JP2004057438A - Three-dimensional x-ray measuring apparatus - Google Patents

Three-dimensional x-ray measuring apparatus Download PDF

Info

Publication number
JP2004057438A
JP2004057438A JP2002219184A JP2002219184A JP2004057438A JP 2004057438 A JP2004057438 A JP 2004057438A JP 2002219184 A JP2002219184 A JP 2002219184A JP 2002219184 A JP2002219184 A JP 2002219184A JP 2004057438 A JP2004057438 A JP 2004057438A
Authority
JP
Japan
Prior art keywords
ray
dimensional
detector
radiation
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219184A
Other languages
Japanese (ja)
Other versions
JP4331923B2 (en
JP2004057438A5 (en
Inventor
Rika Baba
馬場 理香
Takeshi Ueda
植田 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002219184A priority Critical patent/JP4331923B2/en
Publication of JP2004057438A publication Critical patent/JP2004057438A/en
Publication of JP2004057438A5 publication Critical patent/JP2004057438A5/ja
Application granted granted Critical
Publication of JP4331923B2 publication Critical patent/JP4331923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional X-ray measuring apparatus, established without any obstacle to the existing radiotherapy apparatus, endoscope surgical treatment apparatus and thighbone digging apparatus. <P>SOLUTION: This 3-dimensional X-ray measuring apparatus is composed of an X-ray source for generating X rays, an X-ray detector 102 for detecting X-rays transmitted through an object 123, a support rod 103 supporting the above, and a strut 104 having a rotary mechanism for rotating the support rod 103. A center line 106 connecting between the X-ray source and the center of the detecting surface of the X-ray detector is inclined to the rotation axis 105 of the support rod 103. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は放射線治療装置や内視鏡外科手術装置や大腿骨掘削装置等の操作中に、操作に支障を与えることなく、被写体の着目部位の3次元像を得ることが可能なX線計測装置に関する。
【0002】
【従来の技術】
本発明は、既設の放射線治療装置や内視鏡外科手術装置や大腿骨掘削装置等の医療装置の機能向上のために増設されるX線計測装置に関し、これらの医療装置の操作中に、その操作の障害になることなく、被写体の着目部位の3次元像を得ることが可能なX線計測装置に関する。
【0003】
腫瘍に放射線を照射して癌組織を破壊する放射線治療がある。放射線治療では非常に強い放射線を照射する。正常組織に及ぼす影響を抑えるために、放射線が正確に腫瘍に照射されることが要求される。事前にCT等により計測された3次元データを用いた治療計画が行われている。
【0004】
正確な照射を行うために、3次元データ計測時と放射線治療時において、計測結果として得られた腫瘍位置と照射される放射線とがずれないことが必要である。そのために、被写体を固定具を用いて固定することが行われている。しかし、硬い頭蓋に囲まれている頭頚部に比較して、柔らかい体幹部は固定が難しい。また、固定できても、体幹部では呼吸移動等により腫瘍の位置が移動してしまう。
【0005】
そのため、従来は、新医療2001年12月号86頁に記載があるように、圧迫や強制的呼吸法で呼吸運動を制限する方法、呼吸運動をモニタして同期を行う方法、マーカーを腫瘍内に挿入して腫瘍位置を追跡する方法がとられている。しかし、従来の呼吸制限法には、患者に負担をかける問題があった。従来の呼吸モニタ法には、時間がかかる問題があった。従来のマーカー法には、特定の腫瘍にしか適用できない問題があった。
【0006】
これらの問題を解決するために、放射線照射中に腫瘍の位置を3次元的、且つ、リアルタイムに検出することにより、リアルタイムに照射位置の修正を加えることが望まれている。
【0007】
開胸や開腹を行わずに、先端にかん子の付いたロボットアームを体表にあけた小さな孔から差し込んで手術を行う内視鏡外科手術がある。日本コンピュータ外科学会誌2000年12月号90頁に記載があるように、拡大されたアーム操作が可能な特殊なコンソールを持ち、アームを正確に微細に動かすことが可能なシステムが開発されている。
【0008】
術者は、内視鏡の先端に取り付けられたカメラから得られる立体像を見ながら、手術を行う。アームは複数の関節を持っており、体腔内で自由な動きが可能である。しかし、内視鏡の挿入位置や体腔内の空間は限られており、内視鏡カメラでは十分な3次元的情報は得られない問題があった。
【0009】
これらの問題を解決するために、手術中にアームの先端と手術対象の位置を3次元的に検出することが望まれている。
【0010】
股関節を人工股関節に置き換える股関節置換手術や、人工股関節を新しい人工股関節に置き換える人工股関節再置換手術がある。置換手術では人工股関節の足部分を入れるために大腿骨を掘削し、再置換手術では人工股関節の足部分を固定していたセメントを掘削する。掘削された孔と人工股関節の隙間は詰め物や接着剤で補う。これらの介在が少ないほど大腿骨と人工股関節は一体化して長持ちするため、3次元的に正確な掘削が望まれている。
【0011】
従来、これらの掘削は、人が、のみを用いて徒手的に行っているが、3次元的に正確な掘削は困難である。そのため、日本コンピュータ外科学会誌2000年12月号165頁に記載があるように、事前にCT等で計測された3次元データを元に、ロボットのアームをコントロールして掘削するシステムが開発されている。
【0012】
手術中は、掘削ロボットと大腿骨の位置がずれないように、両者は固定されている。しかし、固定は患者に負担をかける問題があった。また、大腿骨は患者につながっており、移動する可能性がある問題があった。
【0013】
