JP2004061144A - Antigen-antibody reaction detecting method and apparatus - Google Patents

Antigen-antibody reaction detecting method and apparatus Download PDF

Info

Publication number
JP2004061144A
JP2004061144A JP2002215986A JP2002215986A JP2004061144A JP 2004061144 A JP2004061144 A JP 2004061144A JP 2002215986 A JP2002215986 A JP 2002215986A JP 2002215986 A JP2002215986 A JP 2002215986A JP 2004061144 A JP2004061144 A JP 2004061144A
Authority
JP
Japan
Prior art keywords
magnetic
antigen
magnetic field
antibody reaction
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002215986A
Other languages
Japanese (ja)
Other versions
JP3810713B2 (en
Inventor
Saburo Tanaka
田中 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002215986A priority Critical patent/JP3810713B2/en
Publication of JP2004061144A publication Critical patent/JP2004061144A/en
Application granted granted Critical
Publication of JP3810713B2 publication Critical patent/JP3810713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antigen-antibody reaction detecting method and an apparatus which substantially improve measurement precision. <P>SOLUTION: In the antigen-antibody reaction detecting method for measuring magnetic particulates in an AC magnetic field at an antigen-antibody reaction, the direction of a magnetic moment is aligned and fixed in one direction by previously drying and fixing (a) a magnetic particulate liquid in a magnetic field prior to measurement. By performing measurement after drying, the moment of the the magnetic particulates is aligned, and the magnetic particulates are brought close to one another to form a substantially highly dense magnetic moment, and a large magnetic signal is acquired. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、抗原抗体反応の検出を行う抗原抗体反応検出方法及び装置に係り、特に微量な酵素などモノクロナール抗体の作製や免疫検査において効率化をもたらす抗原抗体反応検出方法及び装置に関するものである。
【0002】
【従来の技術】
バイオテクノロジーの研究においては、特定の抗原(酵素など)を大量に作ることが必要な場合があるが、その作業には大変な手間と時間、費用が必要となる。しかし、その特定の抗原と結びつく抗体(モノクロナール抗体)を用いることにより、精製にかかる手間と時間、費用を激減させることが可能となる。
【0003】
ところで、例えば、マウスなどの動物に抗原を注射すると、体内に抗体が作られるが、抗体を作った抗体産生細胞は死滅することが知られている。よって、上記抗原の精製に際しては、一般的には細胞融合技術によって作製した不死の抗体産生細胞(ハイブリドーマ)を用いる。
【0004】
しかしながら、ハイブリドーマにはいくつもの種類が存在するため、その中で目的とする抗原を認識するモノクロナール抗体を作るハイブリドーマを選び出すことが必要となる。
【0005】
そのための工程では、抗原を予め付着させた複数の小容器(ウエル)を用意し、そこにハイブリドーマによって生産されたモノクロナール抗体を分注し、一つずつのウエルについて反応したモノクロナール抗体の量を調べる。その方法としては蛍光や放射線などによる標識(ラベル)を用いて調べるのが一般的である。
【0006】
しかしながら、蛍光標識では蛍光が退色する、いわゆるブリーチング現象が生じるため、短時間で評価しなければならず、その精度に問題があった。また、放射線の使用は特定管理区域で作業を行わなければならず、作業者の被曝の恐れもあり、安全上好ましい方法ではなかった。
【0007】
そこで本発明者らは抗原抗体反応検出装置において、抗原抗体反応に際して、磁性微粒子で標識された抗体に対して交流磁界を印加し、その信号をSQUID(superconducting quantum interference device:超伝導量子干渉デバイス)磁気センサを用いて検出する装置(特願平2001−133458号)をこれまでに発明した。また、直流磁界を印加する方法(特開平11−68180号)も既に当業者によって提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記した従来の方法では上記問題を解決しているものの、十分な感度を得るまでには至っていないのが現状である。
【0009】
その原因は磁性微粒子の固定方法にあった。つまり、磁性微粒子を直流磁界下で計測する場合、通常は液体状態または乾燥状態で行っていたが、その場合、微粒子内の磁気モーメントはランダムな方向を向いており、また、微粒子間が離れているために大きな磁気信号が得られなかった。
【0010】
本発明は、上記問題点を除去し、測定精度を大幅に向上させることができる抗原抗体反応検出方法及び装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕抗原抗体反応に際して、磁性微粒子を直流磁界下で計測する抗原抗体反応検出方法において、計測前に予め磁性微粒子液体を磁界中で乾燥固定することによって、磁気モーメントの方向を一方向に揃えて固定し、乾燥後に計測することにより、磁性微粒子のモーメントが揃い、かつ磁性微粒子同士が接近し、実質的に密度の高い磁気モーメントを形成させて、大きな磁気信号を得ることを特徴とする。
【0012】
〔2〕抗原抗体反応に際して、磁性微粒子を直流磁界下で計測する抗原抗体反応検出装置において、計測前に予め磁性微粒子液体を磁界中で乾燥固定することによって、磁気モーメントの方向を一方向に揃えて固定した乾燥微粒子サンプルを有するチューブをセットする試料台と、前記磁性微粒子で標識された抗体に対して前記試料台の左右にヘルムホルツ状コイルが配置される直流磁界を印加する直流磁界の印加手段と、この直流磁界の印加手段の左右のヘルムホルツ状コイルからの半径方向の磁界成分が0になる半径軸上に、磁界検出面を垂直に配置するSQUID磁気センサとを具備することを特徴とする。
【0013】
〔3〕上記〔2〕記載の抗原抗体反応検出装置において、前記チューブは非磁性チューブであることを特徴とする。
【0014】
〔4〕上記〔3〕記載の抗原抗体反応検出装置において、前記チューブを張架する駆動装置と、この駆動装置を制御して、前記チューブの引っ張り速度を制御可能にする制御装置とを具備することを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
【0016】
まず、本発明の第1実施例について説明する。
【0017】
図1は本発明に係る磁性微粒子による抗原抗体反応検出の模式図であり、図1(a)はその抗原抗体反応検出法の模式図、図1(b)はそれを用いたDNA検出法の模式図である。
【0018】
図1(a)において、1は試料基板、2は抗原(MYOSIN:antigen,rabbit,muscle)、3は1次抗体(Mouse Anti−MYOSIN)、4は磁気標識抗体である。
【0019】
また、図1(b)において、11は試料基板、12は金電極、13はストレプタビディン(streptavidin)、14はビオチン(biotin)、15は既知のプローブDNA断片、16は未知のターゲットDNA断片、17は磁性微粒子である。
【0020】
図1(a)に示すように、試料基板1に予め抗原2を付着させ、そこに抗原2を認識する1次抗体3を反応させる。
【0021】
次に、磁性微粒子で標識された磁気標識抗体4を1次抗体3に反応させる。これによって抗原2を認識した1次抗体3が磁気標識抗体4によって標識される。その磁気標識抗体4の磁気信号をSQUID磁気センサ(図示なし)によって検出する。
【0022】
また、図1(b)に示すように、試料基板11上の金電極12上にストレプタビディン(streptavidin)13、ビオチン(biotin)14を介して既知のプローブDNA断片15を配置し、磁性微粒子17を付与した未知のターゲットDNA断片16を反応させる。そして、その磁性微粒子17の磁気信号をSQUID磁気センサ(図示なし)によって検出する。
【0023】
ここで使用する外部磁界による磁性微粒子の挙動について説明する。
【0024】
図2はかかる外部磁界による磁性微粒子の挙動を示す模式図であり、図2(a)は液体中微粒子サンプルの挙動を示す模式図、図2(b)はゼロ磁界乾燥微粒子サンプルの挙動を示す模式図、図2(c)は本発明にかかる磁界中(10.0〔ガウス:G〕)で乾燥させた微粒子サンプルの挙動を示す模式図である。
【0025】
これらの図から明らかなように、テフロン(登録商標)チューブ20内の、例えば、純水からなる液体中微粒子サンプル21中における磁性微粒子22内の磁気モーメント23〔図2(a)〕、及びテフロン(登録商標)チューブ20内の、例えば、ゼロ磁界乾燥微粒子サンプル24中における磁性微粒子25内の磁気モーメント26〔図2(b)〕のそれぞれは、ランダムな方向を向いている。なお、上記した実施例では、テフロン(登録商標)チューブを一例として示したが、これに限定されるものではなく、濡れ性が悪く、かつ非磁性のチューブであることが望ましい。
【0026】
これに対して、本発明にかかる、テフロン(登録商標)チューブ20内の磁界中(10.0〔G〕)で乾燥させた微粒子サンプル27中における磁性微粒子28内の磁気モーメント29の方向は一方向に揃っている〔図2(c)〕。なお、ここでは磁界の強さは10.0〔G〕として例示したが、実質的に磁気モーメントを配向させることができればよいわけであり、上限は設備の価格及び大きさを考慮して設定すればよい。例えば、0.5〔G〕から500〔G〕程度が望ましい。
【0027】
すなわち、計測前に予め磁性微粒子液体を磁界の中で乾燥固定することによって、磁気モーメント29の方向を一方向に揃えて固定することができ、乾燥後に計測することにより磁性微粒子28同士が接近し、実質的に密度の高い磁気モーメント29が形成されるため、従来の方法に比べて数倍以上の大きな磁気信号が得られることを見出した。
【0028】
これによって、より微量な抗原抗体反応の検出が可能となり、環境ホルモンやダイオキシンのような環境微量物質などの高感度検出が可能となる。
【0029】
なお、ここでは、MYOSIN,Anti−MYOSIN,…などを用いたがこれらは一例であり、これらに限定されるものではなく、応用形態により適宜選択するようにすればよく、要は、磁性微粒子で標識することが重要である。
【0030】
図3は本発明の実施例を示す抗原抗体反応検出装置の全体構成図である。
【0031】
この図において、100はテフロン(登録商標)チューブ、101は磁性微粒子サンプル、102,103はその磁性微粒子サンプルの左右に配置されるヘルムホルツ状コイル、104はヘルムホルツ状コイル102,103に接続される直流電源、105は磁性微粒子サンプル101がセットされる試料台、106はその試料台105に設けられ、左右のヘルムホルツ状コイル102,103からの半径方向の磁界成分が0になる半径軸上に、磁界検出面を垂直に配置するSQUID磁気センサ、107はSQUID駆動回路、108はパーソナルコンピュータ、109はX−Yペンレコーダ、110はSQUID磁気センサ106を冷却するための液体チッ素タンク、111はテフロン(登録商標)チューブ100を張架するためのワイヤー、112はそのワイヤー111を張るための駆動装置としてのモータ、113はそのモータ112の制御装置であり、ワイヤー111の張り具合を調整することができる。
【0032】
図4は各種の磁性微粒子サンプルの順方向の直流磁界依存特性図であり、横軸に磁界〔G〕、縦軸に磁束〔Φ0 〕を示しており、右欄に図示されているように、aは磁界中乾燥サンプル、bは液体サンプル、cはゼロ磁界中乾燥サンプルを示している。
【0033】
この図から明らかなように、磁界中で乾燥させたサンプルaの信号が他のサンプルに比べて数倍になっている。これは磁化容易軸が乾燥時に揃えられたことと、微粒子間隔が狭くなったことによって大きな磁気モーメントが得られたためである。
【0034】
上記したように、従来は、磁性微粒子の固定方法に問題があった。つまり磁性微粒子を直流磁界下で計測する場合、通常は液体状態または乾燥状態で行っていたが、その場合、微粒子内の磁気モーメントはランダムな方向を向いており、また、微粒子間が離れているために大きな磁気信号が得られなかった。
【0035】
これに対して、本発明では、計測前に予め磁性微粒子液体を磁界の中で乾燥固定することによって、磁気モーメントの方向を一方向に揃えて固定することができ、更に、乾燥後に計測することにより、磁性微粒子同士が接近し、実質的に密度の高い磁気モーメントが形成されるために、従来の方法に比べて数倍以上の大きな磁気信号が得られるようになった。
【0036】
これによって、より微量な抗原抗体反応の検出、例えば、DNAの抗原抗体反応の検出が可能となり、環境ホルモンやダイオキシンのような環境微量物質などの高感度検出が可能となる。
【0037】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から排除するものではない。
【0038】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏する。
【0039】
(A)計測前に予め磁性微粒子液体を磁界の中で乾燥固定することによって、磁気モーメントの方向を一方向に揃えて固定することができ、更に、乾燥後に計測することにより、磁性微粒子同士が接近し、実質的に密度の高い磁気モーメントが形成されるために、従来の方法に比べて数倍以上の大きな磁気信号が得られるようになった。
【0040】
(B)より微量な抗原抗体反応の検出、例えば、DNAの抗原抗体反応の検出が可能となり、環境ホルモンやダイオキシンのような環境微量物質の高感度検出が可能となる。
【図面の簡単な説明】
【図1】本発明に係る磁性微粒子による抗原抗体反応検出の模式図である。
【図2】外部磁界による磁性微粒子の挙動を示す模式図である。
【図3】本発明の実施例を示す抗原抗体反応検出装置の全体構成図である。
【図4】各種の磁性微粒子サンプルの順方向の直流磁界依存特性図である。
【符号の説明】
1,11  試料基板
2  抗原
3  1次抗体
4  磁気標識抗体
12  金電極
13  ストレプタビディン
14  ビオチン
15  既知のプローブDNA断片
16  未知のターゲットDNA断片
17,22,25,28  磁性微粒子
20,100  テフロン(登録商標)チューブ
21  液体中微粒子サンプル
23,26,29  磁気モーメント
24  ゼロ磁界乾燥微粒子サンプル
27  磁界中で乾燥させた微粒子サンプル
101  磁性微粒子サンプル
102,103    ヘルムホルツ状コイル
104    直流電源
105    試料台
106    SQUID磁気センサ
107    SQUID駆動回路
108    パーソナルコンピュータ
109    X−Yペンレコーダ
110    液体チッ素タンク
111    ワイヤー
112  モータ
113  モータの制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for detecting an antigen-antibody reaction for detecting an antigen-antibody reaction, and more particularly to a method and an apparatus for detecting an antigen-antibody reaction which can improve efficiency in producing monoclonal antibodies such as trace enzymes and in immunoassays. .
[0002]
[Prior art]
In biotechnology research, it may be necessary to produce specific antigens (enzymes, etc.) in large quantities, but the work requires a great deal of labor, time, and money. However, by using an antibody (monoclonal antibody) linked to the specific antigen, it becomes possible to drastically reduce the labor, time and cost required for purification.
[0003]
By the way, it is known that, for example, when an antigen is injected into an animal such as a mouse, an antibody is produced in the body, but the antibody-producing cells that have produced the antibody die. Therefore, upon purification of the antigen, generally, immortal antibody-producing cells (hybridomas) prepared by a cell fusion technique are used.
[0004]
However, since there are many types of hybridomas, it is necessary to select a hybridoma that produces a monoclonal antibody that recognizes an antigen of interest.
[0005]
In this process, a plurality of small vessels (wells) to which antigens have been attached in advance are prepared, and the monoclonal antibodies produced by the hybridomas are dispensed therein, and the amount of the monoclonal antibodies reacted in each well. Find out. As a method for this, it is common to examine using a label (label) such as fluorescence or radiation.
[0006]
However, in the case of a fluorescent label, a so-called bleaching phenomenon occurs in which the fluorescence fades, so that evaluation must be performed in a short time, and there is a problem in its accuracy. In addition, the use of radiation has to be performed in a specific control area, and there is a risk of worker exposure, which is not a preferable method for safety.
[0007]
Therefore, in the antigen-antibody reaction detection device, the present inventors apply an AC magnetic field to the antibody labeled with the magnetic fine particles during the antigen-antibody reaction, and convert the signal into a SQUID (superconducting quantum interference device). A device for detecting using a magnetic sensor (Japanese Patent Application No. 2001-133458) has been invented so far. A method of applying a DC magnetic field (JP-A-11-68180) has already been proposed by those skilled in the art.
[0008]
[Problems to be solved by the invention]
However, although the above-described conventional method solves the above-mentioned problem, at present, it has not yet achieved sufficient sensitivity.
[0009]
The cause lies in the method of fixing the magnetic fine particles. That is, when measuring the magnetic fine particles under a DC magnetic field, the measurement is usually performed in a liquid state or a dry state. In this case, the magnetic moment in the fine particles is oriented in a random direction, and the distance between the fine particles is increased. Therefore, a large magnetic signal could not be obtained.
[0010]
An object of the present invention is to provide an antigen-antibody reaction detection method and apparatus capable of eliminating the above-mentioned problems and greatly improving measurement accuracy.
[0011]
[Means for Solving the Problems]
The present invention, in order to achieve the above object,
[1] In the antigen-antibody reaction detection method in which the magnetic fine particles are measured under a DC magnetic field during the antigen-antibody reaction, the direction of the magnetic moment is aligned in one direction by drying and fixing the magnetic fine particle liquid in a magnetic field before measurement. By fixing and fixing and measuring after drying, the moments of the magnetic fine particles are uniform, and the magnetic fine particles come close to each other to form a magnetic moment having substantially high density, thereby obtaining a large magnetic signal.
