JP2004057981A - Oxygen dissolving water conditioning apparatus - Google Patents

Oxygen dissolving water conditioning apparatus Download PDF

Info

Publication number
JP2004057981A
JP2004057981A JP2002222046A JP2002222046A JP2004057981A JP 2004057981 A JP2004057981 A JP 2004057981A JP 2002222046 A JP2002222046 A JP 2002222046A JP 2002222046 A JP2002222046 A JP 2002222046A JP 2004057981 A JP2004057981 A JP 2004057981A
Authority
JP
Japan
Prior art keywords
water
oxygen
pressure vessel
pressure
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002222046A
Other languages
Japanese (ja)
Inventor
Yasushi Arimura
有村 恭志
Shigeo Handa
半田 繁夫
Mikiya Endo
遠藤 幹也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marutaka Co Ltd
Original Assignee
Marutaka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marutaka Co Ltd filed Critical Marutaka Co Ltd
Priority to JP2002222046A priority Critical patent/JP2004057981A/en
Publication of JP2004057981A publication Critical patent/JP2004057981A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen dissolving water conditioning apparatus capable of inexpensively producing a conditioned water containing oxygen in a high concentration as drinking water. <P>SOLUTION: An oxygen supply means 2 capable of supplying low partial pressure oxygen 5 and a pressure container 3 storing water at a preset water level or in a full water state are connected. The pressure in the system is raised by the pressure of tap water to increase the contact surface of water 4 in the pressure container 3 and a high partial pressure oxygen 5 to form the oxygen dissolving water 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、酸素溶存整水器に関するものである。
【0002】
【従来の技術】
従来の水道水などに含有する塩素を除去した飲料水を得る整水器としては、例えば、特開2002−29722号公報に示すような活性炭を用いたもの、特開2001−259648号公報に示すような永久磁石を用いたもの、特開2000−63173号公報に示すような化石珊瑚を用いたもの、特開2001−340857号公報に示すような電気分解装置を用いたものなどが存在している。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来技術が、飲料水に含まれる塩素を除去することで、該塩素に含まれる発ガン物質といわれるトリハロメタンなどを除去できるとしても、かかる飲料水を飲んでも酸素を摂取することはできない。また、人間などの生体は、高濃度に酸素が溶け込んだ水を摂取することで、その胃や腸などにより直接酸素を血液中にスムーズに摂取できるので、肺臓からの酸素の摂取より、酸素の摂取がより容易となることは分かっているが、高濃度に酸素が溶存した整水器は未だ提供されていない。
【0004】
そこで、この発明は、このような従来の技術に着目してなされたものであり、高濃度に酸素が溶存した整水を簡易に飲料として供給できる酸素溶存整水器を提供するものである。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は、低分圧の酸素を供給可能なる酸素供給手段と、予め設定した水位若しくは満水状態に貯留されてなる圧力容器とを結合し、水道水圧を用いて系内の圧力を高めて該圧力容器内の水と高分圧の酸素との接触面積を増やすことで、酸素溶存水を生成してなる。
【0006】
請求項1に記載の発明によれば、低分圧の酸素供給手段であるにもかかわらず、水道という公共手段により圧力容器内で高分圧酸素に高まり、高濃度状態で溶け込んだ整水を短時間且つ簡易で大量に入手できるので、飲みたい時、つまり短時間で、作りたて、つまり酸素の脱気していない溶存酸素量の多い水を飲むことが可能である。公共の水道手段を用いるということ及び低分圧の酸素供給手段であるから安価に提供できる。
【0007】
請求項2に記載の発明は、請求項1に記載の酸素溶存整水器であって、前記圧力容器には、開閉自在な第1弁を介して前記酸素供給手段との間に連通接続されてなる第1パイプと、分岐切換可能とされた第2弁によって排水経路に分岐して配された第2パイプと、水ポンプにより前記第2弁に水を供給可能なる第3パイプと、開閉自在な第3弁を介して水道機器に連通接続されてなる第4パイプと、開閉自在な第4弁を介して排水排圧経路に連通接続されてなる第5パイプとが、それぞれ連結支持してなる。
【0008】
請求項2に記載の発明によれば、低分圧の酸素供給手段により低分圧の酸素が圧力容器内に供給されても、水道機器により加圧されて低分圧のまま整水するよりも高い濃度の酸素溶存水を生成できる。
【0009】
請求項3に記載の発明は、請求項1又は請求項2に記載の酸素溶存整水器であって、前記圧力容器内を予め設定した水位若しくは満水にすると共に密閉にする第1段階と、該圧力容器内の水を排水すると共に酸素を供給し圧力容器内の上部に酸素の滞留する空間を形成する第2段階と、圧力容器内を密閉にして水道水圧と平衡するまで水道水を供給する第3段階と、圧力容器内の水を吸い上げ且つ空間を介して圧力容器内の水面に向かって噴射し循環を行う第4段階とにより、圧力容器内に高濃度に酸素が溶存した水が生成されてなる。
【0010】
請求項3に記載の発明によれば、水道水で加圧して圧力容器内を高圧にして高濃度に酸素が溶存した水が短時間に大量に生成される。
【0011】
請求項4に記載の発明は、請求項1に記載の酸素溶存整水器であって、前記圧力容器には、開閉自在な第1弁を介して前記酸素供給手段との間に連通接続されてなる第1パイプと、該第1パイプに分岐接続され且つ空気ポンプが介在されてなる第2パイプと、開閉自在な第2弁を介して水道機器に連通接続されてなる第3パイプと、開閉自在な第3弁を介して排水排圧経路に連通接続されてなる第4パイプとが、それぞれ連結支持してなる。
【0012】
請求項4に記載の発明によれば、低分圧の酸素供給手段により低分圧の酸素が圧力容器内に供給されても、水道機器により加圧されて低分圧のまま整水するよりも高い濃度の酸素溶存水を生成できる。
【0013】
請求項5に記載の発明は、請求項1又は請求項4に記載の酸素溶存整水器であって、前記圧力容器内を予め設定した水位若しくは満水にすると共に密閉にする第1段階と、該圧力容器内に酸素を供給すると共に圧力容器内の水を排水して圧力容器内の上部に酸素の滞留する空間を形成する第2段階と、圧力容器内の酸素を吸い上げ且つ圧力容器内の水中で吐出する第3段階と、水道水圧と平衡するまで水道水を供給する第4段階と、圧力が高まった状態でそのまま循環させる第5段階とにより、圧力容器内に高濃度に酸素が溶存した水が生成されてなる。
【0014】
請求項5に記載の発明によれば、水道水で加圧して圧力容器内を高圧にして高濃度に酸素が溶存した水が短時間に大量に生成される。
【0015】
【発明の実施の形態】
以下、この発明の好適な実施形態を図面に基づいて説明する。
【0016】
図1は、この発明の第1実施形態を示す図である。図1の符号1は、酸素溶存整水器で、該酸素溶存整水器1は、高い酸素分圧を有し且つ酸素5を供給可能なる「酸素供給手段」である容量が98ccの超小型の酸素カートリッジ2と、予め設定した水位若しくは満水状態に貯留されてなる例えばアルミニュウムなどの金属板よりなる、例えば容量が1300ccの圧力容器3とを第1パイプ6により結合し、該圧力容器3内の水4中に水4を水面4aに向かって噴射して酸素5の泡を巻き込んで水4との接触面積を増やすことで、少なくとも60mg/L以上、望ましくは100mg/L以上の高濃度に酸素が溶存した水4を生成してなる。符号7は、一端部が水ポンプ14に接続され、他端部が圧力容器3の底部3aに近接した位置に配され、該他端部にストレーナ11が形成されてなる第2パイプである。
【0017】
前記圧力容器3と酸素カートリッジ2との間には、圧力レギュレータ8を連結して、酸素圧力を所定値、例えば、0.2Mpaに制御可能なるようにしている。該圧力レギュレータ8と、前記第1パイプ6との間には、開閉自在なる第1弁10が介在されてなる。前記第2パイプ7が接続された水ポンプ14には、圧力容器3側に流すことを可能とした第3パイプ9が接続されている。該水ポンプ14は、例えば、毎分1100ccの排水が可能である。該第3パイプ9の途中には、圧力容器3側への流れと、排水用の第6パイプ13側への流れと切り換え可能なる第2弁12が配されてなる。符号15は、水道機器で、前記圧力容器3の口3bに連通接続されてなる第4パイプ17に接続されてなり、該第5パイプ17には、開閉自在なる第3弁16が介在されてなる。符号20は、前記圧力容器3の水面4aに配された第5パイプで、該第5パイプ20に開閉自在なる第4弁19が介在されてなる。該第4弁19から外に排気及び排水可能である。符号18は、圧力容器3の口3bを開閉自在なる蓋である。
【0018】
従って、かかる酸素溶存整水器1による高酸素溶存整水4を生成するには、第1段階として、第3,第4弁16,19を開いて第4パイプ17により水道機器15からの水道水が前記圧力容器3内を予め設定した水位若しくは満水させる。この時、圧力容器3内の空気は、水4と置換され第5パイプ20を通して排気・排水される。予め設定した水位若しくは満水にしないでおくと、空気中の窒素が酸素に混じって酸素分圧が落ちるため、一度予め設定した水位若しくは満水にしてから酸素5と水4とを置換するのである。
【0019】
第2段階として、第3,第4弁16,19を閉じて、第1弁10を開成すると共に第2弁12を第6パイプ13側に接続し、水ポンプ14を回転させることで、圧力容器3内の水4が、ストレーナ11から吸引されて、第2パイプ7、水ポンプ14,第2弁12そして第6パイプ13を介して外部に排水させる。排水することで、圧力容器3内の圧力が低下するが、第1パイプ6を介して酸素5が圧力容器3内に供給され、圧力容器3内の上部に水4と入れ替わった酸素5の滞留する空間21が約40cc形成される。
【0020】
第3段階として、所定時間経過後、水ポンプ14を停止し、第1弁10を閉じると共に第2弁12を第3パイプ9側を開くように切り換え、第3弁16を開き、水道機器15により圧力容器3内に水4を満たし、圧力を水道水圧と平衡する約0.35Mpaまで系内の圧力を上昇させる。
【0021】
第4段階として、圧力が平衡した頃を見計らって水ポンプ14を回転させることで、圧力容器3内の水4を第2パイプ7のストレーナ11から吸い上げ、該水4を第2パイプ7、水ポンプ14,第2弁12を経て、第3パイプ9により圧力容器3内の水面4aに向かって噴射して、水4の循環と噴水を順次繰り返す。高圧のまま、循環噴水を繰り返して、約3分経過すると、圧力容器3内に199.5mg/L以上の高濃度に酸素5が溶存した水4が生成されてなる。
【0022】
前記ストレーナ11の位置は、圧力容器3の底部3aに近いことにこだわることなく、ストレーナ11が水中に位置していれば良い。ストレーナ11の位置が圧力容器3の底部3aに近いと、第3パイプ9から供給される酸素5をそのままストレーナ11が吸い込まないようにできるものの、第3パイプ9自体が長くなり、利便性において劣ることになる。
【0023】
圧力容器3内に199.5mg/L以上の高濃度に酸素5が溶存した水4が生成された段階で、水ポンプ14を停止し、第1、第3弁10、16を閉じ、第4弁19を開くことで、圧力容器3内の酸素5を第5パイプ20及び第4弁19を通じて外部に抜くことにより減圧する。この時に、第4弁19の開閉を断続的に行うことによって減圧を段階的に行い、圧力容器3内の水4に溶けた酸素5が急激な減圧によって抜けてしまうことを防ぐことができる。このあと、圧力容器3の蓋18を開成して、少なくとも60mg/L以上、望ましくは100mg/L以上の高濃度に酸素5が溶存した水4を取り出すことが出来る。当出願人においての実験装置では、生成し、大気開放直後の溶存酸素測定で、199.5(mg/L)を確認している。
【0024】
図2は、この発明の第2実施形態を示す図である。図2の符号30は、別の酸素溶存整水器で、該酸素溶存整水器30は、酸素5を供給可能なる「酸素供給手段」である前記酸素カートリッジ2と、予め設定した水位若しくは満水状態に貯留されてなる前記圧力容器3とを第1パイプ6により結合し、該圧力容器3内の水4に高分圧の酸素5でバブリングを行うことで、水4と高分圧の酸素5との接触面積を増やし、少なくとも60mg/L以上、望ましくは100mg/L以上の高濃度に酸素が溶存した水4を生成してなる。前記第1パイプ6の圧力容器3側の端部は、圧力容器3の開口3b近辺であり、水面4aより上側に配されてなる。
【0025】
前記圧力容器3及び酸素カートリッジ2の間に、圧力レギュレータ8を連結して、酸素圧力を所定値に制御可能なるようにしている。該圧力レギュレータ8と、前記第1パイプ6との間には、開閉自在なる第1弁10が介在されてなる。前記第1パイプ6の中途には、第2パイプ7の一端部が連通接続され、該第2パイプ7の他端部は、空気ポンプ31側への逆流防止弁32を介して前記圧力容器3内に差し込まれ、圧力容器3の底部3aに近接した位置まで延在されてなる。該第2パイプ7の他端部には、気泡発生器33が配されてなる。符号15は、水道機器で、前記圧力容器3の口3bに連通接続されてなる第4パイプ17に接続されてなり、該第5パイプ17には、開閉自在なる第3弁16が介在されてなる。符号20は、前記圧力容器3の水面4aに配された第5パイプで、該第5パイプ20に開閉自在なる第4弁19が介在されてなる。該第4弁19から外に排気及び排水可能である。符号18は、圧力容器3の口3bを開閉自在なる蓋である。
【0026】
従って、かかる酸素溶存整水器30による高濃度に酸素が溶存した整水4を生成するには、第1段階として、第3,第4弁16,19を開成して第4パイプ17を通して水道機器15から圧力容器3内を予め設定した水位若しくは満水にする。この時、圧力容器3内の空気は水4と置換され、第5パイプ20を通して排気・排圧される。この段階で、予め設定した水位若しくは満水にしないでおくと、空気中の窒素が酸素に混じって酸素分圧が落ちるため、一度予め設定した水位若しくは満水にしてから酸素5と水4とを置換するのである。
【0027】
第2段階として、圧力容器3内を予め設定した水位若しくは満水にしたら、第3弁16を閉じ、第1弁10を開成して、圧力レギュレータ8によって減圧された酸素カートリッジ2内の酸素5の圧力が第1パイプ6を通して圧力容器3内に加わって、該圧力容器3内の水4が第5パイプ20から排水されて、圧力容器3内に予め設定した水位若しくは満水状態だった水4と入れ替わった酸素5が圧力容器3内の上部に酸素5の滞留する空間21を形成する。予め設定された時間が経過したら、第1弁10及び第5弁19を閉じ、排水を止める。
【0028】
第3段階として、空気ポンプ24を回すことで、圧力容器3内の上部の空間21に溜まった酸素5を第1パイプ6を通して吸い込み、第2パイプ7を通して気泡発生器33から圧力容器3内の水中に吐出することを繰り返してパブリングを始める。この時点では、圧力容器3内に貯まった酸素5の圧力は低分圧であるので、空気ポンプ24はスムーズに回転が可能である。
【0029】
第4段階として、第3弁16を開き、再び第4パイプ17から水道機器15により水道水を圧力容器3内に導き、圧力容器3内の圧力が水道水の圧力と平衡する約0.35Mpaまで系内の圧力を上昇する。
【0030】
第5段階として、圧力容器3内の圧力が水道水の圧力と平衡した頃を見計らって第3弁16を閉じ、水道水の流入を停止させ、高圧のままパブリングをそのまま続け、約3分経過すると圧力容器3内に高濃度に酸素5が溶存した水4が生成されてなる。
【0031】
圧力容器3内に高濃度に酸素5が溶存した水4が生成された段階で、空気ポンプ31を停止する。この時、逆流防止弁32は、空気ポンプ31を停止した時点で、圧力容器3内の高濃度に酸素5が溶存した水4が逆流して空気ポンプ31内に侵入することを防いでいる。このあと、第4弁19を開成して、圧力容器3内の酸素5を第5パイプ20を通して減圧する。この時、第4弁19の開閉を断続的に行うことによって、減圧を段階的に行い、圧力容器3内の水4に溶けた酸素5が急激な減圧によって抜けてしまうことを少なくする。この後、圧力容器3の蓋18を開成して、少なくとも60mg/L以上、望ましくは100mg/L以上の高濃度に酸素5が溶存した水4を取り出すことが出来る。
【0032】
第1実施形態及び第2実施形態を説明した段階で、水4は、整水前の水として水道水などにも、整水後の水にも同じ符号4を用いたが、意味は異なることは勿論であるが、図が煩瑣になるので同じ符号を用いた。また、酸素5についても、水4に溶存した酸素も、酸素のみとして存在している場合も、水に溶存する前の段階の酸素も、同じ符号5を用いたが、意味は異なることは勿論であるが、図が煩瑣になるので同じ符号を用いた。
【0033】
また、前記圧力容器3は、容器内の圧力が高まると膨張変形可能なるPET樹脂などの材質により形成されてなる場合は、圧力容器3内に圧力が加えられると、圧力容器3自体が膨張変形することで、排水して酸素5と置換しなくても自動的に圧力容器3内の水位が下がり、適正な水位を得ることできる。
【0034】
また、前記説明では、原料となる水について水道水として説明したが、水道水を原料とした高濃度に酸素5が溶存した整水4は、水道水より若干酸化還元電位(ORP)が高くなる傾向があるので、原料としてはアルカリイオン整水された後の水4がより望ましいことを確認している。つまり、アルカリイオン整水された後の水4を原料に用いることで、水道水よりも溶存酸素量が多く、PHが高く、酸化還元電位(ORP)が低い水4とすることができる。
【0035】
また、前記酸素供給手段として酸素カートリッジ2を例にして説明したが、それに限定されるものではなく、大気そのままで用いたり、酸素濃縮器の高濃度酸素を用いても良い。
【0036】
【発明の効果】
請求項1に記載の発明によれば、低分圧の酸素供給手段であるにもかかわらず、水道という公共手段により圧力容器内で高分圧酸素に高まり、高濃度状態で溶け込んだ整水を短時間且つ簡易で大量に入手できるので、飲みたい時、つまり短時間で、作りたて、つまり酸素の脱気していない溶存酸素量の多い水を飲むことが可能である。公共の水道手段を用いるということ及び低分圧の酸素供給手段であるから安価に提供できる。
【0037】
請求項2に記載の発明によれば、低分圧の酸素供給手段により低分圧の酸素が圧力容器内に供給されても、水道機器により加圧されて低分圧のまま整水するよりも高い濃度の酸素溶存水を生成できる。
【0038】
請求項3に記載の発明によれば、水道水で加圧して圧力容器内を高圧にして高濃度に酸素が溶存した水が短時間に大量に生成される。
【0039】
請求項4に記載の発明によれば、低分圧の酸素供給手段により低分圧の酸素が圧力容器内に供給されても、水道機器により加圧されて低分圧のまま整水するよりも高い濃度の酸素溶存水を生成できる。
【0040】
請求項5に記載の発明によれば、水道水で加圧して圧力容器内を高圧にして高濃度に酸素が溶存した水が短時間に大量に生成される。
【図面の簡単な説明】
【図1】この発明の第1実施形態に係る酸素溶存整水器を示す全体図。
【図2】この発明の第2実施形態に係る酸素溶存整水器を示す全体図。
【符号の説明】
1、30 酸素溶存整水器
2 「酸素供給手段」である酸素カートリッジ
3 圧力容器
3a 圧力容器の底部
3b 圧力容器の口
4 水
5 酸素
6 第1パイプ
7 第2パイプ
8 圧力レギュレータ
9 第3パイプ
10 第1弁
11 ストレーナ
12 第2弁
13 第6パイプ
14 水ポンプ
15 水道機器
16 第3弁
17 第4パイプ
18 蓋
19 第4弁
20 第5パイプ
21 圧力容器内の上部に酸素の滞留する空間
31 空気ポンプ
32 逆流防止弁
33 気泡発生器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an oxygen-dissolved water conditioner.
[0002]
[Prior art]
Examples of the water conditioner for obtaining drinking water from which chlorine contained in conventional tap water or the like has been removed include, for example, those using activated carbon as disclosed in JP-A-2002-29722 and those disclosed in JP-A-2001-259648. There are those using such a permanent magnet, those using fossil coral as shown in JP-A-2000-63173, and those using an electrolysis apparatus as shown in JP-A-2001-340857. I have.
[0003]
[Problems to be solved by the invention]
However, even if such a conventional technique can remove trihalomethane and the like, which are said to be carcinogens contained in the chlorine, by removing chlorine contained in drinking water, even if drinking such drinking water, oxygen cannot be ingested. . In addition, since humans and other living organisms can take in water with high concentration of oxygen, they can smoothly take oxygen directly into the blood through their stomach and intestines. Although water has been found to be easier to ingest, water regulators with a high concentration of dissolved oxygen have not yet been provided.
[0004]
Therefore, the present invention has been made by paying attention to such a conventional technique, and provides an oxygen-dissolved water dispenser capable of easily supplying water with high-concentration dissolved oxygen as a beverage.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 combines an oxygen supply means capable of supplying low partial pressure oxygen with a pressure vessel stored in a preset water level or a full state, and uses the tap water pressure to control the inside of the system. Oxygen-dissolved water is generated by increasing the pressure to increase the contact area between water in the pressure vessel and high partial pressure oxygen.
[0006]
According to the first aspect of the present invention, despite the low partial pressure oxygen supply means, the water supply is increased to the high partial pressure oxygen in the pressure vessel by the public means of water supply and dissolved in the high concentration state. Since it is available in large quantities in a short time and easily, it is possible to drink freshly made water, that is, water with a large amount of dissolved oxygen without degassing oxygen, when you want to drink, that is, in a short time. It can be provided at low cost because it uses public water supply means and it is a low partial pressure oxygen supply means.
[0007]
The invention according to claim 2 is the oxygen-dissolved water purifier according to claim 1, wherein the pressure vessel is connected to the oxygen supply means via a first valve that can be opened and closed. A first pipe, a second pipe branched to a drainage path by a second valve that is switchable, and a third pipe capable of supplying water to the second valve by a water pump; A fourth pipe connected to a water supply device via a freely movable third valve and a fifth pipe connected to a drainage / discharge path via a freely openable / closable fourth valve are connected and supported, respectively. It becomes.
[0008]
According to the second aspect of the present invention, even if low partial pressure oxygen is supplied into the pressure vessel by the low partial pressure oxygen supply means, the water is pressurized by the water supply equipment and water is maintained at the low partial pressure. Can generate oxygen-dissolved water at a high concentration.
[0009]
The invention according to claim 3 is the oxygen-dissolved water conditioner according to claim 1 or 2, wherein the pressure vessel is filled with a predetermined water level or a predetermined level of water, and is sealed at a first stage; A second stage of draining water in the pressure vessel and supplying oxygen to form a space for oxygen to stay in the upper part of the pressure vessel, and supplying tap water until the pressure vessel is closed and the tap water pressure is equilibrated. And the fourth stage of sucking up the water in the pressure vessel and injecting it through the space toward the water surface in the pressure vessel to circulate the water, the water in which oxygen is dissolved at a high concentration in the pressure vessel. Be generated.
[0010]
According to the third aspect of the present invention, a large amount of water in which oxygen is dissolved in a high concentration is generated in a short time by pressurizing with tap water to increase the pressure inside the pressure vessel.
[0011]
The invention according to claim 4 is the oxygen-dissolved water purifier according to claim 1, wherein the pressure vessel is connected to the oxygen supply means via a first valve that can be opened and closed. A first pipe, a second pipe branched and connected to the first pipe and having an air pump interposed therebetween, and a third pipe connected to water supply equipment through a second valve that can be opened and closed. A fourth pipe is connected to and supported by a drainage pressure path via a third valve that can be opened and closed.
[0012]
According to the invention as set forth in claim 4, even when low partial pressure oxygen is supplied into the pressure vessel by the low partial pressure oxygen supply means, water is maintained at a low partial pressure by being pressurized by water supply equipment. Can generate oxygen-dissolved water at a high concentration.
[0013]
The invention according to claim 5 is the oxygen-dissolved water purifier according to claim 1 or 4, wherein the pressure vessel is filled with a predetermined water level or full water and sealed at the first stage, A second step of supplying oxygen into the pressure vessel and draining water in the pressure vessel to form a space in which oxygen stays in the upper part of the pressure vessel; Oxygen is dissolved in the pressure vessel in a high concentration by the third stage of discharging in water, the fourth stage of supplying tap water until equilibrium with the tap water pressure, and the fifth stage of circulating as it is under increased pressure Water is produced.
[0014]
According to the fifth aspect of the present invention, a large amount of water in which oxygen is dissolved in a high concentration is generated in a short time by pressurizing with a tap water to increase the pressure inside the pressure vessel.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a diagram showing a first embodiment of the present invention. Reference numeral 1 in FIG. 1 denotes an oxygen-dissolved water conditioner. The oxygen-dissolved water conditioner 1 has a high oxygen partial pressure and is an "oxygen supply means" capable of supplying oxygen 5, and has a very small capacity of 98 cc. And a pressure vessel 3 having a capacity of, for example, 1300 cc and made of a metal plate such as aluminum and stored in a predetermined water level or a full state. By injecting the water 4 into the water 4 toward the water surface 4a and entraining bubbles of oxygen 5 to increase the contact area with the water 4, the water 4 has a high concentration of at least 60 mg / L or more, preferably 100 mg / L or more. It forms water 4 in which oxygen is dissolved. Reference numeral 7 denotes a second pipe having one end connected to the water pump 14, the other end arranged at a position close to the bottom 3 a of the pressure vessel 3, and a strainer 11 formed at the other end.
[0017]
A pressure regulator 8 is connected between the pressure vessel 3 and the oxygen cartridge 2 so that the oxygen pressure can be controlled to a predetermined value, for example, 0.2 Mpa. A first valve 10 that can be opened and closed is interposed between the pressure regulator 8 and the first pipe 6. To the water pump 14 to which the second pipe 7 is connected is connected a third pipe 9 which can flow to the pressure vessel 3 side. The water pump 14 can drain, for example, 1100 cc per minute. In the middle of the third pipe 9, a second valve 12 that can switch between the flow toward the pressure vessel 3 and the flow toward the sixth pipe 13 for drainage is provided. Reference numeral 15 denotes a water supply device, which is connected to a fourth pipe 17 which is connected to the port 3b of the pressure vessel 3, and the fifth pipe 17 is provided with a third valve 16 which can be opened and closed. Become. Reference numeral 20 denotes a fifth pipe disposed on the water surface 4a of the pressure vessel 3, and a fourth valve 19 that can be opened and closed is interposed in the fifth pipe 20. The air can be exhausted and drained from the fourth valve 19. Reference numeral 18 denotes a lid that can open and close the opening 3b of the pressure vessel 3.
[0018]
Therefore, in order to generate the high-oxygen-dissolved water 4 by the oxygen-dissolved water dispenser 1, as a first step, the third and fourth valves 16 and 19 are opened, and the water from the water supply device 15 is supplied through the fourth pipe 17. The water fills the pressure vessel 3 with a predetermined water level or fills. At this time, the air in the pressure vessel 3 is replaced with the water 4 and exhausted and drained through the fifth pipe 20. If the water level is not set to a predetermined level or full, nitrogen in the air is mixed with oxygen and the oxygen partial pressure drops. Therefore, the oxygen 5 and the water 4 are replaced after the water level is set to a predetermined level or full.
[0019]
As the second stage, the third and fourth valves 16 and 19 are closed, the first valve 10 is opened, the second valve 12 is connected to the sixth pipe 13 side, and the water pump 14 is rotated, so that the pressure is increased. The water 4 in the container 3 is sucked from the strainer 11 and drained to the outside via the second pipe 7, the water pump 14, the second valve 12, and the sixth pipe 13. Although the pressure in the pressure vessel 3 is reduced by draining, the oxygen 5 is supplied into the pressure vessel 3 through the first pipe 6, and the oxygen 5 replaced with the water 4 in the upper part of the pressure vessel 3 is retained. About 40 cc is formed.
[0020]
As a third stage, after a lapse of a predetermined time, the water pump 14 is stopped, the first valve 10 is closed, the second valve 12 is switched to open the third pipe 9 side, the third valve 16 is opened, and the water supply equipment 15 is opened. To fill the pressure vessel 3 with water 4 and raise the pressure in the system to about 0.35 Mpa, which balances the pressure with the tap water pressure.
[0021]
As a fourth step, the water 4 in the pressure vessel 3 is sucked up from the strainer 11 of the second pipe 7 by rotating the water pump 14 in anticipation of the time when the pressure is balanced, and the water 4 is supplied to the second pipe 7, Injection is performed by the third pipe 9 toward the water surface 4a in the pressure vessel 3 via the pump 14 and the second valve 12, and the circulation and the fountain of the water 4 are sequentially repeated. When the circulation fountain is repeated at a high pressure and about 3 minutes have passed, water 4 in which oxygen 5 is dissolved in the pressure vessel 3 at a high concentration of 199.5 mg / L or more is generated.
[0022]
The position of the strainer 11 is not limited to being close to the bottom 3a of the pressure vessel 3, and it is sufficient that the strainer 11 is located in the water. If the position of the strainer 11 is close to the bottom 3a of the pressure vessel 3, although the oxygen 5 supplied from the third pipe 9 can be prevented from being sucked into the strainer 11 as it is, the third pipe 9 itself becomes longer and the convenience is inferior. Will be.
[0023]
At the stage when the water 4 in which the oxygen 5 is dissolved at a high concentration of 199.5 mg / L or more is generated in the pressure vessel 3, the water pump 14 is stopped, the first and third valves 10, 16 are closed, and the fourth By opening the valve 19, the pressure of the oxygen 5 in the pressure vessel 3 is reduced by extracting the oxygen 5 to the outside through the fifth pipe 20 and the fourth valve 19. At this time, the decompression is performed stepwise by opening and closing the fourth valve 19 intermittently, and it is possible to prevent the oxygen 5 dissolved in the water 4 in the pressure vessel 3 from dropping out due to rapid decompression. Thereafter, the lid 18 of the pressure vessel 3 is opened, and the water 4 in which the oxygen 5 is dissolved at a high concentration of at least 60 mg / L or more, preferably 100 mg / L or more can be taken out. In the experimental apparatus of the present applicant, 199.5 (mg / L) was confirmed by measurement of dissolved oxygen generated and immediately after release to the atmosphere.
[0024]
FIG. 2 is a diagram showing a second embodiment of the present invention. Reference numeral 30 in FIG. 2 denotes another oxygen-dissolved water conditioner. The oxygen-dissolved water conditioner 30 includes the oxygen cartridge 2 which is an “oxygen supply unit” capable of supplying oxygen 5 and a predetermined water level or full water level. By connecting the pressure vessel 3 stored in a state with the first pipe 6 and bubbling water 4 in the pressure vessel 3 with high partial pressure oxygen 5, the water 4 and the high partial pressure oxygen The contact area with oxygen 5 is increased to produce water 4 in which oxygen is dissolved at a high concentration of at least 60 mg / L or more, desirably 100 mg / L or more. The end of the first pipe 6 on the side of the pressure vessel 3 is near the opening 3b of the pressure vessel 3, and is disposed above the water surface 4a.
[0025]
A pressure regulator 8 is connected between the pressure vessel 3 and the oxygen cartridge 2 so that the oxygen pressure can be controlled to a predetermined value. A first valve 10 that can be opened and closed is interposed between the pressure regulator 8 and the first pipe 6. One end of a second pipe 7 is connected in communication with the first pipe 6, and the other end of the second pipe 7 is connected to the pressure vessel 3 via a check valve 32 to the air pump 31. And extends to a position close to the bottom 3 a of the pressure vessel 3. The other end of the second pipe 7 is provided with a bubble generator 33. Reference numeral 15 denotes a water supply device, which is connected to a fourth pipe 17 which is connected to the port 3b of the pressure vessel 3, and the fifth pipe 17 is provided with a third valve 16 which can be opened and closed. Become. Reference numeral 20 denotes a fifth pipe disposed on the water surface 4a of the pressure vessel 3, and a fourth valve 19 that can be opened and closed is interposed in the fifth pipe 20. The air can be exhausted and drained from the fourth valve 19. Reference numeral 18 denotes a lid that can open and close the opening 3b of the pressure vessel 3.
[0026]
Accordingly, in order to generate the water conditioner 4 in which oxygen is dissolved at a high concentration by the oxygen-dissolved water conditioner 30, as a first step, the third and fourth valves 16 and 19 are opened, and the water supply through the fourth pipe 17 is performed. The inside of the pressure vessel 3 is set to a preset water level or full from the device 15. At this time, the air in the pressure vessel 3 is replaced with the water 4 and exhausted and exhausted through the fifth pipe 20. At this stage, if the water level is not set to the preset water level or full, the nitrogen in the air is mixed with oxygen and the oxygen partial pressure drops. You do it.
[0027]
As a second stage, when the inside of the pressure vessel 3 reaches a preset water level or full, the third valve 16 is closed, the first valve 10 is opened, and the pressure of the oxygen 5 in the oxygen cartridge 2 reduced by the pressure regulator 8 is reduced. The pressure is applied to the inside of the pressure vessel 3 through the first pipe 6, and the water 4 in the pressure vessel 3 is drained from the fifth pipe 20, and a predetermined water level or water 4 in the pressure vessel 3 is set to The replaced oxygen 5 forms a space 21 in the upper part of the pressure vessel 3 where the oxygen 5 stays. When a preset time has elapsed, the first valve 10 and the fifth valve 19 are closed to stop draining.
[0028]
As a third stage, by turning the air pump 24, the oxygen 5 accumulated in the upper space 21 in the pressure vessel 3 is sucked through the first pipe 6, and the bubble generator 33 in the pressure vessel 3 through the second pipe 7. Start publishing by repeatedly discharging into the water. At this time, since the pressure of the oxygen 5 stored in the pressure vessel 3 is a low partial pressure, the air pump 24 can rotate smoothly.
[0029]
As a fourth step, the third valve 16 is opened, and the tap water is introduced into the pressure vessel 3 again from the fourth pipe 17 by the water supply device 15 so that the pressure in the pressure vessel 3 is equal to the pressure of the tap water at about 0.35 MPa. Increase the pressure inside the system.
[0030]
As the fifth stage, the third valve 16 is closed when the pressure in the pressure vessel 3 has equilibrated with the pressure of the tap water, the inflow of the tap water is stopped, and publishing is continued at a high pressure for about 3 minutes. Then, water 4 in which oxygen 5 is dissolved at a high concentration is generated in the pressure vessel 3.
[0031]
When the water 4 in which the oxygen 5 is dissolved at a high concentration is generated in the pressure vessel 3, the air pump 31 is stopped. At this time, when the air pump 31 is stopped, the backflow prevention valve 32 prevents the water 4 in which the oxygen 5 is dissolved at a high concentration in the pressure vessel 3 from flowing back and entering the air pump 31. Thereafter, the fourth valve 19 is opened to reduce the pressure of the oxygen 5 in the pressure vessel 3 through the fifth pipe 20. At this time, by opening and closing the fourth valve 19 intermittently, the pressure is reduced in a stepwise manner, so that the oxygen 5 dissolved in the water 4 in the pressure vessel 3 is less likely to drop out due to the rapid pressure reduction. Thereafter, the lid 18 of the pressure vessel 3 is opened, and the water 4 in which the oxygen 5 is dissolved at a high concentration of at least 60 mg / L or more, desirably 100 mg / L or more can be taken out.
[0032]
At the stage where the first embodiment and the second embodiment are described, the same reference numeral 4 is used for the water 4 as the water before the water preparation, for the tap water, etc., but the meaning is different. Of course, the same reference numerals are used because the figure becomes complicated. The same reference numeral 5 is used for the oxygen 5 in the case where the oxygen is dissolved in the water 4, the oxygen is present only as oxygen, and the oxygen in the stage before the oxygen is dissolved in the water 4. However, since the figure is complicated, the same reference numerals are used.
[0033]
When the pressure vessel 3 is made of a material such as PET resin that can expand and deform when the pressure inside the vessel increases, when pressure is applied to the pressure vessel 3, the pressure vessel 3 itself expands and deforms. This automatically lowers the water level in the pressure vessel 3 without draining and replacing it with the oxygen 5, and an appropriate water level can be obtained.
[0034]
In the above description, the water used as the raw material is described as tap water. However, the prepared water 4 in which oxygen 5 is dissolved at a high concentration using tap water as a raw material has a slightly higher oxidation-reduction potential (ORP) than tap water. Because of the tendency, it has been confirmed that water 4 after alkali ion water preparation is more desirable as a raw material. That is, by using the water 4 after alkali ion water conditioning as a raw material, the water 4 having a higher dissolved oxygen amount, a higher PH, and a lower oxidation-reduction potential (ORP) than tap water can be obtained.
[0035]
In addition, the oxygen cartridge 2 has been described as an example of the oxygen supply means. However, the present invention is not limited to this, and the oxygen supply means may be used as it is in the atmosphere or high-concentration oxygen of an oxygen concentrator may be used.
[0036]
【The invention's effect】
According to the first aspect of the present invention, despite the low partial pressure oxygen supply means, the water supply is increased to the high partial pressure oxygen in the pressure vessel by the public means of water supply and dissolved in the high concentration state. Since it is available in large quantities in a short time and easily, it is possible to drink freshly made water, that is, water with a large amount of dissolved oxygen without degassing oxygen, when you want to drink, that is, in a short time. It can be provided at low cost because it uses public water supply means and it is a low partial pressure oxygen supply means.
[0037]
According to the second aspect of the present invention, even if low partial pressure oxygen is supplied into the pressure vessel by the low partial pressure oxygen supply means, the water is pressurized by the water supply equipment and water is maintained at the low partial pressure. Can generate oxygen-dissolved water at a high concentration.
[0038]
According to the third aspect of the present invention, a large amount of water in which oxygen is dissolved in a high concentration is generated in a short time by pressurizing with tap water to increase the pressure inside the pressure vessel.
[0039]
According to the invention as set forth in claim 4, even when low partial pressure oxygen is supplied into the pressure vessel by the low partial pressure oxygen supply means, water is maintained at a low partial pressure by being pressurized by water supply equipment. Can generate oxygen-dissolved water at a high concentration.
[0040]
According to the fifth aspect of the present invention, a large amount of water in which oxygen is dissolved in a high concentration is generated in a short time by pressurizing with a tap water to increase the pressure inside the pressure vessel.
[Brief description of the drawings]
FIG. 1 is an overall view showing an oxygen-dissolved water conditioner according to a first embodiment of the present invention.
FIG. 2 is an overall view showing an oxygen-dissolved water conditioner according to a second embodiment of the present invention.
[Explanation of symbols]
1, 30 Oxygen-dissolved water conditioner 2 Oxygen cartridge 3 as "oxygen supply means" 3 Pressure vessel 3a Bottom 3b of pressure vessel 4 Pressure vessel mouth 4 Water 5 Oxygen 6 First pipe 7 Second pipe 8 Pressure regulator 9 Third pipe DESCRIPTION OF SYMBOLS 10 1st valve 11 Strainer 12 2nd valve 13 6th pipe 14 Water pump 15 Water supply equipment 16 3rd valve 17 4th pipe 18 Cover 19 4th valve 20 5th pipe 21 Space where oxygen stays in the upper part in a pressure vessel 31 air pump 32 check valve 33 bubble generator

Claims (5)

低分圧の酸素を供給可能なる酸素供給手段と、予め設定した水位若しくは満水状態に貯留されてなる圧力容器とを結合し、水道水圧を用いて系内の圧力を高めて該圧力容器内の水と高分圧の酸素との接触面積を増やすことで、酸素溶存水を生成してなることを特徴とする酸素溶存整水器。Oxygen supply means capable of supplying oxygen at a low partial pressure, and a pressure vessel stored at a preset water level or full state are combined, and the pressure in the system is increased by increasing the pressure in the system using tap water pressure. An oxygen-dissolved water purifier characterized in that oxygen-dissolved water is generated by increasing the contact area between water and high partial pressure oxygen. 請求項1に記載の酸素溶存整水器であって、
前記圧力容器には、開閉自在な第1弁を介して前記酸素供給手段との間に連通接続されてなる第1パイプと、分岐切換可能とされた第2弁によって排水経路に分岐して配された第2パイプと、水ポンプにより前記第2弁に水を供給可能なる第3パイプと、開閉自在な第3弁を介して水道機器に連通接続されてなる第4パイプと、開閉自在な第4弁を介して排水排圧経路に連通接続されてなる第5パイプとが、それぞれ連結支持してなることを特徴とする酸素溶存整水器。
It is an oxygen-dissolved water conditioner according to claim 1,
The pressure vessel is provided with a first pipe connected to the oxygen supply means via a first valve that can be opened and closed, and is branched into a drainage path by a second valve that is switchable. A second pipe, a third pipe capable of supplying water to the second valve by a water pump, a fourth pipe connected to water supply equipment via a third valve that can be opened and closed, and a second pipe that can be opened and closed. An oxygen-dissolved water conditioner, wherein a fifth pipe connected to a drainage pressure path via a fourth valve is connected and supported.
請求項1又は請求項2に記載の酸素溶存整水器であって、
前記圧力容器内を予め設定した水位若しくは満水にすると共に密閉にする第1段階と、該圧力容器内の水を排水すると共に酸素を供給し圧力容器内の上部に酸素の滞留する空間を形成する第2段階と、圧力容器内を密閉にして水道水圧と平衡するまで水道水を供給する第3段階と、圧力容器内の水を吸い上げ且つ空間を介して圧力容器内の水面に向かって噴射し循環を行う第4段階とにより、圧力容器内に高濃度に酸素が溶存した水が生成されてなることを特徴とする酸素溶存整水器。
It is an oxygen-dissolved water purifier according to claim 1 or claim 2,
A first stage in which the inside of the pressure vessel is set to a predetermined water level or full and sealed, and a space in which oxygen is retained in an upper part of the pressure vessel by draining water in the pressure vessel and supplying oxygen. A second stage, a third stage in which the pressure vessel is closed, and tap water is supplied until equilibrium with the tap water pressure; and a water in the pressure vessel is sucked up and jetted toward the water surface in the pressure vessel through the space. An oxygen-dissolved water conditioner, wherein water having a high concentration of oxygen dissolved therein is produced in the pressure vessel by the fourth stage of circulating.
請求項1に記載の酸素溶存整水器であって、
前記圧力容器には、開閉自在な第1弁を介して前記酸素供給手段との間に連通接続されてなる第1パイプと、該第1パイプに分岐接続され且つ空気ポンプが介在されてなる第2パイプと、開閉自在な第2弁を介して水道機器に連通接続されてなる第3パイプと、開閉自在な第3弁を介して排水排圧経路に連通接続されてなる第4パイプとが、それぞれ連結支持してなることを特徴とする酸素溶存整水器。
It is an oxygen-dissolved water conditioner according to claim 1,
The pressure vessel has a first pipe connected to the oxygen supply means via a first valve that can be opened and closed, and a first pipe branched and connected to the first pipe and interposed with an air pump. A second pipe, a third pipe connected to a water supply device via a second valve that can be opened and closed, and a fourth pipe connected to a drainage pressure path through a third valve that can be opened and closed. An oxygen-dissolved water purifier characterized by being connected and supported.
請求項1又は請求項4に記載の酸素溶存整水器であって、
前記圧力容器内を予め設定した水位若しくは満水にすると共に密閉にする第1段階と、該圧力容器内に酸素を供給すると共に圧力容器内の水を排水して圧力容器内の上部に酸素の滞留する空間を形成する第2段階と、圧力容器内の酸素を吸い上げ且つ圧力容器内の水中で吐出する第3段階と、水道水圧と平衡するまで水道水を供給する第4段階と、圧力が高まった状態でそのまま循環させる第5段階とにより、圧力容器内に高濃度に酸素が溶存した水が生成されてなることを特徴とする酸素溶存整水器。
It is an oxygen-dissolved water purifier according to claim 1 or claim 4,
A first stage in which the inside of the pressure vessel is filled with a predetermined water level or full and sealed, and oxygen is supplied to the pressure vessel and water in the pressure vessel is drained to retain oxygen in the upper part of the pressure vessel. A second step of forming a space to perform pressure, a third step of sucking up oxygen in the pressure vessel and discharging the water in the pressure vessel, and a fourth step of supplying tap water until the tap water pressure is equilibrated. A fifth stage in which oxygen is dissolved in the pressure vessel at a high concentration by the fifth stage of circulating the oxygen-dissolved water as it is in the pressure vessel.
JP2002222046A 2002-07-30 2002-07-30 Oxygen dissolving water conditioning apparatus Pending JP2004057981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222046A JP2004057981A (en) 2002-07-30 2002-07-30 Oxygen dissolving water conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222046A JP2004057981A (en) 2002-07-30 2002-07-30 Oxygen dissolving water conditioning apparatus

Publications (1)

Publication Number Publication Date
JP2004057981A true JP2004057981A (en) 2004-02-26

Family

ID=31942194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222046A Pending JP2004057981A (en) 2002-07-30 2002-07-30 Oxygen dissolving water conditioning apparatus

Country Status (1)

Country Link
JP (1) JP2004057981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072667A (en) * 2007-09-19 2009-04-09 Idec Corp Method and apparatus for production of microbubble

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072667A (en) * 2007-09-19 2009-04-09 Idec Corp Method and apparatus for production of microbubble

Similar Documents

Publication Publication Date Title
JP2004520161A (en) Water treatment system under the sink
JP2004505770A (en) Water treatment system under the sink
CN115175869A (en) Beverage apparatus and method
JP5095020B1 (en) Gas dissolved water purifier
JP2010005607A (en) Simultaneous parallel manufacturing apparatus and manufacturing method of fine bubble-containing high concentration oxygen water and hydrogen water, using oxygen gas and hydrogen gas of high purity
WO2014093049A1 (en) Water stabilization, revitalization, filtration and treatment systems and methods
US10071402B2 (en) Method for sterilizing water treatment apparatus having plurality of tanks
CN105858945B (en) Disinfection system
US9969632B2 (en) Device and method for sanitizing surfaces and treating water using ozone
KR101084007B1 (en) Water purifier for providing soda water
CN206279025U (en) A kind of integrated domestic water purifies integrated processing equipment
JP2004057981A (en) Oxygen dissolving water conditioning apparatus
JPH07232174A (en) Manufacturing device of hexagonal water
JP4907254B2 (en) Hydrogen gas bubble bath equipment
JP3256693B2 (en) Apparatus for producing high-concentration saline and apparatus for producing sterilized water containing hypochlorous acid using the same
WO2009057854A1 (en) Water purifier
JP2004057985A (en) Oxygen dissolving water conditioning apparatus
JP2004057987A (en) Oxygen dissolving water conditioning apparatus
JP2004008890A (en) Apparatus for making oxygen-dissolved treated water
JP2009050790A (en) Sewage treatment apparatus
JP2004008889A (en) Apparatus for making oxygen-dissolved water
KR20070022841A (en) Clean water apparatus using MRET active water
JP2004008891A (en) Apparatus for making oxygen-dissolved treated water
KR101866932B1 (en) A hydrogen water producing apparatus and an exchange filter thereof
JP2002355678A (en) Method and apparatus for making sterilized water