JP2004060592A - Injection device, injection hole member manufacturing device, and injection hole member manufacturing method - Google Patents

Injection device, injection hole member manufacturing device, and injection hole member manufacturing method Download PDF

Info

Publication number
JP2004060592A
JP2004060592A JP2002222984A JP2002222984A JP2004060592A JP 2004060592 A JP2004060592 A JP 2004060592A JP 2002222984 A JP2002222984 A JP 2002222984A JP 2002222984 A JP2002222984 A JP 2002222984A JP 2004060592 A JP2004060592 A JP 2004060592A
Authority
JP
Japan
Prior art keywords
injection hole
injection
fluid
acute angle
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002222984A
Other languages
Japanese (ja)
Other versions
JP3904075B2 (en
Inventor
Akira Mizutani
水谷 明
Kazuki Terajima
寺島 一樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002222984A priority Critical patent/JP3904075B2/en
Publication of JP2004060592A publication Critical patent/JP2004060592A/en
Application granted granted Critical
Publication of JP3904075B2 publication Critical patent/JP3904075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection device having an injection hole member in which only an injection amount is regulated without changing an injection direction. <P>SOLUTION: Injection holes 22 are formed in the flat plate part 21 of the injection hole member 20. The injection hole diameters of the injection holes are identical to each other, and gradually diverged from an inlet side toward an outlet side. In a virtual plane including injection hole axes 110 and orthogonal to the flat plate part 21, the inner wall surface 23 of the flat plate part forming the injection holes 22 and the virtual flat surface cross two injection hole crossing lines 114 and 116. The virtual flat surface and a fuel inlet side end face 24 forming the fluid inlet side end face of the flat plate part 21 cross two inlet crossing lines 120 and 122. An angle α formed by the injection hole crossing line 114 and the inlet crossing line 120 is an acute angle, and an angle β formed by the injection hole crossing line 116 and the inlet crossing line 122 is an acute angle. A recessed part 26 includes the inlet opening peripheral edges of the injection holes 22 on the inlet peripheral angle α side of the injection holes 22 in the flat plate part 21 and formed by press working. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流体を噴射する噴孔を噴孔部材に形成した噴射装置(以下、「噴射装置」をインジェクタという。)、その噴孔部材の製造装置、ならびに噴孔部材の製造方法に関する。
【0002】
【従来の技術】
薄板状の噴孔部材に噴孔を形成し、噴孔径または噴孔の傾斜角度を調整することにより、噴孔から噴射する噴射量、つまり噴孔を流れる流体流量および噴射方向を高精度に調整するインジェクタが知られている。しかし、噴孔加工時の加工誤差、噴孔部材の板厚のばらつき、噴孔の流体入口角度の鈍り等により、噴射量がばらつくことがある。そこで、例えば特開平11−270441号公報に開示されるように、噴孔の入口周縁部の母材を凹ませることにより、噴射量を調整して噴孔部材を形成することが考えられている。噴孔の入口周縁部の母材を凹ませることにより母材の材質が噴孔に向けて押し出されるので、噴孔における流体入口角度の鈍り量および噴孔径を調整することができる。したがって、噴孔の噴射量を調整できる。
【0003】
【発明が解決しようとする課題】
本出願人は、噴孔部材の板厚方向に沿った軸線に対し噴孔を流れる流体流れ方向に沿った噴孔軸線が傾斜している所謂テーパ噴孔を検討している。しかしながら、テーパ噴孔の入口周縁部に凹部を形成し噴射量を調整する場合、噴孔の入口周縁部の母材を凹ませる位置によっては、噴射量が変化するとともに、噴射方向が変化する場合がある。
【0004】
本発明の目的は、噴射方向を変えず噴射量だけを調整した噴孔部材を備えるインジェクタを提供することにある。
本発明の他の目的は、母材に伝わるパンチ力の変動が少ない噴孔部材の製造装置を提供することにある。
本発明の他の目的は、噴射方向を変えず噴射量だけを調整して噴孔部材を製造する噴孔部材の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の請求項1記載のインジェクタまたは請求項7記載の噴孔部材の製造方法によると、噴孔の噴孔軸線を含み噴孔部材の噴孔部材に直交する仮想平面において、噴孔の内壁面と仮想平面とが交わる2本の噴孔交線の一方は噴孔部材の流体入口側端面と鋭角を形成し、噴孔交線の他方は流体入口側端面と鈍角を形成している。
【0006】
噴孔交線と流体入口側端面とが鋭角を形成している側の噴孔を流れる流体は、噴孔の内壁面から剥離して流れるので、噴孔の入口周縁部の鋭角側にプレス加工により凹部を形成し噴孔側に噴孔部材の材質が移動し噴孔の内壁面が変形しても、噴射方向は殆ど変化しない。一方、噴孔交線と流体入口側端面とが鈍角を形成している側の噴孔を流れる流体は、噴孔の内壁面に沿って流れる。したがって、プレス加工により凹部を形成することにより噴孔側に噴孔部材の材質が移動し噴孔の鈍角側の内壁面の形状が変化すると、流体噴射量が変化するとともに流体噴射方向が変化する。
本発明の請求項1記載のインジェクタでは、噴孔交線と流体入口側端面とが鋭角を形成する側にプレス加工により凹部を形成しているので、プレスによる凹部の加工量を調整することにより、噴射方向を変えることなく噴射量だけを調整できる。
【0007】
本発明の請求項2記載のインジェクタによると、噴孔交線と流体入口側端面とが鋭角を形成する側から噴孔の入口径の長さの75%以下の範囲を含み、噴孔交線と流体入口側端面とが鋭角を形成する側の噴孔の入口周縁部に凹部を形成している。噴孔の入口周縁部において、鋭角側から鈍角側に向けて凹部を形成する範囲を規制したので、噴孔の内壁面の鈍角側の変形を低減できる。したがって、噴射方向の変化を防止できる。
【0008】
本発明の請求項3記載のインジェクタによると、噴孔の入口側開口周縁を含んで凹部を形成するので、凹部の形成位置がずれても噴孔の入口開口面積が殆ど変化しない。したがって、凹部の形成位置の違いにより噴射量がばらつくことを防止する。
本発明の請求項4記載のインジェクタによると、少なくとも1個以上の噴孔の入口周縁部に凹部を形成している。全ての噴孔の入口周縁部に凹部を形成せず一部の噴孔の入口周縁部に凹部を形成すれば、同じ凹部の凹み量であれば、噴射量の変化が少ないので、噴射量を微調整できる。また、凹部を形成する噴孔の数を調整することにより噴射量を微調整できる。
【0009】
本発明の請求項5記載の噴孔部材の製造装置によると、弾性部材を介しパンチに伝達部材から押圧力が加わるので、母材の板厚にばらつきがあっても、パンチが母材をプレスする力の変動を低減できる。したがって、母材の板厚にばらつきがあっても、凹部の加工量を一定にできる。
本発明の請求項6記載の噴孔部材を製造する製造装置によると、伝達部材の母材側に向けた下端位置を調整できるので、パンチが母材をプレスする力を微調整できる。したがって、凹部の加工量を高精度に調整できる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を示す複数の実施例を図に基づいて説明する。
(第1実施例)
本発明の第1実施例によるインジェクタを図2に示す。インジェクタ10は、ガソリンエンジン用の燃料噴射装置である。
弁ボディ12は弁ハウジング16の燃料噴射側端部内壁に溶接により固定されている。弁ボディ12は、燃料流れ方向の噴孔部材20側に向けて縮径し燃料通路100を形成している内周面としての円錐面13を有している。円錐面13には弁部材としてのノズルニードル30が着座可能な弁座14が形成されている。
【0011】
噴孔部材20は有底筒状に形成されており、弁ハウジング16の底部内壁と弁ボディ12の底部外壁との間に挟持されている。噴孔部材20の平板部21には、図1の(A)に示すように噴孔22が合計12個形成されている。図1の(B)に示すように、各噴孔22の噴孔径はそれぞれ等しく、入口側から出口側に向けてしだいに拡径している。噴孔22を流れる燃料流れ方向に沿った噴孔軸線110は、噴孔部材20の底部である平板部21の板厚方向に沿った軸線112に対して傾斜している。図2に示すノズルニードル30が弁座14に着座すると噴孔22からの燃料噴射が遮断され、ノズルニードル30が弁座14から離座すると噴孔22からの燃料噴射が許容され燃料が噴射される。
【0012】
図2に示す筒部材40は弁ハウジング16の反噴孔側内周壁に挿入され、溶接により弁ハウジング16に固定されている。筒部材40は、噴孔部材20側から第1磁性筒部42、非磁性筒部44および第2磁性筒部46により構成されている。非磁性筒部44は第1磁性筒部42と第2磁性筒部46との磁気的短絡を防止する。
【0013】
可動コア50は磁性材料で円筒状に形成されており、ノズルニードル30の反噴孔側の端部34と溶接により固定されている。可動コア50はノズルニードル30とともに往復移動する。可動コア50の筒壁を貫通する流出孔52は、可動コア50の筒内外を連通する燃料通路を形成している。
固定コア54は磁性材料で円筒状に形成されている。固定コア54は筒部材40内に挿入されており、筒部材40と溶接により固定されている。固定コア54は可動コア50に対し反噴孔側に設置され可動コア50と向き合っている。
【0014】
アジャスティングパイプ56は固定コア54に圧入され、内部に燃料通路を形成している。スプリング58は一端部でアジャスティングパイプ56に係止され、他端部で可動コア50に係止されている。アジャスティングパイプ56の圧入量を調整することにより、可動コア50に加わるスプリング58の荷重を変更できる。スプリング58の付勢力により可動コア50およびノズルニードル30は弁座14に向けて付勢されている。
【0015】
コイル60はスプール62に巻回されている。ターミナル65はコネクタ64にインサート成形されており、コイル60と電気的に接続している。コイル60に通電すると、可動コア50と固定コア54との間に磁気吸引力が働き、スプリング58の付勢力に抗し可動コア50は固定コア54側に吸引される。
【0016】
フィルタ70は固定コア54の燃料上流側に設置されており、インジェクタ10に供給される燃料中の異物を除去する。固定コア54内にフィルタ70を通して流入した燃料は、アジャスティングパイプ56内の燃料通路、可動コア50内の燃料通路、流出孔52、弁ハウジング16の内周壁とノズルニードル30の外周壁との間を順次通過する。ノズルニードル30が弁座14から離座すると、ノズルニードル30と弁座14との間に形成される開口流路を燃料が通過し噴孔22に導かれる。
【0017】
次に、噴孔22および噴孔22の入口周縁部の形状を詳細に説明する。
図1の(B)に示すように、噴孔軸線110を含み平板部21に直交する仮想平面において、噴孔22の内壁面23と仮想平面とは2本の噴孔交線114、116で交わる。仮想平面と平板部21の流体入口側端面である燃料入口側端面24とは2本の入口交線120、122で交わる。噴孔交線114と入口交線120、つまり噴孔交線114と燃料入口側端面24とが形成する角αは鋭角であり、噴孔交線116と入口交線122、つまり噴孔交線116と燃料入口側端面24とが形成する角βは鈍角である。凹部26は、平板部21の噴孔22の入口周縁部の角α側に、噴孔22の入口開口周縁を含み形成されている。
【0018】