これらの問題を解決するために、掘削中に骨と孔の位置を3次元的かつリアルタイムに検出することにより、掘削位置の修正を加えることが望まれている。
【0014】
例えば、特開2001−259059のように、予め放射線の照射ノズルと放射線の照射位置をリアルタイムに検出するためのX線照射装置を一体のシステムとして回転ガントリーに実装するケースもあるが、しかしながら、上述したような治療装置の多くは、治療の操作中に治療対象位置を3次元的かつリアルタイムに検出するための装置を備えていない。
【0015】
【発明が解決しようとする課題】
このため、医療装置による施術中に治療位置を3次元的、且つ、リアルタイムに検出する装置を既設の医療装置にも簡単に付加することができ、リアルタイムに治療位置の修正を加えることが望まれる。本発明の目的は、放射線治療装置や内視鏡外科手術装置や大腿骨掘削装置等の医療装置の操作中に、操作に支障を与えることなく、被写体の着目部位(治療位置)の3次元像を得ることが可能な増設型のX線計測装置を提案することである。
【0016】
既設の放射線治療装置や内視鏡外科手術装置や大腿骨掘削装置等の医療装置は、それ自体が操作しやすい構造とされているが、これに3次元像を得ることが可能なX線計測装置を増設する際には、これらの医療装置の操作に支障を及ぼすことなく、且つ、着目部位(治療位置)の3次元的位置情報を正確に得ることが可能なものに工夫する必要がある。しかも、連続的に3次元像を得ることができ、得られた3次元像は高空間分解能で、広視野であるとともに、被治療者の低被爆に配慮された3次元X線計測装置であることが必要である。
【0017】
さらに考慮すべき点は、既設の医療装置の大きさに関わらず、簡単な調整のみで増設することができる3次元X線計測装置とすることである。
【0018】
【課題を解決するための手段】
既設の医療装置は、それ自体が操作しやすい構造とされるため、一般に、医療装置のベッドに仰向けになっている被治療者の着目部位(治療位置)を真上から見下ろす位置に放射線照射装置あるいはロボットアーム等の治療器具が配置される。そして、真上から着目部位を見下ろす線を中心としたある範囲の広がりが既設の医療装置の操作のために専有する領域として必要とされる。そのため、本発明は、3次元X線計測装置のX線源とX線検出器の検出面の中心を結ぶ中心線を、前記真上から着目部位を見下ろす線に対して所定角度傾けるものとすることによって目的を達成される。
【0019】
【発明の実施の形態】
以下、本発明の実施例を既設の放射線治療装置に3次元X線計測装置を増設する例について説明する。
【0020】
(実施例1)
図1は既設の放射線治療装置に本発明の実施例1の3次元X線計測装置を増設した例を模式的に示す断面図である。ただし、図を簡潔にするため、断面を示すハッチングは省略した。
【0021】
既設の放射線治療装置はL字構造の保持棒122の一端に放射線源121が保持された構造である。130は支柱であるとともに、保持棒122を回転可能に保持する。回転軸を105で示す。放射線源121は寝台124上に仰向けに寝かされている被治療者123の着目部位126の真上に位置するように寝台124は位置決めされ、放射線源121から領域127の面積の放射線が被治療者123の着目部位126に照射される。着目部位126に照射される放射線の強さおよび領域127の面積あるいは形は、治療指針に従って、放射線源121の前面に備えられるコリメータ(図示しない)によって調整される。
【0022】
本発明の3次元X線計測装置はX線源101、X線検出器102を備え、C字型に形成された支持棒103の両端にX線源101、X線検出器102が保持される。104は支柱であるとともに支持棒103を回転可能に保持する。回転軸が既設の放射線治療装置の回転軸105と一致するように、支柱104に備えられる図示しない高さ調節装置で調整する。107は横軸調整装置であり、支柱104の位置を回転軸105の方向および回転軸105に垂直な方向に調整する。この3次元X線計測装置のX線源101およびX線検出器102を結ぶ線106が、寝台124上に仰向けに寝かされている被治療者123の着目部位126を貫通する関係となるように、横軸調整装置107により、支柱104が位置決めされる。X線源101およびX線検出器102を結ぶ線106が着目部位126を貫通する関係となるようにすることにより、着目部位126を3次元像の中心に据えることができる。また、支持棒103は支柱104によって、X線源101およびX線検出器102を結ぶ線106が着目部位126を貫通する関係を保ったままC字に沿ってスライドできるように保持される。
【0023】
X線源101と被治療者123の間にX線遮蔽用コリメータ(図示しない)を設置し、被治療者123のX線の被爆量を抑制する。例えば、X線源101による照射範囲がX線検出器102の検出面と一致するように、コリメータを調整する。コリメータは上下左右の4枚の羽根で構成されている。中心線106に対する検出器102の傾きを検出し、傾きに応じて羽根を移動させ、開口を調整する。開口は検出器102が中心線106に対して垂直な場合に最も大きく、中心線106から傾くほど小さくなる。
【0024】
放射線治療装置は回転軸105を回転中心として、紙面と直角方向に治療に必要な範囲で回転させながら、放射線源121から領域127の面積の放射線を被治療者123の着目部位126に照射する。3次元X線計測装置は、後述するように被治療者123の着目部位126を連続的にモニターして着目部位126の現在位置をリアルタイムで出力するものとされる。
【0025】
図には示さなかったが、必要なプログラムを備える、いわゆるパーソナルコンピュータが設けられて、3次元X線計測装置の検出器(フラットパネルセンサ、X線イメージインテンシファイアとCCDカメラの組み合わせ、イメージングプレート、CCD検出器、固体検出器等)の出力する被治療者123の着目部位126の現在位置に対応した位置信号に対して、治療指針に応じた放射線源121からの放射線が照射されるように、放射線治療装置が制御される。リアルタイムで出力された着目部位126の現在位置の予定位置からのずれに対しては、前述したコリメータで制御される。
【0026】
先にも述べたように、既設の放射線治療装置はそれ自体の作業性を考えたベストの構造とされているから、一般には図1に示すように、放射線源121が着目部位126の真上にあることになる。放射線源121は2点鎖線で囲まれた領域127内に放射線を照射する。放射線照射は治療計画に基づいて着目部位126に対して種々の方向からなされる必要があり、放射線源121は回転制御される。回転の結果、放射線照射範囲127は着目部位126を含み、回転軸105に垂直な面上の種々の方向から着目部位126に向かうことになる。したがって、着目部位126を含み、回転軸105に垂直な面に放射線を妨げる対象が存在すると、放射線治療の妨げになる。
【0027】
本発明の実施例1の3次元X線計測装置の支持棒103はC字型になっており、両端にX線源101と検出器102が設置されている。支持棒103をC字に沿って支柱104によりスライドさせることにより、X線源と検出器の位置を移動することができる。これにより、本発明によれば、X線源と検出器が放射線源121による放射線の照射領域に入ることを避けることができる。支持棒103の検出器102の設置端に近い位置(斜線部)は、支持棒103を回転軸105を中心として360°回転させるとき、放射線源121による放射線の照射領域を通過することになるが、支持棒103の回転と放射線源121による放射線の照射とを同期させれば、放射線の照射による治療の障害となることはない。支持棒103の回転軸105を中心とする回転角を360°より小さくして、支持棒103の検出器102の設置端に近い位置が、放射線源121による放射線の照射領域を通過しないようにすることでも、放射線の照射による治療の障害となることはない。
【0028】
図2に本発明の実施例1の3次元X線計測装置の支持棒103の回転と放射線治療装置の放射線源121の放射線の照射領域127との関係を、図1の右側から紙面に平行な方向に見た状態を模式的に示す。上述したように、360°の回転では、支持棒103の検出器102の設置端に近い位置は、放射線源121による放射線の照射領域を通過することになるが、支持棒103の回転と放射線源121による放射線の照射とを同期させれば、放射線の照射による治療の障害となることはない。
【0029】
支持棒103の回転軸105を中心とする回転角を360°より小さく、X線源101およびX線検出器102を結ぶ線106が、左回転では図のAまで、右回転では図のBまでとなるように制御すれば、支持棒103の検出器102の設置端に近い位置が、放射線源121による放射線の照射領域を通過しないようにすることができるから、放射線の照射による治療の障害となることはない。この場合、放射線源121を治療計画に従って回転移動させるときは、これに対応して範囲127が回転移動するから、位置Aおよび位置Bもこれに対応して回転移動するように制御されるものとすることは明らかである。位置Aおよび位置Bの成す角度は180°以上が望ましく、180°以上あれば支持棒103の回転に伴って得られたデータを用いて3次元再構成処理を行う上での支障はない。この再構成処理は、例えば、よく知られているように、Feldkamp法により可能である。
【0030】
なお、実施例1ではX線検出器102は回転軸105に平行に配置され、X線源101およびX線検出器102を結ぶ線106に対して一定の角度を持つものとしているが、X線検出器102が線106に対して垂直になるように配置されても良いことは明らかである。図3は、両者の得失を簡単に説明するための説明図である。回転軸105に平行なX線検出器102の検出面を実線151で、X線源101によるX線の照射範囲を実線153で示し、中心線106に垂直なX線検出器102の検出面を破線152で、X線の照射範囲を破線154で示す。今、着目部位126が実線153で示すX線の照射範囲に確実にカバーされ、且つ、無用な照射範囲がないときは、検出面は実線151で示す広がりとなる。一方、実線151で示す検出面と同じ広がりを持って中心線106に垂直な面152でX線を検出すると破線154で示す範囲のX線の照射を検出することになる。
【0031】
X線検出器102のセンサ素子の数は同じであるから、実線151の検出面の方が、破線152の検出面で着目部位126を検出するよりも空間分解能が高い。一方、破線152の検出面の照射範囲154は実線151の検出面の照射範囲153に比較して広がるため、破線の検出器152の方が実線の検出器151より視野が広がる。すなわち、検出面152の方が、検出面151よりも着目部位126の周辺も含めたモニターができるという面で有利である。
【0032】
実施例1では、支柱104に図示しない高さ調節装置を備え、且つ、横軸調整装置107を備えるものとしたから、3次元X線計測装置の既設の治療装置に対する汎用性が高まり、製造コストが低減され、低価格化が可能となる。
【0033】
(実施例2)
図4に、実施例2の3次元X線計測装置の側面図を示す。ここでも、実施例1と同様に断面を示すハッチング等は省略した。X線源101を回転ガントリ141に、検出器102を回転ガントリ142に、それぞれ、分離して設置した点を除けば実施例1と同じである。ガントリ141およびガントリ142は、放射線源121の2点鎖線で囲まれた領域127内に照射される放射線を妨げる領域を含まないように、離して配置される。ガントリ141にX線源101が設けられ、ガントリ142にX線検出器102が設けられる。X線源101とX線検出器102とを結ぶ中心線106が被治療者123の着目部位126を通るように、X線源101およびX線検出器102は各ガントリに設置される。ガントリ141およびガントリ142は、実施例1と同様に、各ガントリを回転可能に保持する支柱104、104’に支持されるとともに回転軸が既設の放射線治療装置の回転軸105と一致するように、支柱104に備えられる図示しない高さ調節装置で調整され、且つ、横軸調整装置107、107’により、支柱104の位置を回転軸105の方向および回転軸105に垂直な方向に調整可能とされる。ガントリ141およびガントリ142は同期して同一方向の回転を行うものとしても良いし、図2と同様に往復回転運動を行うものとしても良い。各ガントリをスリップリングを介して必要な信号の授受を行うものとすれば、連続回転運動とすることは容易である。
【0034】
上記各実施例では、既設の治療装置として放射線治療装置を想定して説明を行ったが、内視鏡外科手術装置や大腿骨掘削装置等の場合も同様に実施できる。上記実施例の放射線照射源と照射領域を、上記装置のロボットアームと被治療者123の着目部位126へのアクセスと置き換えたものとすれば良い。また、既設の治療装置の主要な処置が被治療者123の真上からなされることを前提として説明したが、例えば、ロボットアームの本体装置が被治療者123の着目部位126の真横に設置されるものである場合、上述の説明の真上を真横と読み替えれば良いことは明白である。
【0035】
【発明の効果】
本発明によれば、3次元X線計測装置のX線源とX線検出器の検出面の中心を結ぶ中心線を回転軸に対して傾けることにより、既設の放射線治療装置や内視鏡外科手術装置や大腿骨掘削装置等の他の装置の機能および操作に支障を与えることなく、治療対象の3次元的位置情報をリアルタイムで得ることができる。これにより、治療中に着目部位の3次元位置を監視することが可能となり、治療の安全性が向上する。
【図面の簡単な説明】
【図1】既設の放射線治療装置に本発明の実施例1の3次元X線計測装置を増設した例を模式的に示す断面図。
【図2】実施例1の3次元X線計測装置の支持棒103の回転と放射線治療装置の放射線源121の放射線の照射領域127との関係を、図1の右側から紙面に平行な方向に見た状態を模式的に示す図。
【図3】実施例1のX線検出器102の検出面の2つの形態の得失を簡単に説明するための説明図。
【図4】既設の放射線治療装置に本発明の実施例2の3次元X線計測装置を増設した例を模式的に示す断面図。
【符号の説明】
101:X線源、102:検出器、103:支持棒、104:支柱、105:回転軸、106:中心線、107:横軸調整装置、123:被写体、124:寝台、126:着目部位、127:放射線照射領域、130:支柱。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray measurement apparatus capable of obtaining a three-dimensional image of a target portion of a subject without impeding operation during operation of a radiotherapy apparatus, an endoscopic surgical operation apparatus, a femoral excavator, or the like. About.
[0002]
[Prior art]
The present invention relates to an X-ray measurement device that is added to improve the functions of medical devices such as an existing radiotherapy device, an endoscopic surgical operation device, and a femoral excavation device. The present invention relates to an X-ray measurement device capable of obtaining a three-dimensional image of a target portion of a subject without obstructing operation.
[0003]
There is radiation therapy that irradiates tumors to destroy cancerous tissue. In radiation therapy, very intense radiation is applied. In order to reduce the effect on normal tissues, it is required that the radiation be accurately delivered to the tumor. A treatment plan using three-dimensional data measured by CT or the like in advance is performed.
[0004]
In order to perform accurate irradiation, it is necessary that the position of the tumor obtained as a measurement result and the irradiated radiation do not shift between the time of three-dimensional data measurement and the time of radiotherapy. For this purpose, a subject is fixed using a fixture. However, a soft trunk is more difficult to fix than a head and neck surrounded by a hard skull. Further, even if it can be fixed, the position of the tumor moves in the trunk due to respiratory movement or the like.
[0005]
Therefore, conventionally, as described on page 86 of the new medical treatment, December, 2001, a method of restricting respiratory movement by compression or forced respiration, a method of monitoring and synchronizing respiratory movement, and a method of using a marker in a tumor To track the location of the tumor. However, the conventional respiratory restriction method has a problem that burdens the patient. The conventional respiration monitoring method has a problem that it takes time. The conventional marker method has a problem that it can be applied only to a specific tumor.
[0006]
In order to solve these problems, it is desired to correct the irradiation position in real time by detecting the position of the tumor three-dimensionally and in real time during irradiation.
[0007]
2. Description of the Related Art There is an endoscopic surgery in which a robot arm with a tip is inserted through a small hole formed in the body surface without performing thoracotomy or laparotomy. As described in the December 2000 issue of the Japan Society of Computer Aided Surgery, page 90, a system has been developed that has a special console capable of operating an extended arm and that can precisely and precisely move the arm. .
[0008]
The surgeon performs an operation while viewing a stereoscopic image obtained from a camera attached to the tip of the endoscope. The arm has a plurality of joints and can freely move in a body cavity. However, the insertion position of the endoscope and the space in the body cavity are limited, and there has been a problem that sufficient three-dimensional information cannot be obtained with the endoscope camera.
[0009]
In order to solve these problems, it is desired to detect the tip of the arm and the position of the operation target three-dimensionally during the operation.
[0010]
There are hip replacement surgery in which the hip joint is replaced with an artificial hip joint, and hip replacement surgery in which the hip joint is replaced with a new hip joint. In the replacement surgery, the femur is excavated to receive the foot of the hip prosthesis, and in the replacement surgery, the cement that fixes the foot of the hip prosthesis is excavated. The gap between the drilled hole and the hip prosthesis is filled with padding or adhesive. Since the femur and the hip prosthesis are integrated and last longer as the number of these interventions is smaller, accurate three-dimensional excavation is desired.
[0011]
Conventionally, these excavations are manually performed by using only humans, but it is difficult to perform three-dimensional accurate excavation. Therefore, as described in the December 2000 issue of the Japan Society of Computer Aided Surgery, page 165, a system for controlling and excavating a robot arm based on three-dimensional data measured in advance by CT or the like has been developed. I have.
[0012]
During the operation, the excavation robot and the femur are fixed so that the position of the femur does not shift. However, fixation had a problem of putting a burden on patients. In addition, there is a problem that the femur is connected to the patient and may move.
[0013]
In order to solve these problems, it is desired to correct the excavation position by detecting the positions of bones and holes three-dimensionally and in real time during excavation.
[0014]
For example, as in JP-A-2001-259059, there is a case where a radiation irradiating nozzle and an X-ray irradiator for detecting a radiation irradiating position in advance in real time are mounted on a rotating gantry as an integrated system. Many of such treatment devices do not include a device for detecting a position to be treated three-dimensionally and in real time during a treatment operation.
[0015]
[Problems to be solved by the invention]
For this reason, a device for detecting a treatment position three-dimensionally and in real time during treatment by a medical device can be easily added to an existing medical device, and it is desired to correct the treatment position in real time. . An object of the present invention is to provide a three-dimensional image of a site of interest (treatment position) of a subject during operation of a medical device such as a radiotherapy device, an endoscopic surgical operation device, or a femoral excavation device without interfering with the operation. It is an object of the present invention to propose an additional X-ray measuring apparatus capable of obtaining the following.
[0016]
Existing medical treatment equipment such as radiotherapy equipment, endoscopic surgery equipment, and femoral drilling equipment have a structure that is easy to operate itself, but X-ray measurement that can obtain a three-dimensional image When an additional device is added, it is necessary to devise a device that does not hinder the operation of these medical devices and that can accurately obtain three-dimensional position information of a target site (treatment position). . In addition, a three-dimensional image can be obtained continuously, and the obtained three-dimensional image has a high spatial resolution, a wide field of view, and is a three-dimensional X-ray measurement device that takes into account the low exposure of the patient. It is necessary.
[0017]
A further point to be considered is to provide a three-dimensional X-ray measurement apparatus that can be added with only simple adjustments regardless of the size of an existing medical apparatus.
[0018]
[Means for Solving the Problems]
Since the existing medical device has a structure that is easy to operate itself, generally, the radiation irradiating device is located at a position where the target part (treatment position) of the patient lying on the back of the medical device is looked down from directly above. Alternatively, a treatment instrument such as a robot arm is arranged. Then, a certain range of expansion centering on a line overlooking the site of interest from directly above is required as an area exclusively used for operation of the existing medical device. Therefore, in the present invention, the center line connecting the X-ray source of the three-dimensional X-ray measuring device and the center of the detection surface of the X-ray detector is inclined at a predetermined angle with respect to the line from directly above and looking down on the target portion. The goal is achieved by doing so.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention in which a three-dimensional X-ray measurement apparatus is added to an existing radiation therapy apparatus will be described.
[0020]
(Example 1)
FIG. 1 is a cross-sectional view schematically showing an example in which the three-dimensional X-ray measurement apparatus according to the first embodiment of the present invention is added to an existing radiation therapy apparatus. However, hatching indicating a cross section is omitted for simplification of the drawing.
[0021]
The existing radiation therapy apparatus has a structure in which a radiation source 121 is held at one end of an L-shaped holding rod 122. 130 is a support, and holds the holding rod 122 rotatably. The axis of rotation is indicated by 105. The bed 124 is positioned so that the radiation source 121 is positioned directly above the site of interest 126 of the subject 123 lying on his back on the bed 124, and radiation from the radiation source 121 in the area 127 is treated. The target 123 of the person 123 is irradiated. The intensity of the radiation applied to the site of interest 126 and the area or shape of the region 127 are adjusted by a collimator (not shown) provided on the front surface of the radiation source 121 according to the treatment guideline.
[0022]
The three-dimensional X-ray measurement apparatus of the present invention includes an X-ray source 101 and an X-ray detector 102, and the X-ray source 101 and the X-ray detector 102 are held at both ends of a C-shaped support rod 103. . Reference numeral 104 denotes a support and rotatably holds the support bar 103. The height is adjusted by a height adjusting device (not shown) provided on the column 104 so that the rotation axis coincides with the rotation axis 105 of the existing radiotherapy apparatus. Reference numeral 107 denotes a horizontal axis adjustment device that adjusts the position of the column 104 in the direction of the rotation axis 105 and in the direction perpendicular to the rotation axis 105. A line 106 connecting the X-ray source 101 and the X-ray detector 102 of the three-dimensional X-ray measurement apparatus is configured to penetrate a region of interest 126 of a patient 123 lying on his back on a bed 124. Then, the column 104 is positioned by the horizontal axis adjusting device 107. By setting the line 106 connecting the X-ray source 101 and the X-ray detector 102 to penetrate the target portion 126, the target portion 126 can be set at the center of the three-dimensional image. The support bar 103 is held by the support 104 so that the line 106 connecting the X-ray source 101 and the X-ray detector 102 can slide along the C-shape while maintaining the relationship of penetrating the site of interest 126.
[0023]
An X-ray shielding collimator (not shown) is provided between the X-ray source 101 and the patient 123 to suppress the X-ray exposure of the patient 123. For example, the collimator is adjusted so that the irradiation range of the X-ray source 101 matches the detection surface of the X-ray detector 102. The collimator is composed of four blades, up, down, left and right. The inclination of the detector 102 with respect to the center line 106 is detected, the blade is moved according to the inclination, and the aperture is adjusted. The aperture is largest when the detector 102 is perpendicular to the center line 106, and becomes smaller as the detector 102 is inclined from the center line 106.
[0024]
The radiation therapy apparatus radiates radiation of the area of the area 127 from the radiation source 121 to the target region 126 of the patient 123 while rotating the rotation axis 105 about the rotation axis 105 in the direction perpendicular to the plane of the drawing and within the range required for treatment. As will be described later, the three-dimensional X-ray measurement apparatus continuously monitors the target portion 126 of the patient 123 and outputs the current position of the target portion 126 in real time.
[0025]
Although not shown in the figure, a so-called personal computer having necessary programs is provided, and a detector (flat panel sensor, a combination of an X-ray image intensifier and a CCD camera, an imaging plate, , A CCD detector, a solid state detector, etc.) to output a position signal corresponding to the current position of the region of interest 126 of the patient 123 to be irradiated with radiation from the radiation source 121 according to the treatment guideline. The radiation therapy device is controlled. The deviation of the current position of the site of interest 126 output from the planned position in real time is controlled by the above-described collimator.
[0026]
As described above, the existing radiation therapy apparatus has the best structure in consideration of its own workability. Therefore, generally, as shown in FIG. It will be in. The radiation source 121 irradiates radiation into an area 127 surrounded by a two-dot chain line. Irradiation must be performed from various directions to the site of interest 126 based on the treatment plan, and the rotation of the radiation source 121 is controlled. As a result of the rotation, the radiation irradiation range 127 includes the region of interest 126 and moves from various directions on a plane perpendicular to the rotation axis 105 to the region of interest 126. Therefore, if there is a target that blocks radiation on a plane that includes the site of interest 126 and that is perpendicular to the rotation axis 105, it will hinder radiation treatment.
[0027]
The support bar 103 of the three-dimensional X-ray measurement apparatus according to the first embodiment of the present invention has a C-shape, and an X-ray source 101 and a detector 102 are installed at both ends. The position of the X-ray source and the detector can be moved by sliding the support bar 103 along the C-shape with the support 104. Thus, according to the present invention, it is possible to prevent the X-ray source and the detector from entering the radiation irradiation area of the radiation source 121. The position of the support bar 103 near the installation end of the detector 102 (shaded portion) passes through the radiation irradiation area of the radiation source 121 when the support bar 103 is rotated 360 ° about the rotation axis 105. If the rotation of the support rod 103 and the irradiation of the radiation by the radiation source 121 are synchronized, the treatment by the irradiation of the radiation does not become an obstacle. The rotation angle of the support rod 103 around the rotation axis 105 is smaller than 360 ° so that the position of the support rod 103 near the installation end of the detector 102 does not pass through the radiation irradiation area of the radiation source 121. This does not impede treatment by irradiation.
[0028]
FIG. 2 shows the relationship between the rotation of the support bar 103 of the three-dimensional X-ray measuring apparatus according to the first embodiment of the present invention and the radiation irradiation area 127 of the radiation source 121 of the radiation therapy apparatus. The state seen in the direction is schematically shown. As described above, with the rotation of 360 °, the position of the support bar 103 near the installation end of the detector 102 passes through the irradiation area of the radiation from the radiation source 121. If the irradiation of the radiation by 121 is synchronized, there is no obstacle to the treatment by the irradiation of the radiation.
[0029]
The rotation angle of the support rod 103 around the rotation axis 105 is smaller than 360 °, and the line 106 connecting the X-ray source 101 and the X-ray detector 102 is rotated to the left in FIG. By controlling so that the position of the support bar 103 close to the installation end of the detector 102 can be prevented from passing through the irradiation area of the radiation by the radiation source 121, the obstacle to the treatment due to the irradiation of the radiation is reduced. It will not be. In this case, when the radiation source 121 is rotationally moved in accordance with the treatment plan, the range 127 is rotationally moved correspondingly, so that the position A and the position B are also controlled to be rotationally moved correspondingly. It is clear that. The angle between the position A and the position B is desirably 180 ° or more. If the angle is 180 ° or more, there is no problem in performing the three-dimensional reconstruction processing using the data obtained with the rotation of the support bar 103. This reconstruction processing can be performed by, for example, the Feldkamp method, as is well known.
[0030]
In the first embodiment, the X-ray detector 102 is arranged parallel to the rotation axis 105 and has a certain angle with respect to a line 106 connecting the X-ray source 101 and the X-ray detector 102. Obviously, the detector 102 may be arranged to be perpendicular to the line 106. FIG. 3 is an explanatory diagram for simply explaining the advantages and disadvantages of both. The detection surface of the X-ray detector 102 parallel to the rotation axis 105 is indicated by a solid line 151, the irradiation range of the X-rays by the X-ray source 101 is indicated by a solid line 153, and the detection surface of the X-ray detector 102 perpendicular to the center line 106 is indicated by a solid line. A broken line 152 indicates an irradiation range of X-rays by a broken line 154. Now, when the region of interest 126 is surely covered by the X-ray irradiation range indicated by the solid line 153 and there is no unnecessary irradiation range, the detection surface expands as indicated by the solid line 151. On the other hand, when X-rays are detected on a plane 152 that is the same as the detection plane indicated by the solid line 151 and is perpendicular to the center line 106, irradiation of X-rays in a range indicated by a broken line 154 is detected.
[0031]
Since the number of the sensor elements of the X-ray detector 102 is the same, the spatial resolution of the detection surface of the solid line 151 is higher than that of the detection surface of the dashed line 152 when the target portion 126 is detected. On the other hand, since the irradiation range 154 of the detection surface indicated by the broken line 152 is wider than the irradiation range 153 of the detection surface indicated by the solid line 151, the field of view of the detector 152 of the broken line is wider than that of the detector 151 of the solid line. That is, the detection surface 152 is more advantageous than the detection surface 151 in that monitoring including the vicinity of the target portion 126 can be performed.
[0032]
In the first embodiment, the column 104 is provided with the height adjusting device (not shown) and the horizontal axis adjusting device 107. Therefore, the versatility of the three-dimensional X-ray measuring device with respect to the existing treatment device is increased, and the manufacturing cost is increased. And the cost can be reduced.
[0033]
(Example 2)
FIG. 4 is a side view of the three-dimensional X-ray measurement apparatus according to the second embodiment. Also in this case, hatching or the like showing a cross section as in Example 1 is omitted. This embodiment is the same as the first embodiment except that the X-ray source 101 and the detector 102 are separately installed on the rotating gantry 141 and the rotating gantry 142, respectively. The gantry 141 and the gantry 142 are spaced apart from each other so as not to include a region that blocks the irradiated radiation in a region 127 surrounded by a two-dot chain line of the radiation source 121. The gantry 141 is provided with the X-ray source 101, and the gantry 142 is provided with the X-ray detector 102. The X-ray source 101 and the X-ray detector 102 are installed on each gantry so that the center line 106 connecting the X-ray source 101 and the X-ray detector 102 passes through the site of interest 126 of the patient 123. The gantry 141 and the gantry 142 are supported by the columns 104 and 104 ′ that rotatably hold the respective gantry, and the rotation axis coincides with the rotation axis 105 of the existing radiation treatment apparatus, as in the first embodiment. The height of the support 104 is adjusted by a height adjustment device (not shown) provided on the support 104, and the position of the support 104 can be adjusted in the direction of the rotation shaft 105 and the direction perpendicular to the rotation shaft 105 by the horizontal axis adjustment devices 107 and 107 '. You. The gantry 141 and the gantry 142 may rotate in the same direction in synchronization with each other, or may perform reciprocal rotation as in FIG. If each gantry transmits and receives necessary signals via a slip ring, it is easy to make a continuous rotational movement.
[0034]
In each of the above embodiments, the description has been given assuming a radiation therapy apparatus as an existing therapy apparatus. However, the present invention can be similarly applied to an endoscopic surgical operation apparatus, a femur excavator, and the like. The radiation irradiation source and the irradiation area in the above embodiment may be replaced with the robot arm of the above apparatus and the access to the site of interest 126 of the patient 123. Also, the description has been given on the assumption that the main treatment of the existing treatment apparatus is performed from directly above the patient 123, but, for example, the main body device of the robot arm is installed right beside the target part 126 of the patient 123. In such a case, it is clear that the portion immediately above the above description should be read as being right beside.
[0035]
【The invention's effect】
According to the present invention, the center line connecting the X-ray source of the three-dimensional X-ray measuring apparatus and the center of the detection surface of the X-ray detector is inclined with respect to the rotation axis, so that the existing radiotherapy apparatus or endoscopic surgery can be performed. The three-dimensional position information of the treatment target can be obtained in real time without impairing the functions and operations of other devices such as a surgical device and a femoral excavator. This makes it possible to monitor the three-dimensional position of the site of interest during treatment, thereby improving the safety of treatment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an example in which a three-dimensional X-ray measurement apparatus according to a first embodiment of the present invention is added to an existing radiation therapy apparatus.
FIG. 2 shows the relationship between the rotation of the support bar 103 of the three-dimensional X-ray measurement apparatus of the first embodiment and the irradiation area 127 of the radiation source 121 of the radiation therapy apparatus in a direction parallel to the paper surface from the right side of FIG. The figure which shows the state which looked at typically.
FIG. 3 is an explanatory diagram for simply explaining the advantages and disadvantages of two forms of the detection surface of the X-ray detector 102 according to the first embodiment.
FIG. 4 is a cross-sectional view schematically showing an example in which a three-dimensional X-ray measurement apparatus according to a second embodiment of the present invention is added to an existing radiation therapy apparatus.
[Explanation of symbols]
101: X-ray source, 102: detector, 103: support bar, 104: support, 105: rotation axis, 106: center line, 107: horizontal axis adjustment device, 123: subject, 124: bed, 126: site of interest, 127: irradiation area, 130: support.

Claims (4)

X線を発生するX線源と、被写体を透過したX線を検出するX線検出器と、それらを支える支柱と、支柱を回転させる回転機構よりなるX線計測装置において、X線源とX線検出器の検出面の中心を結ぶ中心線が前記回転機構の回転軸に対して傾いていることを特徴とする3次元X線計測装置。In an X-ray measuring apparatus including an X-ray source for generating X-rays, an X-ray detector for detecting X-rays transmitted through a subject, a support for supporting the X-rays, and a rotating mechanism for rotating the support, an X-ray source and an X-ray A three-dimensional X-ray measurement apparatus, wherein a center line connecting the centers of the detection surfaces of the line detectors is inclined with respect to a rotation axis of the rotation mechanism. 前記X線源と前記検出器をC字型支柱の両端部に設置した請求項1記載の3次元X線計測装置。The three-dimensional X-ray measurement apparatus according to claim 1, wherein the X-ray source and the detector are installed at both ends of a C-shaped support. 前記中心線に対する検出器の検出面の傾きに応じて移動するX線遮蔽用コリメータを前記X線源と前記被写体の間に設置した請求項1記載の3次元X線計測装置。The three-dimensional X-ray measurement apparatus according to claim 1, wherein an X-ray shielding collimator that moves in accordance with an inclination of a detection surface of the detector with respect to the center line is provided between the X-ray source and the subject. 前記X線源と前記検出器を独立した回転ガントリ機構に設置し、両ガントリ機構を同期して同一方向に回転させる請求項1記載のX線計測装置。The X-ray measurement apparatus according to claim 1, wherein the X-ray source and the detector are installed on independent rotating gantry mechanisms, and both gantry mechanisms are rotated in the same direction in synchronization.
JP2002219184A 2002-07-29 2002-07-29 3D X-ray measurement device Expired - Fee Related JP4331923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219184A JP4331923B2 (en) 2002-07-29 2002-07-29 3D X-ray measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219184A JP4331923B2 (en) 2002-07-29 2002-07-29 3D X-ray measurement device

Publications (3)

Publication Number Publication Date
JP2004057438A true JP2004057438A (en) 2004-02-26
JP2004057438A5 JP2004057438A5 (en) 2005-08-25
JP4331923B2 JP4331923B2 (en) 2009-09-16

Family

ID=31940147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219184A Expired - Fee Related JP4331923B2 (en) 2002-07-29 2002-07-29 3D X-ray measurement device

Country Status (1)

Country Link
JP (1) JP4331923B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050537A (en) * 2010-08-31 2012-03-15 Fujifilm Corp X-ray image photographing apparatus and tomosynthesis photographing method
CN111939486A (en) * 2020-08-14 2020-11-17 自贡市第四人民医院(自贡市急救中心) Auxiliary positioning instrument for radiotherapy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178111A (en) * 1993-12-24 1995-07-18 Toshiba Corp Ultrasonic treatment apparatus
JP2000167072A (en) * 1998-12-03 2000-06-20 Mitsubishi Electric Corp Moving body tracing radiation device
JP2001259060A (en) * 2000-03-21 2001-09-25 Sumitomo Heavy Ind Ltd Method and device for measuring positional deviation of patient, method and device for positioning patient by using the method, and radiotherapy apparatus
JP2002136507A (en) * 2000-10-30 2002-05-14 Toshiba Corp Radiodiagnosing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07178111A (en) * 1993-12-24 1995-07-18 Toshiba Corp Ultrasonic treatment apparatus
JP2000167072A (en) * 1998-12-03 2000-06-20 Mitsubishi Electric Corp Moving body tracing radiation device
JP2001259060A (en) * 2000-03-21 2001-09-25 Sumitomo Heavy Ind Ltd Method and device for measuring positional deviation of patient, method and device for positioning patient by using the method, and radiotherapy apparatus
JP2002136507A (en) * 2000-10-30 2002-05-14 Toshiba Corp Radiodiagnosing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050537A (en) * 2010-08-31 2012-03-15 Fujifilm Corp X-ray image photographing apparatus and tomosynthesis photographing method
CN111939486A (en) * 2020-08-14 2020-11-17 自贡市第四人民医院(自贡市急救中心) Auxiliary positioning instrument for radiotherapy
CN111939486B (en) * 2020-08-14 2023-07-14 自贡市第四人民医院(自贡市急救中心) Auxiliary positioning instrument for radiotherapy

Also Published As

Publication number Publication date
JP4331923B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP5214569B2 (en) Device to compensate for breathing and patient movement during treatment
JP4948415B2 (en) Medical radiotherapy equipment
CA2414850C (en) Medical device for stereotaxis and patient positioning
US7817774B2 (en) System and method for imaging and treatment of tumorous tissue in breasts using computed tomography and radiotherapy
JP3889284B2 (en) Marker system and stereotactic treatment combined with it
EP2790597B1 (en) A method and a device for computer assisted surgery
AU2009275698B2 (en) Image-guided multi-source radiotherapy
JP2006513011A (en) Method and system for aligning medical information related to a first coordinate system in a second coordinate system using an MPS system
EP2701802B1 (en) Method for calibration and qa
KR20070098800A (en) Patient positioning imaging device and method
CA2638996A1 (en) Mri guided radiation therapy
JP2002248098A (en) Method and apparatus for specifying position in subject
JP4729167B2 (en) Device for playing back slice images
EP1742584B1 (en) Automatic pointing device for correct positioning of the distal locking screws of an intramedullary nail
KR100863747B1 (en) An apparatus for computerized tomography comprising a pair of synchronized gantries
Qubala et al. Optimizing the patient positioning workflow of patients with pelvis, limb, and chest/spine tumors at an ion-beam gantry based on optical surface guidance
JP4331923B2 (en) 3D X-ray measurement device
RU2635451C1 (en) Method for optical medical navigation system application for visualization and quantitative evaluation of quality of fragments reposition in case of pelvic bone fracture
JP4643544B2 (en) Bed positioning system, radiation therapy system, and particle beam therapy system
JPH10503115A (en) Computerized tomographic x-ray fluoroscopy method and apparatus for therapy
Kendoff et al. Current concepts and applications of computer navigation in orthopedic trauma surgery
WO2023176257A1 (en) Medical image processing device, treatment system, medical image processing method, and program
JP4088618B2 (en) Radiotherapy apparatus and radiotherapy planning method
Bale et al. A novel vacuum immobilization device and a novel targeting device for computer assisted interventional procedures
Swartman et al. Intraoperative 3D Imaging of the Pelvic Ring

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees