JP2004057974A - Heat transfer fluid reproduction equipment for thermal shock apparatus - Google Patents

Heat transfer fluid reproduction equipment for thermal shock apparatus Download PDF

Info

Publication number
JP2004057974A
JP2004057974A JP2002221597A JP2002221597A JP2004057974A JP 2004057974 A JP2004057974 A JP 2004057974A JP 2002221597 A JP2002221597 A JP 2002221597A JP 2002221597 A JP2002221597 A JP 2002221597A JP 2004057974 A JP2004057974 A JP 2004057974A
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
water
temperature tank
transfer fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002221597A
Other languages
Japanese (ja)
Other versions
JP4213426B2 (en
Inventor
Shigeki Sugiyama
杉山 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2002221597A priority Critical patent/JP4213426B2/en
Publication of JP2004057974A publication Critical patent/JP2004057974A/en
Application granted granted Critical
Publication of JP4213426B2 publication Critical patent/JP4213426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer fluid reproduction apparatus which has a simple structure, is small-sized and excellent in water separation ability, and can easily reproduce and replace the heat transfer fluid in a short time. <P>SOLUTION: The heat transfer fluid reproduction apparatus is equipped with a water separation filter 5 for removing water W in the heat transfer fluid H stored in a low temperature tank 3 and a high temperature tank 4 of a thermal shock apparatus 2 and a cleaning device 6 for removing rubbish or the like, and has an outlet 31 of a water-containing liquid provided at an overflow position P, a water-containing liquid system 32, an inlet 41 of a dewatering liquid, a dewatering liquid system 42, a heat transfer fluid transportation system 7, and a circulation cleaning system 8 or the like. The heat transfer fluid is transported from the high temperature tank to the low temperature tank, the liquid surface S of the low temperature tank is pushed up to a position P, and the heat transfer fluid is taken out from the outlet of the water-containing liquid while maintaining a gravity separation state of the heat transfer fluid and water, thereby, water can effectively be removed from even a small amount of the heat transfer fluid. As a result, the apparatus can be miniaturized and simplified, and the reproducing treatment time of the heat transfer fluid can be shortened. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、比重が水より大きく冷熱衝撃装置の低温槽及び高温槽に共通して入れられた熱媒液に入った水を除去する除水装置と少なくともゴミを除去する浄化装置とを備えた熱媒液再生装置に関し、特に熱媒液中に混入した水除去技術として効果的に利用される。
【0002】
【従来の技術】
熱媒液が入れられる高温槽と低温槽とを備えた冷熱衝撃装置では、熱媒液は例えば低温槽で0℃乃至−60℃まで冷却されて使用されるため、低温槽に侵入した大気中の水蒸気が凝縮して水や氷になり、熱媒液より軽い水や氷が熱媒液の表面に浮き、水分の侵入に伴って氷が多くなり、例えば熱媒液攪拌機の回転軸をロックさせたり、冷熱衝撃試験用の試料を入れる試料かごを変形させるというような問題を発生させる。
【0003】
そのため、このような水や氷を除去する必要があり、従来では、冷熱衝撃装置の運転者が、水を多く含む低温槽の上澄み液をすくい取ったり、水吸着マットで吸い取ったり、氷結した氷を砕いて取り出す等の水分除去作業を行っているのが一般的であった。しかしながら、このような作業は、手間がかかる作業であると共に、低温槽の蓋を開けて槽内に顔や手を入れて、水の除去とその取れ具合を確認するという作業であり、運転者に嫌われるという問題を有する。
【0004】
一方、冷熱衝撃装置の熱媒液は、その使用に伴って水と共にゴミ等が溜まって汚れてきて、その性状が低下するため、熱媒液再生装置によって定期的に浄化処理されて再使用されることが多い。そして、そのとき水も除去できるように、除水機能を備えた熱媒液再生装置として、液体クリーニング及び分離装置が提案されている(例えば特開平2−211209号、同211210号公報参照)。
【0005】
しかしこれらの装置では、低温液を一旦貯蔵タンクに溜め、その全量を水分離フィルタに通して低温液中の水を分離するようにしているため、水分離フィルタが大容量のものになり、熱媒液再生装置の全体が大型化してコスト高になると共に、水分離のための時間も長くなり、更に、水が熱媒液の全体に含まれていて水含有率が小さくなっている熱媒液を処理するため、水の分離性能も低くなるという問題がある。
【0006】
又、高温槽及び低温槽でそれぞれ高温用熱媒液及び低温用熱媒液を使用する二液式冷熱衝撃装置において、水分離フィルタを使用することなく水分離する方法及び装置も提案されている(特開平5−149855号公報参照)。この方法及び装置では、水を含んだ低温用熱媒液を低温槽からメインタンク部又は再生分離タンクに入れ、これを加熱蒸発させた後低温用熱媒液だけを凝縮させて低温槽に回収し、タンク内には低温用熱媒液中に混入していた高温用熱媒液及びその上層を形成する水を溜め、タンクの底に小径になったサブタンク部を接続させてその中に液中の水を検知する水検知センサを設け、タンクからサブタンク部を介して高温用熱媒液を高温槽に回収すると共に、水を検知すると高温用熱媒液の回収を停止して水を排出するようにしている。
【0007】
しかしながら、このような方法及び装置は二液式冷熱衝撃装置に適したものであり、基本的に構造が複雑で一液式の簡単な熱媒液再生装置には適用できない。そして、サブタンク部を接続させるために低温槽とは別のメインタンク部が必要になり、又サブタンク及び分離した液(この場合は高温用熱媒液)を入れる液回収タンク(高温熱媒液回収缶)が必要になるため、装置や配管系が複雑でコスト高になる。更に、水分離のためにこれらのタンク類に液を出し入れするために、処理工程が多くなると共に処理時間も長くかかることになる。
【0008】
又、タンク内で熱媒液と水とが比重差によってある程度境界分離されていても、熱媒液の量がある程度少なくなると、サブタンク部に流入するときに渦ができて境界がくずれると共に、熱媒液と水とを一緒に吸入するようになるので、水検知センサで水を確実に検知できないおそれがあり、又水分離性能が良くなく熱媒液内に水が残留する可能性があり、更に水と共に排出する熱媒液が多くなるという問題がある。又、タンクからサブタンク部に液を落とすときにタンク上部の水が最後にタンク壁面に接触しつつ低下して行くため、壁面に水が付着することになり、この点でも水分離性能を低下させるという問題がある。
