JP2004062954A - Evaluation element for thin film magnetic head , thin film magnetic head wafer, and thin film magnetic head bar - Google Patents

Evaluation element for thin film magnetic head , thin film magnetic head wafer, and thin film magnetic head bar Download PDF

Info

Publication number
JP2004062954A
JP2004062954A JP2002217173A JP2002217173A JP2004062954A JP 2004062954 A JP2004062954 A JP 2004062954A JP 2002217173 A JP2002217173 A JP 2002217173A JP 2002217173 A JP2002217173 A JP 2002217173A JP 2004062954 A JP2004062954 A JP 2004062954A
Authority
JP
Japan
Prior art keywords
magnetic head
thin
film magnetic
magnetic
evaluation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002217173A
Other languages
Japanese (ja)
Other versions
JP3939215B2 (en
Inventor
Hiroaki Kasahara
笠原 寛顕
Nozomi Hachisuga
蜂須賀 望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002217173A priority Critical patent/JP3939215B2/en
Publication of JP2004062954A publication Critical patent/JP2004062954A/en
Application granted granted Critical
Publication of JP3939215B2 publication Critical patent/JP3939215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation element for a thin film magnetic head, capable of changing a magnetic resistance by a small magnetic field change, and to provide a thin film magnetic head wafer and a thin film magnetic head bar. <P>SOLUTION: Two orthogonal axes perpendicular in the thickness direction (Z axis) of a magnetic shield L<SB>D</SB>are set as a longitudinal axis (X axis) and a lateral axis (Y axis). The ratio (X<SB>D</SB>/Y<SB>D</SB>) of the longitudinal length X<SB>D</SB>of the magnetic shield L<SB>D</SB>to a lateral length Y<SB>D</SB>is 6 or higher. By setting the aspect ratio of the magnetic sheild L<SB>D</SB>in such a manner, the magnetic resistance of a magneto-resistive effect element TMR<SB>D</SB>in the evaluation element D is easily changed with respect to the change of a measured magnetic field. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜磁気ヘッド用評価素子、薄膜磁気ヘッドウエハ及び薄膜磁気ヘッドバーに関する。
【0002】
【従来の技術】
磁気ディスク装置の大容量小型化、高記録密度化に伴い、薄膜磁気ヘッドの性能向上が求められている。誘導型電磁変換素子によって記録と再生を行う薄膜磁気ヘッドに代わり、書き込み用誘導型電磁変換素子を有する記録ヘッドと読出用の磁気抵抗効果素子を有する再生ヘッドとを積層した構造の複合型薄膜磁気ヘッドが広く用いられている。
【0003】
磁気抵抗効果素子は、外部磁場に対して素子抵抗が変化する。磁気記録媒体における測定対象となる磁化遷移領域からの磁場以外の磁場は、検出時には不要であるため、薄膜磁気ヘッドにおいては、このような不要磁場を遮断する磁気シールドが磁気抵抗効果素子を挟んでいる。
【0004】
このような構造の薄膜磁気ヘッドとしては、GMR(Giant Magneto Resistive)素子及びTMR(Tunnel Magneto Resistive)素子等が列挙される。なお、薄膜磁気ヘッドは電子通過方向によっても分類されており、フリー磁性層の厚み方向に沿って電子が流れる磁気検出素子構造をCPP(Current Perpendicular to Plane)構造、これに垂直な面内において流れる磁気検出素子構造をCIP(Current
In Plane)構造という。
【0005】
いずれの薄膜磁気ヘッドにおいても、特性検査が行われる。1つのウエハやバー等の基体内に形成される薄膜磁気ヘッドの数は比較的多いため、全ての素子の検査を行うことは合理的ではない。したがって、幾つかの薄膜磁気ヘッドについて完成前の段階で薄膜磁気ヘッドの形成された基体を磁場内に配置し、その特性検査を行うことが考えられる。
【0006】
【発明が解決しようとする課題】
しかしながら、磁気シールドの存在により、完成前の段階で薄膜磁気ヘッドに磁場を印加しても磁気抵抗効果素子の抵抗は変化しにくく、磁気抵抗効果素子の抵抗変化を生じさせるためには、非常に強い磁場を印加しなくてはならない。ところが、このような強磁場の印加された状態では、精密な特性検査は困難である。
【0007】
