JP2004055861A - Polishing agent and polishing method - Google Patents

Polishing agent and polishing method Download PDF

Info

Publication number
JP2004055861A
JP2004055861A JP2002211942A JP2002211942A JP2004055861A JP 2004055861 A JP2004055861 A JP 2004055861A JP 2002211942 A JP2002211942 A JP 2002211942A JP 2002211942 A JP2002211942 A JP 2002211942A JP 2004055861 A JP2004055861 A JP 2004055861A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
film
barrier film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002211942A
Other languages
Japanese (ja)
Other versions
JP4206233B2 (en
Inventor
Satoshi Takemiya
竹宮 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Seimi Chemical Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002211942A priority Critical patent/JP4206233B2/en
Publication of JP2004055861A publication Critical patent/JP2004055861A/en
Application granted granted Critical
Publication of JP4206233B2 publication Critical patent/JP4206233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing agent and a polishing method that are suitable specifically for a second polishing process for eliminating a barrier film in a substrate formed with a interconnection metal film and the barrier film on an insulating film. <P>SOLUTION: There is provided the polishing agent containing (A) oxide minute particles, (B) monosaccharide sugar, oligosaccharide with 2 to 20 of monosaccharide combined , sugar alcohols made from these oligosaccharide, one or more sorts chosen from a group comprising sugar ester made from these sugar alcohols, (C) specific triazole compounds, and (D) water. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス製造工程に用いられる研磨剤に関し、より詳しくはバリア膜材料としてタンタル系金属を用いた埋め込み金属配線の形成に好適な研磨剤およびそれを用いた基板の研磨方法に関する。
【0002】
【従来の技術】
近年、半導体集積回路の高集積化・高機能化にともない、微細化・高密度化のための微細加工技術の開発が求められている。半導体デバイス製造工程、特に多層配線形成工程においては、層間絶縁膜や埋め込み配線の平坦化技術が重要である。すなわち、半導体製造プロセスの微細化・高密度化により配線が多層化するにつれ、各層での表面の凹凸が大きくなりやすく、その段差がリソグラフィの焦点深度を越える等の問題を防ぐために、多層配線形成工程での高平坦化技術が重要となってくる。
【0003】
配線材料としては、従来使われてきたAl合金に比べて比抵抗が低く、エレクトロマイグレーション耐性に優れることから、Cuが着目されている。Cuはその塩化物ガスの蒸気圧が低く、従来から用いられてきた反応性イオンエッチング法(RIE:Reactive Ion Etching)では配線形状への加工が難しいため、配線の形成にはダマシーン(Damascene)法が用いられる。これは絶縁膜に配線用の溝パターンやビア等の凹部を形成し、次にバリア膜を形成した後に、Cuを溝部に埋め込むようにスパッタ法やメッキ法等で成膜し、その後凹部以外の絶縁膜表面が露出するまで余分なCuとバリア膜を化学的機械的研磨法(CMP:Chemical Mechanical Polishing、以下CMPという。)で除去して、表面を平坦化する方法である。近年は、このように凹部にCuが埋め込まれたCu配線とビア部を同時に形成するデュアルダマシーン(dual Damascene)法が主流となっている。
【0004】
このようなCu埋め込み配線形成においては、Cuの絶縁膜中への拡散防止のために、バリア膜としてタンタル、タンタル合金または窒化タンタル等のタンタル化合物が形成される。したがってCuを埋め込む配線部分以外では、露出したバリア膜をCMPにより取り除く必要がある。しかしバリア膜はCuに比べて非常に硬いために、十分な研磨速度が得られない場合が多い。そこで図1に示すように配線金属膜を除去する第1研磨工程とバリア膜を除去する第2研磨工程からなる2段階研磨法が提案されている。
【0005】
図1は、埋め込み配線をCMPにより形成する方法を示す断面図であり、(a)は研磨前、(b)は配線金属膜4を除去する第1研磨工程の終了後、(c)はバリア膜3を除去する第2研磨工程終了後を示す。図1(a)に示すように、Si基板1上に埋め込み配線5を形成するための溝が形成された絶縁膜2が形成され、その上にバリア膜3、その上に配線金属膜4(Cu膜)が形成されており、第1研磨工程で配線金属膜4を、第2研磨工程でバリア膜3を除去する。
【0006】
しかし、従来の研磨剤を用いたCMPでは、Cuの埋め込み配線5のディッシングやエロージョンが大きくなる問題があった。ここでディッシングとは、幅の広い配線部で発生しやすいもので、図2に示すように配線部の配線金属膜4が過剰に研磨され中央部が窪んだ状態をいう。エロージョンとは、密集した配線部で発生しやすいもので、図3に示すように配線密度の低い部分に比べ、密集した配線部の絶縁膜2が過剰に研磨され、絶縁膜2が薄くなる現象をいう。なお、図2、3においてはバリア膜3は省略している。
【0007】
従来の研磨剤を用いた場合は、バリア膜3の研磨速度が配線金属膜4の研磨速度に対し非常に小さいため、バリア膜3を除去する間に配線部のCuが過剰に研磨されて大きなディッシングが生じていた。また、配線密度の低い部分に比べ、高密度配線部のバリア膜3やその下の絶縁膜2に加わる研磨圧力が相対的に高くなり、そのため第2研磨工程での研磨速度が配線密度により大幅に異なり、その結果高密度配線部の絶縁膜2が過剰に研磨されて、大きなエロージョンが生じていた。ディッシングやエロージョンが発生すると、配線抵抗の増加やエレクトロマイグレーションが起こりやすくなり、デバイスの信頼性を低下させる問題があった。
【0008】
【発明が解決しようとする課題】
バリア膜として用いられるタンタルやタンタル化合物は化学的にはエッチングが難しく、またCuに比べて硬度が高いために、機械的にも研磨による除去は容易ではない。研磨速度を上げるために、砥粒の硬度を高くすると柔らかいCu配線にスクラッチが発生して、電気的不良などの問題が発生しやすい。また、砥粒の濃度を高めると、絶縁膜の研磨速度も同時に大きくなるため、大きなエロージョンが発生する。さらに研磨剤中での砥粒の分散状態を維持することが困難になり、経時的に沈降やゲル化が生じるなどの分散安定性の問題が生じる。
【0009】
また、CMPにおいては研磨剤によるCuの腐食を防止する必要がある。Cuおよび銅合金に対する腐食抑制剤の中でも最も効果的で広く利用されているものとして、ベンゾトリアゾール(以下、BTAという。)およびその誘導体が知られている(能登谷武紀著、「ベンゾトリアゾール系インヒビターの腐食抑制機構」、日本防錆技術協会発行,1986年,1頁)。BTAはCuおよび銅合金表面に緻密な皮膜を形成し、酸化還元反応を抑制してエッチングを防止するために、Cu配線部のディッシングを防止するための研磨剤中への添加物として有効である。
【0010】
また、例えば、特開平8−83780号公報には、研磨剤にBTAまたはその誘導体を含有させてCuの表面に保護膜を形成することにより、ディッシングを防止することが記載されている。
【0011】
さらに、特開平11−21546号公報には、酸化セリウム、アルミナ、シリカ、チタニア、ジルコニア等の金属酸化物砥粒と尿素と過酸化水素を含むスラリーからなる研磨剤が記載されている。しかしこの研磨剤は、バリア膜の研磨速度がCu配線の研磨速度に対し非常に小さいため、ディッシングが発生しやすいことやスラリーの安定性が悪い等の問題がある。
【0012】
そこで、本発明の目的は、絶縁膜上に配線金属膜とバリア膜が形成された基板の研磨において、高い研磨速度を有しながら、ディッシングやエロージョンの発生を抑制しつつ、スクラッチの少ない信頼性の高い電気特性に優れた埋め込み配線部の形成を可能とする、金属を研磨するための研磨剤であって、砥粒が分散したスラリーからなり、経時的に沈殿やゲル化等を生じにくく十分に安定な研磨剤を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、基板を研磨するための化学的機械的研磨用研磨剤であって、下記(A)、(B)、(C)および(D)を含有することを特徴とする研磨剤を提供する。
(A)酸化物微粒子、
(B)単糖、単糖が2〜20個結合したオリゴ糖、およびこれらの糖アルコールからなる群から選ばれる1種以上、
(C)式1で表されるベンゾトリアゾール系化合物(ただし、Rは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基またはカルボン酸基。)、
【化2】

Figure 2004055861
(D)水。
【0014】
また、本発明は、研磨剤を研磨定盤上の研磨パッドに供給し、被研磨面と研磨パッドを接触させ、両者間の相対運動により研磨する方法であって、研磨剤が上述の研磨剤であり、被研磨面が配線金属膜とバリア膜と絶縁膜の形成された基板であることを特徴とする研磨方法を提供する。
【0015】
【発明の実施の形態】
本発明の研磨剤(以下、本研磨剤という。)は、半導体基板上に形成された配線金属膜およびバリア膜を研磨するためのCMP用研磨剤として好適である。特に、タンタル、タンタル合金または窒化タンタル等のタンタル化合物をバリア膜として凹部を有する絶縁膜上に形成し、その凹部を埋め込むように配線金属膜が形成された基板をCMPにより研磨して、埋め込み配線やビア等の電気的接続部を形成する工程において好適に使用ができる。本研磨剤は、配線金属膜の研磨とバリア膜の研磨を分ける2段階研磨法においては、配線金属膜を除去する第1研磨工程に使用してもよいが、バリア膜の露出した後に行う第2研磨工程において使用すると特に好適である。
【0016】
研磨剤中の成分(A)である、酸化物微粒子は研磨砥粒を構成し、具体的には、シリカ、アルミナ、酸化セリウム(セリア)、酸化ジルコニウム(ジルコニア)、酸化チタン(チタニア)、酸化スズ、酸化亜鉛、酸化ゲルマニウムおよび酸化マンガンからなる群から選ばれる1種以上が好ましい。シリカとしては、種々の公知の方法で製造されるものを使用できる。例えば、四塩化ケイ素を酸素と水素の火炎中で気相合成したヒュームドシリカやケイ酸ナトリウムをイオン交換したコロイダルシリカまたはケイ素アルコキシドを液相で加水分解したコロイダルシリカが挙げられる。アルミナとしては、コロイダルアルミナが好ましく使用できる。また、液相法や気相法で製造した酸化セリウム、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛も好ましく使用できる。なかでも、粒径の均一な高純度品を得ることができるコロイダルシリカが好ましい。
【0017】
成分(A)の平均粒径は、研磨特性と分散安定性の点から、5〜500nmが好ましく、特に10〜300nmがより好ましい。また、本研磨剤中の成分(A)の濃度は、研磨剤の全質量に対し、好ましくは0.5〜20質量%、特に好ましくは、1〜10質量%の範囲で研磨速度、均一性、材料選択性、分散安定性等を考慮して適宜設定される。
【0018】
成分(B)としては、単糖、単糖が2〜20個結合したオリゴ糖、これらの糖アルコール、およびこれらの糖エステルからなる群から選ばれる1種以上から選ばれる。本発明では、成分(B)を含有させることにより、成分(A)の酸化物微粒子に含まれる活性の高い表面水酸基に基因する凝集やゲル化を抑制でき、スクラッチが低減できることを見出された。これにより、バリア膜の研磨速度を高速度に保ちながら、ディッシングやエロージョンが小さく、かつスクラッチが少なく信頼性の高い電気特性に優れた埋め込み配線部の形成が可能となる。
【0019】
成分(B)の好ましい具体例としては、グルコース、ソルビトール、エリスロール、エリスリトール、キシロース、キシリトール、マンノース、マンニトール、マルトース、マルチトール、およびトレハロースからなる群から選ばれる1種以上が挙げられる。なかでも、ガラクトオリゴ糖、フラクトオリゴ糖、乳果オリゴ糖、キチンオリゴ糖、およびショ糖脂肪酸エステルからなる群から選ばれる1種以上が挙げられる。特に、ショ糖脂肪酸エステルで、炭素数が好ましくは2〜20の脂肪酸のショ糖エステルが好適である。
【0020】
成分(B)の濃度は、研磨特性と分散安定性の点から、研磨剤の全質量に対し、0.01〜50質量%が好ましく、研磨特性と分散安定性の点から0.5〜30質量%がより好ましい。
【0021】
成分(C)としては、式1で表されるベンゾトリアゾール系化合物(ただし、式1中、Rは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基またはカルボン酸基である。)が好ましい。成分(C)は、配線金属部のディッシングを防止するために配線金属表面に保護膜を形成する機能を有するものである。配線金属がCuからなる場合は、Cu表面に物理吸着または化学吸着して皮膜を形成することによりCuの溶出を抑制できることが必要であり、成分(C)はこの機能を有する。
【0022】
【化3】
Figure 2004055861
【0023】
成分(C)としては、具体的にはBTA、BTAのベンゼン環の4または5位置のH原子の一つが、メチル基で置換されたトリルトリアゾール(TTA)またはカルボン酸基で置換されたベンゾトリアゾール−4−カルボン酸等が挙げられる。これらは単独で使用してもよく、2種以上を混合して使用してもよい。成分(C)は、研磨特性の点から本研磨剤の全質量に対し、0.001〜5質量%含まれることが好ましく、0.01〜0.5質量%含まれることがより好ましい。
【0024】
成分(D)の水は、本研磨剤中に本研磨剤の全質量に対し、40〜98質量%、特に60〜90質量%含まれることが好ましい。水は本研磨剤の流動性を制御する機能を有するので、その含有量は研磨速度、平坦化特性等の所望とする研磨特性に合わせて適宜設定される。
【0025】
上記成分(D)に加えて、本研磨剤には、比誘電率の大きな溶媒を含有させることにより、研磨特性の安定性や分散安定性を高めることができる。この効果は、比誘電率の大きな溶媒(極性溶媒)が、溶媒和により電解質を高濃度で溶解できるためと思われる。従来の研磨剤は砥粒の分散媒として水のみを用いている場合が多いが、水は表面張力が高いため、研磨定盤上の研磨パッドと被研磨面とのきわめて小さな隙間に充分な量の研磨剤を常時供給するには流動性にやや乏しい。本研磨剤では粘度の低い高誘電率溶媒を共存させることにより流動性も改善できる。
【0026】
本発明で使用される比誘電率の大きな溶媒の好ましい例としては、メタノール、エタノール、イソプロパノール、エテレングリコール、プロピレングリコール、N−メテル−2−ピロリドンが挙げられる。これらの比誘電率の大きな溶媒は、上記成分(D)の全質量に対し  好ましくは、0.1〜 10質量%、特には0.5〜5質量%使用されるのが好適である。
【0027】
また、本研磨剤に対して酸化剤を含有させることにより、バリア膜表面に酸化皮膜を形成させ、機械的な力で基板表面から酸化皮膜を除去することによりバリア膜の研磨を促進させることができる。酸化剤としては、過酸化水素、ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、過塩素酸塩、過硫酸塩、過炭酸塩、過ホウ酸塩および過リン酸塩から選ばれる1種以上が好ましい。上記各酸の好ましい塩としては、アンモニウム塩や、カリウム塩等のアルカリ金属塩を使用できる。なかでも、アルカリ金属成分を含有せず、有害な副生成物を生じない過酸化水素が好ましい。酸化剤の濃度は、研磨促進の十分な効果を得る点から本研磨剤の全質量に対し、0.5〜20質量%の範囲で、研磨速度、研磨剤スラリーの均一性等を考慮して適宜設定することが好ましい。
【0028】
本研磨剤には、研磨特性と分散安定性の観点から、酸、アルカリ、およびpH緩衝剤からなる群より選ばれる1種以上を含有させて、そのpHを好ましくは2〜10、特には4〜8に制御することが好ましい。酸としては、硝酸、硫酸およびカルボン酸から選ばれる1種以上が好ましい。なかでも、酸化力のあるオキソ酸であり、ハロゲンを含まない硝酸が好ましい。本研磨剤中の酸の濃度は、研磨剤の全質量に対し、0.01〜20質量%が好ましい。
【0029】
また、上記のアルカリとしては、アンモニア、水酸化カリウム、またはテトラメチルアンモニウムヒドロキシドやテトラエチルアンモニウムヒドロキシド(以下、TEAHという。)のような4級アンモニウムヒドロキシド等が使用できる。アルカリ金属を含まない方が望ましい場合には、アンモニアが好適である。アルカリの濃度は、研磨剤の全質量に対し、0.01〜20質量%が好ましい。
【0030】
また、上記pH緩衝剤としては、一般のpH緩衝能がある物質ならば使用できるが、多価カルボン酸であるコハク酸、クエン酸、シュウ酸、フタル酸、酒石酸およびアジピン酸から選ばれる1種以上が好ましい。また、グリシルグリシンや炭酸アルカリも使用できる。pH緩衝剤の濃度は、研磨剤全質量に対し、0.01〜10質量%が好ましい。
【0031】
本研磨剤は、配線金属膜とバリア膜が形成された基板を研磨するのに好適である。この場合、特に、バリア膜がタンタル、タンタル合金またはタンタル化合物から選ばれる1種以上からなる膜において、高い効果が得られる。しかし、他の金属等からなる膜に対しても適用でき、バリア膜としてタンタル以外の金属または金属化合物、例えば、Ti、TiN、TiSiN、WN等からなる場合も、同様の効果を得られる。
【0032】
また、本研磨剤は、配線金属膜が銅、銅合金および銅化合物から選ばれる1種以上の場合に高い効果が得られるが、Cu以外の金属、例えば、Al、W、Ag、Pt、Au等の金属膜に対しても適用可能である。また、上記基板における絶縁膜としては、二酸化ケイ素またはSiOFからなる膜、有機SOG(Spin on glass)により得られる有機成分を含む膜)、ポーラスシリカ等の低誘電率材料からなる膜が挙げられる。
【0033】
本研磨剤は、配線金属膜とバリア膜が形成された絶縁膜を有する基板を研磨するのに好適であり、本研磨剤は以下を満足する特性を有する。すなわち、配線金属膜、バリア膜および絶縁膜を同一条件により研磨した場合、配線金属膜の研磨速度(RCu)とバリア膜研磨速度(RBa)との比(RCu/RBa)が、0<RCu/RBa≦0.5を満たし、かつ絶縁膜の研磨速度(RIn)と上記バリア膜の研磨速度との比(RIn/RBa)が、0<RIn/RBa≦1を満たすことができる。
【0034】
本発明の研磨方法は、前記研磨剤を研磨定盤上の研磨パッドに供給し、被研磨面と研磨パッドを接触させ、両者間の相対運動により研磨する研磨方法である。必要により、パッドコンディショナーを研磨パッドの表面に接触させて、研磨パッド表面のコンディショニングを行いながら研磨してもよい。研磨パッドの材質としてはポリエステルやポリウレタンなどがあるが、研磨パッドの材質はこれに限定されるものではなく、使用される研磨剤組成物のスラリーなどとの組み合わせにより適宜選択することができる。研磨圧力は、研磨パッドの種類、研磨速度、研磨剤の粘性等の物性により設定できるが、好ましくは0.7×10Pa〜2.1×10Paが採用される。研磨剤の供給量としては、好ましくは50ml/min〜500ml/minが好適である。
【0035】
本研磨剤は、絶縁膜に配線用の溝パターンやビア等の凹部を形成し、次にバリア膜を形成した後に、配線金属膜を形成する、Cuを溝部に埋め込むようにスパッタ法やメッキ法等で成膜した基板において、凹部以外の絶縁膜表面が露出するまで配線金属膜のCuとバリア膜をCMPで除去して、埋め込み金属配線を形成する方法に好適に用いられる。すなわち、図1に示すような2段階の研磨工程において、図1(b)の状態から図1(c)の状態まで研磨する第2研磨工程で使用すると、ディッシングやエロージョンが形成されにくく好適である。
【0036】
【実施例】
以下に本発明を、実施例(例1〜18)および比較例(例19、20)によりさらに具体的に説明するが、本発明はこれらにより限定されない。
[研磨剤の調製]
純水800gに対して、酸として60%硝酸を17g、アルカリとして10%アンモニア水を50g、およびpH緩衝剤としてコハク酸を2g加えて10分間撹拌してa液を得た。次に、このa液に対して、成分(B)と成分(C)とを溶解してb液を得た。これを例1、2、19及び20に用いた。例3〜6ではアルカリを10%水酸化カリウム水溶液を50gに変更した。例9〜18ではpH緩衝剤をクエン酸2gに変更した。
【0037】
次に、成分(A)の分散液を上記b液に徐々に添加後、アルカリを徐々に添加して、pHを調整した。さらに酸化剤の水溶液を添加して30分間撹拌して、研磨剤を得た。各例において使用した、成分(A)、成分(B)、成分(C)の種類、それらの研磨剤全質量に対する濃度(質量%)、および研磨剤のpHを表1に示し、また、使用した酸化剤、酸、アルカリおよびpH緩衝剤の種類とそれらの研磨剤全質量に対する濃度を表2に示した。
【0038】
[研磨条件]
研磨は、以下の装置および条件で行った。
研磨機:全自動CMP装置:MIRRA(Applied Materials 社商品名)研磨圧力:20kPa、回転数:プラテン(定盤)103rpm、ヘッド(基板保持部)97rpm、研磨剤供給速度:200mL/分、研磨パッド:IC1000(ロデール社製)。
【0039】
[被研磨物]
(ブランケットウェハ)
以下の(1)〜(3)を用いた。これらはいずれも、Sematech 社製である。(1)Cu(配線金属膜)の研磨速度評価用ウェハ:基板上に厚さ1500nmのCu層をメッキで成膜した8インチウェハ。
(2)Ta(バリア膜)の研磨速度評価用ウェハ:基板上に厚さ200nmのTa層をスパッタで成膜した8インチウェハ。
(3)SiO(絶縁膜)の研磨速度評価用ウェハ:基板上に厚さ800nmのSiO層をプラズマCVDで成膜した8インチウェハ。
(パターンウェハ)
基板上に形成された絶縁膜に対し、配線密度50%で、配線幅5μmおよび50μmの配線パターンを形成し、その配線パターンの形成された絶縁膜の上に、厚さ25nmのTa層をスパッタで成膜し、さらにその上に厚さ1500nmのCu層をメッキで成膜した8インチウェハ(商品名:831CMP000、Sematech 社製)。
【0040】
[研磨剤の特性評価方法]
配線金属膜、バリア膜、絶縁膜それぞれの研磨速度の評価には、ブランケットウェハを使用し、ディッシング、エロージョンの評価にはパターンウェハを使用した。パターンウェハの研磨においては、配線金属膜を除去する第1研磨工程と、バリア膜を除去する第2研磨工程と、からなる2段階研磨法を行った。第1研磨工程用の研磨剤には、アルミナ、過酸化水素、クエン酸、ポリアクリル酸アンモニウムおよび水が研磨剤の全質量に対し、それぞれ、3質量%、4質量%、0.1質量%、0.05質量%および92.85質量%で構成される研磨剤を使用した。なお、実施例、比較例ともに第1研磨工程では全て上記研磨剤を用いた。
【0041】
第1研磨工程後に絶縁膜上のTaが露出した段階で、配線幅5μmの位置のディッシングは40nm、配線幅50μmの位置のディッシングは60nmであり、エロージョンはいずれの配線幅でも0nmであった。その後、絶縁膜上のTaが消失するまで、表1および表2に示された組成の各例の研磨剤を用いて第2研磨工程を実施した。表1および表2における物質の濃度は、研磨液全液量に対する質量比(%)を示す。
【0042】
研磨特性については次の方法で評価した。研磨速度は、研磨前後の膜厚から算出した。膜厚の測定には、CuとTaについては四探針法による表面抵抗から算出するシート抵抗測定装置:RS75(KLAテンコール社商品名)を用い、絶縁膜については光干渉式全自動膜厚測定装置:UV1280SE(KLAテンコール社商品名)を用いた。ディッシングとエロージョンの平坦化特性については、触針式で段差を測定する高解像度プロファイラ:HRP100(KLAテンコール社商品名)を用いた。
【0043】
表3にCu、Ta、SiOの各膜の研磨速度(単位はnm/分)を、表4にディッシングとエロージョンそれぞれによる段差(単位はnm)を示す。
【0044】
【表1】
Figure 2004055861
【0045】
【表2】
Figure 2004055861
【0046】
【表3】
Figure 2004055861
【0047】
【表4】
Figure 2004055861
【0048】
【発明の効果】
本発明の研磨剤によると、絶縁膜上に配線金属膜とバリア膜が形成された基板の、特に、バリア膜を除去する第2の研磨工程において、高い研磨速度でありながらディッシングやエロージョンの発生を抑制しつつ、スクラッチの少ない信頼性の高い電気特性に優れた埋め込み配線部の形成が可能である。
【図面の簡単な説明】
【図1】CMPによる埋め込み配線の形成方法を示す工程断面図。
(a)研磨前、(b)配線金属膜を除去する第1研磨工程終了後、(c)バリア膜を除去する第2研磨工程終了後。
【図2】ディッシングの形成過程を示す断面図。
(a)研磨前、(b)研磨後。
【図3】エロージョンの形成過程を示す断面図。
(a)研磨前、(b)研磨後。
【符号の説明】
1:シリコン基板
2:絶縁膜
3:バリア膜
4:配線金属膜
5:埋め込み配線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abrasive used in a semiconductor device manufacturing process, and more particularly to an abrasive suitable for forming a buried metal wiring using a tantalum-based metal as a barrier film material and a method for polishing a substrate using the same.
[0002]
[Prior art]
In recent years, with the higher integration and higher functionality of semiconductor integrated circuits, the development of microfabrication technology for miniaturization and higher density has been demanded. In a semiconductor device manufacturing process, particularly in a multilayer wiring forming process, a technique for planarizing an interlayer insulating film and a buried wiring is important. In other words, as wiring becomes multilayered due to miniaturization and higher density of the semiconductor manufacturing process, surface irregularities on each layer are likely to increase, and multilayer wiring is formed to prevent problems such as the step exceeding the depth of focus of lithography. High planarization technology in the process becomes important.
[0003]
As a wiring material, Cu has attracted attention because it has a lower specific resistance than an conventionally used Al alloy and is excellent in electromigration resistance. Cu has a low vapor pressure of its chloride gas, and it is difficult to process into a wiring shape by a reactive ion etching method (RIE) that has been conventionally used. Therefore, a damascene method is used for forming a wiring. Is used. This is because a recess such as a trench pattern for wiring or vias is formed in the insulating film, and then a barrier film is formed, and then a film is formed by sputtering or plating so that Cu is embedded in the groove, and then other than the recess In this method, excess Cu and the barrier film are removed by chemical mechanical polishing (CMP) until the insulating film surface is exposed, and the surface is planarized. In recent years, a dual damascene method in which a Cu wiring in which Cu is embedded in a concave portion and a via portion are formed at the same time has become mainstream.
[0004]
In such Cu embedded wiring formation, a tantalum compound such as tantalum, a tantalum alloy, or tantalum nitride is formed as a barrier film to prevent diffusion of Cu into the insulating film. Therefore, it is necessary to remove the exposed barrier film by CMP except for the wiring portion where Cu is embedded. However, since the barrier film is very hard compared to Cu, a sufficient polishing rate cannot often be obtained. Therefore, as shown in FIG. 1, a two-step polishing method has been proposed which includes a first polishing step for removing the wiring metal film and a second polishing step for removing the barrier film.
[0005]
1A and 1B are cross-sectional views showing a method of forming a buried wiring by CMP. FIG. 1A shows a state before polishing, FIG. 1B shows a method after the first polishing step for removing the wiring metal film 4, and FIG. The figure shows after the end of the second polishing step for removing the film 3. As shown in FIG. 1A, an insulating film 2 having a groove for forming a buried wiring 5 is formed on a Si substrate 1, a barrier film 3 is formed thereon, and a wiring metal film 4 ( Cu film) is formed, and the wiring metal film 4 is removed in the first polishing step, and the barrier film 3 is removed in the second polishing step.
[0006]
However, CMP using a conventional polishing agent has a problem that dishing and erosion of the Cu embedded wiring 5 are increased. Here, dishing is likely to occur in a wide wiring portion, and means a state where the wiring metal film 4 in the wiring portion is excessively polished and the central portion is depressed as shown in FIG. Erosion is likely to occur in a dense wiring portion, and as shown in FIG. 3, the insulating film 2 in the dense wiring portion is excessively polished and the insulating film 2 becomes thin as compared with a portion having a low wiring density. Say. 2 and 3, the barrier film 3 is omitted.
[0007]
When the conventional polishing agent is used, the polishing rate of the barrier film 3 is very small relative to the polishing rate of the wiring metal film 4, so that Cu in the wiring portion is excessively polished while the barrier film 3 is removed and is large. Dishing was occurring. Further, the polishing pressure applied to the barrier film 3 in the high-density wiring portion and the insulating film 2 therebelow becomes relatively higher than that in the portion where the wiring density is low, so that the polishing rate in the second polishing step greatly depends on the wiring density. In contrast, as a result, the insulating film 2 in the high-density wiring portion is excessively polished, resulting in a large erosion. When dishing and erosion occur, wiring resistance increases and electromigration tends to occur, and there is a problem of reducing device reliability.
[0008]
[Problems to be solved by the invention]
Tantalum and tantalum compounds used as a barrier film are chemically difficult to etch, and have a hardness higher than that of Cu. Therefore, removal by polishing is not easy mechanically. If the hardness of the abrasive grains is increased in order to increase the polishing rate, scratches are generated in the soft Cu wiring, and problems such as electrical defects are likely to occur. Further, when the concentration of the abrasive grains is increased, the polishing rate of the insulating film is increased at the same time, so that a large erosion occurs. Furthermore, it becomes difficult to maintain the dispersed state of the abrasive grains in the polishing agent, resulting in dispersion stability problems such as sedimentation and gelation over time.
[0009]
In CMP, it is necessary to prevent corrosion of Cu by an abrasive. Among the most effective and widely used corrosion inhibitors for Cu and copper alloys, benzotriazole (hereinafter referred to as BTA) and its derivatives are known (Takeki Notoya, “benzotriazole inhibitors”). Corrosion Inhibition Mechanism ", published by Japan Anticorrosion Technology Association, 1986, page 1). BTA is effective as an additive in the polishing agent to prevent dishing of Cu wiring parts in order to form a dense film on the surface of Cu and copper alloy and prevent etching by suppressing oxidation-reduction reaction. .
[0010]
For example, JP-A-8-83780 discloses that dishing is prevented by adding BTA or a derivative thereof to an abrasive to form a protective film on the surface of Cu.
[0011]
Further, JP-A No. 11-21546 discloses an abrasive comprising a slurry containing metal oxide abrasive grains such as cerium oxide, alumina, silica, titania and zirconia, urea and hydrogen peroxide. However, this polishing agent has problems such as easy dishing and poor slurry stability because the polishing rate of the barrier film is very small relative to the polishing rate of the Cu wiring.
[0012]
Accordingly, an object of the present invention is to provide a low-scratch reliability while suppressing the occurrence of dishing and erosion while having a high polishing rate in polishing a substrate having a wiring metal film and a barrier film formed on an insulating film. A polishing agent for polishing metal that enables the formation of embedded wiring parts with excellent electrical characteristics, and is made of a slurry in which abrasive grains are dispersed, and is sufficiently resistant to precipitation and gelation over time Is to provide a stable abrasive.
[0013]
[Means for Solving the Problems]
The present invention provides an abrasive for chemical mechanical polishing for polishing a substrate, comprising the following (A), (B), (C) and (D): To do.
(A) oxide fine particles,
(B) one or more selected from the group consisting of monosaccharides, oligosaccharides having 2 to 20 monosaccharides bonded thereto, and sugar alcohols thereof,
(C) a benzotriazole compound represented by Formula 1 (wherein R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxylic acid group);
[Chemical 2]
Figure 2004055861
(D) Water.
[0014]
The present invention also provides a method of supplying an abrasive to a polishing pad on a polishing surface plate, bringing the surface to be polished into contact with the polishing pad, and polishing by relative movement between the two, wherein the abrasive is the above-mentioned abrasive The polishing method is characterized in that the surface to be polished is a substrate on which a wiring metal film, a barrier film, and an insulating film are formed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The abrasive of the present invention (hereinafter referred to as the present abrasive) is suitable as a CMP abrasive for polishing a wiring metal film and a barrier film formed on a semiconductor substrate. In particular, a tantalum compound such as tantalum, a tantalum alloy, or tantalum nitride is formed on an insulating film having a recess as a barrier film, and the substrate on which the wiring metal film is formed so as to fill the recess is polished by CMP to embed the wiring. And can be suitably used in a process of forming an electrical connection portion such as a via. This polishing agent may be used in the first polishing step for removing the wiring metal film in a two-step polishing method that separates the polishing of the wiring metal film and the polishing of the barrier film, but the first polishing is performed after the barrier film is exposed. 2 It is particularly suitable when used in a polishing process.
[0016]
The fine oxide particles, which are the component (A) in the abrasive, constitute the abrasive grains. Specifically, silica, alumina, cerium oxide (ceria), zirconium oxide (zirconia), titanium oxide (titania), oxidation One or more selected from the group consisting of tin, zinc oxide, germanium oxide and manganese oxide are preferred. As silica, those produced by various known methods can be used. For example, fumed silica obtained by vapor phase synthesis of silicon tetrachloride in a flame of oxygen and hydrogen, colloidal silica obtained by ion exchange of sodium silicate, or colloidal silica obtained by hydrolyzing silicon alkoxide in the liquid phase. As alumina, colloidal alumina can be preferably used. Further, cerium oxide, zirconium oxide, titanium oxide, tin oxide and zinc oxide produced by a liquid phase method or a gas phase method can also be preferably used. Among these, colloidal silica that can obtain a high-purity product having a uniform particle size is preferable.
[0017]
The average particle size of the component (A) is preferably from 5 to 500 nm, more preferably from 10 to 300 nm, from the viewpoint of polishing characteristics and dispersion stability. The concentration of the component (A) in the present abrasive is preferably 0.5 to 20% by mass, particularly preferably 1 to 10% by mass, based on the total mass of the abrasive, and the polishing rate and uniformity. Further, it is appropriately set in consideration of material selectivity, dispersion stability and the like.
[0018]
The component (B) is selected from one or more selected from the group consisting of monosaccharides, oligosaccharides having 2 to 20 monosaccharides bonded thereto, sugar alcohols thereof, and sugar esters thereof. In the present invention, it has been found that by containing the component (B), aggregation and gelation due to the highly active surface hydroxyl group contained in the oxide fine particles of the component (A) can be suppressed, and scratches can be reduced. . As a result, it is possible to form a buried wiring portion having excellent electrical characteristics with low dishing and erosion, less scratches, and high reliability while keeping the barrier film polishing rate high.
[0019]
Preferable specific examples of component (B) include one or more selected from the group consisting of glucose, sorbitol, erythrol, erythritol, xylose, xylitol, mannose, mannitol, maltose, maltitol, and trehalose. Especially, 1 or more types chosen from the group which consists of galactooligosaccharide, fructooligosaccharide, dairy oligosaccharide, chitin oligosaccharide, and sucrose fatty acid ester are mentioned. In particular, a sucrose ester of a fatty acid having 2 to 20 carbon atoms, which is a sucrose fatty acid ester, is suitable.
[0020]
The concentration of the component (B) is preferably 0.01 to 50% by mass with respect to the total mass of the abrasive from the viewpoint of polishing characteristics and dispersion stability, and 0.5 to 30 from the viewpoint of polishing characteristics and dispersion stability. The mass% is more preferable.
[0021]
Component (C) is a benzotriazole-based compound represented by Formula 1 (wherein R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxylic acid group) Is preferred). Component (C) has a function of forming a protective film on the surface of the wiring metal in order to prevent dishing of the wiring metal part. When the wiring metal is made of Cu, it is necessary to suppress elution of Cu by forming a film by physical adsorption or chemical adsorption on the Cu surface, and the component (C) has this function.
[0022]
[Chemical 3]
Figure 2004055861
[0023]
Specific examples of the component (C) include BTA, tolyltriazole (TTA) in which one of the H atoms at the 4 or 5 position of the benzene ring of BTA is substituted with a methyl group, or a benzotriazole in which a carboxylic acid group is substituted. -4-carboxylic acid and the like. These may be used alone or in combination of two or more. Component (C) is preferably contained in an amount of 0.001 to 5% by mass, more preferably 0.01 to 0.5% by mass, based on the total mass of the present polishing agent in terms of polishing characteristics.
[0024]
It is preferable that water of a component (D) is contained in this abrasive | polishing agent 40 to 98 mass% with respect to the total mass of this abrasive | polishing agent, especially 60 to 90 mass%. Since water has a function of controlling the fluidity of the present abrasive, its content is appropriately set in accordance with desired polishing characteristics such as polishing speed and flattening characteristics.
[0025]
In addition to the above component (D), the present abrasive can contain a solvent having a large relative dielectric constant, thereby enhancing the stability of the polishing characteristics and the dispersion stability. This effect seems to be because a solvent having a high relative dielectric constant (polar solvent) can dissolve the electrolyte at a high concentration by solvation. Conventional abrasives often use only water as a dispersion medium for abrasive grains, but since water has a high surface tension, it is sufficient for a very small gap between the polishing pad on the polishing platen and the surface to be polished. It is slightly poor in fluidity to always supply the abrasive. In the present abrasive, fluidity can be improved by coexisting with a low dielectric constant solvent having a low viscosity.
[0026]
Preferable examples of the solvent having a high relative dielectric constant used in the present invention include methanol, ethanol, isopropanol, etherene glycol, propylene glycol, and N-meter-2-pyrrolidone. These solvents having a large relative dielectric constant are preferably used in an amount of 0.1 to 10% by mass, particularly 0.5 to 5% by mass, based on the total mass of the component (D).
[0027]
In addition, by adding an oxidizing agent to the polishing agent, an oxide film is formed on the surface of the barrier film, and polishing of the barrier film can be promoted by removing the oxide film from the substrate surface with a mechanical force. it can. As the oxidizing agent, 1 selected from hydrogen peroxide, iodate, periodate, hypochlorite, perchlorate, persulfate, percarbonate, perborate and perphosphate More than species are preferred. As preferred salts of the above-mentioned acids, alkali metal salts such as ammonium salts and potassium salts can be used. Among these, hydrogen peroxide that does not contain an alkali metal component and does not produce harmful by-products is preferable. The concentration of the oxidizing agent is in the range of 0.5 to 20% by mass with respect to the total mass of the present abrasive from the viewpoint of obtaining a sufficient effect of promoting polishing, and considering the polishing rate, the uniformity of the abrasive slurry, and the like. It is preferable to set appropriately.
[0028]
This abrasive contains at least one selected from the group consisting of acids, alkalis, and pH buffers from the viewpoints of polishing characteristics and dispersion stability, and the pH is preferably 2 to 10, particularly 4. It is preferable to control to -8. The acid is preferably at least one selected from nitric acid, sulfuric acid and carboxylic acid. Among these, nitric acid which is an oxo acid having an oxidizing power and does not contain a halogen is preferable. As for the density | concentration of the acid in this abrasive | polishing agent, 0.01-20 mass% is preferable with respect to the total mass of an abrasive | polishing agent.
[0029]
Examples of the alkali include ammonia, potassium hydroxide, and quaternary ammonium hydroxide such as tetramethylammonium hydroxide and tetraethylammonium hydroxide (hereinafter referred to as TEAH). Ammonia is preferred when it is desirable not to include an alkali metal. As for the density | concentration of an alkali, 0.01-20 mass% is preferable with respect to the total mass of an abrasive | polishing agent.
[0030]
Moreover, as said pH buffer agent, if it is a substance with general pH buffering ability, it can be used, but it is 1 type chosen from the succinic acid which is polyhydric carboxylic acid, a citric acid, an oxalic acid, a phthalic acid, tartaric acid, and adipic acid The above is preferable. Moreover, glycylglycine and alkali carbonate can also be used. The concentration of the pH buffering agent is preferably 0.01 to 10% by mass with respect to the total mass of the abrasive.
[0031]
This abrasive is suitable for polishing a substrate on which a wiring metal film and a barrier film are formed. In this case, a high effect can be obtained particularly in a film in which the barrier film is made of one or more selected from tantalum, a tantalum alloy, or a tantalum compound. However, the present invention can also be applied to a film made of another metal or the like, and the same effect can be obtained when the barrier film is made of a metal other than tantalum or a metal compound, such as Ti, TiN, TiSiN, or WN.
[0032]
In addition, the present polishing agent is highly effective when the wiring metal film is at least one selected from copper, copper alloys and copper compounds, but metals other than Cu, for example, Al, W, Ag, Pt, Au It is also applicable to metal films such as In addition, examples of the insulating film in the substrate include a film made of silicon dioxide or SiOF, a film containing an organic component obtained by organic SOG (Spin on glass), and a film made of a low dielectric constant material such as porous silica.
[0033]
The abrasive is suitable for polishing a substrate having an insulating film on which a wiring metal film and a barrier film are formed, and the abrasive has characteristics satisfying the following. That is, the wiring metal film, when polishing a barrier film and the insulating film of the same conditions, the ratio between the polishing rate of the interconnect metal film (R Cu) and barrier film polishing rate (R Ba) (R Cu / R Ba) is, 0 <R Cu / R Ba ≦ 0.5 is satisfied, and the ratio (R In / R Ba ) between the polishing rate of the insulating film (R In ) and the polishing rate of the barrier film is 0 <R In / R Ba ≦ 1 can be satisfied.
[0034]
The polishing method of the present invention is a polishing method in which the polishing agent is supplied to a polishing pad on a polishing surface plate, the surface to be polished and the polishing pad are brought into contact, and polishing is performed by relative movement between the two. If necessary, polishing may be carried out while bringing the pad conditioner into contact with the surface of the polishing pad and conditioning the surface of the polishing pad. The material of the polishing pad includes polyester and polyurethane, but the material of the polishing pad is not limited to this, and can be appropriately selected depending on the combination with the slurry of the abrasive composition used. The polishing pressure can be set according to physical properties such as the type of polishing pad, the polishing rate, and the viscosity of the abrasive, but preferably 0.7 × 10 3 Pa to 2.1 × 10 4 Pa is employed. The supply amount of the abrasive is preferably 50 ml / min to 500 ml / min.
[0035]
This polishing agent forms recesses such as wiring groove patterns and vias in the insulating film, and then forms a barrier metal film, and then forms a wiring metal film. Sputtering and plating methods to embed Cu in the groove In the substrate formed by the above method, the wiring metal film Cu and the barrier film are removed by CMP until the surface of the insulating film other than the recesses is exposed. That is, in the two-step polishing process as shown in FIG. 1, when used in the second polishing process in which polishing is performed from the state of FIG. 1B to the state of FIG. 1C, dishing and erosion are less likely to be formed. is there.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples (Examples 1 to 18) and Comparative Examples (Examples 19 and 20), but the present invention is not limited thereto.
[Preparation of abrasive]
To 800 g of pure water, 17 g of 60% nitric acid as an acid, 50 g of 10% ammonia water as an alkali, and 2 g of succinic acid as a pH buffer were added and stirred for 10 minutes to obtain solution a. Next, component (B) and component (C) were dissolved in solution a to obtain solution b. This was used in Examples 1, 2, 19 and 20. In Examples 3 to 6, the alkali was changed to 50 g of 10% aqueous potassium hydroxide. In Examples 9 to 18, the pH buffer was changed to 2 g of citric acid.
[0037]
Next, after gradually adding the dispersion liquid of the component (A) to the liquid b, alkali was gradually added to adjust the pH. Further, an aqueous solution of an oxidizing agent was added and stirred for 30 minutes to obtain an abrasive. Table 1 shows the types of component (A), component (B), component (C), their concentration (% by mass) with respect to the total mass of the abrasive, and the pH of the abrasive used in each example. Table 2 shows the types of the oxidizing agent, acid, alkali, and pH buffering agent, and their concentrations relative to the total mass of the abrasive.
[0038]
[Polishing conditions]
Polishing was performed with the following apparatus and conditions.
Polishing machine: Fully automatic CMP apparatus: MIRRA (Applied Materials, Inc.) polishing pressure: 20 kPa, rotation speed: platen (plate) 103 rpm, head (substrate holding part) 97 rpm, abrasive supply speed: 200 mL / min, polishing pad : IC1000 (Rodel)
[0039]
[Polished object]
(Blanket wafer)
The following (1) to (3) were used. These are all manufactured by Sematech. (1) Wafer for Cu (wiring metal film) polishing rate evaluation: An 8-inch wafer in which a Cu layer having a thickness of 1500 nm is formed on a substrate by plating.
(2) Ta (barrier film) polishing rate evaluation wafer: An 8-inch wafer in which a Ta layer having a thickness of 200 nm is formed on a substrate by sputtering.
(3) Wafer for evaluating the polishing rate of SiO 2 (insulating film): An 8-inch wafer in which a SiO 2 layer having a thickness of 800 nm is formed on a substrate by plasma CVD.
(Pattern wafer)
A wiring pattern having a wiring density of 50% and a wiring width of 5 μm and 50 μm is formed on the insulating film formed on the substrate, and a Ta layer having a thickness of 25 nm is sputtered on the insulating film on which the wiring pattern is formed. Then, an 8-inch wafer (trade name: 831 CMP000, manufactured by Sematech) on which a Cu layer having a thickness of 1500 nm is formed by plating.
[0040]
[Method for evaluating characteristics of abrasives]
A blanket wafer was used for evaluating the polishing rate of each of the wiring metal film, barrier film, and insulating film, and a pattern wafer was used for evaluating dishing and erosion. In polishing the pattern wafer, a two-step polishing method including a first polishing step for removing the wiring metal film and a second polishing step for removing the barrier film was performed. In the polishing agent for the first polishing step, alumina, hydrogen peroxide, citric acid, ammonium polyacrylate, and water are 3% by mass, 4% by mass, and 0.1% by mass, respectively, with respect to the total mass of the polishing agent. , 0.05% by weight and 92.85% by weight abrasives were used. In all of the examples and comparative examples, the above polishing agent was used in the first polishing step.
[0041]
At the stage where Ta on the insulating film was exposed after the first polishing step, the dishing at the position of the wiring width 5 μm was 40 nm, the dishing at the position of the wiring width 50 μm was 60 nm, and the erosion was 0 nm at any wiring width. Thereafter, the second polishing step was performed using the abrasives of the respective examples having the compositions shown in Tables 1 and 2 until Ta on the insulating film disappeared. The concentration of the substance in Tables 1 and 2 indicates a mass ratio (%) to the total amount of the polishing liquid.
[0042]
The polishing characteristics were evaluated by the following method. The polishing rate was calculated from the film thickness before and after polishing. For film thickness measurement, a sheet resistance measuring device: RS75 (trade name of KLA Tencor) calculated from the surface resistance by the four-probe method is used for Cu and Ta. Apparatus: UV1280SE (trade name of KLA Tencor) was used. For the flattening characteristics of dishing and erosion, a high resolution profiler HRP100 (trade name of KLA Tencor Co., Ltd.) that measures a step with a stylus type was used.
[0043]
Cu in Table 3, Ta, the polishing rate of each film of SiO 2 (unit nm / min) shows a step (in nm) according to the respective dishing and erosion in Table 4.
[0044]
[Table 1]
Figure 2004055861
[0045]
[Table 2]
Figure 2004055861
[0046]
[Table 3]
Figure 2004055861
[0047]
[Table 4]
Figure 2004055861
[0048]
【The invention's effect】
According to the polishing agent of the present invention, dishing and erosion occur at a high polishing rate in the second polishing step of removing the barrier film, particularly on the substrate having the wiring metal film and the barrier film formed on the insulating film. It is possible to form a buried wiring portion that has excellent reliability and electrical characteristics with few scratches.
[Brief description of the drawings]
FIG. 1 is a process cross-sectional view illustrating a method for forming a buried wiring by CMP.
(A) Before polishing, (b) after completion of the first polishing step for removing the wiring metal film, and (c) after completion of the second polishing step for removing the barrier film.
FIG. 2 is a cross-sectional view showing a process of forming dishing.
(A) Before polishing, (b) After polishing.
FIG. 3 is a cross-sectional view showing a process of forming erosion.
(A) Before polishing, (b) After polishing.
[Explanation of symbols]
1: Silicon substrate 2: Insulating film 3: Barrier film 4: Wiring metal film 5: Embedded wiring

Claims (10)

基板を研磨するための化学的機械的研磨用研磨剤であって、下記(A)、(B)、(C)および(D)を含有することを特徴とする研磨剤。
(A)酸化物微粒子、
(B)単糖、単糖が2〜20個結合したオリゴ糖、これらの糖アルコール、およびこれらの糖エステルからなる群から選ばれる1種以上、
(C)式1で表されるベンゾトリアゾール系化合物(ただし、Rは水素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、またはカルボン酸基である。)、
Figure 2004055861
(D)水。
An abrasive for chemical mechanical polishing for polishing a substrate, comprising the following (A), (B), (C) and (D).
(A) oxide fine particles,
(B) one or more selected from the group consisting of monosaccharides, oligosaccharides having 2 to 20 monosaccharides bound thereto, sugar alcohols thereof, and sugar esters thereof,
(C) a benzotriazole compound represented by Formula 1 (wherein R is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxylic acid group),
Figure 2004055861
(D) Water.
前記(B)が、グルコース、ソルビトール、エリスロール、エリスリトール、キシロース、キシリトール、マンノース、マンニトール、マルトース、マルチトール、およびトレハロースからなる群から選ばれる1種以上である請求項1に記載の研磨剤。The abrasive according to claim 1, wherein (B) is one or more selected from the group consisting of glucose, sorbitol, erythrol, erythritol, xylose, xylitol, mannose, mannitol, maltose, maltitol, and trehalose. 前記(B)が、ガラクトオリゴ糖、フラクトオリゴ糖、乳果オリゴ糖、キチンオリゴ糖、およびショ糖脂肪酸エステルからなる群から選ばれる1種以上である請求項1に記載の研磨剤。The abrasive according to claim 1, wherein (B) is at least one member selected from the group consisting of galactooligosaccharides, fructooligosaccharides, dairy oligosaccharides, chitin oligosaccharides, and sucrose fatty acid esters. さらに、酸化剤が含まれる請求項1〜3のいずれかに記載の研磨剤。Furthermore, the abrasive | polishing agent in any one of Claims 1-3 in which an oxidizing agent is contained. さらに、酸、アルカリ、およびpH緩衝剤からなる群より選ばれる1種以上が含まれる請求項1〜4のいずれかに記載の研磨剤。Furthermore, the abrasive | polishing agent in any one of Claims 1-4 in which 1 or more types chosen from the group which consists of an acid, an alkali, and a pH buffer is contained. 前記(A)が、シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛、酸化ゲルマニウム、および酸化マンガンからなる群から選ばれる1種以上である請求項1〜5のいずれかに記載の研磨剤。The (A) is one or more selected from the group consisting of silica, alumina, cerium oxide, zirconium oxide, titanium oxide, tin oxide, zinc oxide, germanium oxide, and manganese oxide. The abrasive | polishing agent of description. 研磨剤の全質量に対し、前記(A)が0.5〜20質量%、前記(B)が0.01〜50質量%、前記(C)が0.001〜5質量%、及び前記(D)が40〜98質量%含まれる請求項1〜6のいずれかに記載の研磨剤。(A) is 0.5 to 20% by mass, (B) is 0.01 to 50% by mass, (C) is 0.001 to 5% by mass, and ( The abrasive | polishing agent in any one of Claims 1-6 in which 40-98 mass% of D) is contained. 配線金属膜、バリア膜および絶縁膜を同一条件により研磨した場合、配線金属膜の研磨速度(RCu)とバリア膜研磨速度(RBa)との比(RCu/RBa)が、0<RCu/RBa≦0.5を満たし、かつ絶縁膜の研磨速度(RIn)と上記バリア膜の研磨速度との比(RIn/RBa)が、0<RIn/RBa≦1を満たす請求項1〜7のいずれかに記載の研磨剤。When the wiring metal film, the barrier film, and the insulating film are polished under the same conditions, the ratio (R Cu / R Ba ) between the polishing rate (R Cu ) of the wiring metal film and the barrier film polishing rate (R Ba ) is 0 < R Cu / R Ba ≦ 0.5 and the ratio of the insulating film polishing rate (R In ) to the barrier film polishing rate (R In / R Ba ) is 0 <R In / R Ba ≦ 1 The abrasive | polishing agent in any one of Claims 1-7 which satisfy | fills. 研磨剤を研磨定盤上の研磨パッドに供給し、被研磨面と研磨パッドを接触させ、両者間の相対運動により研磨する方法であって、研磨剤が請求項1〜8のいずれかに記載のものであり、被研磨面が配線金属膜とバリア膜と絶縁膜の形成された基板であることを特徴とする研磨方法。A method for supplying a polishing agent to a polishing pad on a polishing surface plate, bringing the surface to be polished into contact with the polishing pad, and polishing by relative movement between the two, wherein the polishing agent is any one of claims 1 to 8. A polishing method, wherein the surface to be polished is a substrate on which a wiring metal film, a barrier film, and an insulating film are formed. 前記バリア膜は、タンタル、タンタル合金またはタンタル化合物からなり、かつ前記配線金属膜は、銅、銅合金または銅化合物からなる請求項9に記載の研磨方法。The polishing method according to claim 9, wherein the barrier film is made of tantalum, a tantalum alloy, or a tantalum compound, and the wiring metal film is made of copper, a copper alloy, or a copper compound.
JP2002211942A 2002-07-22 2002-07-22 Abrasive and polishing method Expired - Fee Related JP4206233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211942A JP4206233B2 (en) 2002-07-22 2002-07-22 Abrasive and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211942A JP4206233B2 (en) 2002-07-22 2002-07-22 Abrasive and polishing method

Publications (2)

Publication Number Publication Date
JP2004055861A true JP2004055861A (en) 2004-02-19
JP4206233B2 JP4206233B2 (en) 2009-01-07

Family

ID=31935002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211942A Expired - Fee Related JP4206233B2 (en) 2002-07-22 2002-07-22 Abrasive and polishing method

Country Status (1)

Country Link
JP (1) JP4206233B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260225A (en) * 2004-03-03 2005-09-22 Schott Ag Method for manufacturing wafer with few surface defects, wafer obtained by said method, and electronic component made of the wafer
JP2006041514A (en) * 2004-07-15 2006-02-09 Interuniv Micro Electronica Centrum Vzw Slurry composition and method for chemical mechanical polishing of copper integrated with tungsten-based barrier metal
JP2006086462A (en) * 2004-09-17 2006-03-30 Fujimi Inc Polishing composition and manufacturing method of wiring structure using the same
JP2006315160A (en) * 2005-05-16 2006-11-24 Fuji Electric Holdings Co Ltd Finish polishing method for glass substrate of magnetic disk
WO2007000852A1 (en) * 2005-06-28 2007-01-04 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
WO2007126030A1 (en) 2006-04-27 2007-11-08 Asahi Glass Company, Limited Oxide crystal fine particle and polishing slurry including the fine particle
JP2007299942A (en) * 2006-04-28 2007-11-15 Fujifilm Corp Metal polishing composition, and chemical-mechanical polishing method using it
US7381232B2 (en) 2004-11-08 2008-06-03 Asahi Glass Company, Limited Process for producing CeO2 fine particles and polishing slurry containing such fine particles
JP2009081199A (en) * 2007-09-25 2009-04-16 Fujifilm Corp Polishing solution and polishing method
JP2012079879A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Chemical mechanical polishing method and slurry used for the same
WO2013035034A1 (en) * 2011-09-07 2013-03-14 Basf Se A chemical mechanical polishing (cmp) composition comprising a glycoside
KR20140057259A (en) * 2011-08-09 2014-05-12 바스프 에스이 Aqueous alkaline compositions and method for treating the surface of silicon substrates
JP6001532B2 (en) * 2011-05-24 2016-10-05 株式会社クラレ Chemical machine polishing erosion inhibitor, chemical mechanical polishing slurry and chemical mechanical polishing method
KR20190052026A (en) 2016-09-29 2019-05-15 카오카부시키가이샤 Abrasive liquid composition
KR20190055112A (en) 2016-09-29 2019-05-22 카오카부시키가이샤 Abrasive liquid composition
JP2020002359A (en) * 2018-06-29 2020-01-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Low oxide trench dishing chemical mechanical polishing
JP2020045291A (en) * 2018-09-14 2020-03-26 恒隆 川口 Cerium oxide-containing composition
CN111500197A (en) * 2019-01-30 2020-08-07 弗萨姆材料美国有限责任公司 Shallow trench isolation chemical mechanical planarization polishing with adjustable silicon oxide and silicon nitride removal rates
CN114729229A (en) * 2019-10-24 2022-07-08 弗萨姆材料美国有限责任公司 High oxide removal rate shallow trench isolation chemical mechanical planarization composition
CN114729229B (en) * 2019-10-24 2024-06-28 弗萨姆材料美国有限责任公司 Shallow trench isolation chemical mechanical planarization composition with high oxide removal rate

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260225A (en) * 2004-03-03 2005-09-22 Schott Ag Method for manufacturing wafer with few surface defects, wafer obtained by said method, and electronic component made of the wafer
JP2006041514A (en) * 2004-07-15 2006-02-09 Interuniv Micro Electronica Centrum Vzw Slurry composition and method for chemical mechanical polishing of copper integrated with tungsten-based barrier metal
US8080505B2 (en) 2004-07-15 2011-12-20 Imec Slurry composition and method for chemical mechanical polishing of copper integrated with tungsten based barrier metals
US7589052B2 (en) * 2004-07-15 2009-09-15 Imec Slurry composition and method for chemical mechanical polishing of copper integrated with tungsten based barrier metals
JP2006086462A (en) * 2004-09-17 2006-03-30 Fujimi Inc Polishing composition and manufacturing method of wiring structure using the same
TWI425082B (en) * 2004-09-17 2014-02-01 Fujimi Inc Polishing composition and process for producing wiring structure using it
US7381232B2 (en) 2004-11-08 2008-06-03 Asahi Glass Company, Limited Process for producing CeO2 fine particles and polishing slurry containing such fine particles
JP2006315160A (en) * 2005-05-16 2006-11-24 Fuji Electric Holdings Co Ltd Finish polishing method for glass substrate of magnetic disk
EP1909312A1 (en) * 2005-06-28 2008-04-09 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
EP1909312A4 (en) * 2005-06-28 2010-06-16 Asahi Glass Co Ltd Abrasive and process for producing semiconductor integrated-circuit unit
JP2007012679A (en) * 2005-06-28 2007-01-18 Asahi Glass Co Ltd Abrasive and manufacturing method of semiconductor integrated circuit device
WO2007000852A1 (en) * 2005-06-28 2007-01-04 Asahi Glass Company, Limited Abrasive and process for producing semiconductor integrated-circuit unit
WO2007126030A1 (en) 2006-04-27 2007-11-08 Asahi Glass Company, Limited Oxide crystal fine particle and polishing slurry including the fine particle
JP2007299942A (en) * 2006-04-28 2007-11-15 Fujifilm Corp Metal polishing composition, and chemical-mechanical polishing method using it
JP2009081199A (en) * 2007-09-25 2009-04-16 Fujifilm Corp Polishing solution and polishing method
KR101515837B1 (en) * 2007-09-25 2015-05-04 후지필름 가부시키가이샤 Polishing liquid and polishing method
JP2012079879A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Chemical mechanical polishing method and slurry used for the same
JP6001532B2 (en) * 2011-05-24 2016-10-05 株式会社クラレ Chemical machine polishing erosion inhibitor, chemical mechanical polishing slurry and chemical mechanical polishing method
KR20140057259A (en) * 2011-08-09 2014-05-12 바스프 에스이 Aqueous alkaline compositions and method for treating the surface of silicon substrates
JP2014529641A (en) * 2011-08-09 2014-11-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Aqueous alkaline composition and method for treating the surface of a silicon substrate
KR101922855B1 (en) * 2011-08-09 2019-02-27 바스프 에스이 Aqueous alkaline compositions and method for treating the surface of silicon substrates
US20140213057A1 (en) * 2011-09-07 2014-07-31 Basf Se Chemical mechanical polishing (cmp) composition comprising a glycoside
CN103764775A (en) * 2011-09-07 2014-04-30 巴斯夫欧洲公司 Chemical mechanical polishing (CMP) composition comprising glycoside
CN103764775B (en) * 2011-09-07 2016-05-18 巴斯夫欧洲公司 Chemically mechanical polishing (CMP) composition that comprises glycosides
WO2013035034A1 (en) * 2011-09-07 2013-03-14 Basf Se A chemical mechanical polishing (cmp) composition comprising a glycoside
US9487674B2 (en) 2011-09-07 2016-11-08 Basf Se Chemical mechanical polishing (CMP) composition comprising a glycoside
KR20190055112A (en) 2016-09-29 2019-05-22 카오카부시키가이샤 Abrasive liquid composition
KR20190052026A (en) 2016-09-29 2019-05-15 카오카부시키가이샤 Abrasive liquid composition
JP2020002359A (en) * 2018-06-29 2020-01-09 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Low oxide trench dishing chemical mechanical polishing
JP7121696B2 (en) 2018-06-29 2022-08-18 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Low oxide trench dishing chemical mechanical polishing
JP2020045291A (en) * 2018-09-14 2020-03-26 恒隆 川口 Cerium oxide-containing composition
CN111500197A (en) * 2019-01-30 2020-08-07 弗萨姆材料美国有限责任公司 Shallow trench isolation chemical mechanical planarization polishing with adjustable silicon oxide and silicon nitride removal rates
JP2020122144A (en) * 2019-01-30 2020-08-13 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Shallow trench isolation (sti) chemical mechanical planarization (cmp) polishing with tunable silicon oxide and silicon nitride removal rates
TWI768285B (en) * 2019-01-30 2022-06-21 美商慧盛材料美國責任有限公司 Composition, method and system for shallow trench isolation (sti) chemical mechanical planarization (cmp) polishing with tunable silicon oxide and silicon nitride removal rates
US11608451B2 (en) 2019-01-30 2023-03-21 Versum Materials Us, Llc Shallow trench isolation (STI) chemical mechanical planarization (CMP) polishing with tunable silicon oxide and silicon nitride removal rates
CN114729229A (en) * 2019-10-24 2022-07-08 弗萨姆材料美国有限责任公司 High oxide removal rate shallow trench isolation chemical mechanical planarization composition
CN114729229B (en) * 2019-10-24 2024-06-28 弗萨姆材料美国有限责任公司 Shallow trench isolation chemical mechanical planarization composition with high oxide removal rate

Also Published As

Publication number Publication date
JP4206233B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP4576117B2 (en) Abrasive, manufacturing method thereof and polishing method
EP1724819B1 (en) Polishing agent and polishing method
JP5472049B2 (en) Abrasives for chemical mechanical polishing
JP4206233B2 (en) Abrasive and polishing method
EP1909312A1 (en) Abrasive and process for producing semiconductor integrated-circuit unit
JPWO2008132983A1 (en) Abrasive composition and method for producing semiconductor integrated circuit device
US20080148652A1 (en) Compositions for chemical mechanical planarization of copper
US20080171441A1 (en) Polishing compound and method for producing semiconductor integrated circuit device
JP2005167219A (en) Composition and method for removing barrier
JP2010010717A (en) Abrasive agent and polishing method
JP2001085372A (en) Metal polishing liquid and polishing method for substrate
JP2009272418A (en) Abrasive composition, and method of manufacturing semiconductor integrated circuit device
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4684121B2 (en) Chemical mechanical polishing abrasive and substrate polishing method
JP2007013059A (en) Polishing composition for cmp
JP2009152647A (en) Metal polishing solution and substrate polishing method using the same
JP2003238942A (en) Polishing composition
JP2006191132A (en) Abrasive powder for chemical mechanical polishing and method for polishing substrate
JP4118080B2 (en) Metal substrate polishing particles and abrasives
JP2003249469A (en) Polishing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080813

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees