JP2004060576A - Windmill - Google Patents

Windmill Download PDF

Info

Publication number
JP2004060576A
JP2004060576A JP2002222274A JP2002222274A JP2004060576A JP 2004060576 A JP2004060576 A JP 2004060576A JP 2002222274 A JP2002222274 A JP 2002222274A JP 2002222274 A JP2002222274 A JP 2002222274A JP 2004060576 A JP2004060576 A JP 2004060576A
Authority
JP
Japan
Prior art keywords
wind
windmill
rotating shaft
power generation
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002222274A
Other languages
Japanese (ja)
Other versions
JP4090809B2 (en
Inventor
Sadaaki Kitamura
北村 禎章
Jiro Tsukahara
塚原 次郎
Isao Katayama
片山 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2002222274A priority Critical patent/JP4090809B2/en
Publication of JP2004060576A publication Critical patent/JP2004060576A/en
Application granted granted Critical
Publication of JP4090809B2 publication Critical patent/JP4090809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft windmill capable of preventing a damage thereto by an abrupt wind or a strong wind from occurring and reducing a load on a generator even when used for wind power generation. <P>SOLUTION: For example, in a Savonius windmill 7, a rotating shaft 6 is tilted in the direction of wind by a wind force received by the windmill. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、風力発電などに用いられる風車に関する。
【0002】
【従来の技術及び課題】
風向き方向に対して回転軸を垂直に向けて用いられる例えばサボニウス型などの垂直軸型風車では、突風や強風により、大きな荷重を受けて破損したり、回転体の高回転による振動で破損したりすることが起こりうる。
【0003】
また、垂直軸型風車を風力発電に用いる場合は、強風が長時間継続すると、発電機コイルの負担が大きくなって発電機を損傷させてしまう危険性がある。
【0004】
本発明は、上記のような問題点に鑑み、突風や強風による破損を防ぐことができ、また、風力発電に用いた場合でも発電機の負担を軽くすることができる風車を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記の課題は、風を受けることによってその風力で回転軸が風向きに従うよう傾斜するものとなされていることを特徴とする垂直軸型風車によって解決される。
【0006】
この垂直型風車では、突風や強風を受けると、回転軸がその風向きに従うよう傾斜することで、受ける荷重が小さく抑えられ、また、回転体の高回転が抑えられ、それによって、突風や強風による破損が防がれる。
【0007】
しかも、風力という自然エネルギーを利用して回転軸を傾斜させるようになされているから、風センサーや駆動機構、制御機構等を必要とせず、簡素なメカニズムでコスト的に有利にそれを実現することができる。
【0008】
上記の垂直型風車において、回転軸が傾斜したとき元位置に復帰するよう付勢する付勢手段が備えられている場合は、風が弱まると回転軸が元の位置に復帰していき、回転体を効率良く回転させることができる。
【0009】
上記の垂直型風車を風力発電に用いる場合は、強風が長時間継続するようなときでも、上記のように回転軸の傾斜によって回転体の高回転が抑えられ、発電機の負担を小さくすることができる。上記の付勢手段が備えられている場合は、風が弱まると回転軸が元の位置に復帰していき、回転体を効率良く回転させて効率良く発電することができる。
【0010】
また、水平軸型風車についても、風を受けることによってその風力で回転軸が風向きに対して傾斜するようになされている場合には、同様にして風車の破損を防ぐことができ、しかもそれを簡素なメカニズムでコスト的に有利に実現でき、また、発電用として用いる場合は、発電機への負担も軽くすることができる。
【0011】
【発明の実施の形態】
次に、本発明の実施形態を図面に基づいて説明する。
【0012】
図1及び図2に示す第1実施形態の垂直型風車7は、サボニウス型風車によるもので、回転体である羽根車1が、その回転軸6を上下方向に向けるようにして、方形枠2の上枠2aと下枠2bとに回転自在に保持されている。そして、この方形枠2は、その上端側が、左右の脚部3,3に振り子運動可能に枢支されている。また、4は発電部、5は蓄電部であり、羽根車1が風を受けて回転すると、発電部4が発電し、電気が蓄電部5に蓄えられるようになされている。なお、発電部4及び蓄電部5は方形枠2に備えられていてもよいし、他所に備えられていてもよい。
【0013】
この垂直型風車7では、図3(イ)に示すように、突風や強風W1を受けると、羽根車1の回転軸6がその風向きに従うよう傾斜する。それにより、羽根車1が風W1から受ける荷重が小さく抑えられ、また、羽根車1の高回転も抑えられ、それによって、突風や強風W1による垂直型風車7の破損が防がれる。また、上記のように突風や強風W1により回転軸6が傾斜し羽根車1の高回転が抑えられることで、発電部4の負担も小さくなる。
【0014】
そして、羽根車1の回転軸6が上記のように傾斜したとき、羽根車1と方形枠2の自重Gが付勢手段となって、羽根車1と方形枠2に、傾斜のない垂直状態に復帰しようとする付勢力Fが働き、突風や強風W1が止み、図2(ロ)に示すように、通常の風W2に戻ると、羽根車1と方形枠2は傾斜のない垂直状態あるいは傾斜の小さい状態に復帰し、羽根車1は通常の効率良い回転を行い、発電部4も効率良い発電を行うようになる。
【0015】
なお、通常の風W2では図3(ロ)に示すように回転軸6がほとんど傾斜せず、突風や強風W1で図3(イ)に示すように回転軸6が傾斜するようにする手段として、方形枠2と羽根車1の合計重量を特定重量に設定したり、方形枠2の回動抵抗等を特定の抵抗値に設定したりする方法などが採られてよい。
【0016】
また、上記の垂直型風車7では、羽根車1と方形枠2の自重Gを付勢手段としたが、この自重による付勢手段と併せて、あるいは、その自重では復帰しない構造において、バネを付勢手段として備えさせるようにしてもよい。
【0017】
図4(イ)に示す第2実施形態は、同じくサボニウス型風車によるもので、羽根車1の上端が釣り鐘状に回転自在に吊られて、回転軸6が全方向の風に応答してその風向き方向に傾斜するようになされている。また、羽根車1の下端は受け皿9の球面凹所9aに受けられ、球面凹所9aの周囲には全周にわたるストッパー9b部が備えられ、図4(ロ)に示すように、突風や強風W1が吹いて羽根車1が支柱10や周囲設置物等に衝接しないよう、羽根車1の傾斜できる角度範囲が規制されるようになされている。なお、羽根車1の下端は受け皿9の凹所の球面部9aに接触していてもよいし、非接触であってもよい。
【0018】
図5に示す第3実施形態は、同じくサボニウス型風車によるもので、羽根車1を回転自在に保持した方形枠2の下端部がバネ脚11の上端に連結され、回転軸6が全方向の風に応答してその風向き方向に傾斜するようになされている。16は下ベースである。本実施形態では、バネ脚11が付勢手段の役割も担っており、このバネ脚11は、コイル状線材からなっていてもよいし、直線状線材からなっていてもよいし、一方向傾斜タイプに構成するような場合には板バネからなっていてもよいし、その形態に特段の制限はない。
【0019】
図6(イ)に示す第4実施形態は、風向きに対して回転軸6を平行に向ける水平軸型風車に適用した場合にもので、この風車12は、プロペラ型風車からなり、上方に延ばされたアーム13の上端が上ベース14に回動可能に連結されて吊り状態にされている。突風や強風W1が吹くと、同図仮想線で示すように、風車12が後方に回動し、回転軸6が風向きに対して傾斜するようになされている。この傾斜によって、回転体としてのプロペラ15が風W1から受ける荷重が小さく抑えられ、また、プロペラ15の高回転も抑えられ、それによって、突風や強風W1による風車12の破損が防がれる。また、上記のように突風や強風W1により回転軸6が傾斜しプロペラ15の高回転が抑えられることで、発電部4の負担も小さくなる。なお、風車12の回転軸6が上記のように傾斜したとき、風車12及びアーム13の自重Gが付勢手段となり、突風や強風W1が止み付勢力Fによって水平状態に戻ると、プロペラ15は通常の効率良い回転を行い、発電部4も効率良い発電を行うようになる。
【0020】
図6(ロ)に示す第5実施形態は、同じくプロペラ型風車12についてのもので、上記の第3実施形態の場合と同様に、付勢手段としての役割も持つバネ脚11が下方に延ばされ、それが下ベース16に連結されているものである。
【0021】
以上に、実施形態を示したが、本発明はこれに限られるものではなく、発明思想を逸脱しない範囲で、各種の変更が可能である。例えば、上記の実施形態では、発電用の風車に構成した場合を示しているが、その他の目的でも用いた場合であっても突風や強風による風車の破損を防ぎうるものであり、本発明の風車は発電用のものである否かを問わない。また、上記の実施形態では、突風や強風W1を受けて傾斜した回転体が風の停止ないしは弱まりで付勢手段により垂直状態に復帰するように構成した場合を示しているが、突風や強風W1を受けて傾斜した回転体が風の停止ないしは弱まり後もその傾斜角を摩擦力や係止力などによって維持するような構成とするのもよい。また、上記の実施形態では、垂直型風車としてサボニウス型風車を用いた場合を示しているが、それに限らず、クロスフロー型風車やダリウス型風車、ジャイロミル型風車、各種垂直軸抗力型風車等に広く適用しうるものである。また、水平軸型風車についてもプロペラ型以外の風車に広く適用しうるものである。
【0022】
【発明の効果】
本発明は、以上のとおりのものであるから、突風や強風による破損を防ぐことができ、しかも、それを風センサーや駆動機構、制御機構等を必要とせず、簡素なメカニズムでコスト的に有利に実現することができる。また、風力発電に用いることによって発電機の負担を軽くすることができる。
【図面の簡単な説明】
【図1】第1実施形態の垂直軸型風車を示す斜視図である。
【図2】図(イ)は同正面図、図(ロ)は同側面図である。
【図3】図(イ)(ロ)はそれぞれ、風車の動作を示す側面図である。
【図4】図(イ)は第2実施形態の垂直軸型風車を示す側面図、図(ロ)はその動作を示す側面図である。
【図5】図(イ)は第3実施形態の垂直軸型風車を示す側面図、図(ロ)はその動作を示す側面図である。
【図6】図(イ)は第4実施形態の水平軸型風車を示す側面図、図(ロ)は第5実施形態の水平軸型風車を示す側面図である。
【符号の説明】
1…羽根車(回転体)
4…発電部
6…回転軸
7…サボニウス型風車(垂直軸型風車)
11…バネ脚(付勢手段)
12…プロペラ型風車(水平軸型風車)
15…プロペラ(回転体)
G…自重(付勢手段)
W1…突風や強風
W2…通常の風
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a windmill used for wind power generation and the like.
[0002]
[Prior art and problems]
Vertical axis wind turbines, such as the Savonius type, whose rotation axis is oriented perpendicular to the wind direction, may be damaged by a large load due to gusts or strong winds, or may be damaged by vibration due to high rotation of the rotating body. It can happen.
[0003]
In addition, when a vertical axis windmill is used for wind power generation, if the strong wind continues for a long time, the load on the generator coil may be increased and the generator may be damaged.
[0004]
The present invention has been made in view of the above-described problems, and has an object to provide a wind turbine that can prevent breakage due to gusts and strong winds and can reduce the load on a generator even when used for wind power generation. And
[0005]
[Means for Solving the Problems]
The above object is attained by a vertical axis type wind turbine characterized in that the wind axis is inclined by the wind force so as to follow the direction of the wind.
[0006]
In this vertical wind turbine, when a gust or strong wind is received, the rotating shaft is inclined to follow the wind direction, so that the received load is kept small, and the rotating body is prevented from rotating at a high speed. Damage is prevented.
[0007]
In addition, since the rotating shaft is tilted using the natural energy of wind power, there is no need for a wind sensor, drive mechanism, control mechanism, etc., and it can be realized cost-effectively with a simple mechanism. Can be.
[0008]
In the above-described vertical wind turbine, when the urging means for urging the rotating shaft to return to the original position when the rotating shaft is tilted is provided, when the wind weakens, the rotating shaft returns to the original position and rotates. The body can be rotated efficiently.
[0009]
When the above-mentioned vertical windmill is used for wind power generation, even when strong winds continue for a long time, high rotation of the rotating body is suppressed by the inclination of the rotating shaft as described above, and the load on the generator is reduced. Can be. When the above-mentioned urging means is provided, when the wind weakens, the rotating shaft returns to the original position, and the rotating body can be efficiently rotated to generate power efficiently.
[0010]
Also, in the case of a horizontal axis type wind turbine, when the rotation axis is inclined with respect to the wind direction by the wind force by receiving the wind, the wind turbine can be similarly prevented from being damaged. A simple mechanism can be implemented advantageously in terms of cost, and when used for power generation, the load on the generator can be reduced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
[0012]
The vertical windmill 7 according to the first embodiment shown in FIGS. 1 and 2 is a Savonius-type windmill, and the impeller 1 as a rotating body has a rectangular frame 2 with its rotating shaft 6 directed vertically. Are rotatably held by the upper frame 2a and the lower frame 2b. The upper end side of the rectangular frame 2 is pivotally supported by the left and right legs 3 and 3 so as to allow a pendulum movement. Reference numeral 4 denotes a power generation unit, and reference numeral 5 denotes a power storage unit. When the impeller 1 rotates by receiving wind, the power generation unit 4 generates power, and electricity is stored in the power storage unit 5. In addition, the power generation unit 4 and the power storage unit 5 may be provided in the rectangular frame 2 or may be provided in another place.
[0013]
In this vertical windmill 7, as shown in FIG. 3A, when a gust or strong wind W1 is received, the rotating shaft 6 of the impeller 1 is inclined so as to follow the wind direction. Thereby, the load which impeller 1 receives from wind W1 is suppressed small, and the high rotation of impeller 1 is also suppressed, whereby breakage of vertical windmill 7 due to gusts or strong wind W1 is prevented. Further, as described above, the rotating shaft 6 is inclined by the gust or the strong wind W1, and the high rotation of the impeller 1 is suppressed, so that the load on the power generation unit 4 is reduced.
[0014]
When the rotating shaft 6 of the impeller 1 is inclined as described above, the own weight G of the impeller 1 and the rectangular frame 2 serves as a biasing means, and the impeller 1 and the rectangular frame 2 are in a vertical state without inclination. When the gust or strong wind W1 stops and returns to the normal wind W2 as shown in FIG. 2 (b), the impeller 1 and the rectangular frame 2 are in a vertical state with no inclination or After returning to the state where the inclination is small, the impeller 1 performs normal and efficient rotation, and the power generation unit 4 also performs efficient power generation.
[0015]
As shown in FIG. 3B, the rotating shaft 6 hardly tilts in a normal wind W2, and the rotating shaft 6 tilts as shown in FIG. 3A in a gust or strong wind W1. Alternatively, a method of setting the total weight of the rectangular frame 2 and the impeller 1 to a specific weight, or setting the rotational resistance and the like of the rectangular frame 2 to a specific resistance value may be adopted.
[0016]
Further, in the above-described vertical windmill 7, the own weight G of the impeller 1 and the rectangular frame 2 is used as the urging means. You may make it provide as an urging means.
[0017]
The second embodiment shown in FIG. 4 (a) is also a Savonius type windmill, in which the upper end of an impeller 1 is hung rotatably in a bell shape, and a rotating shaft 6 responds to wind in all directions. It is made to incline in the direction of the wind. The lower end of the impeller 1 is received in the spherical recess 9a of the tray 9, and a stopper 9b is provided around the entire circumference of the spherical recess 9a. As shown in FIG. The angle range in which the impeller 1 can be tilted is restricted so that W1 does not blow and the impeller 1 does not come into contact with the support 10 or surrounding installations. In addition, the lower end of the impeller 1 may be in contact with the spherical portion 9a of the concave portion of the tray 9, or may be non-contact.
[0018]
The third embodiment shown in FIG. 5 is also based on a Savonius type windmill, in which the lower end of a rectangular frame 2 that rotatably holds an impeller 1 is connected to the upper end of a spring leg 11, and the rotating shaft 6 is omnidirectional. In response to the wind, it is inclined in the direction of the wind. 16 is a lower base. In the present embodiment, the spring leg 11 also plays a role of an urging means, and this spring leg 11 may be made of a coiled wire, may be made of a linear wire, or may be inclined in one direction. When configured as a type, it may be made of a leaf spring, and its form is not particularly limited.
[0019]
The fourth embodiment shown in FIG. 6 (a) is a case where the present invention is applied to a horizontal axis type wind turbine in which the rotation axis 6 is directed parallel to the wind direction, and the wind turbine 12 is composed of a propeller type wind turbine, The extended upper end of the arm 13 is rotatably connected to the upper base 14 and is suspended. When a gust or strong wind W1 blows, the windmill 12 rotates rearward and the rotating shaft 6 is inclined with respect to the wind direction, as indicated by the imaginary line in FIG. Due to this inclination, the load that the propeller 15 as a rotating body receives from the wind W1 is suppressed small, and the high rotation of the propeller 15 is also suppressed, thereby preventing the wind turbine 12 from being damaged by a gust or strong wind W1. Further, as described above, the rotating shaft 6 is inclined by the gust and the strong wind W1, and the high rotation of the propeller 15 is suppressed, so that the load on the power generation unit 4 is reduced. When the rotating shaft 6 of the windmill 12 is tilted as described above, the own weight G of the windmill 12 and the arm 13 becomes an urging means, and when the gust or strong wind W1 stops and returns to the horizontal state by the urging force F, the propeller 15 Normal efficient rotation is performed, and the power generation unit 4 also performs efficient power generation.
[0020]
The fifth embodiment shown in FIG. 6 (b) relates to a propeller-type wind turbine 12, and similarly to the above-described third embodiment, the spring legs 11 also serving as urging means extend downward. That is, it is connected to the lower base 16.
[0021]
Although the embodiment has been described above, the present invention is not limited to this, and various changes can be made without departing from the spirit of the invention. For example, in the above-described embodiment, the case where the wind turbine is configured as a power generation wind turbine is shown. However, even when the wind turbine is used for other purposes, it is possible to prevent the wind turbine from being damaged by gusts and strong winds. It does not matter whether the windmill is for power generation or not. Further, in the above-described embodiment, the case is shown in which the rotating body inclined in response to the gust or the strong wind W1 is configured to return to the vertical state by the urging means when the wind stops or weakens. In response to this, the inclined rotating body may be configured to maintain the angle of inclination by frictional force or locking force even after the wind stops or weakens. Further, in the above embodiment, the case where the Savonius type windmill is used as the vertical windmill is shown. However, the present invention is not limited to this. It can be widely applied to Also, the horizontal axis type wind turbine can be widely applied to wind turbines other than the propeller type wind turbine.
[0022]
【The invention's effect】
Since the present invention is as described above, it is possible to prevent breakage due to gusts and strong winds, and furthermore, it does not require a wind sensor, a driving mechanism, a control mechanism and the like, and is simple and cost-effective. Can be realized. Further, the load on the generator can be reduced by using it for wind power generation.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a vertical axis wind turbine according to a first embodiment.
FIG. 2A is a front view, and FIG. 2B is a side view.
FIGS. 3A and 3B are side views showing the operation of the windmill.
FIG. 4A is a side view showing a vertical axis type wind turbine according to a second embodiment, and FIG. 4B is a side view showing its operation.
FIG. 5A is a side view showing a vertical axis wind turbine according to a third embodiment, and FIG. 5B is a side view showing the operation thereof.
FIG. 6A is a side view showing a horizontal axis wind turbine according to a fourth embodiment, and FIG. 6B is a side view showing a horizontal axis wind turbine according to a fifth embodiment.
[Explanation of symbols]
1. Impeller (rotating body)
4 Power generation unit 6 Rotating shaft 7 Savonius type windmill (vertical axis windmill)
11 ... spring leg (biasing means)
12 ... Propeller type windmill (horizontal axis type windmill)
15 ... Propeller (rotating body)
G: Own weight (biasing means)
W1: Gust and strong wind W2: Normal wind

Claims (4)

風を受けることによってその風力で回転軸が風向きに従うよう傾斜するものとなされていることを特徴とする垂直軸型風車。A vertical axis windmill characterized in that the wind axis is inclined by receiving the wind so that the rotation axis follows the wind direction. 回転軸が傾斜したとき元位置に復帰するよう付勢する付勢手段が備えられている請求項1に記載の垂直軸型風車。The vertical axis wind turbine according to claim 1, further comprising an urging means for urging the rotating shaft to return to the original position when the rotating shaft is inclined. 風力発電用である請求項1又は2に記載の垂直軸型風車。The vertical axis type wind turbine according to claim 1 or 2 for wind power generation. 風を受けることによってその風力で回転軸が風向きに対して傾斜するものとなされていることを特徴とする水平軸型風車。A horizontal axis type windmill characterized in that the wind axis causes the rotation axis to incline with respect to the wind direction by receiving the wind.
JP2002222274A 2002-07-31 2002-07-31 Windmill Expired - Fee Related JP4090809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222274A JP4090809B2 (en) 2002-07-31 2002-07-31 Windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222274A JP4090809B2 (en) 2002-07-31 2002-07-31 Windmill

Publications (2)

Publication Number Publication Date
JP2004060576A true JP2004060576A (en) 2004-02-26
JP4090809B2 JP4090809B2 (en) 2008-05-28

Family

ID=31942335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222274A Expired - Fee Related JP4090809B2 (en) 2002-07-31 2002-07-31 Windmill

Country Status (1)

Country Link
JP (1) JP4090809B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049931A1 (en) * 2010-10-13 2012-04-19 株式会社Wind-Smile Wind-power generator and tower structured provided therewith
JP2012167662A (en) * 2011-02-15 2012-09-06 Kenichi Suzuki Support structure for vertical wind turbine
JP5969154B1 (en) * 2016-02-29 2016-08-17 Mkr株式会社 Hybrid power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049931A1 (en) * 2010-10-13 2012-04-19 株式会社Wind-Smile Wind-power generator and tower structured provided therewith
JP2012082773A (en) * 2010-10-13 2012-04-26 Wind-Smile:Kk Wind-power generator and tower structure provided therewith
JP2012167662A (en) * 2011-02-15 2012-09-06 Kenichi Suzuki Support structure for vertical wind turbine
JP5969154B1 (en) * 2016-02-29 2016-08-17 Mkr株式会社 Hybrid power generator
JP2017155627A (en) * 2016-02-29 2017-09-07 Mkr株式会社 Hybrid power generation device

Also Published As

Publication number Publication date
JP4090809B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
US7677862B2 (en) Vertical axis wind turbine with articulating rotor
JP4690829B2 (en) Horizontal axis windmill
KR101871529B1 (en) Floating wind turbine
JP5972478B2 (en) Wind power generator
US20070098542A1 (en) Rotational power system
JP2002070718A (en) Mechanical power generator utilizing wind force
JP2006336505A (en) Horizontal shaft windmill
JP4616918B2 (en) Vertical wind turbine vertical wing
JP2004060576A (en) Windmill
US20020006334A1 (en) Cavity turbine
KR20070055058A (en) Apparatus for generating power of wind turbine
JP5685699B2 (en) Variable pitch device
AU2009201038A1 (en) Vertical Axis Wind Turbine with Articulating Rotor
JP2005282540A (en) Rotation speed control mechanism in wind power generator using lift type vertical shaft wind mill
JP4009888B2 (en) High speed vertical axis rotating body
JP2003293929A (en) Windmill type power generating facility
JPS58119976A (en) Horizontal rotary windmill
CN201215067Y (en) Typhoon resistant small-sized wind power generator
JP2001165034A (en) Movable blade windmill with safety valve
JP4649570B2 (en) Windmill blade pitch double control mechanism
JP5400976B1 (en) Turbine mechanism
JP2012082773A (en) Wind-power generator and tower structure provided therewith
JP2008255977A (en) Wind power generator
JP2003254228A (en) Wind force energy collecting device and wind power generating device
JP7028395B1 (en) Windmill equipment and windmill blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050722

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110307

LAPS Cancellation because of no payment of annual fees