図3の(A)に示すように、噴孔母材20の薄板状の母材130に予め噴孔22が形成されている。図3の(B)に示すように、噴孔22の形成された母材130をパンチ206でプレス加工することにより、噴孔22の入口周縁部に噴孔22の入口開口周縁を含んで凹部26は形成される。パンチ206は、12個の噴孔22に同時に凹部26を形成する形状である。パンチ206の各先端は図3の(B)、(C)に示すように四角形状の平面である。凹部26は、角α側と角β側とを結ぶ噴孔22の入口径dにおいて角α側から75%以下、つまりL/d≦0.75である範囲を含み、角α側の噴孔22の入口周縁部の平板部21に形成されている。噴孔22の入口周縁部に凹部26を形成した後、有底筒状に噴孔部材20を形成する。
【0019】
母材130毎の板厚のばらつき、噴孔22を形成するときの加工誤差、あるいは噴孔22を図示しないパンチで打ち抜いて形成するときの噴孔開口周囲の鈍り等により、凹部26を形成する前の噴孔22の噴射量は、所望の噴射量と異なっていることが多い。そこで本実施例では、母材130において、噴孔22の入口周縁部にパンチ206を用いてプレス加工で凹部26を形成することにより、母材130の材質を噴孔22側に移動させ、噴孔22の入口開口面積を小さくしている。入口開口面積が小さくなることにより、噴孔22から噴射する噴射量を調整できる。
【0020】
次に、凹部26を形成する製造装置について説明する。
図4に示すように、プレス装置200は、図示しない駆動装置からの押圧力をパンチ206に伝達する伝達部材202、204、薄板状の母材130を押さえる支持部材208、伝達部材204に往復移動可能に支持されているパンチ206、伝達部材202とパンチ206との間に介在しパンチ206を母材130側に付勢する弾性部材としてのばね部材210を有している。
【0021】
本実施例のようにインジェクタ10の噴孔22の入口周縁部に凹部26を形成し噴射量を調整する場合、凹部26の加工深さは数ミクロン程度である。したがって、母材130毎の板厚のばらつきが数ミクロン程度であっても、凹部26の所定の加工深さに対し大きなばらつきが生じる。したがって、母材130の板厚のばらつきにより凹部26の加工深さが変動することを防止する必要がある。
【0022】
本実施例のプレス装置200の駆動装置の押圧力は、伝達部材202からばね部材210を介してパンチ206に伝わる。したがって、伝達部材202、204の移動量に比べパンチ206の移動量は小さい。また、パンチ206が母材130を押圧する力は、ばね部材210の変形量と弾性係数との積にしたがい変化する。パンチ206が母材130に加える押圧力は伝達部材202、204が母材130側に下降しても急激に上昇しない。したがって、母材130の板厚にばらつきがあっても、母材130側に向けた伝達部材202、204の下端位置、つまりプレス下死点が一定であればパンチ206による凹部26の加工深さを一定にできる。
言い換えれば、図4の(A)、(B)に示すように、伝達部材202、204の下端位置、つまりプレス下死点を変更することにより、凹部26の微小な加工深さの調整が可能である。したがって、要求噴射量に合わせ噴孔22の噴射量を高精度に調整できる。
【0023】
次に、噴孔22の入口周縁部の鋭角側に凹部を形成する場合、凹部を形成しない場合、全周に凹部を形成する場合の燃料流れの変化を図5に示す。凹部は図4に示すプレス装置200により加工する。
図5の(A)に示すように、噴孔22の鋭角側から噴孔22に流入する燃料は、鋭角側の内壁面23から剥離する。したがって、鋭角側の内壁面23に沿って燃料は流れない。一方、図5の(C)に示すように、噴孔22の鈍角側から噴孔22に流入する燃料は、鈍角側の内壁面23に沿って流れる。
【0024】
図5の(C)に示すように噴孔22の入口周縁部の全周に凹部80を形成すると、図5の(B)に示す凹部を形成しない場合に比べ、燃料の噴射方向が鈍角側、つまり噴射角度が減少している。これは噴孔22を形成する噴孔部材20の燃料流れ方向に沿った鈍角側の内壁面23の長さが短くなったことにより、内壁面23に沿った燃料流れの勢いが低下したためである。また、噴孔22の全周にプレス加工により凹部80を形成したので、図示されていないが噴孔22の入口側に材質が移動し、噴孔の入口開口面積が小さくなっている。したがって、噴射量は減少する。
【0025】
図5の(A)に示す本実施例では、噴孔22の鋭角側に凹部26を形成しても、燃料流れ方向に沿った鈍角側の内壁面23の長さが変わっていないので、燃料の噴射方向は変化しない。噴孔22の鋭角側に凹部26を形成し鋭角側の内壁面23の長さが短くなっても、鋭角側の内壁面23に沿って燃料は流れないので、噴射方向は変化しない。噴射量については、プレス加工により鋭角側に凹部26を形成したので、図示されていないが噴孔22の入口側に材質が移動し、噴孔の入口開口面積が小さくなる。したがって、噴射量は減少する。
【0026】
図6に、噴孔22の入口周縁部の鋭角側だけに凹部26を形成した場合と、噴孔22の入口の全周に凹部80を形成した場合の流量調整量と噴射角度の変化を示す。流量調整量は、噴孔22に凹部を形成する前の初期流量に対し増減した流量の%を示してる。流量調整量のマイナスは初期流量に対し減少していることを示している。流量調整量の絶対値が大きくなることは、凹部の深さが深くなっていることを示している。
【0027】
全周に凹部80を形成すると、流量調整量の絶対値が大きくなるにしたがい噴射角度が減少している。これは、流量調整量の絶対値が大きくなる、つまり凹部80の深さが深くなるにしたがい、噴孔22の内壁面23の鈍角側の長さが短くなり内壁面23に沿って燃料が流れる長さが短くなったからである。
これに対し鋭角側だけに凹部26を形成すると、流量調整量の絶対値が大きくなっても、噴射角度は殆ど変化しない。これは、噴孔22の内壁面23の鈍角側の長さが変化しないからである。
【0028】
図7に示す黒丸は、パンチ206により凹部26を形成する前の噴射量のばらつきを示している。前述したように、噴孔22を形成するときの加工誤差、あるいは噴孔22を図示しないパンチで打ち抜いて形成するときの噴孔開口周囲の鈍り等により噴射量はばらつく。白丸はパンチ206により噴孔22の入口周縁部の鋭角側に凹部26を形成し、噴射量を調整した後の噴射量のばらつきを示してる。鋭角側に凹部26を形成することにより、噴射量をほぼ均一に調整できている。
【0029】
(第2実施例)
本発明の第2実施例を図8に示す。第1実施例と実質的に同一構成部分に同一符号を付す。
噴孔22の入口周縁部に形成する凹部90の形状が第1実施例と異なっている。凹部90が入口径dに対して占める割合であるL/dが第1実施例よりも小さい。凹部90を形成することにより、鈍角側である角β側の内壁面に与える影響が小さいので、噴射方向が変化しない。
【0030】
(第3実施例)
本発明の第3実施例を図9に示す。第1実施例と実質的に同一構成部分に同一符号を付す。第3実施例の噴孔94は入口から出口まで同一径である。
以上説明した本発明の上記複数の実施例では、噴孔の入口周縁部の鋭角側にプレス加工で凹部を形成することにより、噴射方向を変えることなく噴射量だけを調整している。
【0031】
上記複数の実施例では噴孔の入口開口周縁を含んで噴孔の入口周縁部に凹部を形成したので、凹部の形成位置が多少ずれても、噴孔側に平板部21の材質が移動する量は殆ど変わらない。したがって、凹部の形成位置が多少ずれても、噴射量の調整量がばらつくことを防止できる。
噴孔の入口開口周縁を含まず、噴孔の入口開口周縁から僅かに離れた箇所に線状の凹部を形成してもよい。
【0032】
上記複数の実施例では、全ての噴孔の入口周縁部に凹部を形成したが、少なくとも1個以上の噴孔の入口周縁部に凹部を形成すればよい。凹部を形成する噴孔の数を調整することにより、噴射量を微調整することができる。
上記複数の実施例では、噴孔部材20の平板部21に噴孔を形成したが、噴孔部材を噴射方向に凹ませた曲板部に噴孔を形成してもよい。
【0033】
上記複数の実施例では、ガソリンエンジン用の燃料噴射装置の噴孔部材について説明したが、燃料以外にも平板部に噴孔を有する噴孔部材の噴射量を調整するのであれば、どのような流体を噴射する噴孔部材であっても、本発明の製造装置、または製造方法を適用することが可能である。
【図面の簡単な説明】
【図1】(A)は第1実施例の噴孔部材を燃料入口側からみた平面図であり、(B)は噴孔の軸線を含み噴孔部材と直交する断面における噴孔部材の噴孔周囲を示す断面図である。
【図2】第1実施例のインジェクタを示す断面図である。
【図3】(A)は噴孔部材に凹部を形成する前の母材を示す断面図であり、(B)は噴孔部材にパンチで凹部を形成する状態を示す断面図であり、(C)はパンチによる凹部の形成位置を示す説明図である。
【図4】プレス装置により噴孔部材の母材に凹部を形成する状態を示す説明図である。
【図5】(A)は噴孔の鋭角側に凹部を形成した燃料の噴射状態を示す説明図であり、(B)は噴孔に凹部を形成していない燃料の噴射状態を示す説明図であり、(C)は噴孔の全周に凹部を形成した燃料の噴射状態を示す説明図である。
【図6】鋭角側に凹部を形成した場合と、全周に凹部を形成した場合との、流量調整量と噴射角度との関係を示す特性図である。
【図7】鋭角側に凹部を形成する前と鋭角側に凹部を形成した後とにおけるサンプル数と噴射量との関係を示す特性図である。
【図8】(A)は第2実施例の噴孔部材を燃料入口側からみた平面図であり、(B)はパンチによる凹部の形成位置を示す説明図である。
【図9】第3実施例による噴孔部材の噴孔周囲を示す断面図である。
【符号の説明】
10   インジェクタ(噴射装置)
13   円錐面(内周面)
20   噴孔部材
21   平板部
22、94   噴孔
23   内壁面
24   燃料入口側端面(流体入口側端面)
26、90   凹部
30   ノズルニードル(弁部材)
100   燃料通路
110   噴孔軸線
112   軸線
114、116   噴孔交線
130   母材
200   プレス装置
202、204   伝達部材
206   パンチ
210   ばね部材(弾性部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection device in which an injection hole for injecting a fluid is formed in an injection hole member (hereinafter, the “injection device” is referred to as an injector), an apparatus for manufacturing the injection hole member, and a method for manufacturing the injection hole member.
[0002]
[Prior art]
By forming an injection hole in a thin plate injection hole member and adjusting the injection hole diameter or the inclination angle of the injection hole, the injection amount injected from the injection hole, that is, the fluid flow rate and the injection direction flowing through the injection hole, is adjusted with high precision A known injector is known. However, the injection amount may vary due to a processing error at the time of the injection hole processing, a variation in the plate thickness of the injection hole member, a dull fluid inlet angle of the injection hole, and the like. Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. H11-270441, it has been considered to form the injection hole member by adjusting the injection amount by recessing the base material at the inlet edge of the injection hole. . Since the material of the base material is extruded toward the injection hole by denting the base material at the inlet peripheral portion of the injection hole, the blunt amount of the fluid inlet angle and the injection hole diameter in the injection hole can be adjusted. Therefore, the injection amount of the injection hole can be adjusted.
[0003]
[Problems to be solved by the invention]
The present applicant has studied a so-called tapered injection hole in which the injection hole axis along the direction of fluid flow flowing through the injection hole is inclined with respect to the axis along the plate thickness direction of the injection hole member. However, when a recess is formed in the inlet peripheral edge of the tapered injection hole to adjust the injection amount, the injection amount changes and the injection direction changes depending on the position where the base material of the injection hole entrance peripheral portion is recessed. There is.
[0004]
An object of the present invention is to provide an injector including an injection hole member in which only the injection amount is adjusted without changing the injection direction.
Another object of the present invention is to provide an apparatus for manufacturing an injection hole member in which a variation in punch force transmitted to a base material is small.
It is another object of the present invention to provide a method of manufacturing an injection hole member that manufactures an injection hole member by adjusting only an injection amount without changing an injection direction.
[0005]
[Means for Solving the Problems]
According to the method for manufacturing an injector according to claim 1 of the present invention or the injection hole member according to claim 7, a virtual plane including the injection hole axis of the injection hole and orthogonal to the injection hole member of the injection hole member has a structure in which One of the two injection hole intersection lines where the wall surface and the virtual plane intersect forms an acute angle with the fluid inlet side end surface of the injection hole member, and the other of the injection hole intersection lines forms an obtuse angle with the fluid inlet side end surface.
[0006]
The fluid flowing through the nozzle hole on the side where the nozzle line intersection line and the fluid inlet side end face form an acute angle separates from the inner wall surface of the nozzle hole and flows, so press processing is performed on the acute angle side of the inlet peripheral edge of the nozzle hole. Therefore, even if the material of the injection hole member moves toward the injection hole side and the inner wall surface of the injection hole is deformed, the injection direction hardly changes. On the other hand, the fluid flowing through the nozzle hole on the side where the nozzle hole intersection line and the fluid inlet side end surface form an obtuse angle flows along the inner wall surface of the nozzle hole. Therefore, when the material of the injection hole member moves to the injection hole side by forming the concave portion by press working and the shape of the inner wall surface on the obtuse angle side of the injection hole changes, the fluid injection amount changes and the fluid injection direction changes. .
In the injector according to the first aspect of the present invention, since the concave portion is formed by press working on the side where the injection hole intersection line and the fluid inlet side end surface form an acute angle, the amount of processing of the concave portion by pressing is adjusted. In addition, only the injection amount can be adjusted without changing the injection direction.
[0007]
According to the injector according to the second aspect of the present invention, the injection hole intersection line includes a range of 75% or less of the length of the inlet diameter of the injection hole from the side where the injection port intersection line and the fluid inlet side end face form an acute angle. A concave portion is formed at the inlet peripheral edge of the injection hole on the side where the fluid inlet side end surface forms an acute angle with the fluid inlet side end surface. Since the range in which the concave portion is formed from the acute angle side to the obtuse angle side at the inlet peripheral portion of the injection hole is regulated, deformation of the inner wall surface of the injection hole on the obtuse angle side can be reduced. Therefore, a change in the injection direction can be prevented.
[0008]
According to the injector according to the third aspect of the present invention, since the recess is formed including the periphery of the opening of the injection hole on the inlet side, the inlet opening area of the injection hole hardly changes even if the formation position of the recess is shifted. Therefore, it is possible to prevent the injection amount from being varied due to the difference in the formation position of the concave portion.
According to the injector according to the fourth aspect of the present invention, a concave portion is formed at the inlet peripheral edge of at least one or more injection holes. If a recess is formed at the entrance periphery of some of the injection holes without forming a recess at the entrance periphery of all the injection holes, the change in the injection amount is small if the depression amount of the same depression is small. Can be fine-tuned. Further, the injection amount can be finely adjusted by adjusting the number of injection holes forming the concave portion.
[0009]
According to the injection hole member manufacturing apparatus according to the fifth aspect of the present invention, since the pressing force is applied from the transmission member to the punch via the elastic member, the punch presses the base material even if the thickness of the base material varies. The fluctuation of the applied force can be reduced. Therefore, even if the thickness of the base material varies, the processing amount of the concave portion can be made constant.
According to the manufacturing apparatus for manufacturing an injection hole member according to claim 6 of the present invention, the lower end position of the transmission member toward the base material can be adjusted, so that the force with which the punch presses the base material can be finely adjusted. Therefore, the processing amount of the concave portion can be adjusted with high accuracy.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plurality of examples showing an embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 2 shows an injector according to a first embodiment of the present invention. The injector 10 is a fuel injection device for a gasoline engine.
The valve body 12 is fixed to the inner wall of the fuel injection side end of the valve housing 16 by welding. The valve body 12 has a conical surface 13 as an inner peripheral surface that forms a fuel passage 100 by reducing the diameter toward the injection hole member 20 side in the fuel flow direction. A valve seat 14 on which a nozzle needle 30 as a valve member can be seated is formed on the conical surface 13.
[0011]
The injection hole member 20 is formed in a cylindrical shape with a bottom, and is sandwiched between a bottom inner wall of the valve housing 16 and a bottom outer wall of the valve body 12. As shown in FIG. 1A, a total of twelve injection holes 22 are formed in the flat plate portion 21 of the injection hole member 20. As shown in FIG. 1B, the diameters of the injection holes 22 are the same, and the diameters of the injection holes 22 gradually increase from the inlet side to the outlet side. The injection hole axis 110 along the direction of flow of the fuel flowing through the injection hole 22 is inclined with respect to the axis 112 along the thickness direction of the flat plate portion 21 which is the bottom of the injection hole member 20. When the nozzle needle 30 shown in FIG. 2 is seated on the valve seat 14, fuel injection from the injection hole 22 is shut off, and when the nozzle needle 30 separates from the valve seat 14, fuel injection from the injection hole 22 is permitted and fuel is injected. You.
[0012]
2 is inserted into the inner peripheral wall of the valve housing 16 on the side opposite to the injection hole, and is fixed to the valve housing 16 by welding. The cylindrical member 40 includes a first magnetic cylindrical portion 42, a non-magnetic cylindrical portion 44, and a second magnetic cylindrical portion 46 from the injection hole member 20 side. The non-magnetic cylinder 44 prevents a magnetic short circuit between the first magnetic cylinder 42 and the second magnetic cylinder 46.
[0013]
The movable core 50 is formed of a magnetic material in a cylindrical shape, and is fixed to the end 34 of the nozzle needle 30 on the side opposite to the injection hole by welding. The movable core 50 reciprocates with the nozzle needle 30. The outflow hole 52 penetrating through the cylinder wall of the movable core 50 forms a fuel passage communicating inside and outside the cylinder of the movable core 50.
The fixed core 54 is formed of a magnetic material into a cylindrical shape. The fixed core 54 is inserted into the tubular member 40 and is fixed to the tubular member 40 by welding. The fixed core 54 is provided on the side opposite to the injection hole with respect to the movable core 50 and faces the movable core 50.
[0014]
The adjusting pipe 56 is pressed into the fixed core 54 to form a fuel passage therein. The spring 58 is locked at one end to the adjusting pipe 56 and at the other end to the movable core 50. The load of the spring 58 applied to the movable core 50 can be changed by adjusting the amount of press-fit of the adjusting pipe 56. The movable core 50 and the nozzle needle 30 are urged toward the valve seat 14 by the urging force of the spring 58.
[0015]
The coil 60 is wound around a spool 62. The terminal 65 is insert-molded in the connector 64 and is electrically connected to the coil 60. When the coil 60 is energized, a magnetic attractive force acts between the movable core 50 and the fixed core 54, and the movable core 50 is attracted to the fixed core 54 against the urging force of the spring 58.
[0016]
The filter 70 is installed on the fuel upstream side of the fixed core 54 and removes foreign matter in the fuel supplied to the injector 10. The fuel that has flowed into the fixed core 54 through the filter 70 passes through the fuel passage in the adjusting pipe 56, the fuel passage in the movable core 50, the outflow hole 52, between the inner peripheral wall of the valve housing 16 and the outer peripheral wall of the nozzle needle 30. Sequentially. When the nozzle needle 30 separates from the valve seat 14, fuel passes through an open flow path formed between the nozzle needle 30 and the valve seat 14 and is guided to the injection holes 22.
[0017]
Next, the shapes of the injection hole 22 and the inlet peripheral edge of the injection hole 22 will be described in detail.
As shown in FIG. 1B, in a virtual plane including the injection hole axis 110 and orthogonal to the flat plate portion 21, the inner wall surface 23 of the injection hole 22 and the virtual plane are defined by two injection hole intersection lines 114 and 116. Intersect. The virtual plane intersects the fuel inlet side end face 24 which is the fluid inlet side end face of the flat plate portion 21 at two inlet intersection lines 120 and 122. The angle α formed by the injection hole intersection line 114 and the entrance intersection line 120, that is, the injection hole intersection line 114 and the fuel inlet side end face 24 is an acute angle, and the injection hole intersection line 116 and the entrance intersection line 122, that is, the injection hole intersection line The angle β formed by the fuel inlet 116 and the fuel inlet side end face 24 is an obtuse angle. The recess 26 is formed on the flat plate portion 21 on the corner α side of the inlet peripheral edge of the injection hole 22, including the inlet opening peripheral edge of the injection hole 22.
[0018]
As shown in FIG. 3A, the injection holes 22 are formed in advance in the thin plate-shaped base material 130 of the injection hole base material 20. As shown in FIG. 3B, the base material 130 having the injection holes 22 formed therein is pressed by a punch 206 to form a recess including the entrance opening edge of the injection holes 22 at the entrance periphery of the injection holes 22. 26 are formed. The punch 206 has a shape that simultaneously forms the recess 26 in the twelve injection holes 22. Each tip of the punch 206 is a square plane as shown in FIGS. 3B and 3C. The recess 26 includes 75% or less of the inlet diameter d of the injection hole 22 connecting the angle α side and the angle β side from the angle α side, that is, L / d ≦ 0.75, and the injection hole on the angle α side. 22 is formed on the flat plate portion 21 at the periphery of the entrance. After the concave portion 26 is formed at the inlet periphery of the injection hole 22, the injection hole member 20 is formed in a bottomed cylindrical shape.
[0019]
The concave portion 26 is formed due to a variation in the thickness of the base material 130, a processing error when forming the injection hole 22, or a dullness around the opening of the injection hole when the injection hole 22 is formed by punching with a punch (not shown). The injection amount of the previous injection hole 22 is often different from the desired injection amount. Therefore, in the present embodiment, in the base material 130, the concave portion 26 is formed by pressing using a punch 206 at the entrance peripheral portion of the injection hole 22, so that the material of the base material 130 is moved to the injection hole 22 side and the injection is performed. The entrance opening area of the hole 22 is reduced. By reducing the entrance opening area, the injection amount injected from the injection hole 22 can be adjusted.
[0020]
Next, a manufacturing apparatus for forming the concave portion 26 will be described.
As shown in FIG. 4, the press device 200 reciprocates to transfer members 202 and 204 for transmitting a pressing force from a driving device (not shown) to the punch 206, a support member 208 for pressing the thin plate-shaped base material 130, and a transmission member 204. It has a punch 206 that is supported so as to be supported, and a spring member 210 as an elastic member interposed between the transmission member 202 and the punch 206 and for urging the punch 206 toward the base material 130.
[0021]
In the case where the recess 26 is formed at the inlet peripheral edge of the injection hole 22 of the injector 10 and the injection amount is adjusted as in this embodiment, the processing depth of the recess 26 is about several microns. Therefore, even if the thickness of the base material 130 varies about several microns, a large variation occurs with respect to the predetermined processing depth of the recess 26. Therefore, it is necessary to prevent the processing depth of the concave portion 26 from fluctuating due to variations in the thickness of the base material 130.
[0022]
The pressing force of the driving device of the press device 200 of this embodiment is transmitted from the transmission member 202 to the punch 206 via the spring member 210. Therefore, the amount of movement of the punch 206 is smaller than the amount of movement of the transmission members 202 and 204. Further, the force with which the punch 206 presses the base material 130 changes according to the product of the amount of deformation of the spring member 210 and the elastic coefficient. The pressing force applied by the punch 206 to the base material 130 does not increase rapidly even when the transmission members 202 and 204 are lowered toward the base material 130. Therefore, even if the thickness of the base material 130 varies, the processing depth of the recess 26 by the punch 206 if the lower end positions of the transmission members 202 and 204 toward the base material 130, that is, the bottom dead center of the press is constant. Can be kept constant.
In other words, as shown in FIGS. 4A and 4B, by changing the lower end positions of the transmission members 202 and 204, that is, the bottom dead center of the press, the minute processing depth of the concave portion 26 can be adjusted. It is. Therefore, the injection amount of the injection hole 22 can be adjusted with high accuracy in accordance with the required injection amount.
[0023]
Next, FIG. 5 shows a change in fuel flow when a concave portion is formed on the acute angle side of the inlet peripheral edge of the injection hole 22, when no concave portion is formed, and when a concave portion is formed on the entire periphery. The recess is processed by a press device 200 shown in FIG.
As shown in FIG. 5A, the fuel flowing into the injection hole 22 from the acute angle side of the injection hole 22 separates from the inner wall surface 23 on the acute angle side. Therefore, fuel does not flow along the inner wall surface 23 on the acute angle side. On the other hand, as shown in FIG. 5C, the fuel flowing into the injection hole 22 from the obtuse angle side of the injection hole 22 flows along the inner wall surface 23 on the obtuse angle side.
[0024]
When the concave portion 80 is formed on the entire periphery of the inlet peripheral portion of the injection hole 22 as shown in FIG. 5C, the fuel injection direction becomes obtuse as compared with the case where the concave portion shown in FIG. 5B is not formed. That is, the injection angle decreases. This is because the length of the inner wall surface 23 on the obtuse angle side along the fuel flow direction of the injection hole member 20 forming the injection hole 22 is shortened, so that the fuel flow along the inner wall surface 23 is reduced. . Further, since the concave portion 80 is formed by press working on the entire periphery of the injection hole 22, the material is moved to the inlet side of the injection hole 22 (not shown), and the opening area of the injection hole is reduced. Therefore, the injection amount decreases.
[0025]
In the present embodiment shown in FIG. 5A, even if the concave portion 26 is formed on the acute angle side of the injection hole 22, the length of the inner wall surface 23 on the obtuse angle side along the fuel flow direction does not change. Does not change. Even when the recess 26 is formed on the acute angle side of the injection hole 22 and the length of the inner wall surface 23 on the acute angle side is shortened, the fuel does not flow along the inner wall surface 23 on the acute angle side, so that the injection direction does not change. Regarding the injection amount, since the concave portion 26 is formed on the acute angle side by press working, although not shown, the material moves to the inlet side of the injection hole 22 and the inlet opening area of the injection hole decreases. Therefore, the injection amount decreases.
[0026]
FIG. 6 shows the flow rate adjustment amount and the change in the injection angle when the concave portion 26 is formed only at the acute angle side of the inlet peripheral edge of the injection hole 22 and when the concave portion 80 is formed all around the inlet of the injection hole 22. . The flow rate adjustment amount indicates the percentage of the flow rate that has increased or decreased with respect to the initial flow rate before forming the concave portion in the injection hole 22. A minus value of the flow rate adjustment amount indicates that the flow rate has decreased with respect to the initial flow rate. An increase in the absolute value of the flow rate adjustment amount indicates that the depth of the concave portion is deep.
[0027]
When the concave portion 80 is formed on the entire circumference, the injection angle decreases as the absolute value of the flow rate adjustment amount increases. This is because as the absolute value of the flow rate adjustment amount increases, that is, as the depth of the concave portion 80 increases, the length of the obtuse side of the inner wall surface 23 of the injection hole 22 decreases, and fuel flows along the inner wall surface 23. This is because the length has become shorter.
On the other hand, if the concave portion 26 is formed only on the acute angle side, the injection angle hardly changes even if the absolute value of the flow rate adjustment amount increases. This is because the length of the inner wall surface 23 of the injection hole 22 on the obtuse angle side does not change.
[0028]
The black circles shown in FIG. 7 indicate variations in the injection amount before the concave portion 26 is formed by the punch 206. As described above, the injection amount varies due to a processing error when forming the injection hole 22 or a dullness around the injection hole opening when the injection hole 22 is formed by punching with a punch (not shown). White circles indicate the variation in the injection amount after the injection amount is adjusted by forming the concave portion 26 at the acute angle side of the inlet peripheral portion of the injection hole 22 by the punch 206. By forming the concave portion 26 on the acute angle side, the injection amount can be adjusted substantially uniformly.
[0029]
(Second embodiment)
FIG. 8 shows a second embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals.
The shape of the concave portion 90 formed on the inlet periphery of the injection hole 22 is different from that of the first embodiment. L / d, which is the ratio of the recess 90 to the inlet diameter d, is smaller than in the first embodiment. By forming the concave portion 90, the effect on the inner wall surface on the angle β side which is an obtuse angle side is small, so that the injection direction does not change.
[0030]
(Third embodiment)
FIG. 9 shows a third embodiment of the present invention. Components that are substantially the same as those in the first embodiment are denoted by the same reference numerals. The injection hole 94 of the third embodiment has the same diameter from the inlet to the outlet.
In the above-described plurality of embodiments of the present invention described above, only the injection amount is adjusted without changing the injection direction by forming a concave portion by press working on the acute angle side of the inlet peripheral edge of the injection hole.
[0031]
In the above embodiments, since the recess is formed at the inlet periphery of the injection hole including the periphery of the inlet opening of the injection hole, even if the formation position of the recess is slightly shifted, the material of the flat plate portion 21 moves to the injection hole side. The amount is almost unchanged. Therefore, even if the formation position of the concave portion is slightly shifted, it is possible to prevent the adjustment amount of the injection amount from varying.
A linear concave portion may be formed at a position slightly apart from the periphery of the inlet opening of the injection hole without including the periphery of the inlet opening of the injection hole.
[0032]
In the above embodiments, the concave portion is formed at the entrance edge of all the injection holes. However, the concave portion may be formed at the entrance edge of at least one or more injection holes. By adjusting the number of injection holes forming the concave portions, the injection amount can be finely adjusted.
In the above embodiments, the injection hole is formed in the flat plate portion 21 of the injection hole member 20, but the injection hole may be formed in a curved plate portion in which the injection hole member is recessed in the injection direction.
[0033]
In the above plurality of embodiments, the injection hole member of the fuel injection device for a gasoline engine has been described. However, as long as the injection amount of the injection hole member having the injection hole in the flat plate portion other than the fuel is adjusted, The manufacturing apparatus or manufacturing method of the present invention can be applied to an injection hole member that ejects a fluid.
[Brief description of the drawings]
FIG. 1A is a plan view of an injection hole member according to a first embodiment as viewed from a fuel inlet side, and FIG. 1B is a plan view of an injection hole member in a cross section including an injection hole axis and orthogonal to the injection hole member. It is sectional drawing which shows a hole periphery.
FIG. 2 is a cross-sectional view showing the injector of the first embodiment.
FIG. 3A is a cross-sectional view showing a base material before forming a recess in an injection hole member, and FIG. 3B is a cross-sectional view showing a state in which a recess is formed in the injection hole member by a punch; (C) is an explanatory view showing the position where the concave portion is formed by the punch.
FIG. 4 is an explanatory view showing a state in which a depression is formed in the base material of the injection hole member by the press device.
FIG. 5A is an explanatory diagram showing a fuel injection state in which a concave portion is formed on the acute angle side of the injection hole, and FIG. 5B is an explanatory diagram showing a fuel injection state in which a concave portion is not formed in the injection hole. (C) is an explanatory view showing a fuel injection state in which a concave portion is formed on the entire circumference of the injection hole.
FIG. 6 is a characteristic diagram showing the relationship between the flow rate adjustment amount and the injection angle when a concave portion is formed on the acute angle side and when a concave portion is formed on the entire circumference.
FIG. 7 is a characteristic diagram showing a relationship between the number of samples and the injection amount before forming a concave portion on the acute angle side and after forming a concave portion on the acute angle side.
FIG. 8A is a plan view of the injection hole member of the second embodiment as viewed from the fuel inlet side, and FIG. 8B is an explanatory diagram showing a position where a concave portion is formed by a punch.
FIG. 9 is a sectional view showing the periphery of an injection hole of an injection hole member according to a third embodiment.
[Explanation of symbols]
10. Injector (injection device)
13 Conical surface (inner surface)
Reference Signs List 20 injection hole member 21 flat plate portion 22, 94 injection hole 23 inner wall surface 24 fuel inlet side end surface (fluid inlet side end surface)
26, 90 recess 30 nozzle needle (valve member)
Reference Signs List 100 fuel passage 110 injection hole axis 112 axis 114, 116 injection hole intersection 130 base material 200 press device 202, 204 transmission member 206 punch 210 spring member (elastic member)

Claims (7)

流体通路を形成する内周面に弁座を有する弁ボディと、
前記弁座に対し流体流れの下流側に設置され、前記流体通路を流れる流体を噴射する複数の噴孔を形成している噴孔部材と、
前記弁座に着座することにより前記噴孔からの流体噴射を遮断し、前記弁座から離座することにより前記噴孔からの流体噴射を許容する弁部材とを備え、
前記噴孔を流れる流体流れ方向に沿った噴孔軸線は前記噴孔部材の板厚方向に沿った軸線に対し傾斜しており、
前記噴孔軸線を含み前記噴孔部材に直交する仮想平面において、前記噴孔の内壁面と前記仮想平面とが交わる2本の噴孔交線の一方は前記噴孔部材の流体入口側端面と鋭角を形成し、前記噴孔交線の他方は前記流体入口側端面と鈍角を形成し、
前記噴孔部材は、前記噴孔交線と前記流体入口側端面とが鋭角を形成する側の前記噴孔の入口周縁部に凹部を形成していることを特徴とする噴射装置。
A valve body having a valve seat on an inner peripheral surface forming a fluid passage;
An injection hole member installed on the downstream side of the fluid flow with respect to the valve seat and forming a plurality of injection holes for injecting the fluid flowing through the fluid passage;
A valve member that shuts off fluid ejection from the injection hole by sitting on the valve seat, and allows fluid ejection from the injection hole by separating from the valve seat,
The injection hole axis along the direction of fluid flow flowing through the injection hole is inclined with respect to the axis along the thickness direction of the injection hole member,
In a virtual plane including the injection hole axis and orthogonal to the injection hole member, one of two injection hole intersection lines at which the inner wall surface of the injection hole and the virtual plane intersect is a fluid inlet side end face of the injection hole member. Forming an acute angle, the other of the injection hole intersection line forms an obtuse angle with the fluid inlet side end face,
The injection device, wherein the injection hole member has a concave portion formed at an inlet periphery of the injection hole on a side where the injection hole intersection line and the fluid inlet side end surface form an acute angle.
前記噴孔部材は、前記噴孔交線と前記流体入口側端面とが鋭角を形成する側と鈍角を形成する側とを結ぶ前記噴孔の入口径において前記噴孔交線と前記流体入口側端面とが鋭角を形成する側から75%以下の範囲を含み、前記噴孔交線と前記流体入口側端面とが鋭角を形成する側の前記噴孔の入口周縁部に前記凹部を形成していることを特徴とする請求項1記載の噴射装置。The nozzle hole member is configured such that the nozzle hole intersection line and the fluid inlet side end face connect the side forming an acute angle and the side forming an obtuse angle with the nozzle hole intersection line and the fluid inlet side. Forming a concave portion at an inlet peripheral portion of the injection hole on the side where the end face forms an acute angle from the side where the acute angle is formed, and the injection hole intersection line and the fluid inlet side end surface form an acute angle. The injection device according to claim 1, wherein: 前記凹部は、前記噴孔の入口側開口周縁を含んで形成されていることを特徴とする請求項1または2記載の噴射装置。The injection device according to claim 1, wherein the recess is formed to include a peripheral edge of an opening on an inlet side of the injection hole. 前記噴孔部材は、少なくとも1個以上の前記噴孔の入口周縁部に前記凹部を形成していることを特徴とする請求項1、2または3記載の噴射装置。The injection device according to claim 1, wherein the injection hole member has the concave portion formed at a periphery of an inlet of at least one or more of the injection holes. 請求項1から4のいずれか一項記載の噴射装置の噴孔部材を製造する製造装置であって、
前記噴孔が形成されている薄板状の母材の流体入口側に前記凹部を形成するパンチと、
前記母材に向けて前記パンチを付勢する弾性部材と、
前記弾性部材を介し前記母材に向けた押圧力を前記パンチに加える伝達部材と、
を備えることを特徴とする噴孔部材の製造装置。
A manufacturing apparatus for manufacturing an injection hole member of the injection apparatus according to any one of claims 1 to 4,
A punch that forms the concave portion on the fluid inlet side of the thin plate-shaped base material in which the injection hole is formed,
An elastic member for urging the punch toward the base material;
A transmitting member for applying a pressing force toward the base material through the elastic member to the punch,
An apparatus for manufacturing an injection hole member, comprising:
前記伝達部材の前記母材側に向けた下端位置を調整できることを特徴とする請求項5記載の噴孔部材の製造装置。The apparatus according to claim 5, wherein a lower end position of the transmission member toward the base material can be adjusted. 噴孔部材に形成された噴孔から流体を噴射する噴孔部材の製造方法であって、
前記噴孔を流れる流体流れ方向に沿った噴孔軸線を含み前記噴孔部材に直交する仮想平面において、前記噴孔の内壁面と前記仮想平面とが交わる2本の噴孔交線の一方は前記噴孔部材の流体入口側端面と鋭角を形成し、前記噴孔交線の他方は前記流体入口側端面と鈍角を形成しており、
前記噴孔の入口周縁部の前記噴孔部材において、前記噴孔交線と前記流体入口側端面とが鋭角を形成する側にプレスにより凹部を形成することを特徴とする噴孔部材の製造方法。
A method for manufacturing an injection hole member for injecting a fluid from an injection hole formed in the injection hole member,
In a virtual plane including an injection hole axis along the direction of fluid flow flowing through the injection hole and orthogonal to the injection hole member, one of two injection hole intersections at which the inner wall surface of the injection hole intersects the virtual plane is Forming an acute angle with the fluid inlet side end surface of the nozzle hole member, the other of the nozzle hole intersection lines forming an obtuse angle with the fluid inlet side end surface,
A method of manufacturing an injection hole member, comprising: forming a concave portion by pressing on a side of the injection hole member at an inlet peripheral portion of the injection hole where the intersection line of the injection hole and the end surface on the fluid inlet side forms an acute angle. .
JP2002222984A 2002-07-31 2002-07-31 INJECTION APPARATUS, INJECTION MANUFACTURING APPARATUS AND INJECTION METHOD Expired - Fee Related JP3904075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222984A JP3904075B2 (en) 2002-07-31 2002-07-31 INJECTION APPARATUS, INJECTION MANUFACTURING APPARATUS AND INJECTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222984A JP3904075B2 (en) 2002-07-31 2002-07-31 INJECTION APPARATUS, INJECTION MANUFACTURING APPARATUS AND INJECTION METHOD

Publications (2)

Publication Number Publication Date
JP2004060592A true JP2004060592A (en) 2004-02-26
JP3904075B2 JP3904075B2 (en) 2007-04-11

Family

ID=31942865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222984A Expired - Fee Related JP3904075B2 (en) 2002-07-31 2002-07-31 INJECTION APPARATUS, INJECTION MANUFACTURING APPARATUS AND INJECTION METHOD

Country Status (1)

Country Link
JP (1) JP3904075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180784A (en) * 2009-02-05 2010-08-19 Denso Corp Fuel ejection nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180784A (en) * 2009-02-05 2010-08-19 Denso Corp Fuel ejection nozzle

Also Published As

Publication number Publication date
JP3904075B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
DE602004002558T2 (en) SPRAY PATTERN CONTROL WITH NON-ANGLE OPENINGS BASED ON A FUEL INJECTION MOLDING DISC WITH LUBRICANTS AND A VACUUM REDUCING DEVICE
JP5295311B2 (en) Fuel injection valve
JP2695848B2 (en) Fuel injection valve and manufacturing method thereof
US20160305385A1 (en) Fuel Injection Valve
DE102009006398A1 (en) Fuel injection valve
US8631579B2 (en) Method for manufacturing injection hole member
DE3118898C2 (en)
EP2492488A1 (en) Electromagnetic fuel injection valve
US9157403B2 (en) Fuel injection valve
US20080029069A1 (en) Fuel injector including an orifice disc, and a method of forming the orifice disc including punching and shaving
US6719223B2 (en) Fuel injection valve
US20020020766A1 (en) Engine fuel injection valve and manufacturing method for nozzle plate used for the same injection valve
DE3143848C2 (en)
US8919674B2 (en) Fuel injection valve
JP2002102977A (en) Working device for injection hole of fluid injection nozzle, and working method for the injection hole of the fluid injection nozzle
US20060208108A1 (en) Fuel injection valve
US8567063B2 (en) Method of machining orifice and press-working method
JP2004036604A (en) Fuel injector provided with orifice plate having offset stamped angled orifice
JP3814815B2 (en) Injection hole plate and manufacturing method thereof
EP1674715A1 (en) Injector
US6179227B1 (en) Pressure swirl generator for a fuel injector
JP2004060592A (en) Injection device, injection hole member manufacturing device, and injection hole member manufacturing method
JPH05502491A (en) Electromagnetically operated fuel injection valve
JP3934547B2 (en) Method for producing injection hole member
JP2003090276A (en) Nozzle hole machining device for fluid injection nozzle, and nozzle hole machining method for fluid injection nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040819

Free format text: JAPANESE INTERMEDIATE CODE: A621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061220

A977 Report on retrieval

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070102

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees