JP2004062577A - Carpet grain detecting device and mobile robot using the same - Google Patents

Carpet grain detecting device and mobile robot using the same Download PDF

Info

Publication number
JP2004062577A
JP2004062577A JP2002220999A JP2002220999A JP2004062577A JP 2004062577 A JP2004062577 A JP 2004062577A JP 2002220999 A JP2002220999 A JP 2002220999A JP 2002220999 A JP2002220999 A JP 2002220999A JP 2004062577 A JP2004062577 A JP 2004062577A
Authority
JP
Japan
Prior art keywords
carpet
roller
main body
detecting
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002220999A
Other languages
Japanese (ja)
Other versions
JP3922126B2 (en
Inventor
Hidetaka Yabuuchi
藪内 秀隆
Kiminori Kato
加藤 公軌
Hiroshi Mori
宏 森
Naoyuki Ohara
尾原 直行
Hiroo Oshima
大島 裕夫
Hiroyuki Kayama
香山 博之
Miki Yasuno
保野 幹
Toru Kodachi
小立 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002220999A priority Critical patent/JP3922126B2/en
Publication of JP2004062577A publication Critical patent/JP2004062577A/en
Application granted granted Critical
Publication of JP3922126B2 publication Critical patent/JP3922126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in a detecting lever type carpet grain detecting device, a contact pressure between a roller and the surface of a floor is required to be large to secure sensibility in detection and a roller mark remains, depending on the kinds of carpets after the roller runs, if the contact pressure is too large. <P>SOLUTION: In the carpet grain detecting device, the roller 6 contacting the surface of the floor is installed rotative to the detection lever 8, and a convex part 9 is provided on the outer circumference of the roller 6, where the roller contacts the surface of the floor. By this composition, the contact pressure required for a rug carpeted floor surface, on which the roller runs is secured by the convex part 9, and the roller marks hardly remain after the roller runs, since the whole width of the roller contacts the carpet to distribute the load, when a thick carpet on which the roller marks tend to remain. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、床面清掃ロボット等に搭載される走行床面の絨毯目の方向と強さを検出する絨毯目検出装置、及びこれを用いて走行制御を行う移動ロボットに関するものである。
【0002】
【従来の技術】
本体に走行駆動手段、センサ類および走行制御手段等を有して床面上を走行する移動ロボットにおいて、カーペット床面上を走行する場合にカーペットの毛並み(以下、絨毯目と称す)が本体の走行方向に影響を及ぼすことが知られており、この影響を解消するための工夫がなされてきている。
【0003】
例えば、特許第3003260号、特許第3079686号、特開平7−116087公報に開示されているように、床面に当接する当接部を有する検出レバーと、検出レバーを水平方向に回転自在に支持する回転支持部と、検出レバーの回転角度を検知する角度検知手段からなり、走行中の本体に対する検出レバーの角度から絨毯目を検出するものが開発されている。
【0004】
【発明が解決しようとする課題】
上記検出レバー方式の絨毯目検出装置は、構成がシンプルな上、外界からのセンサ情報なしで走行経路の補正ができるという優れた方式であるが、検出レバーの当接部を直接床面に接触させるが故に以下のような欠点がある。この方式では、検出レバーの当接部と床面との接触圧を所定以上に大きくしないと十分な検出感度が得られない。
【0005】
通常は当接部に取付けた回転自在のローラーを一定の荷重で床面に接触させるため、種々様々な種類のカーペット床面においても十分な検出感度を確保するためにはローラー幅を小さくするなどして接触圧を大きくしておく必要があるが、接触圧を大きくするとカーペットの種類によっては走行後にローラー跡が残るという課題があった。そして、ローラーの接触圧を大きくすると、カーペット床面以外の木床などのハードフロア上を走行した場合にはローラーによって床面を傷つけ易くなるという課題がある。また、ローラー幅を小さくすると強度が低下するため、逆に床面からの衝撃によってローラーが損傷し易くなるという課題もあった。
【0006】
本発明は、多様な床面上を走行することが想定される移動ロボットの場合でも絨毯目の検出感度を確保でき、しかも走行後にローラー跡が残りにくい絨毯目検出装置を提供すること目的としている。
【0007】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の絨毯目検出装置は、床面と当接するローラーを回転自在に取り付けられた検出レバーと、前記ローラー外周の床接触面に設けられた凸部と、前記検出レバーを水平方向に回転自在に支持する回転支持部と、前記検出レバーの回転角度を検出する角度検出手段とを備え、走行中の本体に対する前記検出レバーの角度から絨毯目を検出することを特徴とするもので、ローラー外周の凸部により走行するカーペット床面に必要な接触圧が確保でき、しかもローラー跡が残り易い毛足の長いカーペット上ではローラー外周の凸部だけでなくローラー幅全体がカーぺットに当接して荷重を分散するので走行後にローラー跡が残りにくい絨毯目検出装置を実現できる。
【0008】
【発明の実施の形態】
請求項1に記載の発明は、床面と当接するローラーを回転自在に取り付けられた検出レバーと、前記ローラー外周の床接触面に設けられた凸部と、前記検出レバーを水平方向に回転自在に支持する回転支持部と、前記検出レバーの回転角度を検出する角度検出手段とを備え、走行中の本体に対する前記検出レバーの角度から絨毯目を検出することを特徴とするもので、ローラー外周の凸部により走行するカーペット床面に必要な接触圧が確保でき、しかもローラー跡が残り易い毛足の長いカーペット上ではローラー外周の凸部だけでなくローラー幅全体がカーぺットに当接して荷重を分散するので走行後にローラー跡が残りにくくなる。
【0009】
請求項2に記載の発明は、特に、請求項1記載のローラー外周の床接触面を軟質体で構成するもので、木床などのハードフロア上を走行した場合でもローラーによって床面を傷つけにくくなる。
【0010】
請求項3に記載の発明は、特に、請求項1または2記載のローラー外周の床接触面に設けられた凸部は、床接触面とは別部材で構成されるもので、ローラーの製造およびメンテナンスが容易になる。
【0011】
請求項4に記載の発明は、特に、請求項1ないし3のいずれか1項記載の絨毯目検出装置と、本体の走行制御を行う走行制御手段と、本体の方向を計測する方向計測手段とを備え、前記走行制御手段は、方向計測手段の出力に基づいて本体を目標方向に直進させるとともに、前記絨毯目検出装置の角度検出手段の出力に基づいて前記直進の目標方向に修正を施すもので、絨毯目による横ずれの角度偏差を自動的に検出できる。
【0012】
請求項5に記載の発明は、特に、請求項4記載の発明に加えて、本体外部の障害物を検知する障害物検知手段と、前記障害物検知手段の出力により本体の進行方向を旋回する旋回手段とを有し、前記旋回手段の動作中は絨毯目検出装置の角度検出手段の動作を停止するもので、旋回時の車輪の回転を絨毯目の検知に含めないようにして絨毯目の検知の精度を向上させることができる。
【0013】
請求項6に記載の発明は、特に、請求項5記載の旋回手段が動作後、安定して直進するまでは、絨毯目検出装置の角度検出手段の動作を停止するもので、旋回中の車輪の回転が完全になくなってから絨毯目の検出を再開させ絨毯目の検出の精度を向上させることができる。
【0014】
【実施例】
以下、本発明の実施例について、図1〜図10を参照しながら説明する。
【0015】
(実施例1)
図1は本発明の第1の実施例における床面清掃ロボットの全体構成を示す断面図、図2は同、床面清掃ロボットの駆動兼操舵手段の構成を示す断面図、図3は同、床面清掃ロボットの絨毯目検出装置の構成を示す側断面図、図4、図5は同絨毯目検出装置の詳細を示す説明図、図6は同障害物検知手段を構成する測距センサの配置を示す内部透視図である。
【0016】
図において、1は床面清掃ロボットの本体、2L、2Rはそれぞれ本体1の左右に設けた駆動輪で、駆動モータ3L、3Rで左右独立に駆動される。4L、4Rはそれぞれ3L、3Rに接続されたロータリエンコーダやタコジェネレータ等からなる回転検出器で、駆動モータ3L、3Rの軸回転数を検出する。5は絨毯目検出装置で、本体1の重量を支える従輪を兼ねており、ローラー6を一定の荷重で床面に接触させるようになっている。
【0017】
絨毯目検出装置5のローラー6は、車輪軸7を介して検出レバー8に回動自在に取り付けられ、床接触面の外周に凸部9を有している。10は検出レバー8を水平方向に回動自在に支持する回転支持部である。11は検出レバー8の回転中心に固定された回転軸で、回転支持部10の上部に設けたロータリエンコーダまたはポテンショメータ等からなる角度検出手段12と接続している。回転軸11の回転を検知することで、検出レバー8の回転角度を検知する。
【0018】
図4はローラー6部の詳細を示し、図4(b)は図4(a)のZ−Z線に沿って切断した断面図である。本実施例では、図に示すように、外周凸部9はエラストマー樹脂やゴム等の軟質材料からなるリング状部材を、外周に溝加工したローラー6に嵌合させて構成している。
【0019】
以上のように構成した絨毯目検出装置5は、本体1がカーペット上を走行すると図5に示すような状態になる。図5(a)は毛足の長いカーペットA上を走行する場合、図5(b)は毛足の短いカーペットB上を走行する場合の状態を示している。
【0020】
通常、毛足の短いカーペットBの場合は毛足の腰が強く、例えば図5(d)に示すような幅の大きい従来ローラー6bでは十分な接触圧がとれずカーペット表面ですべりが生じて絨毯目の検出感度が悪い。そこで、例えば図5(c)に示すような幅の小さい従来ローラー6aに変えると接触圧が大きくなり毛足の短いカーペットB上でも検出感度は確保できる。
【0021】
しかしながら、図5(c)に示すように幅の小さい従来ローラー6aで毛足の長いカーペットA上を走行させると、ローラー6aが毛足の中に深く沈み込んでカーペットA上にローラー6aの走行跡がくっきりと残ってしまうものである。また、従来ローラー6aのようにローラー幅を小さくすると、軟質材料では強度が弱く変形したり破損しやすくなり、逆に強度の大きい金属材料など構成すると床面を傷つけやすくなるという課題がある。
【0022】
本実施例の絨毯目検出装置5では、図5(b)に示すように毛足の短いカーペットB上でもローラー6の外周凸部9の接触圧が大きいので、これが毛足の中に沈み込んで検出感度は確保できる。そして、図5(a)に示すように毛足の長いカーペットA上を走行させた場合には、外周凸部9は毛足の中に沈み込むがローラー6は幅が大きいので毛足の中に深く沈み込まないため走行後のローラー跡が残らない。
