JP2004060858A - Screw - Google Patents

Screw Download PDF

Info

Publication number
JP2004060858A
JP2004060858A JP2002223409A JP2002223409A JP2004060858A JP 2004060858 A JP2004060858 A JP 2004060858A JP 2002223409 A JP2002223409 A JP 2002223409A JP 2002223409 A JP2002223409 A JP 2002223409A JP 2004060858 A JP2004060858 A JP 2004060858A
Authority
JP
Japan
Prior art keywords
screw
screw core
alloy
core
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002223409A
Other languages
Japanese (ja)
Inventor
Akihisa Furukawa
古川 明久
Masanobu Tanigawa
谷川 雅信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Sharp Corp
Original Assignee
Sharp Corp
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, NEC Tokin Corp filed Critical Sharp Corp
Priority to JP2002223409A priority Critical patent/JP2004060858A/en
Publication of JP2004060858A publication Critical patent/JP2004060858A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw having a structure in which the screw can be fastened and separated within a range of recoverable strain of a shape memory alloy. <P>SOLUTION: This screw comprises a first member composed of a screw core part 3 with a screw head part 4 connected on one end in an axial direction, and a second member 2 covering the screw core part and having a threaded part 5 on its surface. At least part of the screw core member is made from a shape memory member. The screw core part is expanded in a radial direction by compressing it in the axial direction. Accordingly the second member can be fastened on the screw core part. The screw core part is contracted in diameter by heat, and the second member can be released form the screw core part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、様々な分野で広く使用されているねじに関し、特に、テレビ、冷蔵庫、エアコン、洗濯機等のリサイクル適用商品に使用するのに好適なねじに関する。
【0002】
【従来の技術】
日本においては、2001年4月に家電リサイクル法の運用が開始された。全国各地にリサイクル工場が建設されて、廃家電の解体処理が行なわれている。筐体・構造物など部品の締結には従来よりねじを使うことが一般的に行なわれる。ねじは、締結する場合はねじを回転させ締付け、修理・サービス時には逆回転により外すことができる非常に便利な締結部品である。しかしながら、筐体・構造物の解体時には、ねじ外しは手作業によることとなるため、非常に時間を要しており、多大なコストが掛る一因となっている。
【0003】
この問題に対し解体を容易にする試みとして、形状記憶合金を用いたねじの例が、特開平8−61346号公報にて公開されている。該公報においては、例えば、ネジをTi−Ni合金等の形状記憶合金で構成しネジの形状記憶処理時の雄ネジ形成部の外径を、形成後の雄ネジ部が螺合する雌ネジ部の内径より小さく形成する。そして、塑性変形により上記雌ネジ部に螺合する雄ネジ部を形成することで、解体容易なネジやボルト及びナットを提供することにより、解体時の労力、コストを低減させ、かつリサイクル化を容易になし得るようにするものである。
【0004】
【発明が解決しようとする課題】
上述した特開平8−61346号公報においては、加熱することによりねじが形状記憶された形状に戻り締結が外れることを利用している。この場合は、ねじの部材は1つ(雄ねじ)であり、雄ねじと雌ねじ(ナット)との間での形状記憶特性を用いた加熱分離を目的としていた。その場合、ねじの山径と谷径の関係から、雄ねじが雌ねじ(ナット)からはずれるのに必要な歪回復率を求めると約20%前後となるが、Ti−Ni合金(歪回復率8%)を雄ねじと雌ねじに採用しても16%(8%×2)にしかならず、分離が困難な状況にある。
【0005】
それ故に本発明の課題は、形状記憶合金の回復可能な歪みの範囲内で締結・分離が可能な構造をもつねじを提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば、少なくとも一部が形状記憶部材からなるねじ芯部と該ねじ芯部の軸方向一端に結合されたねじ頭部とを有する第一の部材と、前記ねじ芯部を覆い表面にねじ切部を有する第二の部材とからなることを特徴とするねじが得られる。
【0007】
前記ねじ芯部を軸方向に圧縮することによって該ねじ芯部を径方向に拡張させ、これによって前記ねじ芯部に前記第二の部材を締結してもよい。
【0008】
前記ねじ芯部が加熱によって縮径し、これによって前記ねじ芯部から前記第二の部材を解放するようにしてもよい。
【0009】
前記第一の部材と前記第二の部材との相対的な回転を防止する回転防止手段を備えてもよい。
【0010】
前記回転防止手段は、前記ねじ芯部と前記第二の部材とに備えられ、回転方向で互いに係合するように嵌合した凹凸構造を有してもよい。
【0011】
前記形状記憶材料は、Ti−Ni合金、Cu系合金、及びFe系合金のうちから選ばれたものでもよい。
【0012】
前記Cu系合金は、Cu−Al−Ni−Mn−Ti合金及びCu−Al−Mn合金の一方でもよい。
【0013】
前記Fe系合金は、Fe−Mn−Si合金であってもよい。
【0014】
【発明の実施の形態】
図1及び図2を参照して、本発明の実施の形態に係るねじについて説明する。
【0015】
図1及び図2に示すねじは、第一の部材1と第二の部材2とからなる。第一の部材1は、円筒状の外周面をもつねじ芯部3と、ねじ芯部3の軸方向一端に一体に形成されたねじ頭部4とを有している。第一の部材1の全体を形状記憶部材から一体形成してもよいが、ねじ芯部3の全部又は一部、すなわち、少なくとも一部のみを形状記憶部材から作ってもよい。
【0016】
第二の部材2は円筒状の内周面をもつ筒状のものであり、第一の部材1のねじ芯部3の外側にその大部分を覆うように嵌合されている。第二の部材2の外周面にはねじ切部5が形成されている。ねじ切部5は、通常のねじのねじ部と同様にねじ山6とねじ溝7とを形成されている。
【0017】
第一の部品1と第二の部材2とは、後述する方法で互いに一体に結合され、ねじを構成する。したがって、図1及び図2に示すねじは、通常のねじと同様に使用され得る。
【0018】
図3を参照して、上述したねじを使用して第一の締結目的部材11を第二の締結目的部材12に締結する場合について簡単に説明する。
【0019】
第一の締結目的部材11には、ねじ切部5の外径よりも少し大径であるがねじ頭部4よりは小径の貫通孔11aを予め形成しておく。一方、第二の締結目的部材12には、ねじ切部5に螺合し得る雌ねじすなわちねじ穴12aを予め形成しておく。第一の締結目的部材11を第二の締結目的部材12に締結するに際し、貫通孔11aとねじ穴12aとを位置合わせする。そして、ねじのねじ切部5を貫通孔11aを通してねじ穴12aに対向させ、ねじ頭部4をドライバなどにて回転させて締付ける。このとき、ねじ切部5が第二の締結目的部材12のねじ穴12aにねじ込まれ、第一の部材1のねじ頭部4が第一の締結目的部材11に当接する。結果として、第一の締結目的部材11が第二の締結目的部材12に締結される。
【0020】
図4、図5、及び図6を参照して、第一の部材1と第二の部材2とを互いに一体に結合させてねじを製造する手順について一例をもって説明する。
【0021】
まず、第一の部材1を形状記憶処理する。形状記憶処理後のねじ芯部3は、直径d1が2.0mm、軸方向長さL1が5.5mmとする。一方、第二の部材2はM3ボルトに相当するものであり、内径2.01mmの中空となっている。
【0022】
図4に示す第一の工程において、ねじ芯部3を第二の部材2に挿入させる。この状態で、第一の部材1に軸方向での圧縮加工を施す。
【0023】
圧縮加工は、図5に示す第二の工程において例えばプレス機13を用いて行われる。すなわち、プレス機13にて第一の部材1を軸方向で圧縮し、これによりねじ芯部3を径方向に拡張させる。
【0024】
こうして、最終的には図6に示すようにねじ芯部3の外周面を第二の部材2の内周面に圧接状態に密着させる。この状態では、圧縮加工処理後の第一の部材1のねじ芯部3を、例えば、直径d2が2.02mm、軸方向長さL2が5.1mmにする。
【0025】
このときの圧縮歪は、
(L1−L2)÷L1×100
で求められ、即ち、7.3%となる。
【0026】
Ti−Ni合金の場合、歪回復率は8%であり、上述した構造での圧縮歪みは、それ以下の値になるため、形状回復実現可能な値である。
【0027】
第一の部材1は、形状回復温度条件にて加熱がなされた場合、Ti−Ni合金の歪回復率8%が機能し、元の寸法に戻る。即ち、第一の部材1のねじ芯部3は軸方向で形状回復し、かつ径方向に縮小して第二の部材2との間にクリアランスが生じる。したがって、第一の部材1と第二の部材2とは互いに分離し、その結果、図3における第一の締結目的部材11を第二の締結目的部材12から容易に離脱させることができるようになる。
【0028】
上述した構造によると、ボルトを丸棒状に形状回復させるような20%という大きな歪回復率は必要なく、20%未満の例えば8%程度の歪み回復率でも機能することになる。結果として、加熱途上で相互間にクリアランスが生じた時に離脱が可能となり、この場合、結合を外すのに必要な歪回復率は、大幅に低減され、形状記憶材料の選択の範囲は広がることになる。
【0029】
なお、Ti−Ni合金以外の、より形状回復率の小さな形状記憶合金を使用でき、また低コストのCu合金(Cu−Al−Ni−Mn−Ti、Cu−Al−Mn)、Fe系合金(Fe−Mn−Si)も使用可能であり、それらの歪み回復率はそれぞれ2〜8%程度である。
【0030】
図7に示すように第二の部材2の内面及びねじ芯部3の外面がいずれも円筒状の場合には、図3における第一の締結目的部材11と第二の締結目的部材12との締結力は第一の部材1と第二の部材2との回転方向の摩擦力以下となる。したがって、より大きな締結力をもつねじが必要な場合には、第一の部材1と第二の部材2との相対的な回転を防止する回転防止手段を備える。
【0031】
図8を参照して、その回転防止手段の例について説明する。
【0032】
図8において、回転防止手段は、ねじ芯部3の外周面と第二の部材2の内周面とそれぞれ軸方向にのびるように形成され、回転方向で互いに係合するように嵌合した凹凸構造を有している。すなわち、第二の部材2の内周面に形成した軸方向にのびる複数の凸部14とねじ芯部3の外周面に形成した軸方向にのびる複数の凸部15とが回転方向で係合し、第一の部材1と第二の部材2との相対的な回転を防止している。
【0033】
なお、回転防止手段は、既存の機械設計で知られている、スプライン、沈みキー、D穴などによっても同様に実施できる。
【0034】
【発明の効果】
以上説明したように、本発明によれば、形状記憶合金の回復可能な歪みの範囲内で締結・分離が可能な構造をもつねじを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るねじの斜視図である。
【図2】図1のねじの縦断面図である。
【図3】図1のねじを用いて締結目的部材間を締結した状態を示す断面図である。
【図4】図1のねじを製造するための第一の工程を説明するための断面図である。
【図5】図1のねじを製造するための第二の工程を説明するための断面図である。
【図6】図5における第二の工程を経た後のねじの状態を誇張して示す断面図である。
【図7】図1のねじにおける第二の部材とねじ芯部との関係を示した横断断面図である。
【図8】図1のねじにおける第二の部材とねじ芯部との関係の変形例を示した横断面図である。
【符号の説明】
1 第一の部材
2 第二の部材
3 ねじ芯部
4 ねじ頭部
5 ねじ切部
6 ねじ山
7 ねじ溝
11 第一の締結目的部材
11a 貫通孔
12 第二の締結目的部材
12a ねじ穴
13 プレス機
14 第二の部材の凸部
15 ねじ芯部の凸部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a screw widely used in various fields, and more particularly, to a screw suitable for use in a product to which recycling is applied, such as a television, a refrigerator, an air conditioner, and a washing machine.
[0002]
[Prior art]
In Japan, the Home Appliance Recycling Law was put into operation in April 2001. Recycling factories have been built around the country to dismantle waste home appliances. Conventionally, screws are generally used for fastening parts such as a housing and a structure. The screw is a very convenient fastening part that can be rotated and tightened when fastening, and can be removed by reverse rotation during repair and service. However, when disassembling the housing / structure, the screw removal is performed manually, which requires a very long time, which is one of the causes of a large cost.
[0003]
As an attempt to facilitate disassembly of this problem, an example of a screw using a shape memory alloy has been disclosed in Japanese Patent Application Laid-Open No. 8-61346. In this publication, for example, a screw is formed of a shape memory alloy such as a Ti-Ni alloy, and the outer diameter of a male screw forming portion at the time of shape memory processing of the screw is changed to a female screw portion with which the formed male screw portion is screwed. It is formed smaller than the inner diameter of. And, by forming a male screw portion screwed to the female screw portion by plastic deformation, by providing screws, bolts and nuts that can be easily disassembled, labor and cost for disassembly can be reduced, and recycling can be achieved. It is intended to be easily accomplished.
[0004]
[Problems to be solved by the invention]
In the above-mentioned Japanese Patent Application Laid-Open No. 8-61346, the fact that the screw returns to the shape stored in shape by heating and the fastening is released is utilized. In this case, the number of screw members is one (male screw), and the purpose is to perform heat separation between the male screw and the female screw (nut) using shape memory characteristics. In this case, the strain recovery required for the male screw to come off from the female screw (nut) is about 20% from the relationship between the thread diameter and the valley diameter. ) Is only 16% (8% × 2) even if male and female threads are used, and it is difficult to separate them.
[0005]
Therefore, an object of the present invention is to provide a screw having a structure that can be fastened and separated within the range of recoverable strain of a shape memory alloy.
[0006]
[Means for Solving the Problems]
According to the present invention, a first member having a screw core portion at least partially formed of a shape memory member and a screw head coupled to one axial end of the screw core portion, and a surface covering the screw core portion And a second member having a threaded portion.
[0007]
