JP2004056001A - Thick film low resistance resistor and method for manufacturing the same - Google Patents

Thick film low resistance resistor and method for manufacturing the same Download PDF

Info

Publication number
JP2004056001A
JP2004056001A JP2002214200A JP2002214200A JP2004056001A JP 2004056001 A JP2004056001 A JP 2004056001A JP 2002214200 A JP2002214200 A JP 2002214200A JP 2002214200 A JP2002214200 A JP 2002214200A JP 2004056001 A JP2004056001 A JP 2004056001A
Authority
JP
Japan
Prior art keywords
thick
thick film
film
internal electrode
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002214200A
Other languages
Japanese (ja)
Inventor
Masaru Shimodaira
下平 賢
Koichi Urano
浦野 幸一
Seiji Karasawa
唐澤 誠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2002214200A priority Critical patent/JP2004056001A/en
Publication of JP2004056001A publication Critical patent/JP2004056001A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick film low resistance resistor having low resistance temperature coefficient characteristics with a low resistance. <P>SOLUTION: A thick film lower face internal electrode layer 12 is formed at the both ends of the lower face of an insulating film 11. A thick film resistor layer 13 having low resistance temperature coefficient characteristics with a low resistance is formed on the upper face of the insulating substrate 11. A thick film upper internal electrode layer 14 having low resistance temperature coefficient characteristics with a low resistance is formed so as to be laminated on the both ends of the thick film resistor layer 13. An end face internal electrode layer 17 is formed on the both end faces of the insulating substrate 11 so as to be connected to the thick film upper face internal electrode layer 14 and the thick film lower face internal electrode layer 12. A first protecting coat 15 is formed on the surface of the thick film resistor film 13. A resin protecting coat 16 is formed on the surface of the first protecting coat 15 as necessary. An end face internal electrode layer 17 is formed on the both end faces of the insulating film 11. An external electrode layer 18 is formed on the external surfaces of the thick film lower face internal electrode layer 12, the thick film upper face internal electrode layer 14, and the end face internal electrode layer 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、小形通信機、コンピュータ、情報機器などの電子機器における電子回路の面実装部品として使用される低抵抗で低抵抗温度係数特性を有する厚膜低抵抗チップ抵抗器などの厚膜低抵抗抵抗器およびその製造方法に関する。
【0002】
【従来の技術】
従来、この種の厚膜低抵抗チップ抵抗器は、図3に示すように、セラミック絶縁基板1の下面両端部にそれぞれ銅粉を含むペーストを印刷焼成して厚膜下面内部電極層2を形成し、この絶縁基板1の上面両端部に銅粉体を含むペーストを印刷焼成して厚膜上面内部電極層3を形成し、この厚膜上面内部電極層3に両端部を接続して前記絶縁基板1上に銅ニッケル粉体を含むペーストを印刷焼成して厚膜抵抗体層4を形成し、さらに、厚膜抵抗体層4の表面にガラスペーストを印刷焼成してガラスコート層5を形成し、さらに、このガラスコート層5の表面に樹脂ペーストを印刷硬化して保護コート層6を形成し、前記絶縁基板1の両端面には真空蒸着またはスパッタリングによりニッケルクロム合金による端面内部電極層7をそれぞれ形成し、この両端面内部電極層7と前記厚膜上面内部電極層3と前記厚膜下面内部電極層2とにニッケルめっき層及びはんだめっき層とを積層した厚膜端面電極層8をそれぞれ形成する構成が採られていた。
【0003】
この図3に示す従来の銅ペーストにて厚膜上面内部電極層3を形成するとともに銅ニッケル粉体を含むペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層4を形成した厚膜低抵抗チップ抵抗器では、抵抗値が下がるほど抵抗温度係数が高くなる問題があった。
【0004】
また、特開平10−144501号公報に記載されている厚膜低抵抗チップ抵抗器では、絶縁基板の上面に銅ニッケル粉体を含むペーストを印刷焼成して厚膜抵抗体層を形成し、この厚膜抵抗体層の両端部に銅または銀を含むペーストをそれぞれ印刷焼成して厚膜上面内部電極層をそれぞれ積層形成する構成が採られている。
【0005】
この特開平10−144501号公報に記載の厚膜低抵抗チップ抵抗器では、図3に示す厚膜低抵抗チップ抵抗器より改善されるものの、抵抗値が下がるほど抵抗温度係数が高くなり、充分な特性が得られない問題があった。
【0006】
【発明が解決しようとする課題】
上記図3に示す従来の厚膜低抵抗チップ抵抗器および特開平10−144501号公報に記載の厚膜低抵抗チップ抵抗器では、抵抗値が下がるほど抵抗温度係数が高くなり、チップ抵抗器全体としての抵抗値が概ね200mΩ以下の領域では無視できなくなる。これは抵抗器の電流経路に占める電極部分の抵抗温度係数に起因するものである。
【0007】
この電極部分の材料、面積などで大きな割合を占めるところが上面内部電極であり、従来の技術で用いる銅または銀系の厚膜電極層の抵抗温度係数が2000ppm/℃〜4000ppm/℃の値を示すことに大きな原因がある。
【0008】
本発明は上記問題点に鑑みなされたもので、低抵抗で低抵抗温度係数特性を有する厚膜低抵抗抵抗器およびその製造方法を提供するものである。
【0009】
【課題を解決するための手段】
請求項1記載の厚膜低抵抗抵抗器は、絶縁基板と、この絶縁基板の上面に形成された低抵抗でかつ低抵抗温度係数特性を有する厚膜抵抗体層と、この厚膜抵抗体層の両端部にそれぞれ積層形成され低抵抗でかつ低抵抗温度係数特性を有する厚膜上面内部電極層とを少なくとも備えたものである。
【0010】
そして、厚膜抵抗体層に積層形成した厚膜上面内部電極層の抵抗温度係数が低く、低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0011】
請求項2記載の厚膜低抵抗抵抗器は、絶縁基板と、この絶縁基板の下面両端部に形成された厚膜下面内部電極層と、この絶縁基板の上面に形成された低抵抗でかつ低抵抗温度係数特性を有する厚膜抵抗体層と、この厚膜抵抗体層の両端部にそれぞれ積層形成され低抵抗でかつ低抵抗温度係数特性を有する厚膜上面内部電極層と、この厚膜上面内部電極層と前記厚膜下面内部電極層とに接続して前記絶縁基板の両端面に形成された端面内部電極層とを少なくとも備えたものである。
【0012】
そして、厚膜抵抗体層に積層形成した厚膜上面内部電極層の抵抗温度係数が低く、抵抗器全体として低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0013】
請求項3記載の厚膜低抵抗抵抗器は、請求項1または2記載の厚膜低抵抗抵抗器において、厚膜抵抗体層および厚膜上面内部電極層は銅ニッケル厚膜層である。
【0014】
請求項4記載の厚膜低抵抗抵抗器は、請求項1または2記載の厚膜低抵抗抵抗器において、厚膜抵抗体層は銅ニッケル厚膜層であり、厚膜上面内部電極層は銀パラジウム厚膜層である。
【0015】
請求項5記載の厚膜低抵抗抵抗器は、請求項1ないし4いずれか記載の厚膜低抵抗抵抗器において、厚膜抵抗体層は、銅が80〜30質量部とニッケルが20〜70質量部の各単体の混合物又は銅とニッケルとの合金粉体の厚膜抵抗体要素と、この厚膜抵抗体要素全体の100質量部に対して1〜10質量部の金属酸化物と、前記厚膜抵抗体要素全体の100質量部に対して1〜10質量部のガラスとを少なくとも含むものである。
【0016】
そして、基板と厚膜抵抗体層との間でこの厚膜抵抗体層に含まれる金属酸化物がスピネル構造を有する化合物が生成され、基板と厚膜抵抗体層との間に強力な密着性が生じ、基板から厚膜抵抗体層が剥離することがない。
【0017】
請求項6記載の厚膜低抵抗抵抗器の製造方法は、絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、この厚膜抵抗体層の両端部にそれぞれ銅ニッケル粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銅ニッケル合金の厚膜上面内部電極層を積層形成する工程とを少なくとも具備したものである。
【0018】
そして、厚膜抵抗体層に厚膜ペーストを印刷焼成して積層形成した内部電極層の抵抗温度係数が低く、低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0019】
請求項7記載の厚膜低抵抗抵抗器の製造方法は、絶縁基板の下面両端部に厚膜下面内部電極層を形成する工程と、前記絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、この厚膜抵抗体層の両端部にそれぞれ銅ニッケル粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銅ニッケル合金の厚膜上面内部電極層を積層形成する工程と、この厚膜上面内部電極層と前記厚膜下面内部電極層とに接続した端面内部電極層を前記絶縁基板の両端面に形成する工程とを少なくとも具備したものである。
【0020】
そして、厚膜抵抗体層に厚膜ペーストを印刷焼成して積層形成した内部電極層の抵抗温度係数が低く、抵抗器全体として低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0021】
請求項8記載の厚膜低抵抗抵抗器の製造方法は、絶縁基板の上面に銅ニッケルの粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、この厚膜抵抗体層の両端部にそれぞれ銀パラジウム粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銀パラジウム合金の厚膜上面内部電極層を積層形成する工程とを少なくとも具備したものである。
【0022】
そして、厚膜抵抗体層に厚膜ペーストを印刷焼成して積層形成した内部電極層の抵抗温度係数が低く、低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0023】
請求項9記載の厚膜低抵抗抵抗器の製造方法は、絶縁基板の下面両端部に厚膜下面内部電極層を形成する工程と、前記絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、この厚膜抵抗体層の両端部にそれぞれ銀パラジウムの粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銀パラジウム合金の厚膜上面内部電極層を積層形成する工程と、この厚膜上面内部電極層と前記厚膜下面内部電極層とに接続した端面内部電極層を前記絶縁基板の両端面に形成する工程とを少なくとも具備したものである。
【0024】
そして、厚膜抵抗体層に厚膜ペーストを印刷焼成して積層形成した内部電極層の抵抗温度係数が低く、抵抗器全体として低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0025】
【発明の実施の形態】
次に、本発明の厚膜低抵抗抵抗器における厚膜低抵抗チップ抵抗器の一実施の形態を図面に基づいて説明する。
【0026】
図1において、絶縁基板11は96%アルミナのセラミックにて、例えば、縦3.2mm、横1.6mm程度の方形に成形されている。
【0027】
また、この絶縁基板11の下面両端部には銅粉体を含有する銅厚膜ペーストを印刷し、乾燥し、焼成して銅(Cu)の厚膜下面内部電極層12が形成されている。
【0028】
さらに、前記絶縁基板11の上面には低抵抗でかつ低抵抗温度係数特性が得られる金属の混合粉体または合金粉体、例えば、銅ニッケル粉体を含有する厚膜ペーストを印刷焼成して低抵抗でかつ低抵抗温度係数特性を有する銅ニッケル(CuNi)合金の厚膜抵抗体層13を形成する。この低抵抗でかつ低抵抗温度係数特性を有する厚膜抵抗体層13を形成する厚膜ペーストの厚膜抵抗体要素は、例えば、質量割合で銅が80〜30、好ましくは約60質量部、ニッケルが20〜80質量部、好ましくは約40質量部の各単体の混合物粉体又は合金粉体からなる銅ニッケル粉体のいずれでも用いることができ、混合粉体を用いる場合にはペーストの印刷後の焼成にて合金化する。
【0029】
そして、前記厚膜ペーストの厚膜抵抗体要素には、この厚膜抵抗体要素全体の1〜10質量部、好ましくは約5質量部の金属酸化物、例えば、酸化銅(CuО又はCuО)粉体と、前記厚膜抵抗体要素全体の1〜10質量部、好ましくは約5質量部のガラス、例えば、ガラスフリットとして硼珪酸鉛系(PbBSiO系)ガラスと、前記厚膜抵抗体要素全体の7〜17質量部、好ましくは約12質量部のビヒクル、例えば有機ビヒクルとが含まれている。
【0030】
また、前記有機ビヒクルは、例えば、エチルセルロース、ブチルカルビトールなどが含まれている。
【0031】
この厚膜抵抗体層13の両端部にそれぞれ積層形成され低抵抗でかつ低抵抗温度係数特性を有する厚膜上面内部電極層14を形成する。この厚膜上面内部電極層14は、前記厚膜抵抗体層13と同一材質で、低抵抗でかつ低抵抗温度係数特性を有する厚膜上面内部電極層14を形成する厚膜ペーストは、銅ニッケル粉体、酸化銅(CuО又はCuО)粉体、ガラスフリットとしてホウケイ酸鉛系(PbBSiO系)ガラスを含み、これに有機ビヒクルが混合されている。
【0032】
そして、この厚膜抵抗体層13と厚膜上面内部電極層14との膜厚は、それぞれ約20〜40マイクロメータで、焼結粒子径は表面観察で大体数マイクロメータ程度である。
【0033】
また、前記銅粉体の粒径は0.1μm〜5μmで、また、ニッケル粉体の粒径は0.1μm〜5μmで、好ましくは銅粉体とニッケル粉体とのいずれもその平均粒径は0.5μm〜1μmの範囲である。
【0034】
さらに、ガラスフリットとしては、軟化点500℃〜800℃の硼珪酸亜鉛、硼珪酸鉛ガラスなどが適している。
【0035】
そして、前記厚膜抵抗体層13の表面には第1保護コート15が形成されている。この第1保護コート15は樹脂(例えばエポキシ樹脂(150℃〜250℃、好ましくは200℃で30分間))であってもよく、ガラス(例えば550℃〜750℃、好ましくは650℃で10分間)であってもよい。ただし、前記樹脂の場合は前記厚膜抵抗体層13をトリミングした後に第1保護コート15が形成されるが、前記ガラスの場合は少なくとも前記厚膜抵抗体層13の上に第1保護コート15を形成した後にトリミングされる。
【0036】
さらに、必要に応じてこの第1保護コート15の表面にエポキシ樹脂などの樹脂ペーストを印刷硬化することにより樹脂保護コート16を1層または1層以上形成してもよい。
【0037】
また、前記絶縁基板11の両端面には、前記厚膜上面内部電極層14と前記厚膜下面内部電極層12とに接続して端面内部電極層17がそれぞれ形成されている。この端面内部電極層17はスパッタリングまたは真空蒸着などによるニッケルクロム合金の薄膜にて形成されている。
【0038】
さらに、前記厚膜下面内部電極層12、厚膜上面内部電極層14及び端面内部電極層17の外表面にニッケルめっき層、銅厚膜めっき層(20μm程度)、ニッケルめっき層、錫めっき層(または半田めっき層)を積層した外部電極層18が形成されている。
【0039】
この実施の形態の作用を説明する。
【0040】
絶縁基板11の下面両端部に厚膜下面内部電極層12を形成し、この絶縁基板11の上面に銅ニッケル合金の厚膜抵抗体層13を形成するとともに、この厚膜抵抗体層13の両端部に銅ニッケル合金の厚膜上面内部電極層14をそれぞれ積層形成し、この厚膜上面内部電極層14と厚膜下面内部電極層12とに接続して絶縁基板11の両端面にニッケルクロム合金薄膜の端面内部電極層17を形成した厚膜低抵抗抵抗器では、厚膜抵抗体層13と厚膜上面内部電極層14の抵抗温度係数は同一であり、厚膜上面内部電極層14によって抵抗温度係数が高くなることがなく、低抵抗で100ppm/℃以下の低抵抗温度係数特性を有している。
【0041】
すなわち、この構成では、銅ニッケル合金の厚膜上面内部電極層14によって銅の厚膜上面内部電極層に比べて20分の1ないし40分の1以下の低抵抗温度係数特性が得られる。
【0042】
また、厚膜抵抗体層には銅とニッケルを含む厚膜抵抗体要素にこの厚膜抵抗体要素全体の1〜10質量部の金属酸化物、例えば、酸化銅を含んでいるので、絶縁基板11、例えば、アルミナのセラミックの場合は、酸化銅と酸化アルミニウムとの間でスピネル構造の化合物が生成し、絶縁基板11と厚膜抵抗体層13との間に強力な密着性が生じ、基板から厚膜抵抗体層が剥離することがない。
【0043】
なお、厚膜抵抗体要素に含まれる金属酸化物は酸化銅(CuО又はCuО)に限られるものではなく、絶縁基板11の成分物質との間でスピネル構造又はその他の比較的強い構造を生じさせることのできる各種金属酸化物を使用できる。例えば、この実施の形態におけるアルミナ基板とスピネル構造を形成するものとしては、酸化銅(CuО又はCuО)以外に酸化ニッケル(NiО)、酸化亜鉛(ZnО)酸化マグネシウム(MgО)などの1価または2価の金属酸化物でも可能性がある。ただし、この実施の形態では厚膜抵抗体要素が銅とニッケルとの混合粉体または合金粉体などからなるペーストのため、酸化銅(CuО又はCuО)以外としては、例えば酸化ニッケル(NiО)が好ましい。
【0044】
なお、この実施の形態において、厚膜上面内部電極層14を二層以上の複数層に形成することにより、電極部の抵抗値が上昇することを抑えることができる。
【0045】
また、厚膜抵抗体層13と厚膜上面内部電極層14とは同一材質の厚膜ペーストにて形成し、抵抗値を同一としたが、厚膜上面内部電極層14は銅の配合比を多くして抵抗値を多少低くし、抵抗値と低抵抗温度係数のつりあいを調整することもできる。
【0046】
また、前記実施の形態では、銅ニッケル合金の厚膜抵抗体層13の両端部に銅ニッケル合金の厚膜上面内部電極層14をそれぞれ積層形成した構成としたが、銅ニッケル粉体を含有する厚膜ペーストにより厚膜抵抗体層13は銅ニッケル合金の厚膜層とし、厚膜上面内部電極層14は銀パラジウム粉体を含有する厚膜ペーストにより銀パラジウム(AgPd)合金の厚膜層とすることもできる。なお、厚膜ペースト材料の銀パラジウム粉体は合金粉体または混合粉体のいずれでも用いることができ、混合粉体の場合は印刷後の焼成により合金化する。
【0047】
この実施の形態による厚膜上面内部電極層14を銀パラジウム(AgPd)合金の厚膜層にて形成した厚膜低抵抗チップ抵抗器では、厚膜抵抗体層13と厚膜上面内部電極層14の抵抗温度係数は略同一であり、厚膜上面内部電極層14によって抵抗温度係数が高くなることを抑えられ、低抵抗で100ppm/℃以下の低抵抗温度係数特性を有している。
【0048】
すなわち、この構成では、銀パラジウム合金の厚膜上面内部電極層14によって銅の厚膜上面内部電極層に比べて低抵抗温度係数特性が得られる。
【0049】
なお、この実施の形態においても、厚膜上面内部電極層14を二層以上の複数層に形成することにより、電極部の抵抗値が上昇することを抑えることができる。
【0050】
次に、厚膜低抵抗チップ抵抗器の製造方法の実施の形態を図1及び図2に基いて説明する。
【0051】
第1の工程は、図示しないアルミナ96%の分割用切溝を有するセラミック絶縁素板には、縦横方向に形成された分割用切溝によって囲まれている個々の領域の絶縁基板11の該切溝に跨るように絶縁基板11の下面両端部の位置にそれぞれ銅粉体を含む厚膜ペーストを印刷し、乾燥して窒素雰囲気中において800℃〜1000℃、好ましくは900℃で10分間焼成することにより、絶縁基板11の下面両端部に厚膜下面内部電極層12をそれぞれ形成する。なお、雰囲気は前記窒素のような不活性(または中性)雰囲気には限定されず、例えば、アルゴンのような不活性(または中性)雰囲気でもよい。
【0052】
第2の工程は、図示しない前記絶縁素板の前記各絶縁基板11の上面位置に銅ニッケル粉体を含有する厚膜ペーストを印刷し、乾燥して窒素雰囲気中において800℃〜1000℃好ましくは900℃で10分間焼成することにより銅ニッケル合金の厚膜抵抗体層13をそれぞれ形成する。
【0053】
第3の工程は、前記厚膜抵抗体層13の上面両端部にそれぞれ銅ニッケル粉体を含有する厚膜ペーストを印刷し、乾燥して窒素雰囲気中において800℃〜1000℃好ましくは900℃で10分間焼成することによりこの厚膜抵抗体層13に銅ニッケル合金の厚膜上面内部電極層14を積層形成する。
【0054】
第4の工程は、前記厚膜抵抗体層13の表面には第1保護ペーストを印刷し、乾燥して窒素雰囲気中において加熱処理して第1保護コート15を形成する。
【0055】
第5の工程は、レーザーなどにより前記第1保護コート15と厚膜抵抗体層13とにトリミングを行ない、この厚膜抵抗体層13の抵抗値を調整する。
【0056】
第6の工程は、前記第1保護コート15の表面にエポキシ樹脂などの樹脂ペーストを印刷して大気中において30分間150℃〜250℃、好ましくは200℃で加熱して硬化することにより樹脂保護コート16を形成する。
【0057】
第7の工程は、前記図示しない絶縁素板を図示しない切溝に沿って切断し、短冊状の絶縁素板(第一次基板分割)に形成する。この短冊状の絶縁素板の上面には長手方向に厚膜抵抗体層13、厚膜上面内部電極層14、第1保護コート15及び樹脂保護コート16が形成されるとともに下面両端に厚膜下面内部電極層12を有する抵抗器素体が所定間隔ごとに形成されている。
【0058】
第8の工程は、前記図示しない抵抗器素体の各厚膜上面内部電極層14と前記厚膜下面内部電極層12とを接続した端面内部電極層17をその分割絶縁基板の両端面に位置する端面に形成する。この端面内部電極層17は真空蒸着またはスパッタリングなどにより、例えば、ニッケルクロム合金薄膜を形成する。
【0059】
第9の工程は、前記図示しない抵抗器素体を厚膜抵抗体層13、厚膜上面内部電極層14、第1保護コート15、樹脂保護コート16及び端面内部電極層17が形成された短冊状の抵抗器素体の隣接する基板分割溝に沿ってこの短冊状の絶縁基板11の間から抵抗器素体を切断してそれぞれ例えば、縦3.2mm、横1.6mm程度の方形の絶縁基板11を得る。
【0060】
第10の工程は、前記厚膜上面内部電極層14、端面内部電極層積層17および下面内部電極層15の外表面に、ニッケルめっき層、銅厚膜めっき層(20μm程度)、ニッケルめっき層、錫めっき(または半田めっき層)を積層した外部電極層18を形成する。
【0061】
この第1ないし第10の工程により、絶縁基板11の下面両端部に厚膜下面内部電極層12を形成し、この絶縁基板11の上面に銅ニッケル合金の厚膜抵抗体層13を形成するとともに、この厚膜抵抗体層13の両端部に銅ニッケル合金の厚膜上面内部電極層14をそれぞれ積層形成し、さらには、この厚膜抵抗体層13に第1保護コート15又は及び必要に応じて樹脂保護コート16を積層形成し、この厚膜上面内部電極層14と厚膜下面内部電極層12とを接続して絶縁基板11の両端面にニッケルクロム合金薄膜の端面内部電極層17、外部電極層18を形成した厚膜低抵抗抵抗器が効率よく形成される。
【0062】
次に、厚膜低抵抗抵抗器の製造方法の他の実施の形態を説明する。
【0063】
第1の工程及び第2の工程は前記図2に示す方法と同一である。
【0064】
第3の工程は、前記厚膜抵抗体層13の両端部にそれぞれ銀パラジウム粉体を含有する厚膜ペーストを印刷して窒素雰囲気中において750℃〜950℃、好ましくは850℃で10分間焼成することにより、この厚膜抵抗体層13に銀パラジウム合金の厚膜上面内部電極層14を積層形成する。
【0065】
第4の工程ないし第10の工程は、前記図2に示す方法と同一である。
【0066】
この実施の形態でも、第1ないし第10の工程により、絶縁基板11の下面両端部に厚膜下面内部電極層12を形成し、この絶縁基板11の上面に銅ニッケル合金の厚膜抵抗体層13を形成するとともに、この厚膜抵抗体層13の両端部に銀パラジウム合金の厚膜上面内部電極層14をそれぞれ積層形成し、さらには、この厚膜抵抗体層13に第1保護コート15又は及び樹脂保護コート16を積層形成し、この厚膜上面内部電極層14と厚膜下面内部電極層12とを接続して絶縁基板11の両端面にニッケルクロム合金薄膜の端面内部電極層17、ニッケルめっき層、銅厚膜めっき層(20μm程度)、ニッケルめっき層、錫めっき層(又は半田めっき層)の四層を積層した外部電極層18を形成した厚膜低抵抗抵抗器が効率よく形成される。
【0067】
なお、この実施の形態においても、厚膜上面内部電極層14を二層以上の複数層に形成することにより、電極部の抵抗値が上昇することを抑えることができる。
【0068】
なお、銀パラジウム合金の厚膜上面内部電極層は(各々単体同士ではない。)銅の厚膜(上面内部)電極層に比べて20分の1ないし40分の1以下の低抵抗温度係数特性が得られる。
【0069】
また、前記厚膜低抵抗抵抗器の製造方法の実施の形態において、第3の工程の、前記厚膜抵抗体層13の両端部にそれぞれ銅ニッケル粉体を含有する厚膜ペーストを印刷して窒素雰囲気中において800℃〜1000℃、好ましくは900℃で10分間焼成することにより、この厚膜抵抗体層13に銅ニッケル合金の厚膜上面内部電極層14を積層形成する工程、または、厚膜抵抗体層13の両端部にそれぞれ銀パラジウム粉体を含有する厚膜ペーストを印刷して窒素雰囲気中において750℃〜950℃、好ましくは850℃で10分間焼成することにより、この厚膜抵抗体層13に銀パラジウム合金の厚膜上面内部電極層14を積層形成する工程は、複数回反復して、厚膜上面内部電極層14を複数層に形成することにより、電極部の抵抗値が上昇することを抑えることができる。
【0070】
【実施例】
比較例として図3に示す厚膜低抵抗チップ抵抗器と図1に示す本発明の実施例とを対比して測定した。
【0071】
比較例1
縦3.2mm、横1.6mm程度の方形の絶縁基板1に、面積抵抗値が2mΩ/□で膜厚15μmであり、抵抗温度係数が+3500ppm/℃の銅ペーストにて厚膜上面内部電極層3を形成し、面積抵抗値が30mΩ/□で膜厚15μm、抵抗温度係数が+50ppm/℃の銅ニッケル粉体を含有するペーストにて厚膜抵抗体層4を形成した厚膜低抵抗チップ抵抗器では、抵抗値は41.1mΩ、抵抗温度係数は+229ppm/℃(平均値)であった。
【0072】
比較例2
縦3.2mm、横1.6mm程度の方形の絶縁基板1に、面積抵抗値2mΩ/□で膜厚15μmであり、抵抗温度係数+3500ppm/℃の銅ペーストにて厚膜上面内部電極層3を形成し、面積抵抗値70mΩ/□で膜厚が/15μmで、かつ、抵抗温度係数が+20ppm/℃の銅ニッケル粉体を含有するペーストにて厚膜抵抗体層4を形成した構成では、抵抗値93.1mΩ、抵抗温度係数+109ppm/℃(平均値)であった。
【0073】
実施例1
縦3.2mm、横1.6mm程度の方形の絶縁基板11に、面積抵抗値30mΩ/□で膜厚15μm、抵抗温度係数+50ppm/℃の銅ニッケル合金ペーストにて厚膜抵抗体層13及び厚膜上面内部電極14を形成した厚膜低抵抗チップ抵抗器では、抵抗値50.8mΩ、抵抗温度係数+93.5ppm/℃(平均値)であった。
【0074】
実施例2
縦3.2mm、横1.6mm程度の方形の絶縁基板11に、面積抵抗値70mΩ/□で膜厚15μm、抵抗温度係数+20ppm/℃の銅ニッケル合金ペーストにて厚膜抵抗体層13を形成し、面積抵抗値30mΩ/□で膜厚15μm、抵抗温度係数+50ppm/℃の銅ニッケル合金ペーストにて厚膜上面内部電極層14を形成した厚膜低抵抗チップ抵抗器の構成では、抵抗値114mΩ、抵抗温度係数+49.6ppm/℃(平均値)であった。
【0075】
この実験の結果、従来の図3に示す厚膜低抵抗チップ抵抗器では、抵抗値は20%程度高くなるが、抵抗温度係数特性は大幅(約50%〜60%程度)に低くなることが確認された。
【0076】
【発明の効果】
本発明によれば、厚膜抵抗体層に積層形成した厚膜上面内部電極層の抵抗温度係数が低く、低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が得られる。
【0077】
また、厚膜抵抗体層に積層形成した厚膜上面内部電極層の抵抗温度係数が低く、低抵抗で低抵抗温度係数の厚膜低抵抗抵抗器が効率よく製造できる。
【図面の簡単な説明】
【図1】本発明の厚膜低抵抗チップ抵抗器の一実施の形態を示す縦断面図である。
【図2】同上厚膜低抵抗チップ抵抗器の製造方法の一実施の形態を示すフローチャートである。
【図3】従来の厚膜低抵抗チップ抵抗器を示す縦断面図である。
【符号の説明】
11  絶縁基板
12  厚膜下面内部電極層
13  厚膜抵抗体層
14  厚膜上面内部電極層
17  端面内部電極層
[0001]
[Industrial applications]
The present invention relates to a thick-film low-resistance chip resistor such as a thick-film low-resistance chip resistor having a low-resistance and low-resistance temperature coefficient characteristic used as a surface-mount component of an electronic circuit in an electronic device such as a small communication device, a computer, and an information device. The present invention relates to a resistor and a method for manufacturing the resistor.
[0002]
[Prior art]
Conventionally, as shown in FIG. 3, a thick-film low-resistance chip resistor of this type forms a thick-film lower-surface internal electrode layer 2 by printing and baking paste containing copper powder on both lower ends of a ceramic insulating substrate 1. Then, paste containing copper powder is printed and baked on both ends of the upper surface of the insulating substrate 1 to form the thick film upper surface internal electrode layer 3, and both ends are connected to the thick film upper surface internal electrode layer 3 to form the insulating film. The thick film resistor layer 4 is formed by printing and firing a paste containing copper nickel powder on the substrate 1, and the glass coat layer 5 is formed by printing and firing a glass paste on the surface of the thick film resistor layer 4. Further, a resin paste is printed and cured on the surface of the glass coat layer 5 to form a protective coat layer 6, and the end face internal electrode layer 7 made of a nickel-chromium alloy is formed on both end faces of the insulating substrate 1 by vacuum evaporation or sputtering. Form each A thick film end surface electrode layer 8 in which a nickel plating layer and a solder plating layer are laminated on the both end surface internal electrode layer 7, the thick film upper surface internal electrode layer 3, and the thick film lower surface internal electrode layer 2 is formed. Had been taken.
[0003]
The thick film upper surface internal electrode layer 3 is formed using the conventional copper paste shown in FIG. 3, and the paste containing copper nickel powder is printed and fired to form the thick film resistor layer 4 of copper nickel alloy. The resistance chip resistor has a problem that the temperature coefficient of resistance increases as the resistance value decreases.
[0004]
In the thick-film low-resistance chip resistor described in Japanese Patent Application Laid-Open No. 10-144501, a paste containing copper nickel powder is printed and fired on the upper surface of an insulating substrate to form a thick-film resistor layer. A configuration is adopted in which pastes containing copper or silver are printed and baked on both ends of the thick-film resistor layer, and the thick-film upper-surface internal electrode layers are formed in a laminated manner.
[0005]
In the thick-film low-resistance chip resistor described in Japanese Patent Application Laid-Open No. H10-144501, although the improvement is made as compared with the thick-film low-resistance chip resistor shown in FIG. 3, the lower the resistance value, the higher the temperature coefficient of resistance. There was a problem that a good characteristic could not be obtained.
[0006]
[Problems to be solved by the invention]
In the conventional thick-film low-resistance chip resistor shown in FIG. 3 and the thick-film low-resistance chip resistor described in JP-A-10-144501, the lower the resistance value, the higher the temperature coefficient of resistance. Cannot be ignored in a region where the resistance value is approximately 200 mΩ or less. This is due to the temperature coefficient of resistance of the electrode portion occupying the current path of the resistor.
[0007]
The portion occupying a large proportion in the material, area, and the like of the electrode portion is the upper surface internal electrode, and the copper or silver-based thick film electrode layer used in the conventional technology has a temperature coefficient of resistance of 2000 ppm / ° C. to 4000 ppm / ° C. There are major causes.
[0008]
The present invention has been made in view of the above problems, and provides a thick film low resistance resistor having low resistance and low resistance temperature coefficient characteristics, and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
2. A thick-film low-resistance resistor according to claim 1, wherein said thick-film resistor layer has a low-resistance and low-resistance temperature coefficient characteristic formed on an upper surface of said insulating substrate. And a thick film upper surface internal electrode layer having a low resistance and a low temperature coefficient of resistance, respectively, which is formed by lamination at both ends of the thin film.
[0010]
Then, the thick film upper internal electrode layer laminated on the thick film resistor layer has a low resistance temperature coefficient, and a thick film low resistance resistor having a low resistance and a low resistance temperature coefficient can be obtained.
[0011]
A thick-film low-resistance resistor according to claim 2, wherein the insulating substrate, a thick-film lower-surface internal electrode layer formed on both ends of the lower surface of the insulating substrate, and a low-resistance and low-resistance formed on the upper surface of the insulating substrate. A thick-film resistor layer having a temperature coefficient of resistance characteristic; a thick-film upper-surface internal electrode layer laminated and formed on both ends of the thick-film resistor layer to have a low-resistance and low-resistance temperature-coefficient characteristic; At least an end face internal electrode layer formed on both end faces of the insulating substrate connected to the internal electrode layer and the thick film lower face internal electrode layer.
[0012]
Then, the thick film upper surface internal electrode layer laminated on the thick film resistor layer has a low temperature coefficient of resistance, and a thick film low resistance resistor having a low resistance and a low resistance temperature coefficient as the whole resistor can be obtained.
[0013]
A thick film low resistance resistor according to claim 3 is the thick film low resistance resistor according to claim 1 or 2, wherein the thick film resistor layer and the thick film upper internal electrode layer are copper nickel thick film layers.
[0014]
A thick film low resistance resistor according to claim 4 is the thick film low resistance resistor according to claim 1 or 2, wherein the thick film resistor layer is a copper nickel thick film layer, and the thick film upper surface internal electrode layer is silver. It is a palladium thick film layer.
[0015]
The thick film low resistance resistor according to claim 5 is the thick film low resistance resistor according to any one of claims 1 to 4, wherein the thick film resistor layer includes 80 to 30 parts by mass of copper and 20 to 70 parts by mass of nickel. Thick film resistor element of a mixture of individual parts of mass or alloy powder of copper and nickel, and metal oxide of 1 to 10 parts by mass with respect to 100 parts by mass of the whole thick film resistor element, It contains at least 1 to 10 parts by mass of glass with respect to 100 parts by mass of the entire thick film resistor element.
[0016]
Then, a compound having a spinel structure is generated between the substrate and the thick-film resistor layer by the metal oxide contained in the thick-film resistor layer, and strong adhesion between the substrate and the thick-film resistor layer is obtained. Does not occur, and the thick film resistor layer does not peel off from the substrate.
[0017]
A method of manufacturing a thick-film low-resistance resistor according to claim 6, wherein a thick-film paste containing copper-nickel powder is printed and fired on the upper surface of the insulating substrate to form a thick-film resistor layer of copper-nickel alloy; Printing and baking a thick film paste containing copper nickel powder on both ends of the thick film resistor layer to form a thick film upper surface internal electrode layer of copper nickel alloy on the thick film resistor layer at least. It is provided.
[0018]
Then, the internal electrode layer formed by laminating the thick film resistor layer by printing and firing the thick film paste has a low resistance temperature coefficient, and a thick film low resistance resistor having a low resistance and a low resistance temperature coefficient can be obtained.
[0019]
8. A method of manufacturing a thick-film low-resistance resistor according to claim 7, wherein a thick-film lower-surface internal electrode layer is formed on both ends of a lower surface of the insulating substrate, and a thick-film paste containing copper-nickel powder on the upper surface of the insulating substrate. Forming a thick film resistor layer of a copper-nickel alloy by printing and firing, and printing and firing a thick film paste containing copper nickel powder on both ends of the thick film resistor layer, respectively. Forming a thick film upper surface internal electrode layer of a copper-nickel alloy on the layer, and connecting the end surface internal electrode layers connected to the thick film upper surface internal electrode layer and the thick film lower surface internal electrode layer to both end surfaces of the insulating substrate. And at least a forming step.
[0020]
Then, the internal electrode layer formed by laminating the thick film resistor layer by printing and baking the thick film paste has a low resistance temperature coefficient, so that a thick film low resistance resistor having a low resistance and a low resistance temperature coefficient can be obtained as a whole resistor. .
[0021]
A method of manufacturing a thick-film low-resistance resistor according to claim 8, wherein a thick-film paste containing copper-nickel powder is printed and fired on the upper surface of the insulating substrate to form a thick-film resistor layer of a copper-nickel alloy. Printing and baking a thick film paste containing silver palladium powder on both ends of the thick film resistor layer to form a thick film upper surface internal electrode layer of a silver-palladium alloy on the thick film resistor layer. It has at least.
[0022]
Then, the internal electrode layer formed by laminating the thick film resistor layer by printing and firing the thick film paste has a low resistance temperature coefficient, and a thick film low resistance resistor having a low resistance and a low resistance temperature coefficient can be obtained.
[0023]
10. The method of manufacturing a thick film low resistance resistor according to claim 9, wherein a thick film lower surface internal electrode layer is formed on both ends of a lower surface of the insulating substrate, and a thick film paste containing copper nickel powder on the upper surface of the insulating substrate. Forming a thick film resistor layer of a copper-nickel alloy by printing and firing, and printing and firing a thick film paste containing silver palladium powder on both ends of the thick film resistor layer, respectively. Forming a thick film upper surface internal electrode layer of a silver-palladium alloy on the body layer; and connecting the end surface internal electrode layers connected to the thick film upper surface internal electrode layer and the thick film lower surface internal electrode layer to both end surfaces of the insulating substrate. And at least a step of forming the same.
[0024]
Then, the internal electrode layer formed by laminating the thick film resistor layer by printing and baking the thick film paste has a low resistance temperature coefficient, so that a thick film low resistance resistor having a low resistance and a low resistance temperature coefficient can be obtained as a whole resistor. .
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the thick film low resistance chip resistor in the thick film low resistance resistor according to the present invention will be described with reference to the drawings.
[0026]
In FIG. 1, the insulating substrate 11 is formed of a ceramic of 96% alumina, for example, in a rectangular shape having a length of about 3.2 mm and a width of about 1.6 mm.
[0027]
A copper thick film paste containing copper powder is printed, dried, and fired on both ends of the lower surface of the insulating substrate 11 to form a copper (Cu) thick film lower surface internal electrode layer 12.
[0028]
Further, a thick film paste containing a mixed powder or an alloy powder of a metal having low resistance and a low resistance temperature coefficient characteristic, for example, a copper-nickel powder is printed and fired on the upper surface of the insulating substrate 11 to reduce the temperature. A thick-film resistor layer 13 made of a copper-nickel (CuNi) alloy having resistance and low resistance temperature coefficient characteristics is formed. The thick-film resistor element of the thick-film paste forming the thick-film resistor layer 13 having the low-resistance and the low-resistance temperature coefficient characteristic is, for example, 80 to 30, preferably about 60 parts by mass of copper in mass ratio, Nickel may be used in the form of a mixture powder of 20 to 80 parts by mass, preferably about 40 parts by mass, or a copper-nickel powder composed of an alloy powder. It is alloyed in later firing.
[0029]
The thick-film resistor element of the thick-film paste contains 1 to 10 parts by mass, preferably about 5 parts by mass of a metal oxide such as copper oxide (Cu (or Cu) in the entire thick-film resistor element. 2 I) 1 to 10 parts by weight, preferably about 5 parts by weight, of glass and powder, for example, lead borosilicate (PbBSiO X System) glass and 7 to 17 parts by weight, preferably about 12 parts by weight, of a vehicle, such as an organic vehicle, of the entire thick film resistor element.
[0030]
The organic vehicle contains, for example, ethyl cellulose, butyl carbitol, and the like.
[0031]
A thick-film upper surface internal electrode layer 14 having a low resistance and a low temperature coefficient of resistance is formed by being laminated on both ends of the thick-film resistor layer 13, respectively. The thick film upper internal electrode layer 14 is made of the same material as the thick film resistor layer 13, and the thick film paste for forming the thick film upper internal electrode layer 14 having low resistance and low temperature coefficient of resistance is copper nickel Powder, copper oxide (CuО or Cu 2 О) Lead borosilicate (PbBSiO) as powder and glass frit X System) glass, to which an organic vehicle is mixed.
[0032]
The thicknesses of the thick-film resistor layer 13 and the thick-film upper internal electrode layer 14 are each about 20 to 40 micrometers, and the sintered particle diameter is about several micrometers in surface observation.
[0033]
Further, the particle diameter of the copper powder is 0.1 μm to 5 μm, and the particle diameter of the nickel powder is 0.1 μm to 5 μm, and preferably both the copper powder and the nickel powder have the average particle diameter. Is in the range of 0.5 μm to 1 μm.
[0034]
Further, as the glass frit, zinc borosilicate, lead borosilicate glass having a softening point of 500 ° C. to 800 ° C. is suitable.
[0035]
A first protective coat 15 is formed on the surface of the thick film resistor layer 13. The first protective coat 15 may be a resin (for example, an epoxy resin (150 ° C. to 250 ° C., preferably 200 ° C. for 30 minutes)) and a glass (for example, 550 ° C. to 750 ° C., preferably 650 ° C. for 10 minutes). ). However, in the case of the resin, the first protective coat 15 is formed after the thick film resistor layer 13 is trimmed, whereas in the case of the glass, the first protective coat 15 is formed on at least the thick film resistor layer 13. Is trimmed after forming.
[0036]
Further, if necessary, one or more resin protective coats 16 may be formed by printing and curing a resin paste such as an epoxy resin on the surface of the first protective coat 15.
[0037]
On both end faces of the insulating substrate 11, end face internal electrode layers 17 are formed to be connected to the thick film upper internal electrode layer 14 and the thick film lower internal electrode layer 12, respectively. The end face internal electrode layer 17 is formed of a nickel chromium alloy thin film by sputtering or vacuum evaporation.
[0038]
Further, a nickel plating layer, a copper thick film plating layer (about 20 μm), a nickel plating layer, and a tin plating layer (approximately 20 μm) are formed on the outer surfaces of the thick film lower surface internal electrode layer 12, the thick film upper surface internal electrode layer 14, and the end surface internal electrode layer 17. Alternatively, an external electrode layer 18 formed by laminating solder plating layers) is formed.
[0039]
The operation of this embodiment will be described.
[0040]
A thick-film lower-surface internal electrode layer 12 is formed at both ends of a lower surface of the insulating substrate 11, and a thick-film resistor layer 13 of a copper-nickel alloy is formed on the upper surface of the insulating substrate 11. A thick-film upper internal electrode layer 14 of copper-nickel alloy is formed on each portion, and the thick-film upper internal electrode layer 14 and the thick-film lower internal electrode layer 12 are connected to each other. In the thick-film low-resistance resistor in which the thin-film end surface internal electrode layer 17 is formed, the resistance temperature coefficient of the thick-film resistor layer 13 and that of the thick-film upper internal electrode layer 14 are the same, and the resistance is increased by the thick-film upper internal electrode layer 14. The temperature coefficient does not increase, and has a low resistance and a low resistance temperature coefficient characteristic of 100 ppm / ° C. or less.
[0041]
That is, in this configuration, the copper-nickel alloy thick film upper surface internal electrode layer 14 can provide a low-resistance temperature coefficient characteristic that is 1/20 to 1/40 or less of that of the copper thick film upper surface internal electrode layer.
[0042]
Also, since the thick-film resistor layer contains 1 to 10 parts by mass of a metal oxide, for example, copper oxide, of the entire thick-film resistor element containing copper and nickel, the insulating substrate 11, for example, in the case of alumina ceramic, a compound having a spinel structure is generated between copper oxide and aluminum oxide, and strong adhesion occurs between the insulating substrate 11 and the thick-film resistor layer 13; The thick film resistor layer does not peel off from the substrate.
[0043]
The metal oxide contained in the thick film resistor element is copper oxide (CuО or Cu 2 The present invention is not limited to О), and various metal oxides capable of producing a spinel structure or other relatively strong structures with the component materials of the insulating substrate 11 can be used. For example, as a material forming a spinel structure with the alumina substrate in this embodiment, copper oxide (CuО or Cu 2 In addition to О), monovalent or divalent metal oxides such as nickel oxide (NiО), zinc oxide (ZnО), and magnesium oxide (MgО) may be used. However, in this embodiment, since the thick film resistor element is a paste made of a mixed powder of copper and nickel or an alloy powder, copper oxide (CuО or Cu 2 Other than the method (ii), for example, nickel oxide (Ni) is preferable.
[0044]
In this embodiment, by forming the thick film upper surface internal electrode layer 14 in two or more layers, it is possible to suppress an increase in the resistance value of the electrode portion.
[0045]
The thick-film resistor layer 13 and the thick-film upper-surface internal electrode layer 14 are formed of the same material thick-film paste and have the same resistance value. By increasing the resistance value, the resistance value can be slightly lowered, and the balance between the resistance value and the low resistance temperature coefficient can be adjusted.
[0046]
In the above-described embodiment, the thick-film upper-layer internal electrode layers 14 made of the copper-nickel alloy are formed on both ends of the thick-film resistor layer 13 made of the copper-nickel alloy, respectively. The thick film resistor layer 13 is made of a copper-nickel alloy thick film by a thick film paste, and the thick film upper surface internal electrode layer 14 is made of a silver palladium (AgPd) alloy thick film layer by a thick film paste containing silver palladium powder. You can also. The silver palladium powder of the thick film paste material can be either an alloy powder or a mixed powder, and in the case of a mixed powder, is alloyed by firing after printing.
[0047]
In the thick-film low-resistance chip resistor in which the thick-film upper-surface internal electrode layer 14 according to this embodiment is formed of a silver-palladium (AgPd) alloy thick-film layer, the thick-film resistor layer 13 and the thick-film upper-surface internal electrode layer 14 are formed. The resistance temperature coefficient is substantially the same, the increase in the resistance temperature coefficient is suppressed by the thick film upper surface internal electrode layer 14, and the low resistance has a low resistance temperature coefficient characteristic of 100 ppm / ° C. or less.
[0048]
That is, in this configuration, the silver-palladium alloy thick film upper surface internal electrode layer 14 provides a lower resistance temperature coefficient characteristic than the copper thick film upper surface internal electrode layer.
[0049]
Also in this embodiment, by forming the thick film upper surface internal electrode layer 14 in two or more layers, it is possible to suppress an increase in the resistance value of the electrode portion.
[0050]
Next, an embodiment of a method of manufacturing a thick-film low-resistance chip resistor will be described with reference to FIGS.
[0051]
In the first step, a ceramic insulating plate having a dividing groove of 96% of alumina (not shown) is provided on the insulating substrate 11 in each region surrounded by the dividing grooves formed in the vertical and horizontal directions. A thick film paste containing a copper powder is printed at both ends of the lower surface of the insulating substrate 11 so as to straddle the groove, dried, and baked at 800 ° C. to 1000 ° C., preferably 900 ° C. for 10 minutes in a nitrogen atmosphere. As a result, the thick film lower surface internal electrode layers 12 are formed at both ends of the lower surface of the insulating substrate 11, respectively. Note that the atmosphere is not limited to an inert (or neutral) atmosphere such as nitrogen, but may be an inert (or neutral) atmosphere such as argon.
[0052]
In the second step, a thick film paste containing copper-nickel powder is printed on the upper surface of each of the insulating substrates 11 (not shown) of the insulating base plate, dried, and dried at 800 ° C. to 1000 ° C. in a nitrogen atmosphere. By baking at 900 ° C. for 10 minutes, the thick-film resistor layers 13 of the copper-nickel alloy are formed.
[0053]
The third step is to print a thick film paste containing copper nickel powder on both ends of the upper surface of the thick film resistor layer 13, and then dry and print the film at 800 ° C. to 1000 ° C., preferably 900 ° C. in a nitrogen atmosphere. By baking for 10 minutes, a thick-film upper surface internal electrode layer 14 of a copper-nickel alloy is laminated on the thick-film resistor layer 13.
[0054]
In a fourth step, a first protective paste is printed on the surface of the thick film resistor layer 13, dried, and heat-treated in a nitrogen atmosphere to form a first protective coat 15.
[0055]
In the fifth step, the first protective coat 15 and the thick film resistor layer 13 are trimmed by a laser or the like, and the resistance value of the thick film resistor layer 13 is adjusted.
[0056]
In the sixth step, a resin paste such as an epoxy resin is printed on the surface of the first protective coat 15 and cured by heating at 150 ° C. to 250 ° C., preferably 200 ° C. for 30 minutes in the atmosphere. A coat 16 is formed.
[0057]
In a seventh step, the insulating element plate (not shown) is cut along a notch (not shown) to form a strip-shaped insulating element plate (first substrate division). A thick film resistor layer 13, a thick film upper internal electrode layer 14, a first protective coat 15 and a resin protective coat 16 are formed in the longitudinal direction on the upper surface of this strip-shaped insulating element plate, and the thick film lower surface is formed on both lower surfaces. Resistor elements having the internal electrode layers 12 are formed at predetermined intervals.
[0058]
In an eighth step, an end face internal electrode layer 17 connecting the thick film lower face internal electrode layer 12 and the thick film lower face internal electrode layer 12 of the resistor body (not shown) is positioned on both end faces of the divided insulating substrate. Formed on the end face. For example, a nickel chromium alloy thin film is formed on the end face internal electrode layer 17 by vacuum evaporation or sputtering.
[0059]
In the ninth step, the resistor element (not shown) is formed into a strip having the thick-film resistor layer 13, the thick-film upper internal electrode layer 14, the first protective coat 15, the resin protective coat 16, and the end-face internal electrode layer 17 formed thereon. The resistor element body is cut from between the strip-shaped insulating substrates 11 along the adjacent substrate dividing groove of the resistor element body in a rectangular shape, for example, to have a rectangular insulation of about 3.2 mm in length and 1.6 mm in width, respectively. A substrate 11 is obtained.
[0060]
The tenth step is to form a nickel plating layer, a copper thick film plating layer (about 20 μm), a nickel plating layer on the outer surfaces of the thick film upper internal electrode layer 14, the end face internal electrode layer stack 17 and the lower internal electrode layer 15; The external electrode layer 18 formed by laminating tin plating (or solder plating layer) is formed.
[0061]
Through the first to tenth steps, the thick-film lower-surface internal electrode layers 12 are formed at both ends of the lower surface of the insulating substrate 11, and the thick-film resistor layer 13 of copper-nickel alloy is formed on the upper surface of the insulating substrate 11. On both ends of the thick-film resistor layer 13, a thick-film upper-surface internal electrode layer 14 of a copper-nickel alloy is formed by lamination, and further, the first protective coat 15 or, if necessary, The thick film upper surface internal electrode layer 14 and the thick film lower surface internal electrode layer 12 are connected to each other to form a resin protective coat 16 on the end surface of the nickel chrome alloy thin film on both end surfaces of the insulating substrate 11. A thick-film low-resistance resistor having the electrode layer 18 formed thereon is efficiently formed.
[0062]
Next, another embodiment of the method of manufacturing the thick film low resistance resistor will be described.
[0063]
The first step and the second step are the same as the method shown in FIG.
[0064]
In the third step, a thick film paste containing silver palladium powder is printed on both ends of the thick film resistor layer 13 and baked at 750 ° C. to 950 ° C., preferably 850 ° C. for 10 minutes in a nitrogen atmosphere. By doing so, a thick film upper surface internal electrode layer 14 of a silver-palladium alloy is laminated on the thick film resistor layer 13.
[0065]
The fourth to tenth steps are the same as the method shown in FIG.
[0066]
Also in this embodiment, the thick-film lower-surface internal electrode layers 12 are formed at both ends of the lower surface of the insulating substrate 11 by the first to tenth steps, and the thick-film resistor layer of copper-nickel alloy is formed on the upper surface of the insulating substrate 11. 13, a thick-film upper electrode layer 14 of silver-palladium alloy is formed on both ends of the thick-film resistor layer 13, and a first protective coat 15 is formed on the thick-film resistor layer 13. Alternatively, a resin protective coat 16 is laminated and formed, and the thick film upper surface internal electrode layer 14 and the thick film lower surface internal electrode layer 12 are connected to each other to form an end surface internal electrode layer 17 of a nickel chromium alloy thin film on both end surfaces of the insulating substrate 11. A thick film low resistance resistor having an external electrode layer 18 formed by laminating four layers of a nickel plating layer, a copper thick film plating layer (about 20 μm), a nickel plating layer, and a tin plating layer (or a solder plating layer) is formed efficiently. Is .
[0067]
Also in this embodiment, by forming the thick film upper surface internal electrode layer 14 in two or more layers, it is possible to suppress an increase in the resistance value of the electrode portion.
[0068]
The internal electrode layer on the upper surface of the thick film of silver-palladium alloy has a low resistance temperature coefficient characteristic that is 1/20 to 1/40 or less of that of the thick film (upper surface internal) electrode layer (not each of them alone). Is obtained.
[0069]
Further, in the embodiment of the method of manufacturing the thick-film low-resistance resistor, a thick-film paste containing copper nickel powder is printed on both ends of the thick-film resistor layer 13 in the third step. Baking in a nitrogen atmosphere at 800 ° C. to 1000 ° C., preferably 900 ° C. for 10 minutes to form a thick upper surface internal electrode layer 14 of copper-nickel alloy on the thick film resistor layer 13, or A thick film paste containing silver palladium powder is printed on both ends of the film resistor layer 13 and baked in a nitrogen atmosphere at 750 ° C. to 950 ° C., preferably 850 ° C., for 10 minutes to obtain a thick film resistor. The step of laminating and forming the thick-film upper internal electrode layer 14 of the silver-palladium alloy on the body layer 13 is repeated a plurality of times to form the thick-film upper internal electrode layer 14 in a plurality of layers, thereby making it possible to reduce the resistance of the electrode portion. It is possible to suppress that the value is increased.
[0070]
【Example】
As a comparative example, measurement was made by comparing the thick-film low-resistance chip resistor shown in FIG. 3 with the embodiment of the present invention shown in FIG.
[0071]
Comparative Example 1
On a rectangular insulating substrate 1 having a length of about 3.2 mm and a width of about 1.6 mm, a thick film upper surface internal electrode layer made of copper paste having a sheet resistance of 2 mΩ / □, a film thickness of 15 μm, and a temperature coefficient of resistance of +3500 ppm / ° C. 3 and a thick-film low-resistance chip resistor in which a thick-film resistor layer 4 is formed from a paste containing copper-nickel powder having a sheet resistance of 30 mΩ / □, a film thickness of 15 μm, and a temperature coefficient of resistance of +50 ppm / ° C. The resistance value was 41.1 mΩ and the temperature coefficient of resistance was +229 ppm / ° C. (average value).
[0072]
Comparative Example 2
A thick-film upper internal electrode layer 3 is formed on a rectangular insulating substrate 1 having a length of about 3.2 mm and a width of about 1.6 mm with a copper paste having a sheet resistance of 2 mΩ / □, a film thickness of 15 μm, and a temperature coefficient of resistance of +3500 ppm / ° C. In the configuration in which the thick-film resistor layer 4 is formed from a paste containing copper nickel powder having a sheet resistance of 70 mΩ / □, a film thickness of / 15 μm, and a temperature coefficient of resistance of +20 ppm / ° C. The value was 93.1 mΩ and the temperature coefficient of resistance was +109 ppm / ° C. (average value).
[0073]
Example 1
The thick film resistor layer 13 and the thickness are formed on a rectangular insulating substrate 11 having a length of about 3.2 mm and a width of about 1.6 mm with a copper-nickel alloy paste having a sheet resistance of 30 mΩ / □, a film thickness of 15 μm, and a temperature coefficient of resistance of +50 ppm / ° C. In the thick-film low-resistance chip resistor on which the film upper surface internal electrode 14 was formed, the resistance value was 50.8 mΩ and the temperature coefficient of resistance was +93.5 ppm / ° C. (average value).
[0074]
Example 2
A thick film resistor layer 13 is formed on a rectangular insulating substrate 11 having a length of about 3.2 mm and a width of about 1.6 mm with a copper nickel alloy paste having a sheet resistance of 70 mΩ / □, a film thickness of 15 μm, and a temperature coefficient of resistance of +20 ppm / ° C. In the configuration of the thick-film low-resistance chip resistor in which the thick-film upper internal electrode layer 14 is formed of a copper-nickel alloy paste having a sheet resistance of 30 mΩ / □, a film thickness of 15 μm, and a resistance temperature coefficient of +50 ppm / ° C., the resistance value is 114 mΩ. , Temperature coefficient of resistance + 49.6 ppm / ° C (average value).
[0075]
As a result of this experiment, the resistance value of the conventional thick-film low-resistance chip resistor shown in FIG. 3 is increased by about 20%, but the temperature coefficient of resistance is significantly reduced (about 50% to 60%). confirmed.
[0076]
【The invention's effect】
According to the present invention, a thick film low resistance resistor having a low resistance temperature coefficient and a low resistance temperature coefficient of a thick film upper surface internal electrode layer laminated on a thick film resistor layer can be obtained.
[0077]
Further, the thick film upper surface internal electrode layer laminated on the thick film resistor layer has a low temperature coefficient of resistance, and a thick film low resistance resistor having a low resistance and a low temperature coefficient of resistance can be efficiently manufactured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing one embodiment of a thick film low resistance chip resistor of the present invention.
FIG. 2 is a flowchart showing one embodiment of a method of manufacturing the same thick film low resistance chip resistor.
FIG. 3 is a longitudinal sectional view showing a conventional thick film low resistance chip resistor.
[Explanation of symbols]
11 Insulating substrate
12 Thick film lower surface internal electrode layer
13 Thick film resistor layer
14 Thick film upper surface internal electrode layer
17 End face internal electrode layer

Claims (9)

絶縁基板と、
この絶縁基板の上面に形成された低抵抗でかつ低抵抗温度係数特性を有する厚膜抵抗体層と、
この厚膜抵抗体層の両端部にそれぞれ積層形成され低抵抗でかつ低抵抗温度係数特性を有する厚膜上面内部電極層と
を少なくとも備えたことを特徴とする厚膜低抵抗抵抗器。
An insulating substrate;
A thick-film resistor layer having a low resistance and a low-resistance temperature coefficient characteristic formed on the upper surface of the insulating substrate;
A thick-film low-resistance resistor comprising: a thick-film upper-surface internal electrode layer having a low resistance and a low-resistance temperature coefficient characteristic, each of which is laminated on both ends of the thick-film resistor layer.
絶縁基板と、
この絶縁基板の下面両端部に形成された厚膜下面内部電極層と、
この絶縁基板の上面に形成された低抵抗でかつ低抵抗温度係数特性を有する厚膜抵抗体層と、
この厚膜抵抗体層の両端部にそれぞれ積層形成され低抵抗でかつ低抵抗温度係数特性を有する厚膜上面内部電極層と、
この厚膜上面内部電極層と前記厚膜下面内部電極層とに接続して前記絶縁基板の両端面に形成された端面内部電極層と
を少なくとも備えたことを特徴とする厚膜低抵抗抵抗器。
An insulating substrate;
A thick film lower surface internal electrode layer formed at both ends of the lower surface of the insulating substrate;
A thick-film resistor layer having a low resistance and a low-resistance temperature coefficient characteristic formed on the upper surface of the insulating substrate;
A thick-film upper surface internal electrode layer having a low resistance and a low-resistance temperature coefficient characteristic, which is formed by being laminated on both ends of the thick-film resistor layer,
A thick-film low-resistance resistor comprising at least end-face internal electrode layers formed on both end faces of the insulating substrate connected to the thick-film upper-surface internal electrode layer and the thick-film lower-surface internal electrode layer. .
厚膜抵抗体層および厚膜上面内部電極層は銅ニッケル厚膜層であることを特徴とする請求項1または2記載の厚膜低抵抗抵抗器。3. The thick film low resistance resistor according to claim 1, wherein the thick film resistor layer and the thick film upper surface internal electrode layer are copper nickel thick film layers. 厚膜抵抗体層は銅ニッケル厚膜層であり、厚膜上面内部電極層は銀パラジウム厚膜層であること特徴とする請求項1または2記載の厚膜低抵抗抵抗器。3. The thick-film low-resistance resistor according to claim 1, wherein the thick-film resistor layer is a copper-nickel thick-film layer, and the thick-film upper internal electrode layer is a silver-palladium thick-film layer. 厚膜抵抗体層は、
銅が80〜30質量部とニッケルが20〜70質量部の各単体の混合物又は銅とニッケルとの合金粉体厚膜抵抗体要素と、
この厚膜抵抗体要素全体の100質量部に対して1〜10質量部の金属酸化物と、
前記厚膜抵抗体要素全体の100質量部に対して1〜10質量部のガラスとを少なくとも含むことを特徴とする請求項1ないし4いずれか記載の厚膜低抵抗抵抗器。
The thick film resistor layer is
80 to 30 parts by weight of copper and 20 to 70 parts by weight of nickel, or a mixture of each element or an alloy powder thick film resistor element of copper and nickel,
1 to 10 parts by mass of a metal oxide with respect to 100 parts by mass of the entire thick film resistor element;
The thick-film low-resistance resistor according to any one of claims 1 to 4, further comprising at least 1 to 10 parts by mass of glass with respect to 100 parts by mass of the entire thick-film resistor element.
絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、
この厚膜抵抗体層の両端部にそれぞれ銅ニッケル粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銅ニッケル合金の厚膜上面内部電極層を積層形成する工程と
を少なくとも具備したことを特徴とする厚膜低抵抗抵抗器の製造方法。
A step of printing and baking a thick film paste containing copper nickel powder on the upper surface of the insulating substrate to form a thick film resistor layer of copper nickel alloy,
Printing and baking a thick film paste containing copper nickel powder on both ends of the thick film resistor layer to form a thick film upper surface internal electrode layer of copper nickel alloy on the thick film resistor layer at least. A method for manufacturing a thick-film low-resistance resistor, comprising:
絶縁基板の下面両端部に厚膜下面内部電極層を形成する工程と、
前記絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、
この厚膜抵抗体層の両端部にそれぞれ銅ニッケル粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銅ニッケル合金の厚膜上面内部電極層を積層形成する工程と、
この厚膜上面内部電極層と前記厚膜下面内部電極層とに接続した端面内部電極層を前記絶縁基板の両端面に形成する工程と
を少なくとも具備したことを特徴とする厚膜低抵抗抵抗器の製造方法。
Forming a thick film lower surface internal electrode layer at both ends of the lower surface of the insulating substrate;
A step of printing and firing a thick film paste containing copper nickel powder on the upper surface of the insulating substrate to form a thick film resistor layer of a copper nickel alloy,
A step of printing and firing a thick film paste containing copper nickel powder on both ends of the thick film resistor layer to form a thick film upper surface internal electrode layer of copper nickel alloy on the thick film resistor layer,
Forming end face internal electrode layers connected to the thick film upper surface internal electrode layer and the thick film lower surface internal electrode layer on both end faces of the insulating substrate. Manufacturing method.
絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、
この厚膜抵抗体層の両端部にそれぞれ銀パラジウム粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銀パラジウム合金の厚膜上面内部電極層を積層形成する工程とを少なくとも具備したことを特徴とする厚膜低抵抗抵抗器の製造方法。
A step of printing and baking a thick film paste containing copper nickel powder on the upper surface of the insulating substrate to form a thick film resistor layer of copper nickel alloy,
Printing and baking a thick film paste containing silver palladium powder on both ends of the thick film resistor layer to form a thick film upper surface internal electrode layer of a silver-palladium alloy on the thick film resistor layer at least. A method for manufacturing a thick-film low-resistance resistor, comprising:
絶縁基板の下面両端部に厚膜下面内部電極層を形成する工程と、
前記絶縁基板の上面に銅ニッケル粉体を含む厚膜ペーストを印刷焼成して銅ニッケル合金の厚膜抵抗体層を形成する工程と、
この厚膜抵抗体層の両端部にそれぞれ銀パラジウム粉体を含む厚膜ペーストを印刷焼成してこの厚膜抵抗体層に銀パラジウム合金の厚膜上面内部電極層を積層形成する工程と、
この厚膜上面内部電極層と前記厚膜下面内部電極層とに接続した端面内部電極層を前記絶縁基板の両端面に形成する工程と
を少なくとも具備したことを特徴とする厚膜低抵抗抵抗器の製造方法。
Forming a thick film lower surface internal electrode layer at both ends of the lower surface of the insulating substrate;
A step of printing and firing a thick film paste containing copper nickel powder on the upper surface of the insulating substrate to form a thick film resistor layer of a copper nickel alloy,
A step of printing and firing a thick film paste containing silver palladium powder on both ends of the thick film resistor layer to form a thick film upper surface internal electrode layer of a silver-palladium alloy on the thick film resistor layer,
Forming end face internal electrode layers connected to the thick film upper surface internal electrode layer and the thick film lower surface internal electrode layer on both end faces of the insulating substrate. Manufacturing method.
JP2002214200A 2002-07-23 2002-07-23 Thick film low resistance resistor and method for manufacturing the same Pending JP2004056001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002214200A JP2004056001A (en) 2002-07-23 2002-07-23 Thick film low resistance resistor and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214200A JP2004056001A (en) 2002-07-23 2002-07-23 Thick film low resistance resistor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004056001A true JP2004056001A (en) 2004-02-19

Family

ID=31936586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214200A Pending JP2004056001A (en) 2002-07-23 2002-07-23 Thick film low resistance resistor and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004056001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066475A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Mining Co Ltd Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066475A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Mining Co Ltd Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor

Similar Documents

Publication Publication Date Title
KR100709914B1 (en) Multilayer chip varistor
KR101022980B1 (en) Ceramic electronic component
JP4431052B2 (en) Resistor manufacturing method
JP2000124007A (en) Chip thermistor and method of producing the same
JP3665591B2 (en) Chip resistor
JP2004056001A (en) Thick film low resistance resistor and method for manufacturing the same
JPH08316002A (en) Electronic component and composite electronic part
JP2022012055A (en) Resistor
JP5240286B2 (en) Chip thermistor and chip thermistor manufacturing method
JP3134067B2 (en) Low resistance chip resistor and method of manufacturing the same
JP2009246147A (en) Method of manufacturing chip resistor
JP3246258B2 (en) Manufacturing method of chip thermistor and chip thermistor
JP4729398B2 (en) Chip resistor
JP2006019323A (en) Resistance composition, chip resistor and their manufacturing method
JP2839262B2 (en) Chip resistor and manufacturing method thereof
WO2021065807A1 (en) Ntc thermistor element
JP2515202B2 (en) Ceramic wiring board and manufacturing method thereof
JP2004088019A (en) Electrode composite and electronic component
JP2000124008A (en) Composite chip thermistor electronic component and its manufacture
JP2004031849A (en) Super low-resistance resistor and its manufacture
JPH09246004A (en) Resistor and its manufacture
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JP2001143905A (en) Method of manufacturing chip type thermistor
JPH03280491A (en) Circuit board
JPH0521935A (en) Circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080820