【0023】
また、外周凸部9のみを軟質体で構成しているのでローラー6が変形したり破損したりすることがなく、木床などのハードフロア上を走行した場合でも外周凸部が床面を傷つけることもない。
【0024】
さらに、外周凸部9をローラー6とを別部材で構成しているので、外周凸部9が床面との接触により摩耗した場合でも、外周凸部9だけの交換が容易にできる。
【0025】
13は電動送風機。14は、本体1の底部に設けられ床面の塵埃を前記電動送風機13の吸引力により吸引することで清掃作業を行う吸込部で、接続パイプ(図示せず)を介して集塵室15と接続している。16は本体1の方向を計測する方向計測手段で、ジャイロおよびこの出力を積分する積分器とからなる。17は本体1の周囲に設けられた超音波センサ等からなる測距センサで、本体1の前方、左右側方および後方にある物体までの距離を測定して障害物を検出する障害物検知手段を構成している。18は方向計測手段16および測距センサ17からのデータに基づいて駆動モータ3L、3Rを制御し、本体の走行制御を行う走行制御手段で、回路ボックス19に収容されている。20は全体に電力を供給する蓄電池等からなる電源である。
【0026】
図7は本実施例の制御ブロック図で、方向計測手段16、測距センサ17、回転検出器4L、4Rおよび角度検出手段12は走行制御手段18にその出力を入力している。走行制御手段18は、これらのデータを判断して駆動モータ3L、3Rに制御信号を出力する。本実施例では、この駆動モータ3L、3Rの回転速度を制御することにより、左右の駆動輪2L、2Rの回転速度を独立に制御し本体1の駆動および操舵を行っている。
【0027】
ここで絨毯上を直進走行する場合の絨毯目の影響について図8を用いて説明する。図8において(a)は、走行床面がハードフロアである場合の本体1の移動軌跡を示す。このとき床面にはカーペットはないので当然絨毯目の影響はなく、本体1は走行制御手段18の直進手段により直進制御を行い、その移動軌跡は走行開始時の本体1の方向と一致した直線aになる。
【0028】
しかしながら、たとえば(b)に示すように、絨毯目が左から右の方向にあるカーペット床面の場合に同条件で直進走行させると、本体1は走行制御手段18が有する直進モードである直進手段により目標ラインL1に乗るように直進制御を行うが、実際の移動軌跡は、本体1が常に走行開始時の方向を向いているにもかかわらず目標ラインL1の方向から右へ角度θだけ傾いた直線bになる。すなわち、本体1がカーペット上を直進走行する場合には、本体1の直進距離に比例して本体1が絨毯目の方向に横すべりする。この横すべりの度合いを表す角度偏差θはカーペットによってほぼ固有であり、数度程度である。
【0029】
そこで、たとえば図8(c)に示すように角度偏差θを最初の走行時にあらかじめ測定したカーペット上で直進手段の目標ラインを走行開始時の方向から左に角度θ傾いた直線L2として(b)と同条件で直進走行させると、そのときの移動軌跡は走行開始時の本体11の方向と一致した直線cになる。同様に(d)に示すように、走行開始方向を(c)と反対方向に直進走行させる場合には、直進手段の目標ラインを走行開始時の方向から右に角度θ傾いたL3として直進走行させれば、移動軌跡は走行開始時の本体1の方向と一致した直線dになる。このようにカーペット上を直進走行する場合は、絨毯目の方向とその目の強さに応じて直進手段の目標ラインの方向を変えることにより本体1の移動軌跡が補正できることがわかっている。
【0030】
また、絨毯目検出手装置5のローラー6は、回転支持部10により本体1に対して水平方向に回動自在に支持されているので、本体1の走行時には常に走行方向を向くことになる。すなわち、図8の(a)の例では、ローラー6は直線aの方向を向き、(b)の例では、ローラー6は直線bの方向を向くことになる。
【0031】
図9は本実施例の走行制御手段18における制御方法を示すフローチャートである。30は角度検出手段12の出力の平均角度を演算する絨毯ずれ演算手段である。31は絨毯ずれ演算手段30の値を入力し直進制御の補正目標ラインを設定する走行補正手段である。32は方向計測手段16で計測した本体1の方向データ及び回転検出器4L、4Rの出力に基づき、本体1が走行補正手段31で設定された補正目標ラインに乗るように駆動モータ3L、3Rを制御して直進走行させる直進手段である。また、直進走行中に測距センサにより本体1の前方に障害物を検知しかつ清掃作業が終了でなければ所定の作業幅だけ作業方向に変位した位置に反転する様になっている。
【0032】
図10を用いて床面清掃ロボットの移動軌跡について説明する。本体1で清掃する床面は、絨毯目が左から右の方向にあるとする。本体1を開始点Sにおいてスタートすると、直進走行を開始し図8の(b)で示した場合と同様に、本体1は走行開始時の方向に直進制御を行うが、実際の移動軌跡は絨毯目の影響で右にずれた方向に流される。既に説明した様に絨毯目検出装置のローラー6は、回転支持部10により本体1に対して水平方向に回動自在に支持されているので、本体1の走行時には常に走行方向を向く。前方の壁W1に近づき障害物検知手段17がこれを検知すると、作業方向Rの方向に障害物があるかどうかを見る。この場合は障害物がないので、地点P1で作業方向Aの方向すなわち本体1の右方向へ所定の作業幅だけ変位した位置に方向計測手段16を用いて正確に180°反転する。このとき、絨毯ずれ演算手段30は地点P1で反転開始するまでの角度検出手段12の出力角度の平均値θ1を演算している。地点P1での反転後、この演算結果をもとに、走行補正手段31は補正目標ライン(本体1の右へ角度θ1だけ傾いた直線)を設定し、直進手段32により本体1が目標ラインに乗るように直進制御を行う。直進制御を開始して方向計測手段の出力が安定すると壁W2に近づいた地点P2で180°反転するまで絨毯ずれ演算手段30は新たに角度検出手段の出力角度の平均値θ2を演算する。地点P2での反転後、この演算結果をもとに、走行方正手段31は補正目標ライン(本体1の左へ角度θ2だけ傾いた直線)を設定し、直進手段32により本体1が目標ラインに乗るように直進制御を行う。
【0033】
以上の動作を繰り返し、点Fにきて壁W1を本体1の前方で検知すると、このときは作業方向Aすなわち本体1の右方向には壁W3があるので清掃終了と判断し作業を終了する。
【0034】
絨毯ずれ演算手段30は本体1が壁(もしくは障害物)を検知して180°反転する際と、反転後のローラー6が進行方向を向いていない間の角度検出手段12の出力は無視してこの間のデータを用いずに直進走行中のデータのみで絨毯目によるずれを計算しているので、正確に絨毯目による影響を補正できる。
【0035】
このように、絨毯目検出手装置5のローラー6の本体1に対する方向を角度検出手段12により検出し、絨毯ずれ演算手段30により絨毯目によるずれ角度を演算し、この演算結果をもとに走行補正手段31は直進制御の目標ラインを補正目標ラインに設定し直進制御するから本体1の往復の直進軌跡は平行になり、走行中に作業幅が変化することがなくなり、清掃のやり残しが生じたり清掃効率が低下することがなくなるものである。
【0036】
なお、本実施例では外周凸部9をローラー6とを別部材で構成して、外周凸部9の交換メンテナンスが容易にできるようにしているが、これらを一体に構成しても、絨毯目の検出感度の確保と走行後のローラー跡を残りにくくするという効果は同様に得られることはいうまでもない。
【0037】
また、外周凸部9だけでなくローラー6の外周部もしくはローラー6の全体を軟質体で構成しても木床などのハードフロア上を走行した場合でも床面を傷つけにくくなるという効果を奏する。
【0038】
【発明の効果】
以上のように、本発明によれば、ローラー外周の凸部により走行するカーペット床面に必要な接触圧が確保でき、しかもローラー跡が残り易い毛足の長いカーペット上ではローラー外周の凸部だけでなくローラー幅全体がカーぺットに当接して荷重を分散するので走行後にローラー跡が残りにくくなるから、多様な床面上を走行することが想定される移動ロボットの場合でも絨毯目の検出感度を確保でき、しかも走行後にローラー跡が残りにくい絨毯目検出装置が実現できるものである。
【図面の簡単な説明】
【図1】本発明の第1の実施例における床面清掃ロボットの全体構成を示す断面図
【図2】同床面清掃ロボットの駆動兼操舵手段の構造を示す断面図
【図3】同床面清掃ロボットの絨毯目検出装置の構成を示す側断面図
【図4】(a)同床面清掃ロボットの絨毯目検出装置の構成を示す側面図
(b)上記(a)のZ−Z切断面における絨毯目検出装置の側断面図
【図5】(a)同絨毯目検出装置の動作を示す説明図
(b)同絨毯目検出装置の動作を示す他の説明図
(c)従来の絨毯目検出装置の動作を示す説明図
(d)従来の絨毯目検出装置の動作を示す他の説明図
【図6】本発明の第1の実施例における床面清掃ロボットの測距センサ及び方向計測手段の配置を示す内部透視図
【図7】同床面清掃ロボットの制御ブロック図
【図8】(a)同床面清掃ロボットが、ハードフロアである床面上を直進走行する場合について説明した図
(b)同床面清掃ロボットが、絨毯目が左から右の方向にあるカーペット上を直進走行する場合の影響について説明した図
(c)同床面清掃ロボットを、絨毯目が左から右の方向にあるカーペット上を直進走行させるための方法について説明した図
(d)同床面清掃ロボットを、絨毯目が左から右の方向にあるカーペット上を直進走行させるための方法について説明した他の図
【図9】同床面清掃ロボットの制御方法を示すフローチャート
【図10】同床面清掃ロボットの動作説明図
【符号の説明】
1 本体
5 絨毯目検出装置
6 ローラー
8 検出レバー
9 凸部
10 回転支持部
12 角度検出手段
16 方向計測手段
17 測距センサ(障害物検知手段)
18 走行制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carpet detection device that detects the direction and strength of carpets on a traveling floor mounted on a floor cleaning robot or the like, and a mobile robot that performs travel control using the same.
[0002]
[Prior art]
In a mobile robot that travels on a floor surface having travel driving means, sensors, travel control means, and the like in the main body, when traveling on the carpet floor, the fur of the carpet (hereinafter, referred to as carpet eyes) is It is known that the influence is exerted on the traveling direction, and contrivances for eliminating this influence have been made.
[0003]
For example, as disclosed in Japanese Patent No. 30032660, Japanese Patent No. 3079686, and Japanese Patent Application Laid-Open No. 7-116087, a detection lever having a contact portion that comes into contact with a floor surface, and a detection lever rotatably supported in a horizontal direction. There has been developed an apparatus which comprises a rotating support portion and a detecting means for detecting a rotation angle of a detecting lever, and detects a carpet eye from an angle of the detecting lever with respect to a running main body.
[0004]
[Problems to be solved by the invention]
The above detection lever type carpet eye detection device is an excellent method that has a simple configuration and can correct the traveling route without sensor information from the outside world, but the contact part of the detection lever directly contacts the floor surface. Therefore, there are the following disadvantages. In this method, sufficient detection sensitivity cannot be obtained unless the contact pressure between the contact portion of the detection lever and the floor surface is increased to a predetermined value or more.
[0005]
Normally, the rotatable roller attached to the contact part is brought into contact with the floor surface with a constant load, so the roller width is reduced to ensure sufficient detection sensitivity even on various types of carpet floor surfaces. However, if the contact pressure is increased, there is a problem that roller marks remain after running depending on the type of carpet. When the contact pressure of the roller is increased, there is a problem that the floor surface is easily damaged by the roller when traveling on a hard floor such as a wooden floor other than the carpet floor surface. Further, when the roller width is reduced, the strength is reduced, and conversely, there is a problem that the roller is easily damaged by an impact from the floor surface.
[0006]
An object of the present invention is to provide a carpet-eye detection device that can ensure the detection sensitivity of carpet eyes even in the case of a mobile robot that is assumed to travel on various floors, and in which roller marks are less likely to remain after traveling. .
[0007]
[Means for Solving the Problems]
In order to solve the conventional problem, the carpet-eye detection device of the present invention includes a detection lever rotatably mounted with a roller that comes into contact with a floor surface, and a protrusion provided on a floor contact surface around the roller. A rotation support portion that rotatably supports the detection lever in a horizontal direction, and an angle detection unit that detects a rotation angle of the detection lever, and detects a carpet from an angle of the detection lever with respect to the main body during traveling. On a carpet with a long bristle feet, the required contact pressure can be secured on the floor of the carpet that travels by the convex portion on the outer periphery of the roller, and the roller mark can be easily left. Since the entire width abuts on the carpet and disperses the load, a carpet mesh detection device in which roller marks are less likely to remain after running can be realized.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, a detection lever rotatably attached to a roller that comes into contact with a floor surface, a convex portion provided on a floor contact surface around the roller, and the detection lever freely rotatable in a horizontal direction. A rotation support portion for supporting the rotation of the detection lever, and an angle detection means for detecting the rotation angle of the detection lever, wherein the carpet mesh is detected from the angle of the detection lever with respect to the main body during traveling, the roller outer periphery The required contact pressure on the floor of the carpet that travels can be secured by the convex part of the carpet, and on carpets with long bristle feet where roller marks are likely to remain, not only the convex part on the outer periphery of the roller but also the entire roller width abuts the carpet. And disperse the load, so that roller marks are less likely to remain after running.
[0009]
The invention according to claim 2 is particularly configured such that the floor contact surface on the outer periphery of the roller according to claim 1 is formed of a soft body, and the floor surface is hardly damaged by the roller even when traveling on a hard floor such as a wooden floor. Become.
[0010]
According to a third aspect of the present invention, in particular, the convex portion provided on the floor contact surface on the outer periphery of the roller according to the first or second aspect is constituted by a member separate from the floor contact surface. Maintenance becomes easy.
[0011]
According to a fourth aspect of the present invention, there is provided a carpet detection device according to any one of the first to third aspects, traveling control means for controlling traveling of the main body, and direction measuring means for measuring a direction of the main body. Wherein the travel control means causes the main body to travel straight in the target direction based on the output of the direction measurement means, and corrects the straight travel target direction based on the output of the angle detection means of the carpet-eye detection device. Thus, it is possible to automatically detect the angle deviation of the lateral displacement due to the carpet eyes.
[0012]
According to a fifth aspect of the present invention, in addition to the fourth aspect of the present invention, an obstacle detecting means for detecting an obstacle outside the main body, and the traveling direction of the main body is turned by an output of the obstacle detecting means. Turning means for stopping the operation of the angle detection means of the carpet detection device during the operation of the turning means, so that the rotation of the wheel at the time of turning is not included in the detection of the carpet eyes, The accuracy of detection can be improved.
[0013]
According to a sixth aspect of the present invention, in particular, the operation of the angle detecting means of the carpet mesh detecting apparatus is stopped until the turning means of the fifth aspect operates stably and straight ahead. After the rotation of the carpet is completely stopped, the detection of the carpet eyes can be restarted, and the detection accuracy of the carpet eyes can be improved.
[0014]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0015]
(Example 1)
FIG. 1 is a sectional view showing the overall configuration of a floor cleaning robot according to a first embodiment of the present invention, FIG. 2 is a sectional view showing the configuration of a driving and steering means of the floor cleaning robot, and FIG. 4 and 5 are explanatory views showing details of the carpet eye detection device of the floor surface cleaning robot, and FIGS. 4 and 5 are explanatory views showing details of the carpet eye detection device. FIG. It is an internal perspective view which shows arrangement | positioning.
[0016]
In the figure, reference numeral 1 denotes a main body of the floor cleaning robot, and 2L and 2R denote driving wheels provided on the left and right sides of the main body 1, respectively, which are independently driven by driving motors 3L and 3R. Reference numerals 4L and 4R denote rotation detectors including rotary encoders and tachogenerators connected to 3L and 3R, respectively, and detect the rotational speeds of the drive motors 3L and 3R. Reference numeral 5 denotes a carpet eye detecting device, which also serves as a follower wheel that supports the weight of the main body 1, so that the roller 6 is brought into contact with the floor surface with a constant load.
[0017]
The roller 6 of the carpet detection device 5 is rotatably attached to a detection lever 8 via a wheel shaft 7 and has a protrusion 9 on the outer periphery of the floor contact surface. Reference numeral 10 denotes a rotation support portion that supports the detection lever 8 so as to be rotatable in the horizontal direction. Reference numeral 11 denotes a rotation shaft fixed to the center of rotation of the detection lever 8, and is connected to an angle detection means 12 such as a rotary encoder or a potentiometer provided on the rotation support portion 10. By detecting the rotation of the rotation shaft 11, the rotation angle of the detection lever 8 is detected.
[0018]
FIG. 4 shows the details of the roller 6 part, and FIG. 4B is a cross-sectional view taken along the line ZZ of FIG. 4A. In the present embodiment, as shown in the figure, the outer peripheral convex portion 9 is configured by fitting a ring-shaped member made of a soft material such as an elastomer resin or rubber to the roller 6 having an outer peripheral groove.
[0019]
When the main body 1 travels on the carpet, the carpet-eye detection device 5 configured as described above is in a state as shown in FIG. FIG. 5A shows a state in which the vehicle travels on a carpet A with a long hair, and FIG. 5B shows a state in which the vehicle travels on a carpet B with a short hair.
[0020]
Normally, in the case of a carpet B having a short bristle, the bristle of the bristle is strong. For example, the conventional roller 6b having a large width as shown in FIG. Poor eye detection sensitivity. Therefore, for example, when the conventional roller 6a having a small width as shown in FIG. 5C is used, the contact pressure increases and the detection sensitivity can be secured even on the carpet B having a short hair.
[0021]
However, as shown in FIG. 5 (c), when the conventional roller 6a having a small width is run on the carpet A having a long bristle, the roller 6a sinks deeply into the bristle and runs on the carpet A. Traces are clearly left. Further, when the roller width is reduced as in the conventional roller 6a, there is a problem that a soft material is weak in strength and easily deformed or damaged, and conversely, if a metal material having a high strength is formed, the floor surface is easily damaged.
[0022]
In the carpet-eye detection device 5 of this embodiment, as shown in FIG. 5B, even on the carpet B having a short bristle foot, the contact pressure of the outer peripheral convex portion 9 of the roller 6 is large, so that the carpet B sinks into the bristle foot. Thus, the detection sensitivity can be secured. Then, as shown in FIG. 5 (a), when running on the carpet A having a long bristle feet, the outer peripheral convex portion 9 sinks into the bristle feet, but the roller 6 has a large width, so that the rollers 6 have a large width. Since it does not sink deeply into the water, no roller marks remain after traveling.
[0023]
Further, since only the outer peripheral protrusion 9 is made of a soft body, the roller 6 is not deformed or damaged, and the outer peripheral protrusion damages the floor surface even when traveling on a hard floor such as a wooden floor. Not even.
[0024]
Further, since the outer peripheral convex portion 9 is formed of a separate member from the roller 6, even when the outer peripheral convex portion 9 is worn by contact with the floor surface, only the outer peripheral convex portion 9 can be easily replaced.
[0025]
13 is an electric blower. Reference numeral 14 denotes a suction unit which is provided at the bottom of the main body 1 and performs a cleaning operation by sucking dust on the floor surface by the suction force of the electric blower 13. The suction unit 14 is connected to the dust collection chamber 15 via a connection pipe (not shown). Connected. Reference numeral 16 denotes a direction measuring means for measuring the direction of the main body 1, which comprises a gyro and an integrator for integrating the output. Reference numeral 17 denotes a distance measuring sensor including an ultrasonic sensor and the like provided around the main body 1, and an obstacle detecting means for detecting an obstacle by measuring a distance to an object located in front, right, left, right, and rear of the main body 1. Is composed. Reference numeral 18 denotes a travel control unit that controls the drive motors 3L and 3R based on data from the direction measurement unit 16 and the distance measurement sensor 17 to control the travel of the main body, and is accommodated in the circuit box 19. Reference numeral 20 denotes a power supply including a storage battery or the like that supplies power to the whole.
[0026]
FIG. 7 is a control block diagram of the present embodiment. The outputs of the direction measuring means 16, the distance measuring sensor 17, the rotation detectors 4L and 4R, and the angle detecting means 12 are input to the traveling control means 18. The traveling control means 18 determines these data and outputs a control signal to the drive motors 3L, 3R. In the present embodiment, by controlling the rotation speeds of the drive motors 3L and 3R, the rotation speeds of the left and right drive wheels 2L and 2R are independently controlled to drive and steer the main body 1.
[0027]
Here, the effect of carpet eyes when traveling straight on a carpet will be described with reference to FIG. In FIG. 8, (a) shows the movement trajectory of the main body 1 when the traveling floor is a hard floor. At this time, since there is no carpet on the floor, the carpet is naturally not affected by the carpet, and the main body 1 is controlled to go straight by the straight traveling means of the traveling control means 18, and its movement locus is a straight line that matches the direction of the main body 1 at the start of traveling. a.
[0028]
However, as shown in (b), for example, when the carpet is on the carpet floor surface in the left-to-right direction and the vehicle 1 travels straight under the same conditions, the main body 1 moves straight ahead in the straight traveling mode of the travel control unit 18. Is performed so as to ride on the target line L1, but the actual trajectory is inclined rightward by an angle θ from the direction of the target line L1 even though the main body 1 is always facing the direction at the start of traveling. It becomes a straight line b. That is, when the main body 1 travels straight on the carpet, the main body 1 slides in the direction of the carpet in proportion to the straight traveling distance of the main body 1. The angle deviation θ indicating the degree of the side slip is substantially unique to each carpet, and is about several degrees.
[0029]
Therefore, for example, as shown in FIG. 8C, the target line of the straight-ahead means on the carpet whose angle deviation θ was measured in advance during the first travel is defined as a straight line L2 inclined to the left by an angle θ from the direction at the start of travel (b). When the vehicle travels straight under the same conditions as above, the movement locus at that time becomes a straight line c that coincides with the direction of the main body 11 at the start of traveling. Similarly, as shown in (d), when the vehicle travels straight ahead in the direction opposite to (c), the target line of the straight traveling means is set to L3 inclined rightward from the direction at the start of travel by L3. Then, the movement locus becomes a straight line d that coincides with the direction of the main body 1 at the start of traveling. As described above, when traveling straight on a carpet, it is known that the movement locus of the main body 1 can be corrected by changing the direction of the target line of the straight traveling means in accordance with the direction of the carpet eyes and the strength of the eyes.
[0030]
Further, since the roller 6 of the carpet eye detecting device 5 is rotatably supported in the horizontal direction with respect to the main body 1 by the rotation support portion 10, it always faces the running direction when the main body 1 runs. That is, in the example of FIG. 8A, the roller 6 faces the direction of the straight line a, and in the example of FIG. 8B, the roller 6 faces the direction of the straight line b.
[0031]
FIG. 9 is a flowchart showing a control method in the traveling control means 18 of the present embodiment. Numeral 30 denotes a carpet deviation calculating means for calculating the average angle of the output of the angle detecting means 12. Numeral 31 is a travel correcting means for inputting the value of the carpet deviation calculating means 30 and setting a correction target line for straight-ahead control. Reference numeral 32 denotes the drive motors 3L and 3R based on the direction data of the main body 1 measured by the direction measuring means 16 and the outputs of the rotation detectors 4L and 4R so that the main body 1 rides on the correction target line set by the travel correcting means 31. This is a straight traveling means that controls the vehicle to travel straight. Further, an obstacle is detected in front of the main body 1 by the distance measuring sensor during straight traveling, and if the cleaning operation is not completed, the obstacle is reversed to a position displaced in the operation direction by a predetermined operation width.
[0032]
The movement locus of the floor cleaning robot will be described with reference to FIG. The floor to be cleaned by the main body 1 is assumed to have carpets in a left-to-right direction. When the main body 1 is started at the start point S, the straight running starts, and the main body 1 performs the straight running control in the direction at the start of the running as in the case shown in FIG. It is swept away to the right due to the eyes. As described above, the roller 6 of the carpet-eye detection device is rotatably supported in the horizontal direction with respect to the main body 1 by the rotation support portion 10, and thus always faces the running direction when the main body 1 runs. When the obstacle detection means 17 approaches the front wall W1 and detects this, it is checked whether there is an obstacle in the working direction R. In this case, since there is no obstacle, the direction is exactly inverted by 180 ° using the direction measuring means 16 at the point P1 at a position displaced by the predetermined working width in the working direction A, that is, rightward of the main body 1. At this time, the carpet deviation calculating means 30 calculates the average value θ1 of the output angles of the angle detecting means 12 until the inversion starts at the point P1. After the inversion at the point P1, the traveling correction means 31 sets a correction target line (a straight line inclined by an angle θ1 to the right of the main body 1) based on the calculation result, and the main body 1 is set to the target line by the straight traveling means 32. Perform straight-ahead control to get on. When the output of the direction measuring means is stabilized by starting the straight-ahead control, the carpet deviation calculating means 30 newly calculates the average value θ2 of the output angles of the angle detecting means until the output is inverted by 180 ° at the point P2 approaching the wall W2. After the reversal at the point P2, the traveling direction correcting means 31 sets a correction target line (a straight line inclined by an angle θ2 to the left of the main body 1) based on the calculation result, and the main body 1 is set to the target line by the straight traveling means 32. Perform straight-ahead control to get on.
[0033]
When the above operation is repeated and the wall W1 is detected in front of the main body 1 at the point F, since the work direction A, that is, the wall W3 is in the right direction of the main body 1, it is determined that cleaning is completed, and the work is completed. .
[0034]
The carpet deviation calculating means 30 ignores the output of the angle detecting means 12 when the main body 1 detects a wall (or an obstacle) and inverts by 180 °, and when the roller 6 after inversion does not face the traveling direction. Since the deviation due to the carpet is calculated only using the data during the straight traveling without using the data during this period, the influence due to the carpet can be accurately corrected.
[0035]
In this way, the direction of the roller 6 of the carpet-means detecting device 5 with respect to the main body 1 is detected by the angle detecting means 12, the carpet misalignment calculating means 30 calculates the misalignment angle of the carpet mesh, and travels based on the calculation result. Since the correction means 31 sets the target line for the straight-ahead control as the corrected target line and performs the straight-ahead control, the rectilinear trajectory of the reciprocation of the main body 1 becomes parallel, the working width does not change during running, and the remaining cleaning is left. The cleaning efficiency is not reduced.
[0036]
In the present embodiment, the outer peripheral convex portion 9 is formed of a separate member from the roller 6 so that replacement maintenance of the outer peripheral convex portion 9 can be easily performed. Needless to say, the same effect can be obtained in that the detection sensitivity is secured and the roller mark after running is hardly left.
[0037]
Further, even if the outer peripheral portion of the roller 6 or the entire roller 6 as well as the outer peripheral convex portion 9 is made of a soft material, the floor surface is hardly damaged even when traveling on a hard floor such as a wooden floor.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to secure the necessary contact pressure on the carpet floor surface that travels by the convex portion on the outer periphery of the roller, and on the carpet with long bristle feet on which the roller marks easily remain, only the convex portion on the outer periphery of the roller. Instead, the entire roller width abuts the carpet and disperses the load, making it difficult for roller marks to remain after traveling.Therefore, even in the case of a mobile robot that is expected to travel on various floors, The detection sensitivity can be ensured, and a carpet detection device in which a roller mark hardly remains after traveling can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the overall configuration of a floor cleaning robot according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the structure of a driving and steering means of the floor cleaning robot. FIG. 4A is a side cross-sectional view illustrating a configuration of a carpet eye detection device of the surface cleaning robot. FIG. 4A is a side view illustrating a configuration of a carpet eye detection device of the floor cleaning robot. FIG. FIG. 5 (a) is an explanatory diagram showing the operation of the carpet eye detecting device, FIG. 5 (b) is another explanatory diagram showing the operation of the carpet eye detecting device, and FIG. 5 (c) is a conventional carpet. Explanatory diagram showing the operation of the eye detecting device (d) Another explanatory diagram showing the operation of the conventional carpet eye detecting device FIG. 6: Distance measuring sensor and direction measurement of the floor cleaning robot in the first embodiment of the present invention FIG. 7 is an internal perspective view showing the arrangement of the means. FIG. 7 is a control block diagram of the floor cleaning robot. FIG. 4B illustrates a case where the floor cleaning robot travels straight on a hard floor, which is a hard floor. FIG. 6B illustrates a case where the floor cleaning robot travels straight on a carpet having carpets in a left-to-right direction. FIG. (C) illustrates the effect of the floor cleaning robot, and FIG. (D) illustrates a method of causing the carpet to travel straight on a carpet having left and right directions. FIG. 9 is a flowchart illustrating a method of controlling the floor cleaning robot according to another embodiment of the present invention. FIG. 9 is a flowchart illustrating a method for causing the vehicle to travel straight on a carpet in a left-to-right direction. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main body 5 Carpet eye detection apparatus 6 Roller 8 Detection lever 9 Convex part 10 Rotation support part 12 Angle detection means 16 Direction measurement means 17 Distance measurement sensor (obstacle detection means)
18 Travel control means

Claims (6)

床面と当接するローラーを回転自在に取り付けられた検出レバーと、前記ローラー外周の床接触面に設けられた凸部と、前記検出レバーを水平方向に回転自在に支持する回転支持部と、前記検出レバーの回転角度を検出する角度検出手段とを備え、走行中の本体に対する前記検出レバーの角度から絨毯目を検出する絨毯目検出装置。A detection lever rotatably attached to a roller that comes into contact with the floor, a protrusion provided on the floor contact surface on the outer periphery of the roller, a rotation support portion that rotatably supports the detection lever in a horizontal direction, An angle detecting means for detecting a rotation angle of a detecting lever, and a carpet-like detecting apparatus for detecting a carpet-like from an angle of the detecting lever with respect to a running body. ローラー外周の床接触面は軟質体で構成される請求項1記載の絨毯目検出装置。2. The carpet detection device according to claim 1, wherein the floor contact surface around the roller is made of a soft material. ローラー外周の床接触面に設けられた凸部は、床接触面とは別部材で構成される請求項1または2記載の絨毯目検出装置。The carpet detection device according to claim 1, wherein the protrusion provided on the floor contact surface on the outer periphery of the roller is formed of a member different from the floor contact surface. 請求項1ないし3のいずれか1項記載の絨毯目検出装置と、本体の走行制御を行う走行制御手段と、本体の方向を計測する方向計測手段とを備え、前記走行制御手段は、方向計測手段の出力に基づいて本体を目標方向に直進させるとともに、前記絨毯目検出装置の角度検出手段の出力に基づいて前記直進の目標方向に修正を施す移動ロボット。4. The carpet-eye detecting device according to claim 1, a traveling control unit that controls traveling of the main body, and a direction measuring unit that measures a direction of the main body, wherein the traveling control unit measures the direction. 5. A mobile robot that moves the main body straight in a target direction based on the output of the means and corrects the straight ahead target direction based on the output of the angle detection means of the carpet detection device. 本体外部の障害物を検知する障害物検知手段と、前記障害物検知手段の出力により本体の進行方向を旋回する旋回手段とを有し、前記旋回手段の動作中は絨毯目検出装置の角度検出手段の動作を停止する請求項4記載の移動ロボット。An obstacle detecting means for detecting an obstacle outside the main body, and a turning means for turning the traveling direction of the main body according to an output of the obstacle detecting means, wherein an angle detection of the carpet detection device is performed during the operation of the turning means. The mobile robot according to claim 4, wherein the operation of the means is stopped. 旋回手段が動作後、安定して直進するまでは、絨毯目検出装置の角度検出手段の動作を停止する請求項5記載の移動ロボット。6. The mobile robot according to claim 5, wherein the operation of the angle detecting means of the carpet detection device is stopped until the turning means moves in a straight line stably.
JP2002220999A 2002-07-30 2002-07-30 Carpet eye detection device and mobile robot using the same Expired - Lifetime JP3922126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220999A JP3922126B2 (en) 2002-07-30 2002-07-30 Carpet eye detection device and mobile robot using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220999A JP3922126B2 (en) 2002-07-30 2002-07-30 Carpet eye detection device and mobile robot using the same

Publications (2)

Publication Number Publication Date
JP2004062577A true JP2004062577A (en) 2004-02-26
JP3922126B2 JP3922126B2 (en) 2007-05-30

Family

ID=31941451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220999A Expired - Lifetime JP3922126B2 (en) 2002-07-30 2002-07-30 Carpet eye detection device and mobile robot using the same

Country Status (1)

Country Link
JP (1) JP3922126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467985A (en) * 2014-09-05 2016-04-06 科沃斯机器人有限公司 Autonomous mobile surface walking robot and image processing method thereof
CN112336258A (en) * 2019-08-09 2021-02-09 松下知识产权经营株式会社 Mobile robot, control method, and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105467985A (en) * 2014-09-05 2016-04-06 科沃斯机器人有限公司 Autonomous mobile surface walking robot and image processing method thereof
CN105467985B (en) * 2014-09-05 2018-07-06 科沃斯机器人股份有限公司 From mobile surface walking robot and its image processing method
CN112336258A (en) * 2019-08-09 2021-02-09 松下知识产权经营株式会社 Mobile robot, control method, and storage medium
US11630463B2 (en) 2019-08-09 2023-04-18 Panasonic Intellectual Property Management Co., Ltd. Mobile robot, control method, and storage medium
CN112336258B (en) * 2019-08-09 2023-12-15 松下知识产权经营株式会社 Mobile robot, control method, and storage medium

Also Published As

Publication number Publication date
JP3922126B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP4165965B2 (en) Autonomous work vehicle
EP1368715B1 (en) Method and device for determining position of an autonomous apparatus
KR101840149B1 (en) Autonomous travel body and vacuum cleaner
JP2006113952A (en) Charging type travel system
JP2003310509A (en) Mobile cleaner
JP2006268499A (en) Running device and self-propelled vacuum cleaner
JP2004123040A (en) Omnidirectional moving vehicle
JPS62152424A (en) Self-propelling cleaner
JP2004310385A (en) Self-propelled cleaning device and self-propelled cleaning method
JP2005222226A (en) Autonomous traveling robot cleaner
JPH09265319A (en) Autonomously traveling vehicle
KR20070108618A (en) Structure of enhancing odometry measurement for robot cleaner and robot cleaner using the same
JP2006268498A (en) Self-traveling cleaner
JP2004062577A (en) Carpet grain detecting device and mobile robot using the same
JP2004318721A (en) Autonomous travel vehicle
JP3632618B2 (en) Mobile work robot
JP3079686B2 (en) Mobile work robot
JP4197606B2 (en) Autonomous robot
JP2005346477A (en) Autonomous travelling body
JP3227710B2 (en) Mobile work robot
JP3191334B2 (en) Mobile work robot
KR101489512B1 (en) A Robot cleaner with enhanced steering ability and the driving method
JP2004139266A (en) Autonomous traveling robot
JPH07175518A (en) Moving operating robot
JP3794340B2 (en) Omni-directional cart

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R151 Written notification of patent or utility model registration

Ref document number: 3922126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term