[0012]
[2] In an antigen-antibody reaction detection device that measures magnetic microparticles under a DC magnetic field during an antigen-antibody reaction, the magnetic moment liquid is aligned in one direction by drying and fixing the magnetic microparticle liquid in a magnetic field before measurement. And a sample stage for setting a tube having a dried fine particle sample fixed thereto, and a DC magnetic field applying means for applying a DC magnetic field in which Helmholtz coils are arranged on the left and right sides of the sample stage with respect to the antibody labeled with the magnetic fine particles. And a SQUID magnetic sensor that vertically arranges a magnetic field detection surface on a radial axis where a magnetic field component in the radial direction from the left and right Helmholtz-shaped coils of the DC magnetic field applying means is zero. .
[0013]
[3] The apparatus for detecting an antigen-antibody reaction according to the above [2], wherein the tube is a non-magnetic tube.
[0014]
[4] The apparatus for detecting an antigen-antibody reaction according to [3], further comprising: a driving device for stretching the tube; and a control device for controlling the driving device to control a pulling speed of the tube. It is characterized by the following.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
First, a first embodiment of the present invention will be described.
[0017]
FIG. 1 is a schematic diagram of the detection of an antigen-antibody reaction using the magnetic fine particles according to the present invention. FIG. 1 (a) is a schematic diagram of the antigen-antibody reaction detection method, and FIG. 1 (b) is a diagram of a DNA detection method using the same. It is a schematic diagram.
[0018]
In FIG. 1A, 1 is a sample substrate, 2 is an antigen (MYOSIN: antigen, rabbit, muscle), 3 is a primary antibody (Mouse Anti-MYOSIN), and 4 is a magnetically labeled antibody.
[0019]
In FIG. 1B, 11 is a sample substrate, 12 is a gold electrode, 13 is streptavidin, 14 is biotin, 15 is a known probe DNA fragment, and 16 is an unknown target DNA fragment. , 17 are magnetic fine particles.
[0020]
As shown in FIG. 1A, an antigen 2 is attached to a sample substrate 1 in advance, and a primary antibody 3 recognizing the antigen 2 is reacted therewith.
[0021]
Next, the magnetically labeled antibody 4 labeled with magnetic fine particles is reacted with the primary antibody 3. Thereby, the primary antibody 3 that has recognized the antigen 2 is labeled with the magnetically labeled antibody 4. The magnetic signal of the magnetically labeled antibody 4 is detected by a SQUID magnetic sensor (not shown).
[0022]
Further, as shown in FIG. 1B, a known probe DNA fragment 15 is arranged on a gold electrode 12 on a sample substrate 11 via a streptavidin 13 and a biotin 14, and magnetic fine particles are formed. The unknown target DNA fragment 16 provided with 17 is reacted. Then, a magnetic signal of the magnetic fine particles 17 is detected by a SQUID magnetic sensor (not shown).
[0023]
The behavior of the magnetic fine particles by the external magnetic field used here will be described.
[0024]
FIG. 2 is a schematic diagram showing the behavior of the magnetic fine particles by such an external magnetic field, FIG. 2 (a) is a schematic diagram showing the behavior of a fine particle sample in liquid, and FIG. 2 (b) is the behavior of a zero magnetic field dry fine particle sample. FIG. 2C is a schematic diagram showing the behavior of a fine particle sample dried in a magnetic field (10.0 [Gauss: G]) according to the present invention.
[0025]
As apparent from these figures, for example, a magnetic moment 23 (FIG. 2A) in a magnetic fine particle 22 in a fine particle sample 21 in a liquid made of pure water in a Teflon (registered trademark) tube 20, and Teflon Each of the magnetic moments 26 (FIG. 2B) in the magnetic fine particles 25 in the (registered trademark) tube 20, for example, in the zero magnetic field dry fine particle sample 24, is oriented in a random direction. In the above-described embodiment, a Teflon (registered trademark) tube is shown as an example. However, the present invention is not limited to this, and a non-magnetic tube having poor wettability is desirable.
[0026]
On the other hand, the direction of the magnetic moment 29 in the magnetic fine particles 28 in the fine particle sample 27 dried in the magnetic field (10.0 [G]) in the Teflon (registered trademark) tube 20 according to the present invention is one direction. It is aligned in the direction [FIG. 2 (c)]. Here, the magnetic field strength is exemplified as 10.0 [G], but it is sufficient that the magnetic moment can be substantially oriented, and the upper limit is set in consideration of the price and size of the equipment. Just fine. For example, about 0.5 [G] to about 500 [G] is desirable.
[0027]
That is, by preliminarily drying and fixing the magnetic fine particle liquid in a magnetic field, the direction of the magnetic moment 29 can be aligned in one direction and fixed. By measuring after drying, the magnetic fine particles 28 approach each other. Since the magnetic moment 29 having a substantially high density is formed, it has been found that a magnetic signal which is several times larger than that of the conventional method can be obtained.
[0028]
As a result, a smaller amount of the antigen-antibody reaction can be detected, and highly sensitive detection of environmental trace substances such as environmental hormones and dioxins becomes possible.
[0029]
Here, MYOSIN, Anti-MYOSIN,... Are used, but these are merely examples, and the present invention is not limited to these, and may be appropriately selected depending on the application form. It is important to label.
[0030]
FIG. 3 is an overall configuration diagram of an antigen-antibody reaction detection device showing an embodiment of the present invention.
[0031]
In this figure, 100 is a Teflon (registered trademark) tube, 101 is a magnetic fine particle sample, 102 and 103 are Helmholtz coils disposed on the left and right sides of the magnetic fine particle sample, and 104 is a direct current connected to the Helmholtz coils 102 and 103. A power source, 105 is a sample stage on which the magnetic fine particle sample 101 is set, and 106 is provided on the sample stage 105, and a magnetic field is applied on a radial axis where the radial magnetic field component from the left and right Helmholtz coils 102, 103 becomes zero. SQUID magnetic sensor having a detection surface arranged vertically, 107 is a SQUID drive circuit, 108 is a personal computer, 109 is an XY pen recorder, 110 is a liquid nitrogen tank for cooling the SQUID magnetic sensor 106, and 111 is Teflon ( (Registered trademark) A wire for stretching the tube 100 Over, 112 a motor as a drive device for tensioning the wire 111, 113 is a control device of the motor 112, it is possible to adjust the tension of the wire 111.
[0032]
FIG. 4 is a forward DC magnetic field dependence characteristic diagram of various magnetic fine particle samples. The horizontal axis indicates the magnetic field [G], and the vertical axis indicates the magnetic flux [Φ 0 ], as shown in the right column. , A indicates a sample dried in a magnetic field, b indicates a liquid sample, and c indicates a sample dried in a zero magnetic field.
[0033]
As is clear from this figure, the signal of the sample a dried in the magnetic field is several times as large as the other samples. This is because a large magnetic moment was obtained because the axis of easy magnetization was aligned at the time of drying and the distance between fine particles was narrowed.
[0034]
As described above, conventionally, there was a problem in the method of fixing the magnetic fine particles. That is, when measuring the magnetic fine particles under a DC magnetic field, the measurement is usually performed in a liquid state or a dry state, but in this case, the magnetic moment in the fine particles is in a random direction, and the fine particles are separated from each other Therefore, a large magnetic signal could not be obtained.
[0035]
In contrast, in the present invention, the magnetic fine particle liquid is dried and fixed in a magnetic field in advance before measurement, whereby the direction of the magnetic moment can be fixed in one direction, and the measurement can be performed after drying. As a result, the magnetic fine particles approach each other, and a magnetic moment having a substantially high density is formed, so that a magnetic signal that is several times or more as large as that of the conventional method can be obtained.
[0036]
This makes it possible to detect a smaller amount of an antigen-antibody reaction, for example, a detection of an antigen-antibody reaction of DNA, and to perform highly sensitive detection of environmental trace substances such as environmental hormones and dioxins.
[0037]
It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and they are not excluded from the scope of the present invention.
[0038]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0039]
(A) By preliminarily drying and fixing the magnetic fine particle liquid in a magnetic field, the direction of the magnetic moment can be aligned in one direction and fixed. The approach and the formation of substantially dense magnetic moments have resulted in magnetic signals that are several times greater than conventional methods.
[0040]
(B) Detection of a smaller amount of an antigen-antibody reaction, for example, detection of an antigen-antibody reaction of DNA, enables highly sensitive detection of environmental trace substances such as environmental hormones and dioxins.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of detection of an antigen-antibody reaction using magnetic fine particles according to the present invention.
FIG. 2 is a schematic diagram showing behavior of magnetic fine particles by an external magnetic field.
FIG. 3 is an overall configuration diagram of an antigen-antibody reaction detection apparatus according to an embodiment of the present invention.
FIG. 4 is a graph showing a DC magnetic field dependence characteristic of various magnetic fine particle samples in a forward direction.
[Explanation of symbols]
1,11 sample substrate 2 antigen 3 primary antibody 4 magnetically labeled antibody 12 gold electrode 13 streptavidin 14 biotin 15 known probe DNA fragment 16 unknown target DNA fragment 17, 22, 25, 28 magnetic fine particles 20, 100 Teflon ( (Registered trademark) tube 21 Fine particle sample in liquid 23, 26, 29 Magnetic moment 24 Zero magnetic field dried fine particle sample 27 Fine particle sample 101 dried in magnetic field 101 Magnetic fine particle sample 102, 103 Helmholtz coil 104 DC power supply 105 Sample stand 106 SQUID magnetism Sensor 107 SQUID drive circuit 108 Personal computer 109 XY pen recorder 110 Liquid nitrogen tank 111 Wire 112 Motor 113 Motor control device

Claims (4)

抗原抗体反応に際して、磁性微粒子を直流磁界下で計測する抗原抗体反応検出方法において、
計測前に予め磁性微粒子液体を磁界中で乾燥固定することによって、磁気モーメントの方向を一方向に揃えて固定し、乾燥後に計測することにより、磁性微粒子のモーメントが揃い、かつ磁性微粒子同士が接近し、実質的に密度の高い磁気モーメントを形成させ、大きな磁気信号を得ることを特徴とする抗原抗体反応検出方法。
In the antigen-antibody reaction, in the antigen-antibody reaction detection method of measuring the magnetic fine particles under a DC magnetic field,
Before the measurement, the magnetic fine particle liquid is dried and fixed in a magnetic field beforehand, so that the direction of the magnetic moment is fixed in one direction, and the measurement is performed after drying, so that the moments of the magnetic fine particles are aligned and the magnetic fine particles approach each other. And forming a magnetic moment having substantially high density to obtain a large magnetic signal.
抗原抗体反応に際して、磁性微粒子を直流磁界下で計測する抗原抗体反応検出装置において、
(a)計測前に予め磁性微粒子液体を磁界中で乾燥固定することによって、磁気モーメントの方向を一方向に揃えて固定した乾燥微粒子サンプルを有するチューブをセットする試料台と、
(b)前記磁性微粒子で標識された抗体に対して前記試料台の左右にヘルムホルツ状コイルが配置される直流磁界を印加する直流磁界の印加手段と、
(c)該直流磁界の印加手段の左右のヘルムホルツ状コイルからの半径方向の磁界成分が0になる半径軸上に、磁界検出面を垂直に配置するSQUID磁気センサとを具備することを特徴とする抗原抗体反応検出装置。
In the antigen-antibody reaction, in the antigen-antibody reaction detection device that measures the magnetic fine particles under a DC magnetic field,
(A) a sample table for setting a tube having a dry fine particle sample in which the direction of the magnetic moment is fixed in one direction by previously drying and fixing the magnetic fine particle liquid in a magnetic field before measurement;
(B) DC magnetic field applying means for applying a DC magnetic field in which Helmholtz coils are arranged on the left and right sides of the sample table with respect to the antibody labeled with the magnetic fine particles;
(C) a SQUID magnetic sensor that vertically arranges a magnetic field detection surface on a radial axis where a magnetic field component in the radial direction from the left and right Helmholtz-shaped coils of the DC magnetic field applying means is zero. Antigen-antibody reaction detector.
請求項2記載の抗原抗体反応検出装置において、前記チューブは非磁性チューブであることを特徴とする抗原抗体反応検出装置。3. The apparatus according to claim 2, wherein the tube is a non-magnetic tube. 請求項3記載の抗原抗体反応検出装置において、前記チューブを張架する駆動装置と、該駆動装置を制御して、前記チューブの引っ張り速度を制御可能にする制御装置とを具備することを特徴とする抗原抗体反応検出装置。The antigen-antibody reaction detection device according to claim 3, further comprising: a driving device that stretches the tube; and a control device that controls the driving device to control a pulling speed of the tube. Antigen-antibody reaction detector.
JP2002215986A 2002-07-25 2002-07-25 Antigen-antibody reaction detection method and apparatus Expired - Lifetime JP3810713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215986A JP3810713B2 (en) 2002-07-25 2002-07-25 Antigen-antibody reaction detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215986A JP3810713B2 (en) 2002-07-25 2002-07-25 Antigen-antibody reaction detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004061144A true JP2004061144A (en) 2004-02-26
JP3810713B2 JP3810713B2 (en) 2006-08-16

Family

ID=31937860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215986A Expired - Lifetime JP3810713B2 (en) 2002-07-25 2002-07-25 Antigen-antibody reaction detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3810713B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372659B2 (en) 2006-03-17 2013-02-12 National University Corporation Toyohashi University Of Technology Sensing method for biopolymers and sensing device therefor
DE102015201422A1 (en) 2014-02-28 2015-09-03 Hitachi, Ltd. Magnetic signal measuring device and magnetic signal measuring method
CN108287191A (en) * 2018-01-25 2018-07-17 沈阳工业大学 A kind of magnetic memory signal properties study method based on FLAPW algorithms
EP3375892A1 (en) 2013-12-12 2018-09-19 Altratech Limited Capacitive sensor
US10995331B2 (en) 2013-12-12 2021-05-04 Altratech Limited Sample preparation method and apparatus
US11459601B2 (en) 2017-09-20 2022-10-04 Altratech Limited Diagnostic device and system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372659B2 (en) 2006-03-17 2013-02-12 National University Corporation Toyohashi University Of Technology Sensing method for biopolymers and sensing device therefor
US8486722B1 (en) 2006-03-17 2013-07-16 National University Corporation Toyohashi University Of Technology Sensing method for biopolymers and sensing device therefor
EP3375892A1 (en) 2013-12-12 2018-09-19 Altratech Limited Capacitive sensor
US10746683B2 (en) 2013-12-12 2020-08-18 Altratech Limited Capacitive sensor and method of use
US10995331B2 (en) 2013-12-12 2021-05-04 Altratech Limited Sample preparation method and apparatus
US11274291B2 (en) 2013-12-12 2022-03-15 Altratech Limited Sample preparation method and apparatus
US11796498B2 (en) 2013-12-12 2023-10-24 Altratech Limited Capacitive sensor and method of use
DE102015201422A1 (en) 2014-02-28 2015-09-03 Hitachi, Ltd. Magnetic signal measuring device and magnetic signal measuring method
JP2015163846A (en) * 2014-02-28 2015-09-10 株式会社日立製作所 Magnetic signal measurement device and magnetic signal measurement method
US9518957B2 (en) 2014-02-28 2016-12-13 Hitachi, Ltd. Magnetic signal measuring apparatus and magnetic signal measuring method
US11459601B2 (en) 2017-09-20 2022-10-04 Altratech Limited Diagnostic device and system
CN108287191A (en) * 2018-01-25 2018-07-17 沈阳工业大学 A kind of magnetic memory signal properties study method based on FLAPW algorithms

Also Published As

Publication number Publication date
JP3810713B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US8217647B2 (en) Measuring agglutination parameters
US6123902A (en) Device for highly sensitive magnetic detection of analytes
US8486334B2 (en) Magnetic sensor
EP2115468B1 (en) A sensor device for and a method of sensing magnetic particles
US8227255B2 (en) Biosensor and method of assaying object
JP4756868B2 (en) Detection method
US8092745B2 (en) Magnetic sensor, production method of the same, and target substance detecting apparatus and biosensor kit using the same
JP2009042104A (en) Substance fixing device, substance detector and substance fixing method
JP2001033455A (en) Method and apparatus for immunoassay by magnetic material label
JP5279340B2 (en) Target substance detection kit and target substance detection method
JP2007240349A (en) Magnetic immunological test apparatus
JP3810713B2 (en) Antigen-antibody reaction detection method and apparatus
Enpuku et al. Biological immunoassay utilizing magnetic marker and high Tc superconducting quantum interference device magnetometer
US9518957B2 (en) Magnetic signal measuring apparatus and magnetic signal measuring method
EP1936350A1 (en) A method for quantitatively measuring agglutination parameters
JP2005315678A (en) Detection method, detection device and detection kit
JP2009008475A (en) Sensor and detection method using the same
Bhuiya et al. Characterization of magnetic markers and sensors for liquid-phase immunoassays using Brownian relaxation
JP2008275523A (en) Liquid sample analysis apparatus
Enpuku et al. Fast detection of biological targets with magnetic marker and SQUID
Tanaka et al. A DNA detection system based upon a high Tc SQUID and ultra-small magnetic particles
JPS63210773A (en) Method for accelerating specific bond reaction
JP2009257873A (en) Substance detector and substance detecting method using it
RU2654935C1 (en) Method of the semiconductors quantized hall resistance contactless determination and device for its implementation
CN106706898B (en) A kind of biological detecting system and its detection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Ref document number: 3810713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term