JP2004060686A - Magnetic bearing device - Google Patents

Magnetic bearing device Download PDF

Info

Publication number
JP2004060686A
JP2004060686A JP2002216261A JP2002216261A JP2004060686A JP 2004060686 A JP2004060686 A JP 2004060686A JP 2002216261 A JP2002216261 A JP 2002216261A JP 2002216261 A JP2002216261 A JP 2002216261A JP 2004060686 A JP2004060686 A JP 2004060686A
Authority
JP
Japan
Prior art keywords
space
gas
rotating body
bearing device
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216261A
Other languages
Japanese (ja)
Inventor
Yasuo Shoji
庄司 安男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2002216261A priority Critical patent/JP2004060686A/en
Publication of JP2004060686A publication Critical patent/JP2004060686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic bearing device for suppressing the temperature rise of a rotor by cooling the rotor. <P>SOLUTION: The magnetic bearing device comprises a rotor supporting part 3 having a first space 5 therein, a gas distribution part 4 having a second space 6 communicating with the first space 5 and having a gas inlet 15 and a gas outlet 17, the rotor 2 arranged in the first space 5 and having a blade 7 at one end, located in the second space 6, a plurality of sets of magnetic bearings 8, 10, 11 arranged in the rotor supporting part 3 for supporting the rotor 2 in non-contact, and a motor 12 arranged in the rotor supporting part 3 for rotationally driving the rotor 2. A by-path 19 is provided for connecting a portion of the first space 5 opposed to the second space 6 to the second space 6. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、圧縮機、減圧機、送風機など、気体の圧縮、減圧、送風などを行なう回転機器に用いられる磁気軸受装置に関する。
【0002】
【従来の技術】
磁気軸受装置を用いた上記のような回転機器では、翼を有する回転体が、ケーシング内に配置され、複数組の磁気軸受により非接触支持されて、電動機により回転駆動される。
【0003】
【発明が解決しようとする課題】
上記のような磁気軸受装置では、ケーシング内において、回転体に設けられた電動機のロータや磁気軸受のうず電流損などに起因する発熱により、回転体に温度上昇が生じる。
【0004】
ところが、従来の磁気軸受装置では、上記のような発熱および回転体の温度上昇に対して、伝導冷却作用がなく、また、電動機のステータとロータとの隙間および磁気軸受の電磁石と回転体との隙間がいずれも小さいため、対流冷却作用もない。このため、放熱を赤外放射冷却のみによっており、発熱による回転体の温度上昇を抑制することができなかった。
【0005】
この発明の目的は、上記の問題を解決し、回転体を冷却して、その温度上昇を抑制できる磁気軸受装置を提供することにある。
【0006】
【課題を解決するための手段および発明の効果】
この発明による磁気軸受装置は、内部に第1の空間を有する回転体支持部と、第1の空間に連通し気体流入口および気体流出口が設けられた第2の空間を有する気体流通部と、第1の空間内に配置されて一端部に第2の空間内に位置する翼を有する回転体と、回転体支持部に配置されて回転体を非接触支持する複数組の磁気軸受と、回転体支持部に配置されて回転体を回転駆動する電動機とを備えている磁気軸受装置において、第1の空間における第2の空間と反対側の部分と第2の空間とを接続するバイパス路が設けられていることを特徴とするものである。
【0007】
回転体が回転して翼が回転することにより、気体が、気体流入口から第2の空間に流入し、気体流出口から流出する。そして、このような第2の空間内の気体の流れにより、バイパス路を通して、第1の空間内にも気体の流れが生じ、この気体流により、回転体が冷却される。
【0008】
この発明の磁気軸受装置によれば、上記のように、回転体の回転により、第1の空間内に気体流を発生させて、回転体を冷却し、その温度上昇を抑制することができる。
【0009】
たとえば、バイパス路に、気体の流れに抵抗を与える流通抵抗部が設けられている。
このようにすれば、バイパス路に流れる気体量を必要最小限にして、磁気軸受装置が適用される回転機器などの効率の低下を必要最小限に止めることができる。
【0010】
好ましくは、バイパス路は、第2の空間の気体流入口側に接続される。
たとえば、第2の空間の気体流入口に接続される気体流入路が設けられ、バイパス路が、気体流入路を介して第2の空間に接続されている。
このようにすれば、気体流入路から気体流入口を通って第2の空間内に流入する気体の流れにより、バイパス路内の気体が気体流入路に流入して、気体流入口から第2の空間内に流入する。このため、第2の空間から第1の空間およびバイパス路を通って第2の空間に流入する気体の流れが生じる。したがって、第1の空間内に確実に気体流を発生させて、回転体を確実に冷却することができる。
【0011】
この発明による磁気軸受装置は、圧縮機、減圧機もしくは送風機または気体の圧縮、減圧、送風などを行なう回転機器に適用できる。
圧縮機、減圧機、送風機または回転機器は、上記の磁気軸受装置と同様の構成を有する。
そのようにすれば、上記の磁気軸受装置の場合と同様の作用効果が奏される。
【0012】
【発明の実施の形態】
以下、図面を参照して、この発明を圧縮機に適用した実施形態について説明する。
【0013】
図1は、圧縮機の磁気軸受装置の部分の概略構成を示している。以下の説明において、図1の左右を左右とする。
【0014】
圧縮機は、左右方向の水平軸上に配置された略円筒状の密閉ケーシング(1)の内側で水平軸状の回転体(2)が回転する横型のものである。
【0015】
ケーシング(1)は、右側の大部分を占める回転体支持部(3)と、左側の大径の気体流通部(4)とから構成されている。回転体支持部(3)の内側には、回転体(2)が配置される第1の空間(5)が形成され、気体流通部(4)の内側には、気体が流通する第2の空間(6)が形成されている。
【0016】
回転体(2)は、段付軸状をなし、第1の空間(5)内の中心に配置されている。回転体(2)の左端には、第2の空間(6)内に位置する翼(7)が固定されている。
【0017】
回転体支持部(3)の内周に、回転体(2)をアキシアル方向(左右方向)に非接触支持する1組の制御型アキシアル磁気軸受(8)、回転体(2)をラジアル方向(左右方向に対して直交する水平方向および鉛直方向)に非接触支持する左右2組の制御型ラジアル磁気軸受(10)(11)、回転体(2)を高速回転させるビルトイン型電動機(12)、ならびに回転体(2)のアキシアル方向およびラジアル方向の可動範囲を規制して回転体(2)を磁気軸受(8)(10)(11)で支持できなくなったときなどに回転体(2)を機械的に支持する左右2組のタッチダウン軸受(13)(14)が設けられている。
【0018】
アキシアル磁気軸受(8)は、回転体(2)の中間部に設けられたフランジ部(2a)をアキシアル方向の両側から挟むように配置された左右1対のアキシアル電磁石(8a)を備えている。各ラジアル磁気軸受(10)(11)は、それぞれ、回転体(2)を2つのラジアル方向の両側から挟むように配置された2対の電磁石(10a)(11a)を備えている。電動機(12)は、回転体支持部(3)側に設けられたステータ(12a)と、回転体(2)側に設けられたロータ(12b)とから構成されている。
【0019】
図示は省略したが、回転体支持部(3)には、回転体(2)のアキシアル方向および2つのラジアル方向の位置を検出する位置センサが設けられている。
【0020】
第2の空間(6)の左端に気体流入口(15)が設けられ、これに気体流入路(16)が接続されている。また、第2の空間(6)の外周に気体流出口(17)が設けられ、これに気体流出路(18)が接続されている。
【0021】
第1の空間(5)の右端(第2の空間(6)と反対側の部分)と気体流入路(16)との間に、バイパス路(19)が設けられている。バイパス路(19)の中間部に、気体の流れに抵抗を与える流通抵抗部(20)が形成されている。
【0022】
上記の磁気軸受装置において、位置センサで検出された回転体(2)の位置に基づいて、各磁気軸受(8)(10)(11)の各電磁石(8a)(10a)(11a)が制御されることにより、回転体(2)がアキシアル方向およびラジアル方向の所定位置に非接触支持され、電動機(12)により回転駆動される。
【0023】
回転体(2)が回転することにより、翼(7)が回転し、翼(7)の回転により、気体が、気体流入路(16)から気体流入口(15)を通って第2の空間(6)に流入し、第2の空間(6)内で圧縮され、気体流出口(17)から気体流出路(18)を通って排出される。一方、気体流入路(16)から気体流入口(15)を通って第2の空間(6)に流入する気体とともに、バイパス路(19)内の気体が気体流入路(16)を通って気体流入口(15)から第2の空間(6)に流入する。このため、第1の空間(5)内の気体がバイパス路(19)に流入し、第2の空間(6)内の気体の一部がバイパス路(19)に流入する。その結果、第2の空間(6)、第1の空間(5)およびバイパス路(19)を通る気体の流れが生じる。そして、第1の空間(5)内を流れる気体により、回転体(2)が冷却され、回転体(2)の温度上昇が抑制される。このとき、バイパス路(19)に流通抵抗部(20)が設けられているので、バイパス路(19)に流れる気体量を必要最小限にして、圧縮機の効率の低下を必要最小限に止めることができる。
【0024】
上記実施形態では、バイパス路(19)が気体流入路(16)を介して第2の空間(6)に接続されているので、上記のように、第2の空間(6)、第1の空間(5)およびバイパス路(19)を通る気体の流れを確実に生じさせて、回転体(2)を確実に冷却することができる。
【0025】
しかし、第1の空間(5)およびバイパス路(19)に気体の流れを確実に生じさせることができれば、バイパス路(19)は第2の空間(6)のどの部分に接続されてもよい。好ましくは、バイパス路(19)は、第2の空間(6)の気体流入口(15)側に接続される。
【0026】
さらに、磁気軸受装置の他の部分の構成も、上記実施形態のものに限らず、適宜変更可能である。
【0027】
上記実施形態では、この発明を圧縮機に適用した例を示したが、この発明は、たとえば減圧機、送風機など、他の種類の回転機器にも適用できる。
【図面の簡単な説明】
【図1】図1は、この発明の実施形態を示す圧縮機の磁気軸受装置の部分の概略縦断面図である。
【符号の説明】
(2)        回転体
(3)        回転体支持部
(4)        気体流通部
(5)        第1の空間
(6)        第2の空間
(7)        翼
(8)        アキシアル磁気軸受
(10)(11)     ラジアル磁気軸受
(12)       電動機
(15)       気体流入口
(16)       気体流入路
(17)       気体流出口
(19)       バイパス路
(20)       流通抵抗部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic bearing device used for rotating equipment such as a compressor, a decompressor, and a blower that performs compression, decompression, and air blowing of a gas.
[0002]
[Prior art]
In the rotating device using the magnetic bearing device as described above, the rotating body having the wings is disposed in the casing, is supported in a non-contact manner by a plurality of sets of magnetic bearings, and is rotationally driven by the electric motor.
[0003]
[Problems to be solved by the invention]
In the magnetic bearing device as described above, in the casing, a temperature rise occurs in the rotating body due to heat generated by an eddy current loss of the rotor of the electric motor provided in the rotating body or the magnetic bearing.
[0004]
However, in the conventional magnetic bearing device, there is no conduction cooling effect against the above-mentioned heat generation and the temperature rise of the rotating body, and the gap between the stator and the rotor of the electric motor and the electromagnet of the magnetic bearing and the rotating body are not provided. Since all the gaps are small, there is no convection cooling action. For this reason, the heat radiation is performed only by the infrared radiation cooling, and the temperature rise of the rotating body due to heat generation cannot be suppressed.
[0005]
An object of the present invention is to solve the above-mentioned problems and to provide a magnetic bearing device capable of cooling a rotating body and suppressing a temperature rise thereof.
[0006]
Means for Solving the Problems and Effects of the Invention
A magnetic bearing device according to the present invention includes a rotating body support portion having a first space therein, a gas flow portion having a second space communicating with the first space and having a gas inlet and a gas outlet. A rotating body disposed in the first space and having a wing located at one end in the second space; and a plurality of sets of magnetic bearings disposed on the rotating body support and supporting the rotating body in a non-contact manner; In a magnetic bearing device including an electric motor disposed on a rotating body support portion and configured to rotationally drive the rotating body, a bypass path connecting a portion of the first space opposite to the second space and the second space. Is provided.
[0007]
As the rotor rotates and the blades rotate, gas flows into the second space from the gas inlet and flows out from the gas outlet. Then, due to the gas flow in the second space, a gas flow is also generated in the first space through the bypass path, and the rotating body is cooled by the gas flow.
[0008]
According to the magnetic bearing device of the present invention, as described above, the rotation of the rotating body generates a gas flow in the first space, cools the rotating body, and suppresses a temperature rise.
[0009]
For example, a flow resistance portion that provides resistance to the flow of gas is provided in the bypass path.
By doing so, the amount of gas flowing through the bypass passage can be minimized, and a decrease in the efficiency of a rotating device or the like to which the magnetic bearing device is applied can be minimized.
[0010]
Preferably, the bypass is connected to the gas inlet side of the second space.
For example, a gas inflow path connected to the gas inlet of the second space is provided, and the bypass path is connected to the second space via the gas inflow path.
With this configuration, the gas in the bypass channel flows into the gas inflow channel due to the flow of the gas flowing from the gas inflow channel through the gas inflow port into the second space, and the second gas flows from the gas inflow channel into the second space. It flows into the space. For this reason, a gas flows from the second space through the first space and the bypass to the second space. Therefore, it is possible to reliably generate the gas flow in the first space and to reliably cool the rotating body.
[0011]
The magnetic bearing device according to the present invention can be applied to a compressor, a decompressor, or a blower, or a rotating device that compresses, decompresses, or blows gas.
The compressor, the decompressor, the blower, or the rotating device has the same configuration as the above-described magnetic bearing device.
By doing so, the same operation and effect as in the case of the magnetic bearing device described above can be obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a compressor will be described with reference to the drawings.
[0013]
FIG. 1 shows a schematic configuration of a magnetic bearing device of a compressor. In the following description, the left and right in FIG.
[0014]
The compressor is of a horizontal type in which a horizontal shaft-shaped rotating body (2) rotates inside a substantially cylindrical hermetic casing (1) arranged on a horizontal axis in the left-right direction.
[0015]
The casing (1) is composed of a rotating body supporting portion (3) occupying most of the right side and a large-diameter gas flowing portion (4) on the left side. A first space (5) in which the rotating body (2) is arranged is formed inside the rotating body support portion (3), and a second space through which gas flows is formed inside the gas flowing portion (4). A space (6) is formed.
[0016]
The rotating body (2) has a stepped shaft shape and is arranged at the center in the first space (5). A wing (7) located in the second space (6) is fixed to the left end of the rotating body (2).
[0017]
A set of controlled axial magnetic bearings (8) for supporting the rotating body (2) in the axial direction (left and right direction) in a non-contact manner on the inner periphery of the rotating body support (3), and the rotating body (2) in the radial direction ( Two sets of right and left control-type radial magnetic bearings (10) and (11) that support in a non-contact manner in a horizontal direction and a vertical direction perpendicular to the left-right direction, a built-in motor (12) that rotates the rotating body (2) at high speed, Also, when the rotating body (2) cannot be supported by the magnetic bearings (8), (10), and (11) by restricting the movable range in the axial direction and the radial direction of the rotating body (2), the rotating body (2) is Two sets of right and left touchdown bearings (13) and (14) for mechanical support are provided.
[0018]
The axial magnetic bearing (8) includes a pair of left and right axial electromagnets (8a) arranged so as to sandwich a flange portion (2a) provided at an intermediate portion of the rotating body (2) from both sides in the axial direction. . Each of the radial magnetic bearings (10) and (11) includes two pairs of electromagnets (10a) and (11a) arranged so as to sandwich the rotating body (2) from two radial sides. The electric motor (12) includes a stator (12a) provided on the rotating body support (3) side and a rotor (12b) provided on the rotating body (2) side.
[0019]
Although not shown, the rotating body support (3) is provided with position sensors for detecting the positions of the rotating body (2) in the axial direction and two radial directions.
[0020]
A gas inlet (15) is provided at the left end of the second space (6), and a gas inflow path (16) is connected to the gas inlet (15). Further, a gas outlet (17) is provided on the outer periphery of the second space (6), and the gas outlet (18) is connected to the gas outlet (17).
[0021]
A bypass path (19) is provided between the right end of the first space (5) (the part opposite to the second space (6)) and the gas inflow path (16). A flow resistance portion (20) for providing resistance to the flow of gas is formed at an intermediate portion of the bypass passage (19).
[0022]
In the above magnetic bearing device, each electromagnet (8a) (10a) (11a) of each magnetic bearing (8) (10) (11) is controlled based on the position of the rotating body (2) detected by the position sensor. As a result, the rotating body (2) is non-contactly supported at predetermined positions in the axial direction and the radial direction, and is driven to rotate by the electric motor (12).
[0023]
The rotation of the rotating body (2) rotates the blade (7), and the rotation of the blade (7) allows gas to pass from the gas inflow path (16) through the gas inlet (15) to the second space. It flows into (6), is compressed in the second space (6), and is discharged from the gas outlet (17) through the gas outflow passage (18). On the other hand, the gas in the bypass channel (19) passes through the gas inflow channel (16) together with the gas flowing from the gas inflow channel (16) into the second space (6) through the gas inflow port (15). From the inflow port (15), it flows into the second space (6). For this reason, the gas in the first space (5) flows into the bypass (19), and a part of the gas in the second space (6) flows into the bypass (19). As a result, gas flows through the second space (6), the first space (5), and the bypass path (19). Then, the rotating body (2) is cooled by the gas flowing in the first space (5), and the temperature rise of the rotating body (2) is suppressed. At this time, since the flow resistance portion (20) is provided in the bypass passage (19), the amount of gas flowing through the bypass passage (19) is minimized, and the decrease in the efficiency of the compressor is minimized. be able to.
[0024]
In the above embodiment, since the bypass passage (19) is connected to the second space (6) via the gas inflow passage (16), the second space (6) and the first space (6) are connected as described above. The flow of the gas passing through the space (5) and the bypass path (19) is reliably generated, and the rotating body (2) can be reliably cooled.
[0025]
However, the bypass passage (19) may be connected to any part of the second space (6) as long as a gas flow can be reliably generated in the first space (5) and the bypass passage (19). . Preferably, the bypass (19) is connected to the gas inlet (15) side of the second space (6).
[0026]
Further, the configuration of the other parts of the magnetic bearing device is not limited to that of the above-described embodiment, and can be appropriately changed.
[0027]
In the above embodiment, an example is shown in which the present invention is applied to a compressor. However, the present invention can also be applied to other types of rotating equipment such as a decompressor and a blower.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a part of a magnetic bearing device of a compressor, showing an embodiment of the present invention.
[Explanation of symbols]
(2) Rotating body (3) Rotating body supporting part (4) Gas flow part (5) First space (6) Second space (7) Blade (8) Axial magnetic bearing (10) (11) Radial magnetism Bearing (12) Motor (15) Gas inlet (16) Gas inlet (17) Gas outlet (19) Bypass (20) Flow resistance

Claims (3)

内部に第1の空間を有する回転体支持部と、第1の空間に連通し気体流入口および気体流出口が設けられた第2の空間を有する気体流通部と、第1の空間内に配置されて一端部に第2の空間内に位置する翼を有する回転体と、回転体支持部に配置されて回転体を非接触支持する複数組の磁気軸受と、回転体支持部に配置されて回転体を回転駆動する電動機とを備えている磁気軸受装置において、
第1の空間における第2の空間と反対側の部分と第2の空間とを接続するバイパス路が設けられていることを特徴とする磁気軸受装置。
A rotator support having a first space therein, a gas circulating portion having a second space communicating with the first space and having a gas inlet and a gas outlet provided therein, and disposed in the first space; A rotating body having wings located at one end in the second space, a plurality of sets of magnetic bearings arranged in the rotating body support to support the rotating body in a non-contact manner, and arranged in the rotating body support. A magnetic bearing device comprising an electric motor that rotationally drives a rotating body,
A magnetic bearing device, wherein a bypass path connecting a portion of the first space opposite to the second space and the second space is provided.
バイパス路に、気体の流れに抵抗を与える流通抵抗部が設けられていることを特徴とする請求項1の磁気軸受装置。2. The magnetic bearing device according to claim 1, wherein the bypass passage is provided with a flow resistance portion that gives resistance to the flow of the gas. 第2の空間の気体流入口に接続される気体流入路が設けられ、バイパス路が、気体流入路を介して第2の空間に接続されていることを特徴とする請求項1または2の磁気軸受装置。3. The magnetic device according to claim 1, wherein a gas inflow path connected to the gas inlet of the second space is provided, and the bypass path is connected to the second space via the gas inflow path. Bearing device.
JP2002216261A 2002-07-25 2002-07-25 Magnetic bearing device Pending JP2004060686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216261A JP2004060686A (en) 2002-07-25 2002-07-25 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216261A JP2004060686A (en) 2002-07-25 2002-07-25 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JP2004060686A true JP2004060686A (en) 2004-02-26

Family

ID=31938063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216261A Pending JP2004060686A (en) 2002-07-25 2002-07-25 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP2004060686A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034727A1 (en) * 2012-08-28 2014-03-06 株式会社Ihi Centrifugal compressor
KR20140083350A (en) * 2012-12-26 2014-07-04 한라비스테온공조 주식회사 Air blower for fuel cell vehicle
JP2014126174A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Thrust magnetic bearing and compressor
CN106438697A (en) * 2016-11-21 2017-02-22 南京磁谷科技有限公司 Axial magnetic bearing structure
CN107387562A (en) * 2017-08-29 2017-11-24 南京磁谷科技有限公司 A kind of coaxial electromagnet structure of thrust magnetic bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280770A (en) * 1993-03-25 1994-10-04 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for electric motor for low temperature gas compressor
JPH1113695A (en) * 1997-06-26 1999-01-19 Daikin Ind Ltd Turbo machinery
JP2002064956A (en) * 2000-08-14 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd High speed-revolution motor and cooling method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280770A (en) * 1993-03-25 1994-10-04 Ishikawajima Harima Heavy Ind Co Ltd Cooling method for electric motor for low temperature gas compressor
JPH1113695A (en) * 1997-06-26 1999-01-19 Daikin Ind Ltd Turbo machinery
JP2002064956A (en) * 2000-08-14 2002-02-28 Ishikawajima Harima Heavy Ind Co Ltd High speed-revolution motor and cooling method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034727A1 (en) * 2012-08-28 2014-03-06 株式会社Ihi Centrifugal compressor
JP2014043834A (en) * 2012-08-28 2014-03-13 Ihi Corp Centrifugal compressor
CN104508305A (en) * 2012-08-28 2015-04-08 株式会社Ihi Centrifugal compressor
KR101746147B1 (en) * 2012-08-28 2017-06-12 가부시키가이샤 아이에이치아이 Centrifugal compressor
US10087945B2 (en) 2012-08-28 2018-10-02 Ihi Corporation Centrifugal compressor
KR20140083350A (en) * 2012-12-26 2014-07-04 한라비스테온공조 주식회사 Air blower for fuel cell vehicle
KR101970738B1 (en) 2012-12-26 2019-04-22 한온시스템 주식회사 System for fuel cell vehicle
JP2014126174A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Thrust magnetic bearing and compressor
CN106438697A (en) * 2016-11-21 2017-02-22 南京磁谷科技有限公司 Axial magnetic bearing structure
CN107387562A (en) * 2017-08-29 2017-11-24 南京磁谷科技有限公司 A kind of coaxial electromagnet structure of thrust magnetic bearing

Similar Documents

Publication Publication Date Title
JP6604494B2 (en) Direct drive turbo blower cooling structure
US11639724B2 (en) Turbo compressor having separate cooling air channel
JP6786823B2 (en) Centrifugal fluid machine, centrifugal blower and centrifugal compressor
US20150008771A1 (en) Motor having cooling means
KR100675821B1 (en) Air cooling structure of turbo machinery with high speed motor
JP2008193756A (en) Rotary apparatus
KR102331134B1 (en) Turbo blower with flow control cooling system
JP2008283813A (en) Motor-integrated magnetic bearing device
JP2007162726A (en) Motor integrated magnetic bearing device
JP2004060686A (en) Magnetic bearing device
KR20140097676A (en) A device for cooling a motor
JP2007162725A (en) Motor integrated magnetic bearing device
JP2003339138A (en) Rotary electric machine
JP2008072809A (en) Magnetic bearing arrangement integral with motor
KR20130139076A (en) Turbo blower
JPH01267392A (en) Turbo vacuum pump
JP2009050066A (en) Motor-integrated magnetic bearing apparatus
JP2008082426A (en) Magnetic bearing device
WO2019039211A1 (en) Motor device, and motor driven moving body
KR101164588B1 (en) Turbo compressor
JP2008072808A (en) Magnetic bearing arrangement integrated with motor
JP4799159B2 (en) Motor-integrated magnetic bearing device
US11525449B2 (en) Compressor with thermal expansion reducing structure
JP4969272B2 (en) Motor-integrated magnetic bearing device
JP2008185110A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306