【0009】
【発明が解決しようとする課題】そこで本発明は、従来技術における上記問題を解決し、運転者のやりにくい作業を解消し、熱媒液再生装置を簡単な構成で小型で低価額のものにし、水分離性能が良く、熱媒液の再生及び補充が簡単に短時間でできる熱媒液再生装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明は上記課題を解決するために、請求項1の発明は、比重が水より大きく冷熱衝撃装置の低温槽及び高温槽に共通して入れられた熱媒液に入った水を除去する除水装置と少なくともゴミを除去する浄化装置とを備えた熱媒液再生装置において、
前記冷熱衝撃装置が使用されるときの前記低温槽の前記熱媒液の液面の高さ位置より上の高さ位置に設けられた含水液出口と、該含水液出口から前記除水装置まで設けられた含水液系と、前記高温槽に設けられた除水液入口と、前記除水装置から前記除水液入口まで設けられた除水液系と、前記高温槽から前記低温槽の下方の位置まで前記熱媒液を移送可能にする熱媒液移送系と、前記低温槽と前記高温槽と前記浄化装置との間で前記熱媒液を循環清浄可能にする循環清浄系と、を有することを特徴とする。
【0011】
請求項2の発明は、上記に加えて、前記循環清浄系のうちの前記低温槽と前記高温槽との間の一方側である一方側高低接続系の一部分は前記除水液系と共通になっていて、前記一方側高低接続系と前記除水液系とを切り換え可能にする切換手段を有することを特徴とする。
【0012】
請求項3の発明は、請求項1又は2の発明の特徴に加えて、前記熱媒液移送系は前記循環清浄系のうちの前記低温槽と前記高温槽との間の他方側である他方側高低接続系と共通になっていることを特徴とする。
【0013】
請求項4の発明は、請求項1乃至3の発明の特徴に加えて、前記循環清浄系における前記熱媒液の前記低温槽の出口は前記高さ位置のうち前記熱媒液が前記低温槽に最初に入れられる初期高さ位置に設けられていることを特徴とする。
【0014】
【発明の実施の形態】
図1は本発明を適用した熱媒液再生装置の全体構成の一例を示す。
熱媒液再生装置1は、比重が水より大きく冷熱衝撃装置2の低温槽3及び高温槽4に共通して入れられた熱媒液Hに入った水Wを除去する除水装置である水分離フィルタ5と少なくともゴミを除去する浄化装置であるクリーニング装置6とを備えていて、冷熱衝撃装置2が使用されるときの低温槽3の熱媒液Hの液面Sの高さ位置Lより上の高さ位置であるオーバーフロー位置Pに設けられた含水液出口31、これから水分離フィルタ5まで設けられた含水液系32、高温槽4に設けられた除水液入口41、水分離フィルタ5から除水液入口41まで設けられた除水液系42、高温槽4から低温槽3の下方の位置にある液入口33まで熱媒液Hを移送可能にする熱媒液移送系7、低温槽3と高温槽4とクリーニング装置6の間で熱媒液Hを循環清浄可能にする循環清浄系8、等を有する。
【0015】
又本例では、循環清浄系8のうちの低温槽3と高温槽4との間の一方側である一方側高低接続系81の一部分81aは前記除水液系42と共通になっていて、一方側高低接続系81と除水液系42とを切り換え可能にする切換手段としての弁9が設けられている。
【0016】
又、熱媒液移送系7は、循環清浄系8のうちの低温槽3と高温槽4との間の他方側である他方側高低接続系82と共通になっている。高温槽4からは、その低部に設けられた出口43から移送兼循環清浄用の熱媒液が取り出される。更に、循環清浄系8における熱媒液の低温槽3の出口34は、熱媒液Hの液面Sの高さ位置Lのうち熱媒液Hが低温槽3に最初に入れられる初期高さ位置L1 に設けられている。位置L1 は、図1(a)では平均的レベルを示している位置Lや(b)で示している液面の低下した低位置L2 より高い位置である。
【0017】
冷熱衝撃装置2は、詳細図示を省略しているが、通常のものと同様に断熱ケーシングに入れられた低温槽3及び高温槽4と共に、本例では水分離フィルタ5、クリーニング装置6及びこれらの間の配管系等を一体的にユニット化した装置になっている。又、模式的に示すように、冷熱衝撃試験されるべき試料Tを入れる試料かご21及びこれを昇降及び横移動させる駆動構造部22が設けられている。高低温槽4、3内には、加熱器44及び図示しない冷凍機から冷媒が供給される冷却器35や、同様に図示を省略しているが、液面上にある駆動モータから液内に駆動軸を入れて液攪拌用の羽根を回すようにした攪拌機等が通常の装置と同様に装備される。
【0018】
本例の水分離フィルタ5は、内部に筒状のフィルタエレメント51を備えていて、熱媒液と水との浸透圧の差により、熱媒液が筒内を流れる間にエレメント材料の撥水作用によって水がフィルタエレメントの表面に押し出されて溜められ、水分離された熱媒液がフィルタから送り出されるような構造のものである。但し、比重差で液−水を分離させる形式のもの等、他の適当なフィルタを使用することができる。
【0019】
クリーニング装置6は、熱媒液のクリーニングに使用される通常のものであり、ダストフィルタ61及び酸吸着フィルタ62を備えている。又本例では、高温槽4から熱媒液Hを吸入してフィルタ61、62を通過させて低温槽3に送るポンプ63を一体的に備えている。従って、ポンプ63は熱媒液移送系7にも兼用されている。
【0020】
以上のような熱媒液再生装置1は次のように運転されてその作用効果を発揮する。
冷熱衝撃装置2では、低温槽3及び高温槽4内に同じ熱媒液Hがそれぞれ図1(a)のように高さ位置Lまで入っていて、それぞれ冷却器35及び加熱器44によって例えば−30℃及び50℃にそれぞれ冷却及び加熱されて低温及び高温状態にされている。そして、冷熱衝撃試験されるべき電気・電子部品等からなる試料Tは、試料かご21に入れられ、駆動構造部22によって例えば最初に低温槽3内に下ろされて熱媒液H内に浸漬され、−30℃の低温熱衝撃を加えられた後、駆動構造部22によって低温槽3から引き上げられ、横移動した高温槽4内に下ろされて熱媒液H中に浸漬され、50℃の高温熱衝撃を加えられ、このような運転操作の繰り返しや更に異なった温度の冷熱衝撃を受け、実際の使用時の環境条件に対する加速寿命等について試験される。
【0021】
このような冷熱衝撃試験を各種試料について長期間実施すると、使用される熱媒液は、混入したゴミや侵入したり発生した酸化物等によって汚れてくると共に、低温槽において大気中の水蒸気が凝縮した水分を含有するようになり、その性状が低下して精度の高い冷熱衝撃試験ができなくなる。又、熱媒液Hも試料に付着したり散逸等して少なくなる。そのため、通常、1月程度の間隔で熱媒液が再生処理されると共に補充される。
【0022】
このときには、冷熱衝撃装置2の運転を停止し、図1(a)の実線のように低温槽3及び高温槽4から試料かご21を取り出した状態で保持しておき、両槽3、4内の熱媒液Hを数分間程度静置し、比重が1.6〜1.8位の重い熱媒液Hと水Wとの比重差によって低温槽3内で水を熱媒液の表面に浮かせる。これにより、水Wは、その大部分が熱媒液Hの表層を形成しその一部分が表面に近い位置で小水滴として熱媒液H中に混在したような状態になる。これらの液の表面Sは、通常、図1(b)に示す如く、高さ位置Lのうち低下した低位置L2 になっている。なお、図では水Wのある表面層の厚みtを大きく示しているが、実際には、水Wは熱媒液Hの1%程度の少量である。
【0023】
この状態で熱媒液移送系7を使用する。即ち、本例では共通になっている循環清浄系8のクリーニング装置6を作動させてそのポンプ63により、高温槽4内の熱媒液Hを低温槽3側に移送し、下方の位置にある液入口33から低温槽3に入れる。この移送される液は、本例では上記のクリーニング装置6でクリーニングされた液になっている。これにより、高温槽4の液面が低下し低温槽3の液面が上昇する。この場合、ポンプ63は、熱媒液のクリーニング用であるため、例えば5リットル/分程度の小容量のものである。従って、低高温槽における液面Lは、例えば3.5mm/分程度の適当に遅い速度で昇降する。
【0024】
低温槽3では、この液面上昇によって液面Sがオーバーフロー位置Pになって含水液出口31に到達すると、ここから水W及びこれを含有した熱媒液Hがオーバーフローし、含水液系32に流れ出る。
【0025】
この場合、低温槽3には下方の液入口33から熱媒液が入るため、槽内上部の液面近傍位置では、下方からの液の流入速度の影響を殆ど受けることなく、従って熱媒液Hと水Wとの分離状態が確実に保持されて液面が上昇する。そして、液面が含水液出口31に到達すると、ここから最初に表層をなす水Wが出て行き、続いて少量の水分を混入していることがある熱媒液が出て行くことになる。
【0026】
このときには、低温槽3の全表面の水が含水液出口31から出るため出口部で縮流を生ずるが、まず主として水が出て、その後少量の水が熱媒液に随伴されて出て行くような状態になり、少ない熱媒液で極めて分効率よく水を取り出すことができる。この水及び熱媒液は含水液系32を介して水分離フィルタ5に入り、その中で熱媒液Hから水Wが分離され、熱媒液Hは除水液系42を介して除水液入口41から高温槽4に入れられ、水Wはフィルタ内に溜められる。なお、水分離フィルタ5の形式によっては、図1の二点鎖線で示すドレン管から常時水が排出される。
【0027】
含水液出口31からの水及び熱媒液の取り出し量が低温槽3内の熱媒液の5〜10%程度になると、その取り出しを停止して熱媒液中の水除去処理を終了する。この処理が終了すると、熱媒液のクリーニング処理をすることになるが、本例では、循環清浄系8の一方側高低接続系81と除水液系42とを共通にしているので、その切換手段である弁9を開くことになる。
【0028】
この切換手段の作動時期即ち弁を開くタイミングは、本例では、オーバーフロー開始後、ポンプ63が前記5〜10%の液量を吐出するまでの時間で定めている。この場合、上記の如く切換までの液取り出し量を5〜10%にしているのは、水の排出効率がよいので、この程度の液をオーバーフローさせれば、熱媒液中の水がほぼ完全に取り出されるためである。従って、極めて短時間で熱媒液から水を除去することができる。発明者等の実験によれば、低高温槽に入れられる合計熱媒液が200kg程度である需要の多い汎用的な冷熱衝撃装置において、オーバーフローさせる液量を10kg程度にすると、その液流のうち中間より後流側の液では、他の比重分離された低層の熱媒液と同様に目視検査で水のない状態が確認された。
【0029】
弁9が開くと、熱媒液Hは、低温槽3の液出口34から循環清浄系8を通って高温槽4の除水液系と兼用されている除水液入口41から高温槽4に入る。このとき低温槽3から高温槽4に移動する熱媒液の流量は、ポンプ6を継続して運転している場合には、ポンプ6の流量Q1 と、低温槽3内で含水液出口31から液出口34まで熱媒液Hの液面Sのレベル下降による液面低下流量Q2 との合計流量Qである。このような熱媒液Hの流れは、P位置からL1 位置までの低温槽の高い液面と、低温槽側に液が移送されて低位置L2 より低くなる高温槽の低い液面との液面差によって生ずる。
【0030】
なお、低温槽の液面SがP位置からL1 位置に下がるまでポンプ6の運転を停止してもよいが、PとL1 との差は余り大きくないので、ポンプ6を運転していても、比較的短い時間で液面をL1 まで下げて、ポンプ流量Q1 に相当する熱媒液を循環させる定常的な循環清浄状態にすることができる。なお、PからL1 まで流量Q2 で流れる液も、比重分離されていて水を含まない熱媒液である。
【0031】
低温槽の液面が液出口34の位置になると、それ以後はポンプ6の流量に相当する熱媒液Hが循環清浄系8を流れて、定常的な熱媒液の循環清浄が行われる。この循環清浄では、クリーニング装置6でクリーニングされた熱媒液が低温槽の下方位置の液入口33から入り、低温槽内のクリーニングされていない液を上方に押し上げて液出口34に送るので、効率のよいほぼ完全な置換清浄が行われる。そしてこの場合、水除去工程中に低温槽に移送された熱媒液もクリーニング装置でクリーニングされた液であるため、水除去工程も置換清浄工程に含まれる。従って、水除去処理のための余分の工程は全く発生しない。
【0032】
熱媒液の循環清浄が終了すると、冷熱衝撃試験中の使用によって散逸減少した熱媒液を補充する。この場合、低温槽3では液面位置が既に熱媒液の張り込み時の初期高さ位置L1 になっているので、高温槽4のみに同じL1 の高さまで熱媒液を補充することになる。従って、熱媒液の補充も極めて簡単である。
【0033】
以上の如く、本発明を適用した図1の熱媒液再生装置によれば、
1)水と熱媒液とが分離している境界を乱すことなく液面をオーバーフローレベルまで上げ、含水液出口31で堰を越えるような状態で表面の水を取り出せるので、熱媒液中の水分離性能が極めてよいこと、
2)従って、水分離のために処理される液量が全熱媒液の5〜10%程度の少量であること、
3)その結果、従来の熱媒液全量処理方式に較べて、水除去時間が短いと共に、水処理フィルタの小型化が可能になること、
4)水除去のための熱媒液をクリーニング装置でクリーニングした液にしているので、水除去のための工程がクリーニング工程の一部分になっていて、水除去をしてもそのための処理時間が不要であること、
5)通常の水除去処理においても、水分離フィルタへの液の出し入れのための配管系等や水除去処理とクリーニング処理とを切り換える弁等は必要であり、又、熱媒液のクリーニングのためには本例の循環清浄系に相当する部分も必要であるため、本発明の装置によれば、系統や液の出し入れ口の内容が異なるだけで、従来の装置に対して追加される設備は全くないこと、そして、複数のタンク等の従来必要であった設備が不要になること、
6)水除去及びクリーニングのための操作は、ポンプ63の運転と弁9の開閉だけであり、従来の装置の操作に対して追加される操作がなく、極めて簡単になっていること、又、運転者のやりにくい作業も当然解消されていること、
7)クリーニング後の熱媒液の補充が高温槽だけでよいため、重い熱媒液の取り扱いが簡略化されて容易になること、
等の多くの顕著な作用効果を得ることができる。
【0034】
図2は本発明を適用した熱媒液再生装置の全体構成の他の例を示す。
本例の熱媒液再生装置1では、除水液系42と循環清浄系8の一方側高低接続系81とが別々に設けられて、除水液系42は除水液入口41に接続され、一方側高低接続系81は循環液入口81b に接続される。この系81には、この系を開閉可能にする弁9が設けられる。この弁9は、この系と除水液系42とを切り換え可能にする切換手段にもなる。
【0035】
このように除水液系42を独立に設ければ、配管系は追加になるが、除水液入口41を図示の如く低い位置P1 にして、PからP1 までの液の落差を大きくして含水液が水分離フィルタ5を通過しやすくすることができる。このP1 位置は、循環系8を作動させて低温槽3の液面LがP位置になったときの高温槽4の液面であり、低位置L2 より下の位置にされる。
【0036】
図3は本発明を適用した熱媒液再生装置の全体構成の更に他の例を示す。
本例の熱媒液再生装置1では、熱媒液移送系7と循環清浄系8の他方側高低接続系82とが別々に設けられていて、熱媒液移送系7は、高低温槽4、3の熱媒液の出口71、入口72及びポンプ73を備えている。このようにすれば、この系が追加装備されることになるが、ポンプ73を水分離に最適な能力を持つものにしたり、水分離処理とクリーニング処理とを独立してさせ、操作の簡明なものにすることができる。
【0037】
なお、図1乃至図3では、1台の熱媒液再生装置1が1台の冷熱衝撃装置2と組み合わせられた例を示したが、電子部品製造工場等で冷熱衝撃装置2が複数台設けられるような場合には、1台の熱媒液再生装置に対して、切り換え可能な固定配管又は着脱自在な配管系を採用することにより、複数台の冷熱衝撃装置の熱媒液を再生できるような装置構成にすることも可能である。
【0038】
【発明の効果】以上の如く本発明によれば、請求項1の発明においては、熱媒液再生装置が、冷熱衝撃装置の低温槽及び高温槽に関連して所定の構成を備えた含水液出口と含水液系と除水液入口と除水液系と熱媒液移送系と循環清浄系とを有するので、熱媒液を再生するときに、冷熱衝撃装置として使用していたときに低温槽及び高温槽で一定の液面を形成している熱媒液を別のタンク等に転送することなくそのままま一定時間静置し、水が混入している低温槽で熱媒液と水とを比重分離して水を熱媒液の表面部分に浮上させ、熱媒液移送系で熱媒液を高温槽から低温槽にその下方位置から移送して低温槽の液面を下方位置から持ち上げて含水液出口まで上昇させ、熱媒液中の水を含む表面部分を含水液出口から含水液系を介して除水装置に入れ、ここで水を除去された熱媒液を除水液系及び除水液入口を介して高温槽に戻し、低高温槽の熱媒液を除水されたものにし、その後この熱媒液を循環清浄系でクリーニングすることにより、熱媒液を水やゴミ等が除去され再生されたものにすることができる。
【0039】
この場合、低温槽の下方位置に熱媒液を入れて液面を上昇させるようにしているので、熱媒液中の水分離性能がよい。従って、水を含有した熱媒液を少量だけ含水液出口から送出することにより、熱媒液から全ての水を除去することができる。その結果、水除去時間を短くしたり除水装置を小型化することができる。又、簡単な操作で能率よく水の除去処理をすることができる。そして、従来の装置で設けられていた複数個からなる余分のタンク類及びこれらに関連した配管等が不要になるので、設備の簡素化、低コスト化、運転操作の容易化等を図ることができる。
【0040】
請求項2の発明においては、循環清浄系のうちの低温槽と高温槽との間の一方側高低接続系の一部分を除水液系と共通にして、これらの間を切り換え可能にする切換手段を設けるので、系統を一層簡素化することができる。
【0041】
請求項3の発明においては、熱媒液移送系を、循環清浄系のうちの他方側高低接続系と共通にするので、系統の一層の簡素化を図ることができる。又、水除去処理のために移送する熱媒液が浄化装置で処理されたものになるので、水除去のための処理工程を浄化処理工程の一部分にして、熱媒液再生処理の全体の工程時間を短縮することができる。
【0042】
請求項4の発明においては、循環清浄系における熱媒液の低温槽の出口を液面の高さ位置のうち熱媒液が低温槽に最初に入れられる初期高さ位置に設けているので、循環清浄工程が完了したときには、低温槽はそのままの状態で熱媒液再生後の使用可能な状態になっているため、高温槽にだけ液補充をすればよいことになる。従って、熱媒液の再生時に通常必要となる液補充の作業を簡略化し、全体の作業を容易且つ迅速なものにすることができる。
【図面の簡単な説明】
【図1】本発明を適用した熱媒液再生装置を含む冷熱衝撃装置の全体構成の一例を示す説明図である。
【図2】本発明を適用した熱媒液再生装置を含む冷熱衝撃装置の全体構成の他の例を示す説明図である。
【図3】本発明を適用した熱媒液再生装置を含む冷熱衝撃装置の全体構成の更に他の例を示す説明図である。
【符号の説明】
1      熱媒液再生装置
2      冷熱衝撃装置
3      低温槽
4      高温槽
5      水分離フィルタ(除水装置)
6      クリーニング装置(浄化装置)
7      熱媒液移送系
8      循環清浄系
9      弁(切換手段)
31     含水液出口
32     含水液系
41     除水液入口
42     除水液系
81     一方側高低接続系
81a    一方側高低接続系の一部分
82     他方側高低接続系
H      熱媒液
L      液面の高さ位置
1      初期高さ位置
P      オーバーフロー位置(上の高さ位置)
S      液面
W      水
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a dewatering device that removes water contained in a heat transfer liquid that has a specific gravity greater than that of water and is common to the low-temperature tank and the high-temperature tank of the thermal shock device, and a purification device that removes at least dust. The heat medium liquid regenerating apparatus is effectively used as a technique for removing water mixed in the heat medium liquid.
[0002]
[Prior art]
In the thermal shock device provided with a high-temperature tank and a low-temperature tank in which the heat-medium liquid is put, the heat-medium liquid is used after being cooled to 0 ° C. to −60 ° C. in the low-temperature tank, for example. Water vapor condenses into water and ice, water and ice lighter than the heat transfer fluid floats on the surface of the heat transfer fluid, and increases with the ingress of moisture, for example, the rotation shaft of the heat transfer fluid stirrer is locked Or a problem such as deformation of a sample cage in which a sample for a thermal shock test is placed.
[0003]
Therefore, it is necessary to remove such water and ice. Conventionally, the operator of the thermal shock device scoops the supernatant liquid in a low-temperature tank containing a lot of water, sucks it with a water adsorption mat, or freezes ice. It has been common practice to perform moisture removal operations such as crushing and removing the slag. However, such work is time-consuming work, and is a work of opening the cover of the low-temperature tank and putting a face and hands into the tank to confirm the removal of water and how to remove it. Have the problem of being hated.
[0004]
On the other hand, the heat transfer fluid of the thermal shock device is contaminated with water as it accumulates and becomes dirty, and its properties deteriorate, so the heat transfer fluid is periodically cleaned and reused by the heat transfer device. Often. At that time, a liquid cleaning and separation apparatus has been proposed as a heat transfer liquid regenerating apparatus having a water removal function so that water can be removed (see, for example, JP-A-2-21209 and JP-A-211210).
[0005]
However, in these devices, the cryogenic liquid is once stored in the storage tank, and the entire amount is passed through the water separation filter so as to separate the water in the cryogenic liquid. The entire medium regenerator is increased in size and cost, and the time for water separation is increased. Further, the heat medium contains water as a whole and the water content is reduced. Since the liquid is processed, there is a problem that the water separation performance is also lowered.
[0006]
Also proposed is a method and apparatus for water separation without using a water separation filter in a two-component cold shock apparatus using a high-temperature heat medium liquid and a low-temperature heat medium liquid in a high-temperature tank and a low-temperature tank, respectively. (See JP-A-5-149855). In this method and apparatus, the low-temperature heat transfer fluid containing water is put into the main tank or the regeneration separation tank from the low-temperature tank, and after this is heated and evaporated, only the low-temperature heat transfer liquid is condensed and recovered in the low-temperature tank. In the tank, the high-temperature heat transfer medium mixed in the low-temperature heat transfer liquid and the water forming the upper layer thereof are stored, and a sub-tank portion having a small diameter is connected to the bottom of the tank, and the liquid is contained therein. A water detection sensor is provided to detect the water in the tank, and the high-temperature heat transfer fluid is recovered from the tank to the high-temperature tank via the sub-tank part. When water is detected, the recovery of the high-temperature heat transfer fluid is stopped and the water is discharged. Like to do.
[0007]
However, such a method and apparatus are suitable for a two-component cold shock apparatus, and basically cannot be applied to a simple one-component heat transfer medium regenerator having a complicated structure. In order to connect the sub-tank part, a main tank part separate from the low-temperature tank is required, and a liquid recovery tank (high-temperature heat transfer liquid recovery) for storing the sub-tank and the separated liquid (in this case, the high-temperature heat transfer liquid). Equipment) and piping system are complicated and expensive. Furthermore, in order to separate water into and out of these tanks for water separation, the number of processing steps increases and the processing time also takes longer.
[0008]
Even if the heat transfer fluid and water are separated to some extent by the difference in specific gravity in the tank, if the amount of the heat transfer fluid is reduced to some extent, a vortex will be formed when it flows into the sub tank, and the boundary will be broken. Since the liquid and water are sucked together, there is a possibility that the water detection sensor cannot reliably detect the water, and the water separation performance is not good, and the water may remain in the heat transfer liquid. Furthermore, there is a problem that the heat transfer fluid discharged with water increases. In addition, when the liquid is dropped from the tank to the sub tank, the water in the upper part of the tank is lowered while finally contacting the tank wall surface, so that water adheres to the wall surface, and this also reduces the water separation performance. There is a problem.
[0009]
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned problems in the prior art, eliminates difficult operations for the driver, and makes the heat transfer fluid regenerator small in size and low in cost with a simple configuration. Another object of the present invention is to provide a heat medium liquid regenerating apparatus that has good water separation performance and that can easily regenerate and replenish the heat medium liquid in a short time.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 is designed to remove water contained in a heat transfer medium having a specific gravity larger than that of water and common to the low temperature tank and the high temperature tank of the thermal shock device. In a heat transfer medium regenerator that includes a water device and a purification device that removes at least dust,
The hydrous liquid outlet provided at a height position above the level position of the liquid level of the heat transfer fluid in the low temperature bath when the cold shock apparatus is used, and from the hydrous liquid outlet to the dewatering apparatus A water-containing liquid system provided; a water removal liquid inlet provided in the high temperature tank; a water removal liquid system provided from the water removal device to the water removal liquid inlet; and a lower part of the low temperature tank from the high temperature tank A heat transfer fluid transfer system that enables the transfer of the heat transfer fluid to a position of, and a circulation cleaning system that enables the heat transfer fluid to be circulated and cleaned between the low temperature tank, the high temperature tank, and the purification device. It is characterized by having.
[0011]
In addition to the above, the invention of claim 2 is characterized in that a part of the one-side high-low connection system which is one side between the low temperature tank and the high temperature tank in the circulation cleaning system is shared with the dewatering liquid system. And a switching means for switching between the one-side high / low connection system and the dewatering liquid system.
[0012]
According to a third aspect of the present invention, in addition to the features of the first or second aspect of the invention, the heating medium liquid transfer system is the other side of the circulation cleaning system which is the other side between the low temperature tank and the high temperature tank. It is common to the side high / low connection system.
[0013]
According to a fourth aspect of the present invention, in addition to the features of the first to third aspects of the present invention, the outlet of the low temperature tank of the heat transfer medium in the circulation cleaning system is located at the height position where the heat transfer liquid is the low temperature tank. It is characterized by being provided at an initial height position which is first put in the.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of the overall configuration of a heat transfer medium regenerating apparatus to which the present invention is applied.
The heat transfer fluid regenerator 1 is a water removal device that removes the water W contained in the heat transfer fluid H that has a specific gravity greater than that of water and that is commonly placed in the low temperature tank 3 and the high temperature tank 4 of the thermal shock device 2. From the height position L of the liquid surface S of the heat transfer fluid H in the low-temperature tank 3 when the separation filter 5 and at least the cleaning device 6 that is a purification device for removing dust are used, and the thermal shock device 2 is used. A water-containing liquid outlet 31 provided at the overflow position P, which is the upper height position, a water-containing liquid system 32 provided up to the water separation filter 5, a dewatered liquid inlet 41 provided in the high-temperature tank 4, and the water separation filter 5 From the high temperature tank 4 to the liquid inlet 33 at a position below the low temperature tank 3, the heat medium liquid transfer system 7 that enables the transfer of the heat medium liquid H from the high temperature tank 4 to the liquid inlet 33 at a position below the low temperature tank 3, and the low temperature. The heat medium liquid H is circulated among the tank 3, the high temperature tank 4 and the cleaning device 6. Circulatory cleaning system 8 that enables clean, having like.
[0015]
In this example, a part 81a of the one side high / low connection system 81 which is one side between the low temperature tank 3 and the high temperature tank 4 in the circulation cleaning system 8 is common to the dewatering liquid system 42, A valve 9 is provided as switching means that enables switching between the one-side high / low connection system 81 and the water removal liquid system 42.
[0016]
Further, the heat transfer liquid transfer system 7 is common to the other side height connection system 82 which is the other side between the low temperature tank 3 and the high temperature tank 4 in the circulation cleaning system 8. From the high-temperature tank 4, a heat transfer liquid for transfer and circulation cleaning is taken out from an outlet 43 provided at a lower portion thereof. Furthermore, the outlet 34 of the low-temperature tank 3 for the heat transfer medium in the circulation cleaning system 8 is the initial height at which the heat transfer liquid H is first put into the low-temperature tank 3 in the height position L of the liquid surface S of the heat transfer liquid H. It is provided at a position L 1. The position L 1 is a position higher than the position L indicating the average level in FIG. 1A and the low position L 2 where the liquid level is decreased as shown in FIG.
[0017]
Although the detailed illustration of the thermal shock device 2 is omitted, the water separation filter 5, the cleaning device 6, and these are used in this example, together with the low temperature tank 3 and the high temperature tank 4 placed in a heat insulating casing as in a normal case. It is a device that integrates the piping system between them into a unit. Further, as schematically shown, a sample basket 21 into which a sample T to be subjected to a thermal shock test and a drive structure unit 22 for moving the sample up and down and moving horizontally are provided. In the high and low temperature tanks 4 and 3, a cooler 35 to which a refrigerant is supplied from a heater 44 and a refrigerator (not shown), and similarly, illustration is omitted, but a drive motor on the liquid level enters the liquid. A stirrer or the like in which a drive shaft is inserted and a blade for liquid agitation is rotated is equipped in the same manner as a normal device.
[0018]
The water separation filter 5 of this example includes a cylindrical filter element 51 inside, and the water repellent property of the element material while the heat transfer fluid flows in the tube due to the difference in osmotic pressure between the heat transfer fluid and water. By the action, water is pushed out and accumulated on the surface of the filter element, and the heat transfer fluid separated from the water is sent out from the filter. However, other suitable filters such as a type that separates liquid-water by a specific gravity difference can be used.
[0019]
The cleaning device 6 is an ordinary device used for cleaning the heat transfer fluid, and includes a dust filter 61 and an acid adsorption filter 62. In this example, a pump 63 is integrally provided that sucks the heat transfer fluid H from the high temperature tank 4 and passes it through the filters 61 and 62 to the low temperature tank 3. Therefore, the pump 63 is also used as the heat medium liquid transfer system 7.
[0020]
The heat medium liquid regenerating apparatus 1 as described above is operated as follows and exhibits its effects.
In the thermal shock device 2, the same heat transfer fluid H is placed in the low temperature tank 3 and the high temperature tank 4 up to the height position L as shown in FIG. It is cooled and heated to 30 ° C. and 50 ° C., respectively, to be in a low temperature and high temperature state. Then, the sample T made of electrical / electronic parts to be subjected to the thermal shock test is put in the sample basket 21 and is first lowered into the low temperature tank 3 by the drive structure 22 and immersed in the heat transfer liquid H, for example. After being subjected to a low temperature thermal shock of −30 ° C., it is pulled up from the low temperature tank 3 by the drive structure 22 and lowered into the high temperature tank 4 moved laterally and immersed in the heat transfer fluid H, and the high temperature of 50 ° C. A thermal shock is applied, the operation is repeated, and a thermal shock at a different temperature is applied to test the accelerated life against the environmental conditions during actual use.
[0021]
When such a thermal shock test is carried out for various samples for a long period of time, the heat transfer fluid used becomes contaminated with mixed dust, invading or generated oxides, etc., and water vapor in the atmosphere is condensed in a low-temperature tank. As a result, the properties are deteriorated and a highly accurate thermal shock test cannot be performed. Also, the heat transfer fluid H is reduced by adhering to the sample or dissipating it. Therefore, the heat transfer fluid is usually regenerated and replenished at intervals of about one month.
[0022]
At this time, the operation of the thermal shock device 2 is stopped, and the sample basket 21 is held in the state where the sample basket 21 is taken out from the low temperature tank 3 and the high temperature tank 4 as shown by the solid line in FIG. The heat transfer fluid H is allowed to stand for several minutes, and water is brought to the surface of the heat transfer fluid in the low temperature tank 3 due to the difference in specific gravity between the heavy heat transfer fluid H having a specific gravity of about 1.6 to 1.8 and the water W. Float. As a result, most of the water W forms a surface layer of the heat transfer liquid H, and a part of the water W is mixed in the heat transfer liquid H as small water droplets at a position close to the surface. Surface S of these liquids is generally as shown in FIG. 1 (b), in a low position L 2 of reduced among the height L. In the figure, the thickness t of the surface layer with water W is shown large, but in reality, the water W is a small amount of about 1% of the heat transfer fluid H.
[0023]
In this state, the heat medium liquid transfer system 7 is used. That is, in this example, the cleaning device 6 of the circulation cleaning system 8 which is common is operated, and the heat transfer fluid H in the high temperature tank 4 is transferred to the low temperature tank 3 side by the pump 63 and is in the lower position. It puts into the low temperature tank 3 from the liquid inlet 33. In this example, the transferred liquid is a liquid cleaned by the cleaning device 6. Thereby, the liquid level of the high temperature tank 4 falls and the liquid level of the low temperature tank 3 rises. In this case, since the pump 63 is for cleaning the heat transfer fluid, it has a small capacity of, for example, about 5 liters / minute. Therefore, the liquid level L in the low and high temperature tank moves up and down at an appropriately slow speed of about 3.5 mm / min.
[0024]
In the low-temperature tank 3, when the liquid level S reaches the overflow position P and reaches the water-containing liquid outlet 31 due to the rise in the liquid level, the water W and the heat transfer liquid H containing the water overflow from there and enter the water-containing liquid system 32. Flows out.
[0025]
In this case, since the heat transfer liquid enters the low temperature tank 3 from the lower liquid inlet 33, the heat transfer liquid is hardly affected by the inflow speed of the liquid from below at the position near the liquid surface in the upper part of the tank. The separation state of H and water W is reliably maintained, and the liquid level rises. Then, when the liquid level reaches the water-containing liquid outlet 31, the water W that forms the surface layer first comes out from here, and then the heat transfer liquid that may contain a small amount of water comes out. .
[0026]
At this time, the water on the entire surface of the low-temperature tank 3 comes out from the hydrated liquid outlet 31, so that a constricted flow is generated at the outlet, but first the water comes out first, and then a small amount of water goes out accompanied by the heat transfer liquid. In such a state, water can be taken out very efficiently with a small amount of heat transfer fluid. The water and the heat medium liquid enter the water separation filter 5 through the water-containing liquid system 32, in which water W is separated from the heat medium liquid H, and the heat medium liquid H is dewatered through the water removal liquid system 42. Water W is stored in the filter by being put into the high-temperature tank 4 from the liquid inlet 41. Depending on the type of the water separation filter 5, water is always discharged from the drain pipe indicated by the two-dot chain line in FIG.
[0027]
When the amount of water and heat medium liquid taken out from the water-containing liquid outlet 31 becomes about 5 to 10% of the heat medium liquid in the low temperature tank 3, the removal is stopped and the water removal process in the heat medium liquid is finished. When this process is completed, the heating medium liquid cleaning process is performed. In this example, since the one-side high / low connection system 81 of the circulation cleaning system 8 and the dewatering liquid system 42 are shared, the switching is performed. The valve 9 as a means is opened.
[0028]
In this example, the operation timing of the switching means, that is, the valve opening timing is determined by the time from the start of overflow until the pump 63 discharges 5 to 10% of the liquid amount. In this case, the amount of liquid taken out until switching as described above is 5 to 10% because the water discharge efficiency is good. If this amount of liquid overflows, the water in the heat transfer fluid is almost completely discharged. It is because it is taken out. Therefore, water can be removed from the heat transfer fluid in a very short time. According to the experiments by the inventors, in a general-purpose cold shock apparatus having a large demand for a total heat medium liquid to be put in a low-temperature tank of about 200 kg, when the amount of liquid to be overflowed is about 10 kg, As for the liquid on the downstream side from the middle, the state of no water was confirmed by visual inspection in the same manner as other low-temperature heat medium liquids separated by specific gravity.
[0029]
When the valve 9 is opened, the heat transfer fluid H passes from the liquid outlet 34 of the low temperature tank 3 through the circulation cleaning system 8 to the high temperature tank 4 from the dewatered liquid inlet 41 that is also used as the water removal liquid system of the high temperature tank 4. enter. At this time, the flow rate of the heat transfer liquid moving from the low temperature tank 3 to the high temperature tank 4 is the flow rate Q 1 of the pump 6 and the water-containing liquid outlet 31 in the low temperature tank 3 when the pump 6 is continuously operated. is the total flow rate Q of the liquid surface decreases flow rate Q 2 by level lowering of the liquid surface S of the heat transfer fluid H to the liquid outlet 34 from. Such a flow of the heat transfer fluid H includes a high liquid level in the low temperature tank from the P position to the L 1 position, and a low liquid level in the high temperature tank where the liquid is transferred to the low temperature tank side and lower than the low position L 2. This is caused by the liquid level difference.
[0030]
It is also possible to stop the operation of the pump 6 to the liquid surface S of the cryostat falls L 1 position from the P position, but the difference between the P and L 1 is not very large, it was driving the pump 6 However, the liquid level can be lowered to L 1 in a relatively short time, and a steady circulation clean state in which the heat transfer fluid corresponding to the pump flow rate Q 1 is circulated can be achieved. Note that the liquid flowing from P to L 1 at a flow rate Q 2 is also a heat medium liquid that is separated by specific gravity and does not contain water.
[0031]
When the liquid level in the low-temperature tank reaches the position of the liquid outlet 34, thereafter, the heat transfer fluid H corresponding to the flow rate of the pump 6 flows through the circulation cleaning system 8 and the steady heat transfer of the heat transfer fluid is performed. In this circulation cleaning, the heat transfer fluid cleaned by the cleaning device 6 enters from the liquid inlet 33 below the low temperature tank, pushes up the uncleaned liquid in the low temperature tank upward, and sends it to the liquid outlet 34. A near complete replacement cleaning is performed. In this case, since the heat transfer liquid transferred to the low temperature tank during the water removal process is also a liquid cleaned by the cleaning device, the water removal process is also included in the replacement cleaning process. Therefore, no extra process for the water removal treatment occurs.
[0032]
When circulation cleaning of the heat transfer fluid is completed, the heat transfer fluid that has been reduced in dissipation due to use during the thermal shock test is replenished. In this case, since the liquid level position cryostat 3 is already initial height L 1 at the time of imposition of the heating medium fluid, to replenish the heat transfer fluid to the height of the same L 1 only to a high temperature bath 4 Become. Therefore, replenishment of the heat transfer fluid is very simple.
[0033]
As described above, according to the heat transfer liquid regenerator of FIG. 1 to which the present invention is applied,
1) The water level can be raised to the overflow level without disturbing the boundary where water and the heat transfer liquid are separated, and the surface water can be taken out in a state of exceeding the weir at the water-containing liquid outlet 31. Very good water separation performance,
2) Therefore, the amount of liquid processed for water separation is a small amount of about 5 to 10% of the total heat transfer medium,
3) As a result, the water removal time is shorter and the water treatment filter can be downsized as compared with the conventional heat medium liquid total amount treatment method.
4) Since the heat transfer liquid for water removal is the liquid cleaned by the cleaning device, the water removal process is part of the cleaning process, and even if water is removed, the processing time for that is not required. Being
5) Even in the normal water removal process, a piping system for taking in and out the liquid to and from the water separation filter and a valve for switching between the water removal process and the cleaning process are necessary. Since a part corresponding to the circulation cleaning system of this example is also necessary, according to the apparatus of the present invention, the equipment added to the conventional apparatus is different only in the contents of the system and the liquid inlet / outlet. Nothing at all, and unnecessary equipment such as multiple tanks,
6) The operations for water removal and cleaning are only the operation of the pump 63 and the opening and closing of the valve 9, and there is no operation added to the operation of the conventional apparatus, and the operation is extremely simple. Naturally, the difficult tasks for the driver have been eliminated,
7) Since replenishment of the heat transfer fluid after cleaning only needs to be performed at a high temperature tank, handling of the heavy heat transfer fluid is simplified and facilitated.
Etc., many remarkable effects can be obtained.
[0034]
FIG. 2 shows another example of the overall configuration of the heat transfer medium regenerating apparatus to which the present invention is applied.
In the heat transfer fluid regenerator 1 of this example, the water removal liquid system 42 and the one-side high / low connection system 81 of the circulation cleaning system 8 are provided separately, and the water removal liquid system 42 is connected to the water removal liquid inlet 41. The one-side height connection system 81 is connected to the circulating fluid inlet 81b. The system 81 is provided with a valve 9 that can open and close the system. This valve 9 also serves as a switching means that enables switching between this system and the water removal liquid system 42.
[0035]
By thus providing the independent josui liquid system 42, piping system becomes to add, to the dewatering fluid inlet 41 to the lower as shown position P 1, a large drop of liquid from P to P 1 Thus, the water-containing liquid can easily pass through the water separation filter 5. The P 1 position, the liquid level L of the cryostat 3 by actuating the circulation system 8 is a liquid surface of the high temperature chamber 4 when it is P position, is from a low position L 2 in the down position.
[0036]
FIG. 3 shows still another example of the entire configuration of the heat transfer medium regenerating apparatus to which the present invention is applied.
In the heat medium liquid regenerating apparatus 1 of this example, the heat medium liquid transfer system 7 and the other side height connection system 82 of the circulation cleaning system 8 are provided separately. 3, a heat medium liquid outlet 71, an inlet 72, and a pump 73. In this way, this system is additionally equipped. However, the pump 73 has an optimum ability for water separation, or the water separation process and the cleaning process are made independent, thereby simplifying the operation. Can be a thing.
[0037]
1 to 3 show an example in which one heat medium liquid regenerator 1 is combined with one cold shock device 2, but a plurality of cold shock devices 2 are provided in an electronic component manufacturing factory or the like. In such a case, by adopting a switchable fixed pipe or a detachable pipe system for one heat transfer medium regenerator, it is possible to regenerate the heat transfer medium of a plurality of cold shock devices. It is also possible to have a simple device configuration.
[0038]
As described above, according to the present invention, in the first aspect of the present invention, the heat transfer liquid regenerator has a predetermined structure in relation to the low temperature tank and the high temperature tank of the cold shock apparatus. Since it has an outlet, a water-containing liquid system, a dewatered liquid inlet, a dewatered liquid system, a heat transfer liquid transfer system, and a circulation cleaning system, when it is used as a thermal shock device when regenerating the heat transfer liquid, Leave the heat transfer liquid forming a constant liquid level in the tank and the high temperature tank for a certain period of time without transferring it to another tank, etc. The water is floated on the surface part of the heat transfer liquid, and the heat transfer liquid transfer system transfers the heat transfer liquid from the high temperature tank to the low temperature tank from the lower position to lift the liquid level of the low temperature tank from the lower position. To the water-containing liquid outlet, and the surface portion containing water in the heat transfer liquid is transferred from the water-containing liquid outlet to the water removal device via the water-containing liquid system. Here, the heat medium liquid from which water has been removed is returned to the high-temperature tank through the dewatered liquid system and the dewatered liquid inlet, and the heat medium liquid in the low-high temperature tank is dewatered. By cleaning with a circulating cleaning system, the heat transfer fluid can be regenerated by removing water and dust.
[0039]
In this case, since the heat medium liquid is put in the lower position of the low temperature tank to raise the liquid level, the water separation performance in the heat medium liquid is good. Therefore, all the water can be removed from the heat medium liquid by sending out a small amount of the heat medium liquid containing water from the water-containing liquid outlet. As a result, the water removal time can be shortened or the water removal apparatus can be downsized. In addition, the water can be removed efficiently with a simple operation. And, since there is no need for a plurality of extra tanks and piping related to them provided in the conventional apparatus, it is possible to simplify equipment, reduce costs, facilitate operation, etc. it can.
[0040]
In the second aspect of the present invention, the switching means which makes a part of the one side high-low connection system between the low temperature tank and the high temperature tank of the circulating cleaning system common to the dewatering liquid system and allows switching between them. Therefore, the system can be further simplified.
[0041]
In the invention of claim 3, since the heat medium liquid transfer system is shared with the other side height connection system of the circulation cleaning system, the system can be further simplified. In addition, since the heat transfer fluid transferred for the water removal treatment is processed by the purification device, the treatment step for water removal is made a part of the purification treatment step, and the entire process of the heat transfer fluid regeneration treatment is performed. Time can be shortened.
[0042]
In the invention of claim 4, since the outlet of the low temperature tank of the heat transfer medium in the circulation cleaning system is provided at the initial height position where the heat transfer liquid is first put into the low temperature tank among the height positions of the liquid level, When the circulation cleaning process is completed, the low-temperature tank is in a usable state after regeneration of the heat medium liquid as it is, so that only the high-temperature tank needs to be replenished. Accordingly, it is possible to simplify the liquid replenishment work that is normally required when regenerating the heat transfer liquid, and to make the whole work easy and quick.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of the overall configuration of a thermal shock device including a heat transfer medium regenerator to which the present invention is applied.
FIG. 2 is an explanatory diagram showing another example of the overall configuration of a thermal shock device including a heat transfer fluid regenerator to which the present invention is applied.
FIG. 3 is an explanatory view showing still another example of the entire configuration of the thermal shock device including the heat transfer fluid regenerator to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat-medium liquid regeneration apparatus 2 Cold shock apparatus 3 Low temperature tank 4 High temperature tank 5 Water separation filter (water removal apparatus)
6 Cleaning device (Purification device)
7 Heat transfer fluid transfer system 8 Circulating cleaning system 9 Valve (switching means)
31 Water-containing liquid outlet 32 Water-containing liquid system 41 Water removal liquid inlet 42 Water removal liquid system 81 One side high / low connection system 81a One side high / low connection system part 82 Other side high / low connection system H Heat transfer fluid L Liquid surface height position L 1 initial height position P overflow position (height position of the top)
S Liquid level W Water

Claims (4)

比重が水より大きく冷熱衝撃装置の低温槽及び高温槽に共通して入れられた熱媒液に入った水を除去する除水装置と少なくともゴミを除去する浄化装置とを備えた熱媒液再生装置において、
前記冷熱衝撃装置が使用されるときの前記低温槽の前記熱媒液の液面の高さ位置より上の高さ位置に設けられた含水液出口と、該含水液出口から前記除水装置まで設けられた含水液系と、前記高温槽に設けられた除水液入口と、前記除水装置から前記除水液入口まで設けられた除水液系と、前記高温槽から前記低温槽の下方の位置まで前記熱媒液を移送可能にする熱媒液移送系と、前記低温槽と前記高温槽と前記浄化装置との間で前記熱媒液を循環清浄可能にする循環清浄系と、を有することを特徴とする熱媒液再生装置。
Heat medium liquid regeneration with a dewatering device that removes water contained in the heat medium liquid that has a specific gravity greater than that of water and is common to the low temperature tank and the high temperature tank of the thermal shock device, and a purification device that removes at least dust In the device
The hydrous liquid outlet provided at a height position above the level position of the liquid level of the heat transfer fluid in the low temperature bath when the cold shock apparatus is used, and from the hydrous liquid outlet to the dewatering apparatus A water-containing liquid system provided; a water removal liquid inlet provided in the high temperature tank; a water removal liquid system provided from the water removal device to the water removal liquid inlet; and a lower part of the low temperature tank from the high temperature tank A heat transfer fluid transfer system that enables the transfer of the heat transfer fluid to a position of, and a circulation cleaning system that enables the heat transfer fluid to be circulated and cleaned between the low temperature tank, the high temperature tank, and the purification device. A heat-medium liquid regenerating apparatus comprising:
前記循環清浄系のうちの前記低温槽と前記高温槽との間の一方側である一方側高低接続系の一部分は前記除水液系と共通になっていて、前記一方側高低接続系と前記除水液系とを切り換え可能にする切換手段を有することを特徴とする請求項1に記載の熱媒液再生装置。A part of one side height connection system which is one side between the low temperature tank and the high temperature tank in the circulation cleaning system is common to the dewatering liquid system, and the one side height connection system and the The heat transfer medium regenerator according to claim 1, further comprising switching means that enables switching between the water removal liquid system. 前記熱媒液移送系は前記循環清浄系のうちの前記低温槽と前記高温槽との間の他方側である他方側高低接続系と共通になっていることを特徴とする請求項1又は2に記載の熱媒液再生装置。3. The heat medium liquid transfer system is shared with the other side high-low connection system which is the other side between the low temperature tank and the high temperature tank in the circulation cleaning system. The heat-medium liquid reproduction | regeneration apparatus of description. 前記循環清浄系における前記熱媒液の前記低温槽の出口は前記高さ位置のうち前記熱媒液が前記低温槽に最初に入れられる初期高さ位置に設けられていることを特徴とする請求項1乃至3の何れか1に記載の熱媒液再生装置。The outlet of the low-temperature tank of the heat transfer fluid in the circulation cleaning system is provided at an initial height position where the heat transfer liquid is first put into the low-temperature tank among the height positions. Item 4. The heat transfer medium regenerator according to any one of Items 1 to 3.
JP2002221597A 2002-07-30 2002-07-30 Heat transfer medium regenerator for cold shock equipment Expired - Lifetime JP4213426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221597A JP4213426B2 (en) 2002-07-30 2002-07-30 Heat transfer medium regenerator for cold shock equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221597A JP4213426B2 (en) 2002-07-30 2002-07-30 Heat transfer medium regenerator for cold shock equipment

Publications (2)

Publication Number Publication Date
JP2004057974A true JP2004057974A (en) 2004-02-26
JP4213426B2 JP4213426B2 (en) 2009-01-21

Family

ID=31941865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221597A Expired - Lifetime JP4213426B2 (en) 2002-07-30 2002-07-30 Heat transfer medium regenerator for cold shock equipment

Country Status (1)

Country Link
JP (1) JP4213426B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291031A (en) * 2014-09-24 2015-01-21 广州天禾自动化实业有限公司 Respiration type automatic dehydration oil return system and method for siphoning type oil tank
CN109529446A (en) * 2018-12-30 2019-03-29 江苏环保产业技术研究院股份公司 A kind of rotary extrusion type spinning filter plant that garbage disposal is recycled with waste liquid filtering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291031A (en) * 2014-09-24 2015-01-21 广州天禾自动化实业有限公司 Respiration type automatic dehydration oil return system and method for siphoning type oil tank
CN109529446A (en) * 2018-12-30 2019-03-29 江苏环保产业技术研究院股份公司 A kind of rotary extrusion type spinning filter plant that garbage disposal is recycled with waste liquid filtering
CN109529446B (en) * 2018-12-30 2021-02-02 江苏环保产业技术研究院股份公司 Spinning formula filtration equipment that waste liquid filters and retrieves for refuse treatment

Also Published As

Publication number Publication date
JP4213426B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US20060037919A1 (en) Diesel fuel filter and associated methods
JP5927700B2 (en) Water treatment system
JP5043992B2 (en) Edible oil recycling apparatus and method for recycling the same
JP4213426B2 (en) Heat transfer medium regenerator for cold shock equipment
JP4672417B2 (en) Cleaning method
JP5268463B2 (en) Processing object cleaning equipment
JPS62183804A (en) Method for replenishing and/or regenerating treatment liquid
KR102385700B1 (en) fuel system
JP2006223917A (en) Distillation apparatus with solvent recovery function
JP5268462B2 (en) Processing object cleaning equipment
JP5368131B2 (en) Solvent regenerating apparatus and method
US5345958A (en) Double fluid layer-type ultrasonic cleaning apparatus
US2599734A (en) Filter
JP2000354704A (en) Treatment of contaminated cleaning liquid and device therefor
JP5197228B2 (en) Processing object cleaning method and processing object cleaning apparatus
JP3368630B2 (en) Two-liquid type ultrasonic cleaning equipment
KR101574665B1 (en) System and method for separating and filtering of two fluids
US6706173B1 (en) Filtration system
CN215975074U (en) Oil-water separation system for oily sewage
JP3045423B2 (en) Liquid tank type thermal shock test equipment
CN212024957U (en) Oil removing tank for sewage treatment engineering
JP2712968B2 (en) Liquid tank type thermal shock test apparatus, method for separating water from regenerating heat medium liquid of the apparatus, and apparatus therefor
JP3272400B2 (en) Dry liquid regeneration equipment
SU1624233A1 (en) Device for reclamation of refrigerating oil
JPH0663517A (en) Agitating and cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4213426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term