また、磁気記録媒体の磁化遷移領域からの高速読出は、高速な交流磁場の読出に対応するため、このような特性検査を薄膜磁気ヘッドに適用することも期待される。ところが、薄膜磁気ヘッドを高速変化する交流磁場中に配置しても、磁気シールドのヒステリシスループによって、磁気抵抗効果素子の抵抗変化が殆ど現れず、精密な特性検査はできない。
【0008】
本発明は、このような課題に鑑みてなされたものであり、小さな磁場変化で磁気抵抗が変化可能な薄膜磁気ヘッド用評価素子、薄膜磁気ヘッドウエハ及び薄膜磁気ヘッドバーを提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の課題を解決するため、本発明に係る薄膜磁気ヘッド用評価素子は、測定磁場に応じて磁気抵抗が変化する磁気抵抗効果素子と、磁気抵抗効果素子を厚み方向に挟むように配置された一対の磁気シールドとを備えた薄膜磁気ヘッド用評価素子において、磁気シールドの厚み方向に垂直な直交2軸をそれぞれ縦軸及び横軸とした場合、磁気シールドの横方向長さYに対する縦方向長さXの比は6以上であることを特徴とする。
【0010】
本願発明者らが評価素子の磁気シールドの縦横比について鋭意検討した結果、磁気シールドの縦横比を上述の如く設定すれば、この評価素子における磁気抵抗効果素子の抵抗が、測定磁場の変化に対して容易に変化するようになることが判明した。このように、小さな磁場変化を用いて評価素子を検査することにより、これと同時に形成された薄膜磁気ヘッドの特性を間接的に検査することができる。
【0011】
また、評価素子の磁気シールドの縦横比が大きすぎると、薄膜磁気ヘッドの1ウエハ当たりの収率が低下することから、上記比は100以下に設定されることが望ましい。
【0012】
すなわち、本発明に係る薄膜磁気ヘッドウエハは、上記薄膜磁気ヘッド用評価素子と同時に形成され、磁気シールドの縦横比が薄膜磁気ヘッド用評価素子の磁気シールドと異なる薄膜磁気ヘッドが複数形成されてなる。
【0013】
実際の薄膜磁気ヘッドは評価素子ではないのであるから、評価素子とは縦横比が異なるということになる。薄膜磁気ヘッドの縦横比は特性評価の観点からではなく、本来の機能に併せて最適化される。例えば、薄膜磁気ヘッドの縦横比は1とする。
【0014】
また、薄膜磁気ヘッドバーは、上記薄膜磁気ヘッドウエハを切断・加工して、薄膜磁気ヘッド用評価素子の磁気シールドの横方向長さYに対する縦方向長さXの比を3以上10未満としたことを特徴とする。
【0015】
【発明の実施の形態】
以下、実施の形態に係る薄膜磁気ヘッド用評価素子、薄膜磁気ヘッドウエハ及び薄膜磁気ヘッドバーについて説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。
【0016】
図1は薄膜磁気ヘッド用評価素子Dと薄膜磁気ヘッドRとが形成された薄膜磁気ヘッド集合体の斜視図である。この薄膜磁気ヘッド集合体はウエハであり、このウエハを切断することで、薄膜磁気ヘッドバーが形成され、さらに、これを切断することで、最終的に個々の薄膜磁気ヘッドRが分離され、その後、磁気記録媒体と組み合わせることでハードディスク装置等の磁気記録装置が完成する。
【0017】
磁気記録媒体の法線方向をX軸とする。X軸に垂直な2軸をY軸及びZ軸とする。最終的な磁気記憶装置の完成時において、磁気記録媒体に対向する面を媒体対向面(エアベアリング)ABSとする。
【0018】
ウエハ状態の薄膜磁気ヘッド集合体においては、薄膜磁気ヘッド用評価素子Dは、測定磁場に応じて磁気抵抗が変化する磁気抵抗効果素子TMRと、磁気抵抗効果素子TMRを厚み方向に挟むように配置された一対の磁気シールドU,Lとを備えている。下部の磁気シールドLの方が上部の磁気シールドUよりも大きい。磁気シールドU,Lの形状は同様なので、ここでは一方の磁気シールドLについてのみ説明するが、以下の説明は他方の磁気シールドUにも適合する。
【0019】
磁気シールドLの厚み方向(Z軸)に垂直な直交2軸をそれぞれ縦軸(X軸)及び横軸(Y軸)とする。磁気シールドLの横方向長さYに対する縦方向長さXの比(X/Y)は6以上である。
【0020】
磁気シールドLの縦横比を上述の如く設定すれば、評価素子Dにおける磁気抵抗効果素子TMRの磁気抵抗が、測定磁場の変化に対して容易に変化する。評価素子Dの磁気抵抗は、各磁気シールドU,L間に供給される電流(センス電流)を一定としつつ、各磁気シールドU,Lに電気的に接続されたリード配線UD1,LD1間の電圧を検出することで、オームの法則に従って測定される。また、電圧を一定としてU、L間を流れる電流を検出しても良い。
【0021】
TMR素子に用いられる磁気抵抗効果素子(TMR膜)TMRは、例えば、下地層/ピン止め層/下部強磁性層/絶縁層(トンネルバリア層)/上部強磁性層のような多層構造からなる積層膜からなる。ここで、ピン止め層は下部強磁性層の磁化の方向を磁気記録媒体からの磁場方向に固定するためのものである。この場合、下部強磁性層をピンド層と呼び、外部磁場に対し磁化の向きが変化する上部強磁性層をフリー層と呼ぶ。
【0022】
絶縁層の厚みは、当該強磁性層間で電子が、そのスピンを保持しながらトンネルできるほど十分に薄く設定される。フリー層とピンド層は絶縁層を挟んで対向しており、一方から他方の層に抜ける電子の割合は、お互いの磁化の向きの相対角度によって決定される。
【0023】
すなわち、このTMR膜に上下の磁気シールドU,Lから電流を流した場合、絶縁膜を挟んだ強磁性層間を流れるトンネル電流は、上記相対角度に依存して変化する。この現象を強磁性トンネル効果と呼び、TMR膜の抵抗は、スピンバルブ膜と同様に両磁性層の磁化の向きが平行のとき最小、反平行のとき最大となる。
【0024】
評価素子Dをウエハ集積工程で形成する際には、評価素子Dは薄膜磁気ヘッドRと全く同じ集積工程を経て形成する。つまり、CPP構造のヘッドを集積するウエハWでは、評価素子Dを薄膜磁気ヘッドRと同様にCPP構造とし、かつ下地からの膜構成を基本的に同様とする。すなわち、評価素子DはTMR素子であり、同様に、薄膜磁気ヘッドRもTMR素子である。
【0025】
評価素子Dにおいて、例えば、配線用に下部シールド材料と磁気抵抗効果膜の間にリードを新たに形成した場合、測定される電磁気的特性は薄膜磁気ヘッドRの特性を模擬しているのではなく、下部シールド/リード間に成膜された磁気抵抗効果膜の特性を見ていることになる。つまり、CPP構造に使用される磁気抵抗効果素子は、成長前の下地の影響を受けて特性が変化してしまうことに由来する。
【0026】
薄膜磁気ヘッドRの磁気抵抗は、ダミーとしての評価素子Dの磁気抵抗変化と同じように変化する。すなわち、薄膜磁気ヘッドRの積層構造は評価素子Dの積層構造と同一であり、測定磁場に応じて磁気抵抗が変化する磁気抵抗効果素子TMRと、磁気抵抗効果素子TMRを厚み方向に挟むように配置された一対の磁気シールドU,Lとを備えている。
【0027】
下部の磁気シールドLの方が上部の磁気シールドUよりも大きく、磁気シールドLの横方向長さYに対する縦方向長さXの比(X/Y)は例えば1である。なお、薄膜磁気ヘッドRの磁気シールドU,Lにもリード配線UR1,LR1が電気的に接続されており、配線間電圧が測定可能となっており、この電圧は素子が実際の磁気記憶装置に組み込まれた場合にデータ読出に用いられる。
【0028】
上述のように、磁気シールドLの縦横比を6以上に設定し、小さな強度変化が行われる磁場中に評価素子Dを配置して、その特性を検査することにより、これと同時に形成された薄膜磁気ヘッドRの特性を間接的に検査することができる。
【0029】
図2は上記薄膜磁気ヘッド集合体としてのウエハWの斜視図である。このウエハWからは、複数の薄膜磁気ヘッドバーBが切断によって切り取られる。薄膜磁気ヘッドバーBの切り取り後に媒体対向面ABSとなる面に機械研磨等の加工が施される。
【0030】
すなわち、薄膜磁気ヘッドバーBは、薄膜磁気ヘッドウエハWをY方向に沿って切断・加工して、磁気シールドLの横方向長さYに対する縦方向長さXの比を3以上10未満とするが、そもそも、この比は1よりも大きいので、その後の検査においても、薄膜磁気ヘッドRよりも有効に磁気抵抗検出を行うことができる。
【0031】
各薄膜磁気ヘッドバーBも複数の薄膜磁気ヘッドRを有しており、薄膜磁気ヘッド集合体を構成している。同図中には7個の薄膜磁気ヘッドRに対して1個の評価素子Dを備えた薄膜磁気ヘッドバーを示すが、実際には数十〜数百個の薄膜磁気ヘッドRが単一の薄膜磁気ヘッドバーB内に含まれる。評価素子Dは薄膜磁気ヘッドバーBの略中央に位置するが、これは薄膜磁気ヘッドバーBの両端や等分割位置等にも配置することもできる。
【0032】
以上、説明したように、本実施形態に係る薄膜磁気ヘッドウエハWは、薄膜磁気ヘッド用評価素子Dと同時に形成され、縦横比が薄膜磁気ヘッド用評価素子と異なる薄膜磁気ヘッドRが複数形成されてなる。実際の薄膜磁気ヘッドRは評価素子ではないのであるから、評価素子Dとは縦横比が異なる。薄膜磁気ヘッドRの縦横比は特性評価の観点からではなく、本来の機能に併せて最適化され、本例の場合、縦横比は例えば1に設定される。
【0033】
図3は測定磁場(Oe)と実施例に係る評価素子DにおけるMR(磁気抵抗)変化率(%)の関係を示すグラフである。このグラフにおける縦横比は6である。測定磁場を僅か(±100(Oe)以内)に変化させただけで、MR変化率は25%変化している。
【0034】
図4は測定磁場(Oe)と別の実施例に係る評価素子DにおけるMR(磁気抵抗)変化率(%)の関係を示すグラフである。このグラフにおける縦横比は10である。測定磁場を僅か(±10(Oe)以内)に変化させただけで、MR変化率は25%変化している。換言すれば、評価素子Dの反磁界係数は略ゼロとなっている。
【0035】
図5は測定磁場(Oe)と比較例に係る評価素子DにおけるMR(磁気抵抗)変化率(%)の関係を示すグラフである。このグラフにおける磁気シールドの縦横比は1である。磁気シールドのヒステリシスによって、測定磁場を大きく(±1200(Oe)以上)変化させなければ、MR変化率は変化しない。もちろん、測定磁場が0(Oe)に近傍で交流磁場を与えてもMR変化率は殆ど変化しない。
【0036】
以上のグラフから明らかなように、比較例に係る評価素子D(実素子)においては、測定磁場に対して下部磁気シールド、上部磁気シールドが反磁界を発生し、内部の磁気抵抗効果素子TMRにかかる磁場をキャンセルさせて実効的にゼロにしてしまう磁場領域が存在する(磁気シールド効果)。
【0037】
このため、測定磁場が磁気シールドの飽和磁場を超えないうちは内部に磁場が入らず、磁気抵抗効果素子TMRのピンド層とフリー層内の磁界の平行・反平行状態が不安定になる。結局、約±1200(Oe)の磁場領域では、MR変化率の磁場依存性が乱れ、正確なMR変化率を求めることができない。
【0038】
また、比較例の素子では磁気シールド効果のため、ヘッド特性として特に重要なゼロ磁場付近の応答が測定できないという不具合が生じている。実施例では、測定磁場方向に対して、評価素子Dの上下の磁気シールドの縦横比を大きくしているので、上下の磁気シールドの長手方向に生じる反磁界の素子に対する影響が抑制され、磁気抵抗効果膜の磁気特性を精密に評価することができる。
【0039】
以上、説明したように、実施形態に係る評価素子Dによれば、小さな磁場変化で磁気抵抗を変化させることが可能となる。また、縦横比が大きすぎると、薄膜磁気ヘッドの1ウエハ当たりの収率が低下することから、上記縦横比は100以下に設定されることが望ましい。
【0040】
なお、上述の評価素子Dのパターンは、ウエハW上にある周期(例えばステッパ−の1ショット単位)で配置することができ、このパターンの抵抗値をゼロ磁場中、もしくは、直流や交流磁場で測定することにより、ウエハW上の全素子の評価を行うことなく、ウエハW面内における薄膜磁気ヘッドRの特性分布を評価することができる。また、このような電磁気的な特性をウエハWの製造時に把握することにより、薄膜磁気ヘッドRの良否判定、製品管理を行うことができる。
【0041】
なお、CPP構造のTMR素子としては様々なものが考えられるが、上記実施例に用いられた一例について説明しておく。
【0042】
本例のTMR素子は、AlTiCからなる基板上に下地層/ピン止め層/下部強磁性層/絶縁層(トンネルバリア層)/上部強磁性層/保護層を順次積層してなる。
【0043】
すなわち、下地層:「Ta(5nm)/NiFe(2nm)」、ピン止め層:「PtMn(15nm)」、下部強磁性層(ピンド層):「CoFe(2nm)、Ru(0.8nm)、CoFe(3nm)」、絶縁層(トンネルバリア層):「Al(0.75nm)」、上部強磁性層(フリー層):「CoFe(1.5nm)/NiFe(2.5nm)」、保護層:「Ta(10nm)」である。
【0044】
なお、上述の薄膜磁気ヘッドR及び評価素子Dとして、磁気シールドを有するものであれば、CCP構造のGMR素子にも適用することができる。
【0045】
【発明の効果】
本発明の薄膜磁気ヘッド用評価素子、薄膜磁気ヘッドウエハ及び薄膜磁気ヘッドバーによれば、小さな磁場変化で磁気抵抗を変化させることができる。
【図面の簡単な説明】
【図1】薄膜磁気ヘッド用評価素子Dと薄膜磁気ヘッドRとが形成された薄膜磁気ヘッド集合体の斜視図である。
【図2】薄膜磁気ヘッド集合体としてのウエハWの斜視図である。
【図3】測定磁場(Oe)と実施例に係る評価素子DにおけるMR(磁気抵抗)変化率(%)の関係を示すグラフである。
【図4】測定磁場(Oe)と別の実施例に係る評価素子DにおけるMR(磁気抵抗)変化率(%)の関係を示すグラフである。
【図5】測定磁場(Oe)と比較例に係る評価素子DにおけるMR(磁気抵抗)変化率(%)の関係を示すグラフである。
【符号の説明】
B…薄膜磁気ヘッドバー、D…薄膜磁気ヘッド用評価素子、R…薄膜磁気ヘッド(実素子)、TMR,TMR…磁気抵抗効果素子、U,L,U,L…磁気シールド、UD1,LD1,UR1,LR1…リード配線、W…ウエハ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thin-film magnetic head evaluation element, a thin-film magnetic head wafer, and a thin-film magnetic head bar.
[0002]
[Prior art]
2. Description of the Related Art As the capacity and size of a magnetic disk device have been reduced and the recording density has been increased, the performance of a thin-film magnetic head has been required to be improved. Instead of a thin-film magnetic head that performs recording and reproduction with an inductive electromagnetic transducer, a composite thin-film magnet having a structure in which a recording head having an inductive electromagnetic transducer for writing and a reproducing head having a magnetoresistive element for reading are stacked Heads are widely used.
[0003]
The element resistance of a magnetoresistive element changes with respect to an external magnetic field. Since a magnetic field other than the magnetic field from the magnetization transition region to be measured in the magnetic recording medium is unnecessary at the time of detection, in a thin-film magnetic head, a magnetic shield that blocks such an unnecessary magnetic field sandwiches the magnetoresistive element. I have.
[0004]
Examples of the thin film magnetic head having such a structure include a GMR (Giant Magneto Resistive) element and a TMR (Tunnel Magneto Resistive) element. Note that thin-film magnetic heads are also classified according to the direction in which electrons pass, and a magnetic sensing element structure in which electrons flow along the thickness direction of the free magnetic layer is a CPP (Current Perpendicular to Plane) structure, which flows in a plane perpendicular to the CPP structure. The structure of the magnetic sensing element is CIP (Current
In Plane) structure.
[0005]
In each of the thin-film magnetic heads, a characteristic test is performed. Since the number of thin-film magnetic heads formed in a single substrate such as a wafer and a bar is relatively large, it is not reasonable to inspect all elements. Therefore, for some thin-film magnetic heads, it is conceivable to arrange the substrate on which the thin-film magnetic heads are formed in a magnetic field at a stage before completion, and to inspect the characteristics of the substrates.
[0006]
[Problems to be solved by the invention]
However, due to the presence of the magnetic shield, even when a magnetic field is applied to the thin-film magnetic head in a stage before completion, the resistance of the magnetoresistive element is hard to change. A strong magnetic field must be applied. However, in such a state where a strong magnetic field is applied, precise characteristic inspection is difficult.
[0007]
Further, since high-speed reading from the magnetization transition region of the magnetic recording medium corresponds to high-speed reading of an alternating magnetic field, it is expected that such a characteristic test is applied to a thin-film magnetic head. However, even if the thin-film magnetic head is placed in an alternating magnetic field that changes at a high speed, the hysteresis loop of the magnetic shield hardly causes a change in the resistance of the magnetoresistive element, so that a precise characteristic test cannot be performed.
[0008]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a thin-film magnetic head evaluation element, a thin-film magnetic head wafer, and a thin-film magnetic head bar whose magnetic resistance can be changed by a small magnetic field change. I do.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the evaluation element for a thin-film magnetic head according to the present invention is arranged such that a magnetoresistance effect element whose magnetoresistance changes according to a measured magnetic field and a magnetoresistance effect element are sandwiched in a thickness direction. In a thin-film magnetic head evaluation element including a pair of magnetic shields, when two axes perpendicular to the thickness direction of the magnetic shield are defined as a vertical axis and a horizontal axis, respectively, the vertical length with respect to the horizontal length Y of the magnetic shield The ratio of the length X is 6 or more.
[0010]
As a result of the present inventors' eager examination of the aspect ratio of the magnetic shield of the evaluation element, if the aspect ratio of the magnetic shield is set as described above, the resistance of the magnetoresistive effect element in this evaluation element, It turned out to be easy to change. In this way, by inspecting the evaluation element using a small change in the magnetic field, it is possible to indirectly inspect the characteristics of the thin-film magnetic head formed at the same time.
[0011]
Further, if the aspect ratio of the magnetic shield of the evaluation element is too large, the yield per wafer of the thin film magnetic head is reduced. Therefore, it is desirable that the above ratio is set to 100 or less.
[0012]
That is, the thin-film magnetic head wafer according to the present invention is formed at the same time as the evaluation element for the thin-film magnetic head, and is formed with a plurality of thin-film magnetic heads having an aspect ratio of the magnetic shield different from that of the evaluation element for the thin-film magnetic head. .
[0013]
Since the actual thin-film magnetic head is not an evaluation element, the aspect ratio differs from that of the evaluation element. The aspect ratio of the thin film magnetic head is optimized not from the viewpoint of characteristic evaluation but according to the original function. For example, the aspect ratio of the thin-film magnetic head is 1.
[0014]
The thin-film magnetic head bar is formed by cutting and processing the thin-film magnetic head wafer so that the ratio of the vertical length X to the horizontal length Y of the magnetic shield of the evaluation element for the thin-film magnetic head is 3 or more and less than 10. It is characterized by the following.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a thin-film magnetic head evaluation element, a thin-film magnetic head wafer, and a thin-film magnetic head bar according to the embodiment will be described. Note that the same reference numerals are used for the same elements, and duplicate descriptions are omitted.
[0016]
FIG. 1 is a perspective view of a thin-film magnetic head assembly on which a thin-film magnetic head evaluation element D and a thin-film magnetic head R are formed. The thin-film magnetic head assembly is a wafer, and by cutting the wafer, a thin-film magnetic head bar is formed. Further, by cutting the thin-film magnetic head bar, individual thin-film magnetic heads R are finally separated. By combining with a magnetic recording medium, a magnetic recording device such as a hard disk device is completed.
[0017]
The normal direction of the magnetic recording medium is defined as the X axis. Two axes perpendicular to the X axis are defined as a Y axis and a Z axis. When the final magnetic storage device is completed, the surface facing the magnetic recording medium is defined as a medium facing surface (air bearing) ABS.
[0018]
In the thin-film magnetic head assembly in a wafer state, the thin-film magnetic head evaluation element D has a magnetoresistive element TMR D whose magnetoresistance changes according to a measured magnetic field and a magnetoresistive element TMD D sandwiched in the thickness direction. And a pair of magnetic shields U D , L D arranged at the same time. Toward the lower magnetic shield L D is greater than the magnetic shield U D at the top. Magnetic shield U D, the shape of the L D are the same is described herein with only one magnetic shield L D, the following description conform to the other magnetic shield U D.
[0019]
Each vertical axis perpendicular two orthogonal axes in the thickness direction (Z-axis) of the magnetic shield L D (X-axis) and the horizontal axis is (Y-axis). The ratio of the longitudinal length X D with respect to the lateral direction length Y D of the magnetic shield L D (X D / Y D ) is 6 or more.
[0020]
If set as the aspect ratio of the magnetic shield L D above, the magnetic resistance of the magnetoresistive effect element TMR D in the evaluation device D it is easily changed with respect to changes in the measured magnetic field. The magnetic resistance of the evaluation element D, each magnetic shield U D, L while the current supplied to (sense current) is constant between D, the magnetic shield U D, the lead wire is electrically connected to the L D U D1 , L D1 is measured according to Ohm's law. Alternatively, the current flowing between U D and L D may be detected with the voltage kept constant.
[0021]
The magnetoresistive element (TMR film) TMR D used in the TMR element, for example, a multilayer structure such as a foundation layer / pinned layer / lower ferromagnetic layer / insulating layer (tunnel barrier layer) / upper ferromagnetic layer It consists of a laminated film. Here, the pinning layer is for fixing the direction of magnetization of the lower ferromagnetic layer to the direction of the magnetic field from the magnetic recording medium. In this case, the lower ferromagnetic layer is called a pinned layer, and the upper ferromagnetic layer whose magnetization direction changes with an external magnetic field is called a free layer.
[0022]
The thickness of the insulating layer is set to be thin enough to allow electrons to tunnel between the ferromagnetic layers while maintaining their spin. The free layer and the pinned layer are opposed to each other with the insulating layer interposed therebetween, and the ratio of electrons passing from one layer to the other layer is determined by the relative angle between the magnetization directions.
[0023]
That is, when a current flows through the TMR film from the upper and lower magnetic shields U D and L D , the tunnel current flowing between the ferromagnetic layers sandwiching the insulating film changes depending on the relative angle. This phenomenon is called a ferromagnetic tunnel effect, and the resistance of the TMR film is minimum when the magnetization directions of both magnetic layers are parallel and maximum when the magnetization directions are antiparallel, like the spin valve film.
[0024]
When the evaluation element D is formed in the wafer integration step, the evaluation element D is formed through exactly the same integration step as the thin-film magnetic head R. That is, in the wafer W on which the heads having the CPP structure are integrated, the evaluation element D has the CPP structure like the thin film magnetic head R, and the film configuration from the base is basically the same. That is, the evaluation element D is a TMR element, and similarly, the thin-film magnetic head R is also a TMR element.
[0025]
In the evaluation element D, for example, when a lead is newly formed between the lower shield material and the magnetoresistive film for wiring, the measured electromagnetic characteristics do not simulate the characteristics of the thin film magnetic head R. And the characteristics of the magnetoresistive film formed between the lower shield and the lead. That is, the characteristics of the magnetoresistive element used in the CPP structure are changed by the influence of the base before growth.
[0026]
The magnetoresistance of the thin-film magnetic head R changes in the same manner as the magnetoresistance of the evaluation element D as a dummy. That is, the multilayer structure of the thin film magnetic head R is the same as the laminated structure of the evaluation element D, sandwiched in the thickness direction and the magnetoresistive element TMR R magnetic resistance changes, the magnetoresistive element TMR R in accordance with the measured magnetic field a pair of magnetic shields U R disposed so as to, and a L R.
[0027]
Toward the lower magnetic shield L R is greater than the magnetic shield U R of the upper, lateral length Y ratio of the longitudinal length X R for R (X R / Y R) of the magnetic shield L R in example 1 is there. The magnetic shield U R of the thin film magnetic head R, L R to be the lead wire U R1, L R1 is electrically connected to the wiring between the voltage has become possible to measure this voltage element the actual Used for data reading when incorporated in a magnetic storage device.
[0028]
As described above, setting the aspect ratio of the magnetic shield L D to 6 above, by arranging the evaluation element D in a magnetic field of small intensity change is performed by examining its characteristics, this to have been formed at the same time The characteristics of the thin-film magnetic head R can be inspected indirectly.
[0029]
FIG. 2 is a perspective view of a wafer W as the thin-film magnetic head assembly. From the wafer W, a plurality of thin-film magnetic head bars B are cut out by cutting. After the thin-film magnetic head bar B is cut off, the surface that becomes the medium facing surface ABS is subjected to a process such as mechanical polishing.
[0030]
That is, the thin film magnetic head bar B is a thin-film magnetic head wafer W is cut and processed along the Y direction, and three or more and less than 10 the ratio of the vertical length X with respect to the lateral direction length Y of the magnetic shield L D However, since this ratio is greater than 1 in the first place, the magnetoresistance can be detected more effectively than the thin-film magnetic head R even in the subsequent inspection.
[0031]
Each thin-film magnetic head bar B also has a plurality of thin-film magnetic heads R, forming a thin-film magnetic head assembly. FIG. 1 shows a thin-film magnetic head bar provided with one evaluation element D for seven thin-film magnetic heads R. Included in thin film magnetic head bar B. Although the evaluation element D is located substantially at the center of the thin-film magnetic head bar B, it can also be arranged at both ends of the thin-film magnetic head bar B or at equally divided positions.
[0032]
As described above, the thin-film magnetic head wafer W according to the present embodiment is formed simultaneously with the thin-film magnetic head evaluation element D, and a plurality of thin-film magnetic heads R having different aspect ratios from the thin-film magnetic head evaluation element are formed. It becomes. Since the actual thin-film magnetic head R is not an evaluation element, the aspect ratio differs from that of the evaluation element D. The aspect ratio of the thin-film magnetic head R is optimized not in terms of characteristic evaluation but in accordance with the original function. In this example, the aspect ratio is set to 1, for example.
[0033]
FIG. 3 is a graph showing the relationship between the measured magnetic field (Oe) and the MR (magnetic resistance) change rate (%) in the evaluation element D according to the example. The aspect ratio in this graph is 6. Even when the measurement magnetic field is slightly changed (within ± 100 (Oe)), the MR change rate changes by 25%.
[0034]
FIG. 4 is a graph showing the relationship between the measured magnetic field (Oe) and the MR (magnetic resistance) change rate (%) in the evaluation element D according to another embodiment. The aspect ratio in this graph is 10. Even when the measurement magnetic field is slightly changed (within ± 10 (Oe)), the MR change rate changes by 25%. In other words, the demagnetizing coefficient of the evaluation element D is substantially zero.
[0035]
FIG. 5 is a graph showing the relationship between the measured magnetic field (Oe) and the MR (magnetic resistance) change rate (%) in the evaluation element D according to the comparative example. The aspect ratio of the magnetic shield in this graph is 1. Unless the measured magnetic field is changed greatly (± 1200 (Oe) or more) by the hysteresis of the magnetic shield, the MR change rate does not change. Of course, even when an AC magnetic field is applied near the measurement magnetic field of 0 (Oe), the MR change rate hardly changes.
[0036]
As is clear from the above graph, in the evaluation element D (actual element) according to the comparative example, the lower magnetic shield and the upper magnetic shield generate a demagnetizing field with respect to the measured magnetic field, and the internal magnetoresistance effect element TMR D There is a magnetic field region in which the magnetic field applied to is effectively canceled to zero (magnetic shield effect).
[0037]
Therefore, measuring the magnetic field does not enter the magnetic field in the internal of which does not exceed the saturation magnetic field of the magnetic shield, parallel and anti-parallel state of the magnetic field of the pinned layer and the free layer of the magnetoresistive element TMR D becomes unstable. As a result, in the magnetic field region of about ± 1200 (Oe), the dependence of the MR change rate on the magnetic field is disturbed, and an accurate MR change rate cannot be obtained.
[0038]
In addition, the element of the comparative example has a problem that a response near zero magnetic field, which is particularly important as head characteristics, cannot be measured due to the magnetic shielding effect. In the embodiment, since the aspect ratio of the upper and lower magnetic shields of the evaluation element D is increased with respect to the direction of the measurement magnetic field, the influence of the demagnetizing field generated in the longitudinal direction of the upper and lower magnetic shields on the element is suppressed, and the magnetoresistance is reduced. The magnetic properties of the effect film can be precisely evaluated.
[0039]
As described above, according to the evaluation element D according to the embodiment, it is possible to change the magnetic resistance with a small change in the magnetic field. If the aspect ratio is too large, the yield per wafer of the thin-film magnetic head decreases, so that the aspect ratio is desirably set to 100 or less.
[0040]
The pattern of the evaluation element D described above can be arranged on the wafer W at a certain period (for example, one shot unit of a stepper), and the resistance value of this pattern is set in a zero magnetic field or a DC or AC magnetic field. By performing the measurement, the characteristic distribution of the thin-film magnetic head R in the plane of the wafer W can be evaluated without evaluating all the elements on the wafer W. Further, by grasping such electromagnetic characteristics at the time of manufacturing the wafer W, the quality of the thin-film magnetic head R can be determined and product management can be performed.
[0041]
Various TMR elements having a CPP structure are conceivable, but an example used in the above embodiment will be described.
[0042]
The TMR element of this example is formed by sequentially laminating an underlayer / pinning layer / lower ferromagnetic layer / insulating layer (tunnel barrier layer) / upper ferromagnetic layer / protective layer on an AlTiC substrate.
[0043]
That is, the underlayer: “Ta (5 nm) / NiFe (2 nm)”, the pinning layer: “PtMn (15 nm)”, the lower ferromagnetic layer (pinned layer): “CoFe (2 nm), Ru (0.8 nm), CoFe (3 nm) ", insulating layer (tunnel barrier layer):" Al 2 O 3 (0.75 nm) ", upper ferromagnetic layer (free layer):" CoFe (1.5 nm) / NiFe (2.5 nm) " , Protective layer: “Ta (10 nm)”.
[0044]
The above-described thin-film magnetic head R and evaluation element D can be applied to a GMR element having a CCP structure as long as they have a magnetic shield.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the evaluation element for thin film magnetic heads, the thin film magnetic head wafer, and the thin film magnetic head bar of the present invention, the magnetic resistance can be changed by a small magnetic field change.
[Brief description of the drawings]
FIG. 1 is a perspective view of a thin-film magnetic head assembly on which a thin-film magnetic head evaluation element D and a thin-film magnetic head R are formed.
FIG. 2 is a perspective view of a wafer W as a thin-film magnetic head assembly.
FIG. 3 is a graph showing a relationship between a measurement magnetic field (Oe) and an MR (magnetoresistive) change rate (%) in an evaluation element D according to an example.
FIG. 4 is a graph showing a relationship between a measurement magnetic field (Oe) and an MR (magnetic resistance) change rate (%) in an evaluation element D according to another example.
FIG. 5 is a graph showing a relationship between a measurement magnetic field (Oe) and an MR (magnetic resistance) change rate (%) in an evaluation element D according to a comparative example.
[Explanation of symbols]
B ... thin film magnetic head bar, D ... thin-film magnetic head evaluation element, R ... thin-film magnetic head (actual element), TMR D, TMR R ... magnetoresistive element, U D, L D, U R, L R ... Magnetic Shield, U D1 , L D1 , U R1 , L R1 ... lead wiring, W ... wafer.

Claims (4)

測定磁場に応じて磁気抵抗が変化する磁気抵抗効果素子と、前記磁気抵抗効果素子を厚み方向に挟むように配置された一対の磁気シールドとを備えた薄膜磁気ヘッド用評価素子において、前記磁気シールドの前記厚み方向に垂直な直交2軸をそれぞれ縦軸及び横軸とした場合、前記磁気シールドの横方向長さYに対する縦方向長さXの比は6以上であることを特徴とする薄膜磁気ヘッド用評価素子。An evaluation element for a thin-film magnetic head, comprising: a magnetoresistive element whose magnetoresistance changes according to a measured magnetic field; and a pair of magnetic shields arranged so as to sandwich the magnetoresistive element in a thickness direction. Wherein the ratio of the vertical length X to the horizontal length Y of the magnetic shield is 6 or more, where the two orthogonal axes perpendicular to the thickness direction are the vertical axis and the horizontal axis, respectively. Evaluation element for head. 前記比は100以下であることを特徴とする請求項1に記載の薄膜磁気ヘッド用評価素子。The evaluation element according to claim 1, wherein the ratio is 100 or less. 請求項1に記載の薄膜磁気ヘッド用評価素子と同時に形成され、磁気シールドの縦横比が前記薄膜磁気ヘッド用評価素子の前記磁気シールドとは異なる薄膜磁気ヘッドが複数形成されてなる薄膜磁気ヘッドウエハ。2. A thin-film magnetic head wafer formed with a plurality of thin-film magnetic heads formed simultaneously with the thin-film magnetic head evaluation element according to claim 1 and having a magnetic shield having an aspect ratio different from that of the magnetic shield of the thin-film magnetic head evaluation element. . 請求項3に記載の薄膜磁気ヘッドウエハを切断・加工して、前記薄膜磁気ヘッド用評価素子の前記磁気シールドの横方向長さYに対する縦方向長さXの比を3以上10未満としたことを特徴とする薄膜磁気ヘッドバー。4. The thin-film magnetic head wafer according to claim 3, wherein the ratio of the vertical length X to the horizontal length Y of the magnetic shield of the evaluation element for the thin-film magnetic head is 3 or more and less than 10. A thin film magnetic head bar characterized by the following.
JP2002217173A 2002-07-25 2002-07-25 Thin film magnetic head evaluation element, thin film magnetic head wafer, and thin film magnetic head bar Expired - Fee Related JP3939215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217173A JP3939215B2 (en) 2002-07-25 2002-07-25 Thin film magnetic head evaluation element, thin film magnetic head wafer, and thin film magnetic head bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217173A JP3939215B2 (en) 2002-07-25 2002-07-25 Thin film magnetic head evaluation element, thin film magnetic head wafer, and thin film magnetic head bar

Publications (2)

Publication Number Publication Date
JP2004062954A true JP2004062954A (en) 2004-02-26
JP3939215B2 JP3939215B2 (en) 2007-07-04

Family

ID=31938728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217173A Expired - Fee Related JP3939215B2 (en) 2002-07-25 2002-07-25 Thin film magnetic head evaluation element, thin film magnetic head wafer, and thin film magnetic head bar

Country Status (1)

Country Link
JP (1) JP3939215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417442B2 (en) 2004-07-28 2008-08-26 Tdk Corporation Method and apparatus for testing tunnel magnetoresistive effect element, manufacturing method of tunnel magnetoresistive effect element and tunnel magnetoresistive effect element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417442B2 (en) 2004-07-28 2008-08-26 Tdk Corporation Method and apparatus for testing tunnel magnetoresistive effect element, manufacturing method of tunnel magnetoresistive effect element and tunnel magnetoresistive effect element

Also Published As

Publication number Publication date
JP3939215B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US7609490B2 (en) Magnetoresistive device, thin film magnetic head, head gimbal assembly, head arm assembly, magnetic disk apparatus, synthetic antiferromagnetic magnetization pinned layer, magnetic memory cell, and current sensor
JP3623418B2 (en) Spin-valve magnetoresistive element, thin-film magnetic head including the same, and manufacturing method thereof
US8537504B2 (en) Current-perpendicular-to-plane (CPP) read sensor with ferromagnetic buffer, shielding and seed layers
JP4492604B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, and hard disk drive
US6903908B2 (en) Magnetoresistive effect sensor with barrier layer smoothed by composition of lower shield layer
US20090141410A1 (en) Current-perpendicular-to-the-plane structure magnetoresistive element and method of making the same and storage apparatus
US7672085B2 (en) CPP type magneto-resistive effect device having a semiconductor oxide spacer layer and magnetic disk system
JP2001291214A (en) Magneto-resistive sensor, magnetic head using the same and magnetic recording and reproducing device
JP2003069109A (en) Magnetoresistive effect magnetic sensor, magnetoresistive effect magnetic head, magnetic reproducing device, and methods of manufacturing the sensor and head
US7440240B2 (en) Magnetic head with domain stabilization and magnetic recording/reproducing apparatus using the same
US8035931B2 (en) Tunneling magneto-resistive spin valve sensor with novel composite free layer
JP2009211798A (en) Method for inspecting thin film magnetic heads
US20070195469A1 (en) Magnetoresistive effect element, magnetic head, magnetic reproducing apparatus, and manufacturing method of magnetoresistive effect element
US7804667B2 (en) Magnetoresistive element with a Heusler alloy layer that has a region in which an additive element changes in concentration
JP2006286157A (en) Tunnel magneto-resistance effect element, thin-film magnetic head, head gimbals assembly, magnetic disk devide, method for manufacturing the tunnel magneto-resistance effect element, and method and device for inspection
US20090080125A1 (en) Magnetic head
JP2001250208A (en) Magneto-resistive element
US7672087B2 (en) Magnetoresistive effect element having bias layer with internal stress controlled
US7580231B2 (en) Magneto-resistive element having a free layer provided with a ternary alloy layer
US10249329B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with wedge shaped free layer
US6654209B2 (en) Low resistance lead structure for a low resistance magnetic read head
US7075294B2 (en) Method of inspecting thin-film magnetic head and method of making thin-film magnetic head
JP2008016738A (en) Magnetoresistance effect element, magnetic head, magnetic recording and reproducing device, and magnetic memory
Matsuzono et al. Study on requirements for shielded current perpendicular to the plane spin valve heads based on dynamic read tests
JP3939215B2 (en) Thin film magnetic head evaluation element, thin film magnetic head wafer, and thin film magnetic head bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees