JP2004063141A - Nano-composite compound of oxide and carbon, and battery using it - Google Patents

Nano-composite compound of oxide and carbon, and battery using it Download PDF

Info

Publication number
JP2004063141A
JP2004063141A JP2002216926A JP2002216926A JP2004063141A JP 2004063141 A JP2004063141 A JP 2004063141A JP 2002216926 A JP2002216926 A JP 2002216926A JP 2002216926 A JP2002216926 A JP 2002216926A JP 2004063141 A JP2004063141 A JP 2004063141A
Authority
JP
Japan
Prior art keywords
carbon
compound
metal
composite compound
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002216926A
Other languages
Japanese (ja)
Other versions
JP4365071B2 (en
Inventor
Eihei To
湯 衛平
Giyoushiyo Yo
楊 暁晶
Kenta Oi
大井 健太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Original Assignee
KAGAWA INDUSTRY SUPPORT FOUND
Kagawa Industry Support Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWA INDUSTRY SUPPORT FOUND, Kagawa Industry Support Foundation filed Critical KAGAWA INDUSTRY SUPPORT FOUND
Priority to JP2002216926A priority Critical patent/JP4365071B2/en
Publication of JP2004063141A publication Critical patent/JP2004063141A/en
Application granted granted Critical
Publication of JP4365071B2 publication Critical patent/JP4365071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing for a uniform nano-sized composite compound of a metal oxide and carbon, and to provide technology using the manufactured composite compound in a device such as a battery. <P>SOLUTION: The nano-composite compound of an oxide and carbon is prepared by pyrolyzing a mixture of a metal compound, its hydrate, or its solution and carbon. The nano-composite compound uses two or more kinds of metal oxides, their hydrates or their solutions. The nano-composite compound having controlled compositions, shapes, and/or particle sizes is prepared by controlling heating atmosphere every object compounds and using carbon materials having different specific surface areas. As the device, for example, a lithium secondary battery or a capacity using the nano-composite compound is listed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業の属する技術分野】
本発明は、電池工学上有用な材料として利用できる金属酸化物と炭素との複合化合物の製造法とそれを用いた電池に関するものである。
【0002】
【従来の技術】
小形携帯電子機器、電気自動車の電源等には、高エネルギー密度化かつ高出力密度化が望まれる。現在、金属酸化物を電極材料として用いた電気化学キャパシタと呼ばれる新しいタイプのエネルギーデバイスが注目されている。金属酸化物系材料には一連の貴金属・弁金属・遷移金属・リチウム遷移金属の酸化物がエネルギー貯蔵材料として用いられている。これらのうちで弁金属は電解キャパシタ材料として使用され、その他の金属は電気化学キャパシタや種々の電池の電極材料として使用されている。
【0003】
金属酸化物を電池に用いた場合には、電極の導電性を保つためには、通常炭素と均一に混ぜて製膜する必要がある。現在の技術としては、通常機械的な混合方法が使われている。この場合、炭素材や金属酸化物の凝集により、特に微細粒子に対して均一な混合は難しいのである。本発明者らは、水溶液とマンガン化合物とを共沈することによって均一化合物を生成する方法を報告している(特開2001−316200、発明の名称「マンガン酸化物単結晶粒子およびその製造法」)。
【0004】
【発明が解決しようとする課題】
本発明は、炭素と混合した金属化合物の熱分解反応を利用して、金属酸化物と炭素との均一ナノサイズ複合化合物の調製法、また製造した複合化合物を電池などのデバイスに用いる技術の提供を目的としている。
【0005】
【課題を解決するための手段】
本発明は、金属化合物、その水和物、またはその溶液と炭素とを混合し加熱することによって生成する酸化物と炭素のナノ複合化合物を要旨としている。
【0006】
二種類以上の金属化合物、その水和物、またはその溶液を用いたものであり、その場合、本発明は、二種類以上の金属化合物、その水和物、またはその溶液と炭素とを混合し加熱することによって生成する酸化物と炭素のナノ複合化合物である。
【0007】
目的の化合物によって加熱する際の雰囲気を制御しており、その場合、本発明は、金属化合物、必要に応じ二種類以上の金属化合物、その水和物、またはその溶液と炭素とを混合し、目的の化合物によって加熱する際の雰囲気を制御して加熱することによって生成する酸化物と炭素のナノ複合化合物である。
【0008】
比表面積の異なった炭素材を用いることによって組成、形状および/または粒子サイズが制御されており、その場合、本発明は、金属化合物、必要に応じ二種類以上の金属化合物、その水和物、またはその溶液と炭素とを混合し加熱する、好ましくは目的の化合物によって加熱する際の雰囲気を制御して加熱することによって、比表面積の異なった炭素材を用いることによって組成、形状および/または粒子サイズが制御されることによって生成する酸化物と炭素のナノ複合化合物である。
【0009】
また、本発明は、上記のいずれかのナノ複合化合物を用いたリチウム二次電池やキャパシタなどのデバイスを要旨としている。
【0010】
【発明の実施の形態】
本発明は、ナノサイズの金属酸化物と炭素との複合化合物、およびこの複合化合物を用いる電池やキャパシタに関するものである。
また、本発明は、炭素材と金属化合物とを混合し、炭素材分解しない温度下で金属化合物を分解させて生成する金属酸化物と炭素材の製造法、及びこの複合化合物を用いた電極を使用する電池の製造技術である。
【0011】
低温で分解する金属塩が硝酸塩や炭酸塩、水酸化物、又はこれらの混合塩であり、その場合、本発明は、これらの化合物を炭素材と混合し、炭素材を分解せず、用いた金属硝酸塩や炭酸塩、水酸化物またはその混合物を分解し金属酸化物に相変化することによって、金属酸化物と炭素材との複合化合物の製造法である。さらに、この複合化合物を製膜することによって作成する電池の製造法である。
【0012】
炭素化合物を分解せず金属化合物を分解するには、炭素材の種類にもよるが一般に600℃以下の温度を制御することができるが、真空や不活性ガス雰囲気の制御下で進行することができる。その場合、本発明は、低温で分解する金属塩、より具体的には硝酸マンガン、硝酸コバルトや硝酸ニッケル、硝酸クロムなどと炭素材たとえばアセチレンブラックと混合した後空気中あるいは雰囲気制御した環境化でこれらの金属塩の分解反応を進行させる製造法である。
【0013】
二種類以上の塩を使用する場合には、予め金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液を混合し作成した混合物と炭素材とを混合し、又は金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液と炭素材とを所定量で混合し、反応場に導入することによって金属酸化物と炭素との複合化合物を生成させており、その場合、本発明は、二種類以上の分解性金属塩と炭素材とを、450℃以下、又は雰囲気制御した反応場に導入して分解反応を進行させて複合化合物を生成させる金属酸化物と炭素材との複合化合物製造法である。
【0014】
〔原料化合物〕
原料化合物としての金属化合物は、いずれも公知のものが使用できるが、低温や不活性ガス環境で分解する塩でなければならない。例えば、リチウム、マンガン、コバルトなどの硝酸塩や炭酸塩、水酸化物などが挙げられる。
【0015】
〔生成物の組成や形態制御〕
生成物の組成は原料化合物の種類を選択することによって制御できる他、加熱温度や雰囲気などのコントロールで制御できるたとえば、Mn(NOを用いてMnOと炭素との複合化合物を調製する場合には、450℃以下の比較的に低温が好ましいことに対して、同様な系で真空下で分解反応を進行させるとより低温化で進行することができる。反応場または炭素の選択によって微細のナノサイズ粒子からミクロオーダサイズの結晶までの調製が可能になる。
【0016】
〔加熱温度〕
複合化合物を得るためには、金属塩あるいは十分に混合したそれらの混合物を加熱すればよい。加熱温度は用いる金属塩の分解温度以上と炭素材を分解する温度以下の間にすればよいが、マンガン、鉄などの遷移金属酸化物の場合には、金属の原子価が温度に大きく影響されるために温度の設定が重要である。
【0017】
〔雰囲気〕
複合化合物を得るためには、空気中における反応も可能であるが、特定の酸化物を得るためには酵素分圧を制御するのが重要である。雰囲気を制御するには、酸素ガス、窒素ガス、あるいはその混合ガスなどの導入で制御できるが、反応場に酸化−還元性の試薬を添加することによって制御することも可能になる。
【0018】
【作用】
金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液を加熱すると、これらの化合物は分解し、酸化物になることが分かっているが、ほとんどの場合には、数十ミクロン以上のサイズの粒子や塊を生成する。
本発明は、金属硝酸塩や炭酸塩、水酸化物やその水和物、あるいは溶液と炭素材とを混合し、これらの化合物を炭素材表面に付着する。その後、加熱分解することによって金属酸化物・炭素材ナノ複合体が得られる。
したがって、使用される炭素材の表面積は重要である。より小さいナノ粒子を得るためには、高い表面積の炭素材を用いることが適当である。
【0019】
マンガンやコバルト、クロムの硝酸塩は300℃以下の低温で分解することが知られている。この温度では炭素材の分解がおこらない。したがって、両者の混合物を適当な温度や雰囲気で加熱すると、金属酸化物と炭素材との複合化合物が生成できる。
例えば、マンガンの硝酸塩は200℃以上加熱すると分解し、二酸化マンガンが生成する。他方の炭素材のアセチレンブラックは460℃以上分解するので、200−460℃の間で加熱すると、二酸化マンガン・アセチレンブラックの複合体が得られる。反応場の酸素圧力によっては硝酸マンガンはMn、Mnに分解することができるため、この場合にはMn、Mnとアセチレンブラックの複合体がえられる。
【0020】
本発明のリチウム二次電池において上記複合化合物を正極活物質として使用する。正極の作成は、従来法と同様であるが、本複合化合物には炭素材が含んでいるため、導電材の添加は不要である。
一方、負極は活物質としては、リチウムイオンを吸蔵、放出しうる物質であれば特に制限されず、例えば、金属リチウム、リチウム−アルミニウム、リチウム−水銀、リチウム−鉛、リチウム−錫、ウッド合金などのリチウム合金、ポリアセチレン、グラファイトなどの炭素化合物とリチウムの複合体などが上げることができる。
さらに、電解質としては、従来リチウム電池に使用されるものであれば特に制限はない。
【0021】
【実施例】
本願発明の詳細を実施例で説明する。本願発明はこれら実施例によって何ら限定されるものではない。
【0022】
実施例1
Mn(NO・6HO(液体状、11.5g)と1gのアセチレンブラックとをよく混合し、320℃で8時間加熱した。加熱終了後、複合化合物が得られる。
得られる複合化合物は、100nm程度以下のの粒子である(図1)。炭素材とマンガン酸化物粒子の区別がつかない。TEM観察から、アセチレンブラックとマンガン酸化物との結合は確認できる。
【0023】
実施例2
実施例1で得られた複合化合物とテフロン(登録商標)繊維との混合した後、成型し正極を作成した。リチウム金属を負極にし、電解質として1M LiPF/EC+DEC(1:1)を用いてコイン型電池を作成した。電池の充放電は4.9−1.2Vで行った。
一回目の放電は320mAh/gの高い容量を得た(図2)。また20までは安定なサイクル特性を示した。
【0024】
比較例1
Mn(NO・6HOを320℃で8時間加熱した。得られた生成物はβ−MnOであり、SEM写真から5マイクロメーター以上の粒子であることが分かる(図3)。
【0025】
【発明の効果】
電池工学上有用な材料として利用できるマンガン酸化物・アセチレンブラックナノ複合化合物を提供することができる。
【図面の簡単な説明】
【図1】MnO・アセチレンブラック複合化合物
【図2】一回目の放電曲線と20回目までの充放電曲線
【図3】Mn(NO・6HOの熱分解で得られた二酸化マンガン
[0001]
[Technical field to which industry belongs]
The present invention relates to a method for producing a composite compound of metal oxide and carbon, which can be used as a useful material in battery engineering, and a battery using the same.
[0002]
[Prior art]
2. Description of the Related Art High power density and high output density are desired for power supplies of small portable electronic devices and electric vehicles. At present, a new type of energy device called an electrochemical capacitor using a metal oxide as an electrode material has attracted attention. A series of noble metal, valve metal, transition metal, and lithium transition metal oxides are used as energy storage materials as metal oxide-based materials. Of these, valve metals are used as electrolytic capacitor materials, and other metals are used as electrode materials for electrochemical capacitors and various batteries.
[0003]
When a metal oxide is used for a battery, it is usually necessary to uniformly mix it with carbon to form a film in order to maintain the conductivity of the electrode. Current technology usually employs a mechanical mixing method. In this case, it is difficult to uniformly mix fine particles in particular due to aggregation of the carbon material and the metal oxide. The present inventors have reported a method for producing a homogeneous compound by coprecipitating an aqueous solution and a manganese compound (Japanese Patent Application Laid-Open No. 2001-316200, entitled "Mn Manganese Oxide Single Crystal Particles and Method for Producing the Same"). ).
[0004]
[Problems to be solved by the invention]
The present invention provides a method for preparing a uniform nanosized composite compound of a metal oxide and carbon by utilizing a thermal decomposition reaction of a metal compound mixed with carbon, and a technique for using the manufactured composite compound for a device such as a battery. It is an object.
[0005]
[Means for Solving the Problems]
The gist of the present invention is a nanocomposite compound of oxide and carbon generated by mixing and heating a metal compound, a hydrate thereof, or a solution thereof and carbon.
[0006]
Two or more metal compounds, hydrates thereof, or a solution thereof is used.In this case, the present invention provides a method of mixing two or more metal compounds, hydrates, or solutions thereof with carbon. This is a nanocomposite compound of oxide and carbon generated by heating.
[0007]
The atmosphere at the time of heating by the target compound is controlled, in which case, the present invention, a metal compound, two or more kinds of metal compounds as required, a hydrate thereof, or a solution thereof and a mixture of carbon, This is a nanocomposite compound of oxide and carbon generated by heating while controlling the atmosphere when heating with a target compound.
[0008]
The composition, shape and / or particle size are controlled by using carbon materials having different specific surface areas. In this case, the present invention relates to a metal compound, if necessary, two or more metal compounds, a hydrate thereof, Or by mixing and heating the solution and carbon, preferably by controlling and heating the atmosphere when heating with the target compound, by using carbon materials having different specific surface areas, by using compositions, shapes and / or particles. This is a nanocomposite compound of oxide and carbon generated by controlling the size.
[0009]
The present invention also provides a device such as a lithium secondary battery or a capacitor using any of the above nanocomposite compounds.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a composite compound of a nano-sized metal oxide and carbon, and a battery and a capacitor using the composite compound.
Further, the present invention provides a method for producing a metal oxide and a carbon material produced by mixing a carbon material and a metal compound and decomposing the metal compound at a temperature at which the carbon material does not decompose, and an electrode using the composite compound. This is the battery manufacturing technology to be used.
[0011]
The metal salt that decomposes at a low temperature is nitrate, carbonate, hydroxide, or a mixed salt thereof.In this case, the present invention uses these compounds by mixing these compounds with a carbon material without decomposing the carbon material. This is a method for producing a composite compound of a metal oxide and a carbon material by decomposing a metal nitrate, a carbonate, a hydroxide or a mixture thereof and changing the phase to a metal oxide. Further, the present invention relates to a method for producing a battery formed by forming a film of the composite compound.
[0012]
In order to decompose the metal compound without decomposing the carbon compound, it is generally possible to control a temperature of 600 ° C. or lower depending on the type of the carbon material, but it is possible to proceed under control of a vacuum or an inert gas atmosphere. it can. In this case, the present invention provides a method of mixing a metal salt that decomposes at a low temperature, more specifically, manganese nitrate, cobalt nitrate, nickel nitrate, chromium nitrate, and the like with a carbon material such as acetylene black, and then in an air or atmosphere-controlled environment. This is a production method in which the decomposition reaction of these metal salts proceeds.
[0013]
When using two or more kinds of salts, a metal nitrate or carbonate, a hydroxide or a hydrate thereof, or a mixture prepared by mixing a solution and a carbon material are mixed, or a metal nitrate or carbonate is used. A composite compound of metal oxide and carbon is produced by mixing a predetermined amount of a hydroxide or a hydrate thereof, or a solution and a carbon material, and introducing the mixture into a reaction field. Is a composite of a metal oxide and a carbon material, in which two or more types of decomposable metal salts and a carbon material are introduced into a reaction field at 450 ° C. or lower, or in an atmosphere-controlled state, and the decomposition reaction proceeds to form a composite compound. This is a method for producing a compound.
[0014]
(Raw material compound)
As the metal compound as a raw material compound, any known metal compound can be used, but it must be a salt that decomposes at low temperature or in an inert gas environment. For example, nitrates, carbonates, hydroxides and the like of lithium, manganese, cobalt and the like can be mentioned.
[0015]
(Product composition and morphology control)
The composition of the product can be controlled by selecting the type of the raw material compound, and can be controlled by controlling the heating temperature, atmosphere, and the like. For example, a composite compound of MnO 2 and carbon is prepared using Mn (NO 3 ) 2. In such a case, a relatively low temperature of 450 ° C. or lower is preferable, whereas the decomposition reaction can be performed at a lower temperature by performing the decomposition reaction in a similar system under vacuum. The choice of reaction field or carbon allows the preparation of fine nano-sized particles to micro-ordered crystals.
[0016]
〔Heating temperature〕
In order to obtain a composite compound, the metal salt or a sufficiently mixed mixture thereof may be heated. The heating temperature may be between the decomposition temperature of the metal salt used and the temperature at which the carbon material is decomposed, but in the case of transition metal oxides such as manganese and iron, the valence of the metal is greatly affected by the temperature. Therefore, setting the temperature is important.
[0017]
〔atmosphere〕
In order to obtain a composite compound, a reaction in air is possible, but in order to obtain a specific oxide, it is important to control the partial pressure of the enzyme. The atmosphere can be controlled by introducing oxygen gas, nitrogen gas, or a mixture thereof, but can also be controlled by adding an oxidizing / reducing reagent to the reaction field.
[0018]
[Action]
Heating metal nitrates and carbonates, hydroxides and their hydrates, or solutions has been shown to decompose these compounds into oxides, but in most cases, these compounds are tens of microns or larger. Generates particles and clumps of size.
According to the present invention, a metal nitrate or carbonate, a hydroxide or a hydrate thereof, or a solution is mixed with a carbon material, and these compounds are attached to the surface of the carbon material. Thereafter, the resultant is thermally decomposed to obtain a metal oxide / carbon material nanocomposite.
Therefore, the surface area of the carbon material used is important. In order to obtain smaller nanoparticles, it is appropriate to use a carbon material having a high surface area.
[0019]
It is known that manganese, cobalt, and chromium nitrates decompose at a low temperature of 300 ° C. or less. At this temperature, decomposition of the carbon material does not occur. Therefore, when a mixture of the two is heated at an appropriate temperature or atmosphere, a composite compound of a metal oxide and a carbon material can be produced.
For example, manganese nitrate decomposes when heated to 200 ° C. or higher, producing manganese dioxide. Acetylene black, which is the other carbon material, decomposes at 460 ° C. or higher, so that when heated between 200 and 460 ° C., a manganese dioxide / acetylene black composite is obtained. Manganese nitrate can be decomposed into Mn 2 O 3 and Mn 3 O 4 depending on the oxygen pressure in the reaction field. In this case, a composite of Mn 2 O 3 , Mn 3 O 4 and acetylene black is obtained.
[0020]
The composite compound is used as a positive electrode active material in the lithium secondary battery of the present invention. The preparation of the positive electrode is the same as that of the conventional method, but since the composite compound contains a carbon material, it is not necessary to add a conductive material.
On the other hand, the negative electrode is not particularly limited as an active material as long as it can absorb and release lithium ions, and examples thereof include metal lithium, lithium-aluminum, lithium-mercury, lithium-lead, lithium-tin, and wood alloy. And a composite of lithium with a carbon compound such as a lithium alloy, polyacetylene, and graphite.
Further, the electrolyte is not particularly limited as long as it is conventionally used for lithium batteries.
[0021]
【Example】
Examples of the present invention will be described in detail. The present invention is not limited by these examples.
[0022]
Example 1
Mn (NO 3 ) 2 .6H 2 O (liquid, 11.5 g) and 1 g of acetylene black were mixed well and heated at 320 ° C. for 8 hours. After the completion of the heating, a composite compound is obtained.
The resulting composite compound is particles having a size of about 100 nm or less (FIG. 1). Indistinguishable between carbon material and manganese oxide particles. From the TEM observation, the bond between acetylene black and manganese oxide can be confirmed.
[0023]
Example 2
After mixing the composite compound obtained in Example 1 with Teflon (registered trademark) fiber, the mixture was molded to form a positive electrode. A coin-type battery was prepared using lithium metal as a negative electrode and 1M LiPF 6 / EC + DEC (1: 1) as an electrolyte. The battery was charged and discharged at 4.9-1.2V.
The first discharge obtained a high capacity of 320 mAh / g (FIG. 2). Up to 20, stable cycle characteristics were exhibited.
[0024]
Comparative Example 1
Mn (NO 3 ) 2 .6H 2 O was heated at 320 ° C. for 8 hours. The obtained product is β-MnO 2 , and it can be seen from the SEM photograph that the product is particles of 5 micrometers or more (FIG. 3).
[0025]
【The invention's effect】
A manganese oxide / acetylene black nanocomposite compound that can be used as a useful material in battery engineering can be provided.
[Brief description of the drawings]
FIG. 1 is a MnO 2 .acetylene black composite compound. FIG. 2 is a first discharge curve and a charge / discharge curve up to 20 times. FIG. 3 is a dioxide obtained by thermal decomposition of Mn (NO 3 ) 2 .6H 2 O. manganese

Claims (5)

金属化合物、その水和物、またはその溶液と炭素とを混合し熱分解することによって生成する酸化物と炭素のナノ複合化合物。A nanocomposite compound of oxide and carbon generated by mixing and pyrolyzing a metal compound, its hydrate, or its solution and carbon. 二種類以上の金属化合物、その水和物、またはその溶液を用いた請求項1のナノ複合化合物。The nanocomposite compound according to claim 1, wherein two or more metal compounds, hydrates, or solutions thereof are used. 目的の化合物によって加熱する際の雰囲気を制御する請求項1または2のナノ複合化合物。3. The nanocomposite compound according to claim 1, wherein an atmosphere at the time of heating is controlled by a target compound. 比表面積の異なった炭素材を用いることによって組成、形状および/または粒子サイズが制御された請求項1、2または3のナノ複合化合物。4. The nanocomposite compound according to claim 1, wherein the composition, shape and / or particle size are controlled by using carbon materials having different specific surface areas. 請求項1ないし4のいずれかのナノ複合化合物を用いたリチウム二次電池やキャパシタなどのデバイス。A device such as a lithium secondary battery or a capacitor using the nanocomposite compound according to claim 1.
JP2002216926A 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same Expired - Fee Related JP4365071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216926A JP4365071B2 (en) 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216926A JP4365071B2 (en) 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same

Publications (2)

Publication Number Publication Date
JP2004063141A true JP2004063141A (en) 2004-02-26
JP4365071B2 JP4365071B2 (en) 2009-11-18

Family

ID=31938545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216926A Expired - Fee Related JP4365071B2 (en) 2002-07-25 2002-07-25 Nanocomposite compound of oxide and carbon, and battery using the same

Country Status (1)

Country Link
JP (1) JP4365071B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260006A (en) * 2004-03-11 2005-09-22 Kri Inc Capacitor and its manufacturing method
JP2012006821A (en) * 2010-06-24 2012-01-12 Samsung Electro-Mechanics Co Ltd Lithium manganese oxide-carbon nanocomposite, and method for producing the same
JP2012209032A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Metal compound-conductive agent complex, lithium secondary battery using the same, and metal compound-conductive agent complex manufacturing method
JP2013537358A (en) * 2010-09-20 2013-09-30 エルジー・ケム・リミテッド High capacity positive electrode active material with improved conductivity and non-aqueous electrolyte secondary battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260006A (en) * 2004-03-11 2005-09-22 Kri Inc Capacitor and its manufacturing method
JP2012006821A (en) * 2010-06-24 2012-01-12 Samsung Electro-Mechanics Co Ltd Lithium manganese oxide-carbon nanocomposite, and method for producing the same
JP2013537358A (en) * 2010-09-20 2013-09-30 エルジー・ケム・リミテッド High capacity positive electrode active material with improved conductivity and non-aqueous electrolyte secondary battery including the same
US9214664B2 (en) 2010-09-20 2015-12-15 Lg Chem, Ltd. Cathode active material with high capacity and improved conductivity and non-aqueous electrolyte secondary battery comprising the same
JP2012209032A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Metal compound-conductive agent complex, lithium secondary battery using the same, and metal compound-conductive agent complex manufacturing method

Also Published As

Publication number Publication date
JP4365071B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US8277683B2 (en) Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
KR101644252B1 (en) Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
Wang et al. Synthesis and manipulation of single-crystalline lithium nickel manganese cobalt oxide cathodes: A review of growth mechanism
EP2500967B1 (en) Anode active material for a rechargeable lithium battery
WO2009120019A1 (en) Olivine-type cathode active material precursor for lithium battery, olivine-type cathode active material for lithium battery, method for preparing the same and lithium battery with the same
JP2017016753A (en) Transition metal composite hydroxide particle, manufacturing method for the same, positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method for the same and nonaqueous electrolyte secondary battery
JP2006134852A (en) Method of manufacturing crystalline material nano particulate anode active material using self-blending eutectic method for high output lithium secondary battery
JP2012254889A (en) Nickel/manganese composite hydroxide particle and method of manufacturing the same, cathode active material for nonaqueous electrolyte secondary cell and method of manufacturing the same, and nonaqueous electrolyte secondary cell
JP7293576B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same
JP2014220232A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP7452569B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP7389376B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP7452570B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2023027147A (en) Metal composite hydroxide and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery using the same
JP2023040082A (en) Metal complex hydroxide and production method therefor, cathode active material for lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery using the same
JP7206819B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4522682B2 (en) Method for producing electrode material powder, electrode material powder and electrode, and lithium battery
JP2019077577A (en) Transition metal composite hydroxide particles, production method thereof, positive electrode active material for lithium ion secondary battery, production method thereof, and lithium ion secondary battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
JP7167491B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP4365071B2 (en) Nanocomposite compound of oxide and carbon, and battery using the same
JP7272134B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2019021426A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees