。試料極と参照電極の間の電圧が所定の電圧になるように対極に電流を流し、そのときの電圧と電流を測定した。電位掃引速度は、0.1V/sとした。
【0021】
この測定に際して検体金属試料は、ワイヤ状(0.5mmφ)のものを用い、これをアルカリ処理等により充分に脱脂処理し、これをグローブボックスの中で大気と絶った状態で、すなわち金属が酸素、あるいは窒素により変質しないようにして充分に乾燥処理したものを用い、これをステンレスリードのネジに直接挟み込んで固定し試料極とした。
【0022】
その結果は、図1に示す通りであった。すなわち、図1は、LiPF /PC+DME中におけるハフニウムのサイクリックボルタモグラム(印加電圧3V、標準電極Ag)を示すものである。この実験によると、一定速度での電位掃引によって1サイクル目に平坦な電流が見られ、この挙動は皮膜生成電流が皮膜内部の電場強度に指数的に比例するという高電場機構の特徴的なものであり、ハフニウム表面に緻密なバリア皮膜を生成することがわかった。
【0023】
以上の結果より、ハフニウムは、LiPF/PC+DME中において耐食性を示し、電解液分解抑制に対して効果がある金属であること、このことからリチウム複合酸化物を正極活物質とし、電解液がフッ素を含むアニオンのリチウム塩を含んでいる非水溶液電解液二次電池において、ハフニウムを正極集電体材料とすることにより、アルミニウム金属を用いる従来法における不都合が解消され、非水溶液二次電池技術における一つの壁を越えること出来たものと思料される。
【0024】
使用するはハフニウムは、高純度(99.99%)のものを用いたが、発明の実施態様としては、正極集電体として悪影響がなく、充放電サイクルを始め、電池特性に支障が生じない限りは、ハフニウム基合金を設定し、使用することは何ら差し支えなく本発明の実施態様として含むところである。
【0025】
使用する電解液は、フッ素を含むアニオンのリチウム塩を含んでいる非水溶液電解液を要件事項としているものであるが、実際に調製する液組成は、これに他の電解質を始め各種安定剤、添加剤を使用し、これを添加、配合することは差し支えなく、本発明の実施態様に含まれる。
【0026】
【発明の効果】
本発明は、正極集電体としてアルミニウムより水溶液系に対して耐食性を有するハフニウムを用いることによって、アルミニウムより、前処理用の薬剤や、スラリーの水溶液系溶媒の選択が広くなり、その上LiPFやLiBFなどの含フッ素アニオンのリチウム塩を含む電解液に耐食性を示し、かつ電解液を分解から保護する絶縁性の皮膜を生成することが出来ることから、その意義は極めて大きい。
【図面の簡単な説明】
【図1】LiPF6/PC+DME中におけるハフニウムのボルタモグラム。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery. In particular, the present invention relates to a non-aqueous electrolyte lithium ion secondary battery using a lithium composite oxide containing a transition metal or a typical metal as a positive electrode active material.
[0002]
[Prior art]
Lithium rechargeable batteries, especially lithium ion rechargeable batteries, are one of the newest batteries among the many batteries known so far, and since lithium rechargeable batteries were first proposed to this day The speed of development, commercialization, dissemination, and growth during this period is outstanding and impressive. Now, the position as an indispensable power source for mobile phones and new electronic devices is becoming established. In fact, it is clear from various statistics that the production volume of mobile phones has shown a rapid increase with the spread of mobile phones, and this momentum is also in line with the social needs for diversification and leveling of electricity. In addition, it is expected that it will continue to develop in the future, but will not decline. In other words, it is expected that its role as a power storage device will be widely established in society and its role will be further increased.
[0003]
Almost all lithium-ion secondary batteries currently in practical use use an aluminum foil as a positive electrode current collector, and a lithium composite oxide such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 2 is used for the aluminum foil. A paste obtained by mixing a positive electrode active material powder selected from a mixture with a binder / solvent into a paste is applied to an appropriate thickness and dried to obtain a positive electrode. The negative electrode is obtained by coating and drying. The two electrodes thus obtained are superposed in the order of a negative electrode, a separator (polymer microporous membrane), a positive electrode, and a separator, and are wound into a cylindrical shape and housed in a cylindrical or prismatic battery can. In addition, various devices such as a non-aqueous electrolyte and a switch mechanism for interrupting a current for safety such as prevention of temperature rise, elements and the like are incorporated as a battery.
[0004]
Here, the non-aqueous electrolyte used for the lithium ion secondary battery has an electrolyte serving as a lithium ion source dissolved in a high dielectric constant solvent. Examples of the high dielectric constant solvent include DEC (Diethyl carbonate), DMC (Dimethyl carbonate), DME (1,2-Dimethyoxyethane), EC (Ethylene carbonate), EMC (Ethyl methyl carbonate-NMP-Nylon-Nylon-Nepoxide-Nylon-Nylon-Nylon-Nepoxide-Nylon-Nylon-Nepoxide-Nylon-N-Methoxy-N-Ethyl Carbonate-Nylon-N-Ethyl Carbonate) ), PC (Propylene carbonate), GBL (γ-Butyrolactone) and the like are used alone or, for example, in EC / DEC (1: 1) V / V%, EC / DMC (1: 1) V / V% is used by mixing at an appropriate mixing ratio.
[0005]
As an electrolyte serving as a lithium ion source, LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , Et 4 NBF 4 , Et 4 having high solubility in an organic solvent are used. NPF 6 , LiN (SO 2 C 2 F 5 ) 2 and the like are known and used. These materials are not necessarily uniform in terms of ionic conductivity, temperature characteristics, cycle characteristics, and the like.Either of them is selected according to the battery characteristics to be set or the type of solvent to be combined. Since the liquid properties change, they are determined in total.
[0006]
As a separator for a lithium ion secondary battery, a microporous polyolefin membrane is used. That is, polyethylene, polypropylene or a combination thereof is used. As a function of this separator, it has been required to selectively transmit only ions during charge and discharge while preventing electrical contact between the positive electrode and the negative electrode. In order to prevent abnormal short-circuiting or overcharging and discharging between the electrodes in order to prevent the battery from being heated to a high temperature, ions can be transmitted when the battery reaches a certain heating temperature. There has also been developed and provided one designed to melt the hole to be spontaneously, thereby closing the hole, interrupting the flow of ions, and also acting as a so-called thermal fuse for interrupting the current.
[0007]
The outline of the lithium ion secondary battery as the non-aqueous electrolyte secondary battery has been described above. As described above, aluminum is used as the positive electrode current collector of this secondary battery. That is, a metal that withstands anodic polarization of 3 V or more during charging, reduces the weight of the battery, shows corrosion resistance to the organic electrolyte, and forms an insulating film that protects the organic electrolyte from decomposition. Aluminum has been widely used (JP-B 4-52592).
[0008]
In particular, in order to maintain stable battery performance, it is required that the current collector and the organic electrolyte are materially stable and do not react with each other or deteriorate.
For this purpose, the current collector forms a stable and dense passive film on its surface, which shows corrosion resistance to the organic electrolyte and protects the organic electrolyte from decomposition by an insulating film. Must be formed metal.
[0009]
[Problem to be solved]
However, aluminum is an amphoteric metal and is easily attacked by acids and alkalis. Therefore, when the insulating film is damaged in the process of manufacturing the positive electrode current collector, there is a troublesome problem that the decomposition of the organic electrolyte is promoted and the life of the lithium secondary battery is shortened. There are many restrictions on the drugs used in solvation and the like. For example, at the stage of purchasing aluminum, rolling oil is attached to the surface of the aluminum, and cannot be used as an electrode material as it is. That is, when this is used as an electrode material, it must be degreased. Alkali is used to degrease the rolling oil, but the alkali treatment may create pinhole defects that cannot be removed from the aluminum surface film, and may impair the insulation performance of the positive electrode current collector. In addition, in the step of applying the positive electrode mixture to the positive electrode current collector, the aluminum surface film changes to a hydroxide or the like depending on the moisture concentration of the solvent of the binder of the positive electrode mixture slurry and the solvent drying conditions. The insulation performance of the current collector may be impaired. The present invention has many problems as described above in using aluminum as a positive electrode current collector. Therefore, the present invention provides a positive electrode current collector material that does not cause such problems, and a non-aqueous solution that does not have any problem due to the material design. It is intended to provide an electrolyte secondary battery.
[0010]
[Means for Solving the Problems]
In order to solve the above problem, the present inventors have conducted intensive studies and found that a dense surface film of hafnium suppresses decomposition of an electrolyte in an organic electrolyte containing a fluorine anion (LiPF 6 / PC + DME, LiBF 4 / PC + DME, etc.). It has been found that it has the two features that it is effective for water and that it is a corrosion-resistant film that is strong against aqueous solutions.
That is, the first is, (1) LiMnO the battery positive electrode active material 2, LiMn 2 O 4, LiNiO 2, LiCoO 2, LiVO 2, LiV 2 O 4, LiCrO 2, LiFeO 2, LiTiO 2, LiScO 2, LiYO In a non-aqueous solution secondary battery using a lithium composite oxide containing a transition metal or a typical metal such as 2, and a lithium salt of an anion containing fluorine such as LiPF 6 or LiBF 4 as an electrolyte, at least as a positive electrode current collector, The problem is solved by forming a non-aqueous electrolyte secondary battery characterized by being a positive electrode current collector whose outer surface is made of a material made of hafnium or a hafnium-based alloy.
[0011]
The second feature is that (2) the positive electrode current collector has a metal substrate, and hafnium or a hafnium alloy is deposited, sprayed or plated on the substrate. This problem is solved by configuring a non-aqueous electrolyte secondary battery.
[0012]
Thirdly, (3) the non-aqueous electrolyte secondary battery according to the above (1) or (2), wherein the metal base is made of a base material made of aluminum. Is to be solved.
[0013]
Its fourth, (4) a lithium complex oxide as a positive electrode active material is LiMnO 4, LiMn 2 O 4, LiNiO 2, LiCoO 2, LiV0 2, LiV 2 O 4, LiCrO 2, LiFeO 2, LiTiO 2, LiScO 2 , a lithium composite oxide containing at least one transition metal or a typical metal selected from LiYO 2 , which is solved by configuring the non-aqueous electrolyte secondary battery according to the above item (1). Is what you do.
[0014]
Fifthly, (5) Lithium salt of fluorine-containing anion, LiPF 6 or LiBF 4 is used as the lithium salt, which is solved by configuring the non-aqueous solution secondary battery according to the above (1). It is.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on experiments described below.
According to the present invention, as described above, the dense surface film of hafnium is effective in suppressing the decomposition of an electrolytic solution in an organic electrolytic solution containing a fluorine anion (LiPF 6 / PC + DME, LiBF 4 / PC + DME, etc.), and an aqueous solution Lithium secondary battery, which has two features of being a corrosion resistant film that is highly resistant to corrosion, is made by plating hafnium or a hafnium alloy on a metal surface with good conductivity such as hafnium, a hafnium alloy, or aluminum by vapor deposition, thermal spraying, or deposition. Of this positive electrode current collector.
Hafnium is a valve metal like aluminum, and forms a dense film on the surface in an organic electrolytic solution containing a fluorinated anion such as LiPF 6 or LiBF 4 . Further, the film has a high insulating property and an extremely low electron conductivity. This can also be confirmed from the voltammogram of hafnium in LiPF 6 / PC + DME shown in FIG.
[0016]
As can be seen in FIG. 1, when a sweep potential is applied between hafnium and silver electrodes facing each other in the organic electrolyte LiPF 6 / PC + DME with hafnium as the positive electrode, the current flowing between the electrodes from about 1.5 V in the first cycle. Rapidly increases, and thereafter becomes a substantially constant current. This current acts to form a coating on the surface of the hafnium electrode. When the potential applied to the electrodes reaches 5 V and then is swept so that the potential decreases, the current sharply decreases. When a film is formed on the surface of the hafnium electrode in this way, almost no current flows in the potential sweep after the second cycle.
This indicates that hafnium is one of the few metals having an effect on corrosion resistance and suppression of electrolytic solution decomposition in LiPF 6 / PC + DME.
[0017]
Therefore, if hafnium is used as a positive electrode current collector of a lithium secondary battery, it is extremely effective in suppressing decomposition of an electrolytic solution. Furthermore, unlike aluminum, hafnium has a property that it is hardly soluble in acids and does not react even when heated with an aqueous alkaline solution. Thus, by using hafnium for the positive electrode current collector of the lithium secondary battery, the current collector does not corrode even if the slurry becomes alkaline using an aqueous solution of the solvent of the positive electrode mixture slurry. There is also a method of using a positive electrode current collector in which hafnium metal is plated on the surface of an aluminum base material in order to reduce the cost of hafnium and improve mechanical workability.
For this reason, the influence of moisture taken in during the manufacturing process of the positive electrode current collector is reduced, and a lithium secondary battery can be manufactured under stable manufacturing conditions.
[0018]
In the above, the gist of the present invention has been referred to exclusively based on the positive electrode current collector material.However, the present invention is merely a non-aqueous electrolyte secondary battery, and is naturally provided with elements other than the positive electrode current collector. That is. However, the disclosure is entirely left to the prior art. The following experiments were performed to disclose the present invention so that it can be understood and put into practice. This experiment replaces the embodiment.
[0019]
【Example】
The embodiment of the present invention is based on the following experiment as described above.
Experiment;
(Preparation of electrolyte solution);
First, an electrolytic solution was prepared. As the electrolyte, LiPF 6 and LiBF 4 are used as the electrolyte, and this is dissolved in a mixed solvent (1: 1 vol ratio) of DME (1,2-dimethyloxyethane) and PC (Propylene carbonate) to have a concentration of 1 mol. Was prepared. To 300 ml of the prepared electrolyte, 30 g of molecular sieve 4A (4 to 12 mesh) heated and dehydrated for 4 hours in a stream of 400 ° C. Ar was added, and the mixture was shaken in a Teflon (registered trademark) bottle for about 30 minutes to remove water. The water content was kept at 50 ppm or less by adsorption dehydration. The moisture concentration in the electrolyte was measured by a Karl Fischer moisture meter (Hiranuma automatic moisture meter AQV-200).
[0020]
(Cyclic voltammogram = film insulation, corrosion resistance test);
Prepare as many beakers as the number of test specimens, put the above-mentioned electrolyte solution into each beaker, immerse the hafnium (hereinafter referred to as metal sample) to be measured in each electrolyte solution, and use this as one electrode (sample electrode). A platinum electrode was set on the other electrode (counter electrode). A silver electrode was set as a potential measurement reference (reference electrode). A current was applied to the counter electrode so that the voltage between the sample electrode and the reference electrode became a predetermined voltage, and the voltage and current at that time were measured. The potential sweep speed was 0.1 V / s.
[0021]
At the time of this measurement, a sample metal sample (0.5 mmφ) was used, which was sufficiently degreased by alkali treatment or the like, and this was cut off from the atmosphere in a glove box, that is, the metal was Alternatively, a sample which had been sufficiently dried so as not to be degraded by nitrogen and was directly sandwiched between stainless steel lead screws and fixed was used as a sample electrode.
[0022]
The result was as shown in FIG. That is, FIG. 1 shows a cyclic voltammogram of hafnium in LiPF 6 / PC + DME (applied voltage: 3 V, standard electrode Ag). According to this experiment, a flat current was observed in the first cycle due to the potential sweep at a constant speed, and this behavior was characteristic of the high electric field mechanism where the film formation current was exponentially proportional to the electric field strength inside the film. It was found that a dense barrier film was formed on the hafnium surface.
[0023]
From the above results, hafnium is a metal that exhibits corrosion resistance in LiPF 6 / PC + DME and is effective in suppressing the decomposition of the electrolytic solution. Therefore, the lithium composite oxide is used as the positive electrode active material, and the electrolytic solution is made of fluorine. In a non-aqueous electrolyte secondary battery containing a lithium salt of an anion containing hafnium, by using hafnium as a positive electrode current collector material, the disadvantages of the conventional method using aluminum metal are eliminated, and in non-aqueous secondary battery technology, It is thought that he was able to cross one wall.
[0024]
The hafnium used was of high purity (99.99%). However, as an embodiment of the invention, there is no adverse effect as a positive electrode current collector, and a charge / discharge cycle is started, and the battery characteristics are not affected. As far as possible, setting and using a hafnium-based alloy is included as an embodiment of the present invention without any problem.
[0025]
The electrolyte to be used is a non-aqueous electrolyte containing a lithium salt of an anion containing fluorine, which is a requirement, but the composition of the solution actually prepared includes various stabilizers including other electrolytes, The use of additives, and the addition and blending of such additives, may be included in the embodiments of the present invention.
[0026]
【The invention's effect】
The present invention provides that the use of hafnium having a corrosion resistance to aluminum from aqueous as a positive electrode current collector, of aluminum, the pretreatment agent and for the choice of aqueous solvent of the slurry becomes wider, the upper LiPF 6 This is extremely significant because an electrolytic solution containing a lithium salt of a fluorine-containing anion, such as LiCl or LiBF 4, can form an insulating film that exhibits corrosion resistance and protects the electrolytic solution from decomposition.
[Brief description of the drawings]
FIG. 1 is a voltammogram of hafnium in LiPF6 / PC + DME.

Claims (5)

リチウム複合酸化物を正極活物質とし、電解液がフッ素を含むアニオンのリチウム塩を含んでいる非水溶液電解液二次電池において、正極集電体として、少なくともその外部表面がハフニウム又はハフニウム基合金から成る材料によって構成されている正極集電体であることを特徴とする非水溶液電解液二次電池。In a non-aqueous electrolyte secondary battery in which a lithium composite oxide is used as a positive electrode active material and the electrolyte contains a lithium salt of an anion containing fluorine, at least the outer surface of the positive electrode current collector is made of hafnium or a hafnium-based alloy. A non-aqueous electrolyte secondary battery characterized by being a positive electrode current collector made of a material comprising: 該正極集電体が金属基体を有し、この基体上にハフニウム又はハフニウム合金が蒸着、溶射又はメッキされていることを特徴とする請求項1記載の非水溶液電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode current collector has a metal substrate, and hafnium or a hafnium alloy is deposited, sprayed or plated on the substrate. 該金属基体がアルミニウムよりなる基体材料より構成されていることを特徴とする請求項1ないし2記載の非水溶液電解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein said metal base is made of a base material made of aluminum. 正極活物質とするリチウム複合酸化物がLiMnO、LiMn、LiNiO、LiCoO、LiV0、LiV、LiCrO、LiFeO、LiTiO、LiScO、LiYOより選ばれる少なくとも1種の遷移金属又は典型金属を含むリチウム複合酸化物であることを特徴とする請求項1項記載の非水溶液電解液二次電池。At least a lithium composite oxide as a positive electrode active material is selected from LiMnO 4, LiMn 2 O 4, LiNiO 2, LiCoO 2, LiV0 2, LiV 2 O 4, LiCrO 2, LiFeO 2, LiTiO 2, LiScO 2, LiYO 2 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a lithium composite oxide containing one kind of transition metal or typical metal. フッ素を含むアニオンのリチウム塩としてLiPF 、LiBFが用いられることを特徴とする請求項1記載の非水溶液二次電池。Non aqueous secondary battery according to claim 1, wherein the LiPF 6, LiBF 4 is used as the lithium salt of the anion containing fluorine.
JP2002217221A 2002-07-25 2002-07-25 Nonaqueous solution electrolyte secondary cell Pending JP2004063156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217221A JP2004063156A (en) 2002-07-25 2002-07-25 Nonaqueous solution electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217221A JP2004063156A (en) 2002-07-25 2002-07-25 Nonaqueous solution electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2004063156A true JP2004063156A (en) 2004-02-26

Family

ID=31938762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217221A Pending JP2004063156A (en) 2002-07-25 2002-07-25 Nonaqueous solution electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2004063156A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270092A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Collector for nonaqueous electrolyte battery, manufacturing method of collector for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US8173304B2 (en) 2006-11-27 2012-05-08 Denso Corporation Electric current collector, electrode and charge accumulating device
US8420263B2 (en) 2008-04-03 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrode collector manufacturing method and manufacturing apparatus, and battery provided with said collector
JP2013149585A (en) * 2011-04-20 2013-08-01 Nippon Shokubai Co Ltd Electrolyte material and method of manufacturing the same
US9466431B2 (en) 2011-01-21 2016-10-11 Nippon Shokubai Co., Ltd. Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173304B2 (en) 2006-11-27 2012-05-08 Denso Corporation Electric current collector, electrode and charge accumulating device
JP2008270092A (en) * 2007-04-24 2008-11-06 Toyota Motor Corp Collector for nonaqueous electrolyte battery, manufacturing method of collector for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US8420263B2 (en) 2008-04-03 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrode collector manufacturing method and manufacturing apparatus, and battery provided with said collector
US9466431B2 (en) 2011-01-21 2016-10-11 Nippon Shokubai Co., Ltd. Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
JP2013149585A (en) * 2011-04-20 2013-08-01 Nippon Shokubai Co Ltd Electrolyte material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6896725B2 (en) Secondary battery and its manufacturing method
KR100441514B1 (en) An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
EP2262037B1 (en) Lithium secondary battery using ionic liquid
KR100463181B1 (en) An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
KR101215416B1 (en) Cathode materials for lithium batteries
KR20190008100A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
EP2077594A1 (en) Composite separator films for lithium-ion batteries
KR101994879B1 (en) Non-aqueous liquid electrolye for lithium-sulfur battery and lithium-sulfur battery comprising the same
JP2002203562A (en) Non-aqueous electrolyte secondary battery
CN101359750A (en) Electrolytic solution and battery
CN101355146A (en) Anode, battery, and methods of manufacturing them
JPWO2004019433A1 (en) Non-aqueous secondary battery and separator used therefor
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
JP2009064715A (en) Positive electrode and lithium secondary battery using the same
CN111699585A (en) Stack-folding type electrode assembly and lithium metal battery including the same
JP2011100694A (en) Nonaqueous electrolyte secondary battery
KR20190130307A (en) Anode comprising electrode protective layer and lithium secondary battery comprising the same
JP3916116B2 (en) Non-aqueous secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
CN112490489A (en) Lithium ion secondary battery and method for manufacturing same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
EP4362138A1 (en) Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device
JP2004063156A (en) Nonaqueous solution electrolyte secondary cell
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080324