The screw core may be radially expanded by compressing the screw core in the axial direction, thereby fastening the second member to the screw core.
[0008]
The diameter of the screw core may be reduced by heating, thereby releasing the second member from the screw core.
[0009]
Rotation preventing means for preventing relative rotation between the first member and the second member may be provided.
[0010]
The rotation preventing means may be provided on the screw core and the second member, and may have an uneven structure fitted so as to be engaged with each other in a rotation direction.
[0011]
The shape memory material may be selected from Ti-Ni alloy, Cu-based alloy, and Fe-based alloy.
[0012]
The Cu-based alloy may be one of a Cu-Al-Ni-Mn-Ti alloy and a Cu-Al-Mn alloy.
[0013]
The Fe-based alloy may be an Fe-Mn-Si alloy.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A screw according to an embodiment of the present invention will be described with reference to FIGS.
[0015]
The screw shown in FIGS. 1 and 2 includes a first member 1 and a second member 2. The first member 1 has a screw core 3 having a cylindrical outer peripheral surface, and a screw head 4 integrally formed at one axial end of the screw core 3. Although the entire first member 1 may be integrally formed from the shape memory member, all or a part of the screw core 3, that is, at least a part thereof may be formed from the shape memory member.
[0016]
The second member 2 is a cylindrical member having a cylindrical inner peripheral surface, and is fitted to the outside of the screw core 3 of the first member 1 so as to cover most of the screw core portion 3. A threaded portion 5 is formed on the outer peripheral surface of the second member 2. The threaded portion 5 has a thread 6 and a thread groove 7 similarly to the threaded portion of a normal screw.
[0017]
The first component 1 and the second member 2 are integrally connected to each other by a method described later to form a screw. Therefore, the screws shown in FIGS. 1 and 2 can be used in the same manner as ordinary screws.
[0018]
Referring to FIG. 3, a case where the first fastening object member 11 is fastened to the second fastening object member 12 using the above-described screw will be briefly described.
[0019]
The first fastening target member 11 is formed in advance with a through hole 11 a having a diameter slightly larger than the outer diameter of the threaded portion 5 but smaller than the screw head 4. On the other hand, a female screw that can be screwed into the threaded portion 5, that is, a screw hole 12a is formed in the second fastening target member 12 in advance. When fastening the first fastening target member 11 to the second fastening target member 12, the through hole 11a and the screw hole 12a are aligned. Then, the threaded portion 5 of the screw is made to face the screw hole 12a through the through hole 11a, and the screw head 4 is rotated and tightened by a driver or the like. At this time, the threaded portion 5 is screwed into the screw hole 12 a of the second fastening object member 12, and the screw head 4 of the first member 1 contacts the first fastening object member 11. As a result, the first fastening object 11 is fastened to the second fastening object 12.
[0020]
With reference to FIGS. 4, 5, and 6, a procedure for manufacturing the screw by integrally connecting the first member 1 and the second member 2 to each other will be described with an example.
[0021]
First, the first member 1 is subjected to shape memory processing. The screw core 3 after the shape memory processing has a diameter d1 of 2.0 mm and an axial length L1 of 5.5 mm. On the other hand, the second member 2 is equivalent to an M3 bolt and is hollow with an inner diameter of 2.01 mm.
[0022]
In the first step shown in FIG. 4, the screw core 3 is inserted into the second member 2. In this state, the first member 1 is subjected to compression processing in the axial direction.
[0023]
The compression processing is performed using, for example, a press 13 in the second step shown in FIG. That is, the first member 1 is compressed in the axial direction by the press machine 13, thereby expanding the screw core 3 in the radial direction.
[0024]
Thus, the outer peripheral surface of the screw core 3 is brought into close contact with the inner peripheral surface of the second member 2 in a press-contact state as shown in FIG. In this state, the screw core portion 3 of the first member 1 after the compression processing is set to have, for example, a diameter d2 of 2.02 mm and an axial length L2 of 5.1 mm.
[0025]
The compression strain at this time is
(L1-L2) ÷ L1 × 100
, That is, 7.3%.
[0026]
In the case of a Ti—Ni alloy, the strain recovery rate is 8%, and the compressive strain in the above-described structure is a value smaller than that, and is a value that can achieve shape recovery.
[0027]
When the first member 1 is heated under the shape recovery temperature condition, the strain recovery rate of the Ti—Ni alloy of 8% functions and returns to the original size. That is, the screw core portion 3 of the first member 1 recovers its shape in the axial direction, and contracts in the radial direction to create a clearance between the first member 1 and the second member 2. Therefore, the first member 1 and the second member 2 are separated from each other, so that the first fastening target member 11 in FIG. 3 can be easily detached from the second fastening target member 12. Become.
[0028]
According to the above-described structure, a large strain recovery rate of 20% for recovering the shape of the bolt into a round bar is not required, and a function of a strain recovery rate of less than 20%, for example, about 8% can be achieved. As a result, delamination is possible when clearance occurs between the two during heating, in which case the rate of strain recovery required to release the bond is greatly reduced, and the range of choice of shape memory material is increased. Become.
[0029]
In addition, a shape memory alloy having a smaller shape recovery rate other than the Ti-Ni alloy can be used, and low-cost Cu alloys (Cu-Al-Ni-Mn-Ti, Cu-Al-Mn) and Fe-based alloys ( Fe-Mn-Si) can also be used, and their strain recovery rates are each about 2 to 8%.
[0030]
As shown in FIG. 7, when both the inner surface of the second member 2 and the outer surface of the screw core 3 are cylindrical, the first fastening object 11 and the second fastening object 12 in FIG. The fastening force is equal to or less than the frictional force between the first member 1 and the second member 2 in the rotational direction. Therefore, when a screw having a larger fastening force is required, a rotation preventing means for preventing relative rotation between the first member 1 and the second member 2 is provided.
[0031]
An example of the rotation preventing means will be described with reference to FIG.
[0032]
In FIG. 8, the anti-rotation means is formed so as to extend in the axial direction with the outer peripheral surface of the screw core portion 3 and the inner peripheral surface of the second member 2, respectively, and the concave and convex portions are fitted so as to engage with each other in the rotational direction. It has a structure. That is, the plurality of protrusions 14 extending in the axial direction formed on the inner peripheral surface of the second member 2 and the plurality of protrusions 15 extending in the axial direction formed on the outer peripheral surface of the screw core 3 are engaged in the rotational direction. In addition, relative rotation between the first member 1 and the second member 2 is prevented.
[0033]
The anti-rotation means can be similarly implemented by a spline, a sinking key, a D-hole, etc., which are known in existing mechanical designs.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a screw having a structure that can be fastened and separated within the range of recoverable strain of a shape memory alloy.
[Brief description of the drawings]
FIG. 1 is a perspective view of a screw according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the screw of FIG. 1;
FIG. 3 is a cross-sectional view showing a state where the fastening target members are fastened using the screw of FIG. 1;
FIG. 4 is a cross-sectional view for explaining a first step for manufacturing the screw of FIG. 1;
FIG. 5 is a sectional view illustrating a second step for manufacturing the screw of FIG. 1;
6 is an exaggerated cross-sectional view showing the state of the screw after the second step in FIG. 5;
FIG. 7 is a cross-sectional view showing a relationship between a second member and a screw core of the screw shown in FIG. 1;
FIG. 8 is a cross-sectional view showing a modification of the relationship between the second member and the screw core in the screw of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st member 2 2nd member 3 Screw core part 4 Screw head 5 Thread cutting part 6 Thread 7 Thread groove 11 First fastening object 11a Through hole 12 Second fastening object 12a Screw hole 13 Press machine 14 Projection of second member 15 Projection of screw core

Claims (8)

少なくとも一部が形状記憶部材からなるねじ芯部と該ねじ芯部の軸方向一端に結合されたねじ頭部とを有する第一の部材と、前記ねじ芯部を覆い表面にねじ切部を有する第二の部材とからなることを特徴とするねじ。A first member having a screw core portion at least partially formed of a shape memory member and a screw head coupled to one axial end of the screw core portion, and a first member having a threaded portion on the surface covering the screw core portion. A screw comprising two members. 前記ねじ芯部を軸方向に圧縮することによって該ねじ芯部を径方向に拡張させ、これによって前記ねじ芯部に前記第二の部材を締結した請求項1に記載のねじ。The screw according to claim 1, wherein the screw core is radially expanded by compressing the screw core in the axial direction, whereby the second member is fastened to the screw core. 前記ねじ芯部が加熱によって縮径し、これによって前記ねじ芯部から前記第二の部材を解放する請求項1に記載のねじ。The screw according to claim 1, wherein the screw core is reduced in diameter by heating, thereby releasing the second member from the screw core. 前記第一の部材と前記第二の部材との相対的な回転を防止する回転防止手段を備えた請求項1に記載のねじ。The screw according to claim 1, further comprising a rotation preventing unit configured to prevent relative rotation between the first member and the second member. 前記回転防止手段は、前記ねじ芯部と前記第二の部材とに備えられ、回転方向で互いに係合するように嵌合した凹凸構造を有する請求項4に記載のねじ。5. The screw according to claim 4, wherein the rotation prevention means is provided on the screw core and the second member, and has a concave-convex structure fitted so as to engage with each other in a rotation direction. 前記形状記憶材料は、Ti−Ni合金、Cu系合金、及びFe系合金のうちから選ばれたものである請求項1から5のいずれかに記載のねじ。The screw according to any one of claims 1 to 5, wherein the shape memory material is selected from a Ti-Ni alloy, a Cu-based alloy, and an Fe-based alloy. 前記Cu系合金は、Cu−Al−Ni−Mn−Ti合金及びCu−Al−Mn合金の一方である請求項6に記載のねじ。The screw according to claim 6, wherein the Cu-based alloy is one of a Cu-Al-Ni-Mn-Ti alloy and a Cu-Al-Mn alloy. 前記Fe系合金は、Fe−Mn−Si合金である請求項6に記載のねじ。The screw according to claim 6, wherein the Fe-based alloy is an Fe-Mn-Si alloy.
JP2002223409A 2002-07-31 2002-07-31 Screw Withdrawn JP2004060858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223409A JP2004060858A (en) 2002-07-31 2002-07-31 Screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223409A JP2004060858A (en) 2002-07-31 2002-07-31 Screw

Publications (1)

Publication Number Publication Date
JP2004060858A true JP2004060858A (en) 2004-02-26

Family

ID=31943168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223409A Withdrawn JP2004060858A (en) 2002-07-31 2002-07-31 Screw

Country Status (1)

Country Link
JP (1) JP2004060858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678714A (en) * 2012-05-28 2012-09-19 赵群燕 Dismountable riveted structure
CN103527601A (en) * 2013-10-29 2014-01-22 潍柴动力股份有限公司 Connecting structure and fastening element thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678714A (en) * 2012-05-28 2012-09-19 赵群燕 Dismountable riveted structure
CN103527601A (en) * 2013-10-29 2014-01-22 潍柴动力股份有限公司 Connecting structure and fastening element thereof

Similar Documents

Publication Publication Date Title
JP4328229B2 (en) Fastening structure using screw accessories and disassembly method using screw accessories
JP5099548B2 (en) Fastening structure
JP2004138225A (en) Expansion screw
US5967725A (en) Self-attaching plug-in and screw-on fastening element
JPWO2006087771A1 (en) Spring pressure unit and mating washer
TW200528338A (en) Powered actuator for a bicycle gearshift with a controlled friction mechanism
JP2004060858A (en) Screw
CN101317016A (en) Slack preventive fastener for screw tool, and method and device for manufacturing the same
JP2004291072A (en) Working method of end of piping, and manufacturing method of piping joint with flange
JP2004138224A (en) Screw
JP2008215604A (en) Caulking nut and its manufacturing method
JP3972074B2 (en) Cap nut and manufacturing method thereof
JP2004316781A (en) Fastening structure
JP2008115977A (en) Fastening component and equipment having fastening structure
JP3153130U (en) Double nut
JP2005351284A (en) Easily demountable fastening parts
JP2003262208A (en) Connection keeping part
JP2008175380A (en) Caulking nut and its manufacturing method
JP2004190779A (en) Fastener for preventing removal
JP2015129556A (en) Clamp metal fitting and method of manufacturing the same
JP2006183827A (en) Fastening structure and assembling method of screw unit and article
JP2608489B2 (en) Joint for removing resin pipe
JP4264012B2 (en) Screw accessory and fastener structure using the same
JP3919165B2 (en) How to prevent setscrew loosening
JP2004108561A (en) Easy-disassemble type bolt

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004